Search results for: thermal noise
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4651

Search results for: thermal noise

1141 Determination of Foaming Behavior in Thermoplastic Composite Nonwoven Structures for Automotive Applications

Authors: Zulfiye Ahan, Mustafa Dogu, Elcin Yilmaz

Abstract:

The use of nonwoven textile materials in many application areas is rapidly increasing thanks to their versatile performance properties. The automotive industry is one of the largest sectors in the world with a potential market of more than 2 billion euros for nonwoven textile materials applications. Lightweight materials having higher mechanical performance, better sound and heat insulation properties are of interest in many applications. Since the usage of nonwoven surfaces provides many of these advantages, the demand for this kind of materials is gradually growing especially in the automotive industry. Nonwoven materials used in lightweight vehicles can contain economical and high strength thermoplastics as well as durable components such as glass fiber. By bringing these composite materials into foam structure containing micro or nanopores, products with high absorption ability, light and mechanically stronger can be fabricated. In this respect, our goal is to produce thermoplastic composite nonwoven by using nonwoven glass fiber fabric reinforced polypropylene (PP). Azodicarbonamide (ADC) was selected as a foaming agent and a thermal process was applied to obtain porous structure. Various foaming temperature ranges and residence times were studied to examine the foaming behaviour of the thermoplastic composite nonwoven. Physicochemical and mechanical tests were applied in order to analyze the characteristics of composite foams.

Keywords: composite nonwoven, thermoplastic foams, foaming agent, foaming behavior

Procedia PDF Downloads 235
1140 Analysis of Residual Stresses and Angular Distortion in Stiffened Cylindrical Shell Fillet Welds Using Finite Element Method

Authors: M. R. Daneshgar, S. E. Habibi, E. Daneshgar, A. Daneshgar

Abstract:

In this paper, a two-dimensional method is developed to simulate the fillet welds in a stiffened cylindrical shell, using finite element method. The stiffener material is aluminum 2519. The thermo-elasto-plastic analysis is used to analyze the thermo-mechanical behavior. Due to the high heat flux rate of the welding process, two uncouple thermal and mechanical analysis are carried out instead of performing a single couple thermo-mechanical simulation. In order to investigate the effects of the welding procedures, two different welding techniques are examined. The resulted residual stresses and distortions due to different welding procedures are obtained. Furthermore, this study employed the technique of element birth and death to simulate the weld filler variation with time in fillet welds. The obtained results are in good agreement with the published experimental and three-dimensional numerical simulation results. Therefore, the proposed 2D modeling technique can effectively give the corresponding results of 3D models. Furthermore, by inspection of the obtained residual hoop and transverse stresses and angular distortions, proper welding procedure is suggested.

Keywords: stiffened cylindrical shell, fillet welds, residual stress, angular distortion, finite element method

Procedia PDF Downloads 351
1139 Nanoindentation and Physical Properties of Polyvinyl Chloride/Styrene Co-Maleic Anhydride Blend Reinforced by Organo-Bentonite

Authors: D. E. Abulyazied, S. M. Mokhtar, A. M. Motawie

Abstract:

Polymer blends represent an important class of materials in engineering applications. The incorporation of clay nanofiller may provide new opportunities for this type of materials to enhance their applications. This article reports on the effects of clay on the structure and properties of polymer blends nanocomposites, based on Polyvinyl chloride PVC and styrene co-maleic anhydride SMA blend. Modification of the Egyptian Bentonite EB was carried out using organo-modifier namely; octadecylamine ODA. Before the modification, the cation exchange capacity CEC of the EB was measured. The octadecylamine bentonite ODA-B was characterized using Fourier transform infrared Spectroscopy FTIR, X-Ray Diffraction XRD, and Transition Electron Microscope TEM. A blend of Polyvinyl chloride PVC and styrene co-maleic anhydride SMA (50:50) was prepared in Tetra Hydro Furan (THF). Then nanocomposites of PVC/SMA/ODA-B were prepared by solution intercalation polymerization from 0.50% up to 5% by weight of ODA-B. The nanocomposites are characterized by XRD, TEM. Thermal, nanoindentation, swelling and electrical properties of the nanocomposites were measured. The morphology of the nanocomposites showed that ODA-B achieved good dispersion in the PVC/SMA matrix. Incorporation of 0.5 %, 1%, 3% and 5% by weight nanoclay into the PVC/SMA blends results in an improvement in nanohardness of 16%, 76%, 92%, and 68% respectively. The elastic modulus increased from 4.59 GPa for unreinforced PVC/SMA blend to 6.30 GPa (37% increase) with the introduction of 3% by weight nanoclay. The cross-link density of the nanocomposites increases with increasing the content of ODA-B.

Keywords: PVC, SMA, nanocomposites, nanoindentation, organo-bentonite

Procedia PDF Downloads 371
1138 Numerical Investigation of AL₂O₃ Nanoparticle Effect on a Boiling Forced Swirl Flow Field

Authors: Ataollah Rabiee1, Amir Hossein Kamalinia, Alireza Atf

Abstract:

One of the most important issues in the design of nuclear fusion power plants is the heat removal from the hottest region at the diverter. Various methods could be employed in order to improve the heat transfer efficiency, such as generating turbulent flow and injection of nanoparticles in the host fluid. In the current study, Water/AL₂O₃ nanofluid forced swirl flow boiling has been investigated by using a homogeneous thermophysical model within the Eulerian-Eulerian framework through a twisted tape tube, and the boiling phenomenon was modeled using the Rensselaer Polytechnic Institute (RPI) approach. In addition to comparing the results with the experimental data and their reasonable agreement, it was evidenced that higher flow mixing results in more uniform bulk temperature and lower wall temperature along the twisted tape tube. The presence of AL₂O₃ nanoparticles in the boiling flow field showed that increasing the nanoparticle concentration leads to a reduced vapor volume fraction and wall temperature. The Computational fluid dynamics (CFD) results show that the average heat transfer coefficient in the tube increases both by increasing the nanoparticle concentration and the insertion of twisted tape, which significantly affects the thermal field of the boiling flow.

Keywords: nanoparticle, boiling, CFD, two phase flow, alumina, ITER

Procedia PDF Downloads 125
1137 Modeling and Minimizing the Effects of Ferroresonance for Medium Voltage Transformers

Authors: Mohammad Hossein Mohammadi Sanjani, Ashknaz Oraee, Arian Amirnia, Atena Taheri, Mohammadreza Arabi, Mahmud Fotuhi-Firuzabad

Abstract:

Ferroresonance effects cause overvoltage in medium voltage transformers and isolators used in electrical networks. Ferroresonance effects are nonlinear and occur between the network capacitor and the nonlinear inductance of the voltage transformer during saturation. This phenomenon is unwanted for transformers since it causes overheating, introduction of high dynamic forces in primary coils, and rise of voltage in primary coils for the voltage transformer. Furthermore, it results in electrical and thermal failure of the transformer. Expansion of distribution lines, design of the transformer in smaller sizes, and the increase of harmonics in distribution networks result in an increase of ferroresonance. There is limited literature available to improve the effects of ferroresonance; therefore, optimizing its effects for voltage transformers is of great importance. In this study, comprehensive modeling of a medium voltage block-type voltage transformer is performed. In addition, a recent model is proposed to improve the performance of voltage transformers during the occurrence of ferroresonance using damping oscillations. Also, transformer design optimization is presented in this study to show further improvements in the performance of the voltage transformer. The recently proposed model is experimentally tested and verified on a medium voltage transformer in the laboratory, and simulation results show a large reduction of the effects of ferroresonance.

Keywords: optimization, voltage transformer, ferroresonance, modeling, damper

Procedia PDF Downloads 101
1136 Synthesis and Surface Engineering of Lanthanide Nanoparticles for NIR Luminescence Imaging and Photodynamic Therapy

Authors: Syue-Liang Lin, C. Allen Chang

Abstract:

Luminescence imaging is an important technique used in biomedical research and clinical diagnostic applications in recent years. Concurrently, the development of NIR luminescence probes / imaging contrast agents has helped the understanding of the structural and functional properties of cells and animals. Photodynamic therapy (PDT) is used clinically to treat a wide range of medical conditions, but the therapeutic efficacy of general PDT for deeper tumor was limited by the penetration of excitation source. The tumor targeting biomedical nanomaterials UCNP@PS (upconversion nanoparticle conjugated with photosensitizer) for photodynamic therapy and near-infrared imaging of cancer will be developed in our study. Synthesis and characterization of biomedical nanomaterials were completed in this studies. The spectrum of UCNP was characterized by photoluminescence spectroscopy and the morphology was characterized by Transmission Electron Microscope (TEM). TEM and XRD analyses indicated that these nanoparticles are about 20~50 nm with hexagonal phase. NaYF₄:Ln³⁺ (Ln= Yb, Nd, Er) upconversion nanoparticles (UCNPs) with core / shell structure, synthesized by thermal decomposition method in 300°C, have the ability to emit visible light (upconversion: 540 nm, 660 nm) and near-infrared with longer wavelength (downconversion: NIR: 980 nm, 1525 nm) by absorbing 800 nm NIR laser. The information obtained from these studies would be very useful for applications of these nanomaterials for bio-luminescence imaging and photodynamic therapy of deep tumor tissue in the future.

Keywords: Near Infrared (NIR), lanthanide, core-shell structure, upconversion, theranostics

Procedia PDF Downloads 235
1135 Effects of Sensory Integration Techniques in Science Education of Autistic Students

Authors: Joanna Estkowska

Abstract:

Sensory integration methods are very useful and improve daily functioning autistic and mentally disabled children. Autism is a neurobiological disorder that impairs one's ability to communicate with and relate to others as well as their sensory system. Children with autism, even highly functioning kids, can find it difficult to process language with surrounding noise or smells. They are hypersensitive to things we can ignore such as sight, sounds and touch. Adolescents with highly functioning autism or Asperger Syndrome can study Science and Math but the social aspect is difficult for them. Nature science is an area of study that attracts many of these kids. It is a systematic field in which the children can focus on a small aspect. If you follow these rules you can come up with an expected result. Sensory integration program and systematic classroom observation are quantitative methods of measuring classroom functioning and behaviors from direct observations. These methods specify both the events and behaviors that are to be observed and how they are to be recorded. Our students with and without autism attended the lessons in the classroom of nature science in the school and in the laboratory of University of Science and Technology in Bydgoszcz. The aim of this study is investigation the effects of sensory integration methods in teaching to students with autism. They were observed during experimental lessons in the classroom and in the laboratory. Their physical characteristics, sensory dysfunction, and behavior in class were taken into consideration by comparing their similarities and differences. In the chemistry classroom, every autistic student is paired with a mentor from their school. In the laboratory, the children are expected to wear goggles, gloves and a lab coat. The chemistry classes in the laboratory were held for four hours with a lunch break, and according to the assistants, the children were engaged the whole time. In classroom of nature science, the students are encouraged to use the interactive exhibition of chemical, physical and mathematical models constructed by the author of this paper. Our students with and without autism attended the lessons in those laboratories. The teacher's goals are: to assist the child in inhibiting and modulating sensory information and support the child in processing a response to sensory stimulation.

Keywords: autism spectrum disorder, science education, sensory integration techniques, student with special educational needs

Procedia PDF Downloads 192
1134 Determination of Foaming Behavior in thermoplastic Composite Nonwoven Structures for Automotive Applications

Authors: Zulfiye Ahan, Mustafa Dogu, Elcin Yilmaz

Abstract:

The use of nonwoven textile materials in many application areas is rapidly increasing thanks to their versatile performance properties. The automotive industry is one of the largest sectors in the world, with a potential market of more than 2 billion euros for nonwoven textile materials applications. Lightweight materials having higher mechanical performance, better sound and heat insulation properties are of interest in many applications. Since the usage of nonwoven surfaces provides many of these advantages, the demand for this kind of material is gradually growing, especially in the automotive industry. Nonwoven materials used in lightweight vehicles can contain economical and high strength thermoplastics as well as durable components such as glass fiber. By bringing these composite materials into foam structure containing micro or nanopores, products with high absorption ability, light and mechanically stronger can be fabricated. In this respect, our goal is to produce thermoplastic composite nonwoven by using nonwoven glass fiber fabric reinforced polypropylene (PP). Azodicarbonamide (ADC) was selected as a foaming agent, and a thermal process was applied to obtain a porous structure. Various foaming temperature ranges and residence times were studied to examine the foaming behaviour of the thermoplastic composite nonwoven. Physicochemical and mechanical tests were applied in order to analyze the characteristics of composite foams.

Keywords: composite nonwoven, thermoplastic foams, foaming agent, foaming behavior

Procedia PDF Downloads 238
1133 Continuous Plug Flow and Discrete Particle Phase Coupling Using Triangular Parcels

Authors: Anders Schou Simonsen, Thomas Condra, Kim Sørensen

Abstract:

Various processes are modelled using a discrete phase, where particles are seeded from a source. Such particles can represent liquid water droplets, which are affecting the continuous phase by exchanging thermal energy, momentum, species etc. Discrete phases are typically modelled using parcel, which represents a collection of particles, which share properties such as temperature, velocity etc. When coupling the phases, the exchange rates are integrated over the cell, in which the parcel is located. This can cause spikes and fluctuating exchange rates. This paper presents an alternative method of coupling a discrete and a continuous plug flow phase. This is done using triangular parcels, which span between nodes following the dynamics of single droplets. Thus, the triangular parcels are propagated using the corner nodes. At each time step, the exchange rates are spatially integrated over the surface of the triangular parcels, which yields a smooth continuous exchange rate to the continuous phase. The results shows that the method is more stable, converges slightly faster and yields smooth exchange rates compared with the steam tube approach. However, the computational requirements are about five times greater, so the applicability of the alternative method should be limited to processes, where the exchange rates are important. The overall balances of the exchanged properties did not change significantly using the new approach.

Keywords: CFD, coupling, discrete phase, parcel

Procedia PDF Downloads 267
1132 Synthesis Modified Electrodes with Au/Pt Nanoparticles and Two New Coordination Polymers of Ag(I) and Cu(II) Constructed by Pyrazine and 3-Nitrophthalic Acid as a Novel Electrochemical Sensing Platform

Authors: Zohreh Derikvand, Hadis Cheraghi, Azadeh Azadbakht, Vaclav Eigner, Michal Dusek

Abstract:

Two new one and two dimensional metal organic coordination polymers of Cu(II), [Cu(3-nph)2(H2O)2pz]n (1) and Ag(I), {[Ag(3-nph)pz].H2O}n (2) with pyrazine (pz) and 3- nitrophthalic acid (3-nph) have been synthesized and characterized by elemental analysis, spectral (IR, UV-Vis), thermal (TG/DTG) analysis and single crystal X-ray diffraction. We used these compounds to preparation modified electrode with Au/Pt nanosparticles in order to investigation electrochemistry and electrocatalysis activities. The surface structure and composition of the sensor were characterized by scanning electron microscopy (SEM). The Ag(I) coordination polymer shows a 2D layer structure constructed from dinuclear silver (I) building blocks in which two crystallographically Ag+ ions are connected to each other by a covalent bond. The pyrazine ligands adopt μ2 bridging modes, linking the metal centers into a one and two -dimensional coordination framework in 1 and 2. The two AgI cations are surrounded by pyrazine and 3-nitrophthalate mono anions and indicate distorted tetrahedral geometry. In the crystal structures of Ag(I) complex there are non-classical hydrogen bonding arrangements, C–O•••π and π–π stacking interactions. In Cu(II) coordination polymer, the coordination geometry around Cu(II) atom is a distorted octahedron. Interestingly, the structural analysis illustrates that the strong and weak hydrogen bond accompanied with C–H•••π and C–O•••π stacking interactions assemble the crystal structure of 1 and 2 into fascinating 3D supramolecular architecture.

Keywords: 3-nithrophethalic acid, crystal structure, coordination polymer, electrocatalysis

Procedia PDF Downloads 319
1131 Pervasive Computing: Model to Increase Arable Crop Yield through Detection Intrusion System (IDS)

Authors: Idowu Olugbenga Adewumi, Foluke Iyabo Oluwatoyinbo

Abstract:

Presently, there are several discussions on the food security with increase in yield of arable crop throughout the world. This article, briefly present research efforts to create digital interfaces to nature, in particular to area of crop production in agriculture with increase in yield with interest on pervasive computing. The approach goes beyond the use of sensor networks for environmental monitoring but also by emphasizing the development of a system architecture that detect intruder (Intrusion Process) which reduce the yield of the farmer at the end of the planting/harvesting period. The objective of the work is to set a model for setting up the hand held or portable device for increasing the quality and quantity of arable crop. This process incorporates the use of infrared motion image sensor with security alarm system which can send a noise signal to intruder on the farm. This model of the portable image sensing device in monitoring or scaring human, rodent, birds and even pests activities will reduce post harvest loss which will increase the yield on farm. The nano intelligence technology was proposed to combat and minimize intrusion process that usually leads to low quality and quantity of produce from farm. Intranet system will be in place with wireless radio (WLAN), router, server, and client computer system or hand held device e.g PDAs or mobile phone. This approach enables the development of hybrid systems which will be effective as a security measure on farm. Since, precision agriculture has developed with the computerization of agricultural production systems and the networking of computerized control systems. In the intelligent plant production system of controlled greenhouses, information on plant responses, measured by sensors, is used to optimize the system. Further work must be carry out on modeling using pervasive computing environment to solve problems of agriculture, as the use of electronics in agriculture will attracts more youth involvement in the industry.

Keywords: pervasive computing, intrusion detection, precision agriculture, security, arable crop

Procedia PDF Downloads 403
1130 Surface Roughness of Al-Si/10% AlN MMC Material in Milling Operation Using the Taguchi Method

Authors: M. S. Said, J. A. Ghani, Izzati Osman, Z. A. Latiff, S. A .F. Syed Mohd

Abstract:

Metal matrix composites have demand for light-weight structural and functional materials. MMCs have been shown to offer improvements in strength, rigidity, temperature stability, wear resistance, reliability and control of physical properties such as density and coefficient of thermal expansion, thereby providing improved engineering performance in comparison to the un-reinforced matrix. Experiment were conducted at various cutting speed, feed rate and difference cutting tools according to Taguchi method using a standard orthogonal array L9. The volume of AlN reinforced particle was 10% in MMC. The milling process was carried out under dry cutting condition using uncoated carbide, TiN and TiCN tool insert. The parameters used were the cutting speed of (230,300,370 m/min) the federate used were (0.4, 0.6, 0.8 mm/tooth) while the depth of cut is constant (0.3 mm). The tool diameter is 20mm. From the project, the surface roughness mechanism was investigated in detail using Mitutoyo portable surface roughness measurements surftest SJ-310. This machining will be fabricated on MMC with 150mm length, 100mm width and 30mm thick. The results showed using S/N ratio, concluded that a combination of low cutting speed, medium feed rate and uncoated insert give a remarkable surface finish. From the ANOVA result showed the feed rate was major contributing factor (43.76%) following type of insert (40.89%).

Keywords: MMC, milling operation and surface roughness, Taguchi method

Procedia PDF Downloads 529
1129 Microstructure and Corrosion Properties of Pulsed Current Gas Metal Arc Welded Narrow Groove and Ultra-Narrow Groove of 304 LN Austenitic Stainless Steel

Authors: Nikki A. Barla, P. K. Ghosh, Sourav Das

Abstract:

Two different groove sizes 13.6 mm (narrow groove) and 7.5 mm (ultra-narrow groove) of 304 LN austenitic stainless steel (ASS) plate was welded using pulse gas metal arc welding (P-GMAW). These grooves were welded using multi-pass single seam per layer (MSPPL) deposition technique with full assurance of groove wall fusion. During bead on plate deposition process, the thermal cycle was recorded using strain buster (temperature measuring device). Both the groove has heat affected Zone (HAZ) width of 1-2 mm. After welding, the microstructure studies was done which revealed that there was higher sensitization (Chromium carbide formation in grain boundary) in the HAZ of 13.6 mm groove weldment as compared to the HAZ of 7.5 mm weldment. Electrochemical potentiokinetic reactivation test (EPR) was done in 0.5 N H₂SO₄ + 1 M KSCN solution to study the degree of sensitization (DOS) and it was observed that 7.5 mm groove HAZ has lower DOS. Mass deposition in the 13.6 mm weld is higher than 7.5mm groove weld, which naturally induces higher residual stress in 13.6 mm weld. Comparison between microstructural studies and corrosion test summarized that the residual stress affects the sensitization property of welded ASS.

Keywords: austenitic stainless steel (ASS), electrochemical potentiokinetic reactivation test (EPR), microstructure, pulse gas metal arc welding (P-GMAW), sensitization

Procedia PDF Downloads 163
1128 Density Measurement of Underexpanded Jet Using Stripe Patterned Background Oriented Schlieren Method

Authors: Shinsuke Udagawa, Masato Yamagishi, Masanori Ota

Abstract:

The Schlieren method, which has been conventionally used to visualize high-speed flows, has disadvantages such as the complexity of the experimental setup and the inability to quantitatively analyze the amount of refraction of light. The Background Oriented Schlieren (BOS) method proposed by Meier is one of the measurement methods that solves the problems, as mentioned above. The refraction of light is used for BOS method same as the Schlieren method. The BOS method is characterized using a digital camera to capture the images of the background behind the observation area. The images are later analyzed by a computer to quantitatively detect the amount of shift of the background image. The experimental setup for BOS does not require concave mirrors, pinholes, or color filters, which are necessary in the conventional Schlieren method, thus simplifying the experimental setup. However, the defocusing of the observation results is caused in case of using BOS method. Since the focus of camera on the background image leads to defocusing of the observed object. The defocusing of object becomes greater with increasing the distance between the background and the object. On the other hand, the higher sensitivity can be obtained. Therefore, it is necessary to adjust the distance between the background and the object to be appropriate for the experiment, considering the relation between the defocus and the sensitivity. The purpose of this study is to experimentally clarify the effect of defocus on density field reconstruction. In this study, the visualization experiment of underexpanded jet using BOS measurement system with ronchi ruling as the background that we constructed, have been performed. The reservoir pressure of the jet and the distance between camera and axis of jet is fixed, and the distance between background and axis of jet has been changed as the parameter. The images have been later analyzed by using personal computer to quantitatively detect the amount of shift of the background image from the comparison between the background pattern and the captured image of underexpanded jet. The quantitatively measured amount of shift have been reconstructed into a density flow field using the Abel transformation and the Gradstone-Dale equation. From the experimental results, it is found that the reconstructed density image becomes blurring, and noise becomes decreasing with increasing the distance between background and axis of underexpanded jet. Consequently, it is cralified that the sensitivity constant should be greater than 20, and the circle of confusion diameter should be less than 2.7mm at least in this experimental setup.

Keywords: BOS method, underexpanded jet, abel transformation, density field visualization

Procedia PDF Downloads 78
1127 Corrosivity of Smoke Generated by Polyvinyl Chloride and Polypropylene with Different Mixing Ratios towards Carbon Steel

Authors: Xufei Liu, Shouxiang Lu, Kim Meow Liew

Abstract:

Because a relatively small fire could potentially cause damage by smoke corrosion far exceed thermal fire damage, it has been realized that the corrosion of metal exposed to smoke atmospheres is a significant fire hazard, except for toxicity or evacuation considerations. For the burning materials in an actual fire may often be the mixture of combustible matters, a quantitative study on the corrosivity of smoke produced by the combustion of mixture is more conducive to the application of the basic theory to the actual engineering. In this paper, carbon steel samples were exposed to smoke generated by polyvinyl chloride and polypropylene, two common combustibles in industrial plants, with different mixing ratios in high humidity for 120 hours. The separate and combined corrosive effects of smoke were examined subsequently by weight loss measurement, scanning electron microscope, energy dispersive spectroscopy and X-ray diffraction. It was found that, although the corrosivity of smoke from polypropylene was much smaller than that of smoke from polyvinyl chloride, smoke from polypropylene enhanced the major corrosive effect of smoke from polyvinyl chloride to carbon steel. Furthermore, the corrosion kinetics of carbon steel under smoke were found to obey the power function. Possible corrosion mechanisms were also proposed. All the analysis helps to provide basic information for the determination of smoke damage and timely rescue after fire.

Keywords: corrosion kinetics, corrosion mechanism, mixed combustible, SEM/EDS, smoke corrosivity, XRD

Procedia PDF Downloads 214
1126 Improve Divers Tracking and Classification in Sonar Images Using Robust Diver Wake Detection Algorithm

Authors: Mohammad Tarek Al Muallim, Ozhan Duzenli, Ceyhun Ilguy

Abstract:

Harbor protection systems are so important. The need for automatic protection systems has increased over the last years. Diver detection active sonar has great significance. It used to detect underwater threats such as divers and autonomous underwater vehicle. To automatically detect such threats the sonar image is processed by algorithms. These algorithms used to detect, track and classify of underwater objects. In this work, divers tracking and classification algorithm is improved be proposing a robust wake detection method. To detect objects the sonar images is normalized then segmented based on fixed threshold. Next, the centroids of the segments are found and clustered based on distance metric. Then to track the objects linear Kalman filter is applied. To reduce effect of noise and creation of false tracks, the Kalman tracker is fine tuned. The tuning is done based on our active sonar specifications. After the tracks are initialed and updated they are subjected to a filtering stage to eliminate the noisy and unstable tracks. Also to eliminate object with a speed out of the diver speed range such as buoys and fast boats. Afterwards the result tracks are subjected to a classification stage to deiced the type of the object been tracked. Here the classification stage is to deice wither if the tracked object is an open circuit diver or a close circuit diver. At the classification stage, a small area around the object is extracted and a novel wake detection method is applied. The morphological features of the object with his wake is extracted. We used support vector machine to find the best classifier. The sonar training images and the test images are collected by ARMELSAN Defense Technologies Company using the portable diver detection sonar ARAS-2023. After applying the algorithm to the test sonar data, we get fine and stable tracks of the divers. The total classification accuracy achieved with the diver type is 97%.

Keywords: harbor protection, diver detection, active sonar, wake detection, diver classification

Procedia PDF Downloads 238
1125 Enhancing the Luminescence of Alkyl-Capped Silicon Quantum Dots by Using Metal Nanoparticles

Authors: Khamael M. Abualnaja, Lidija Šiller, Ben R. Horrocks

Abstract:

Metal enhanced luminescence of alkyl-capped silicon quantum dots (C11-SiQDs) was obtained by mixing C11-SiQDs with silver nanoparticles (AgNPs). C11-SiQDs have been synthesized by galvanostatic method of p-Si (100) wafers followed by a thermal hydrosilation reaction of 1-undecene in refluxing toluene in order to extract alkyl-capped silicon quantum dots from porous Si. The chemical characterization of C11-SiQDs was carried out using X-ray photoemission spectroscopy (XPS). C11-SiQDs have a crystalline structure with a diameter of 5 nm. Silver nanoparticles (AgNPs) of two different sizes were synthesized also using photochemical reduction of silver nitrate with sodium dodecyl sulphate. The synthesized Ag nanoparticles have a polycrystalline structure with an average particle diameter of 100 nm and 30 nm, respectively. A significant enhancement up to 10 and 4 times in the luminescence intensities was observed for AgNPs100/C11-SiQDs and AgNPs30/C11-SiQDs mixtures, respectively using 488 nm as an excitation source. The enhancement in luminescence intensities occurs as a result of the coupling between the excitation laser light and the plasmon bands of Ag nanoparticles; thus this intense field at Ag nanoparticles surface couples strongly to C11-SiQDs. The results suggest that the larger Ag nanoparticles i.e.100 nm caused an optimum enhancement in the luminescence intensity of C11-SiQDs which reflect the strong interaction between the localized surface plasmon resonance of AgNPs and the electric field forming a strong polarization near C11-SiQDs.

Keywords: silicon quantum dots, silver nanoparticles (AgNPs), luminescence, plasmon

Procedia PDF Downloads 378
1124 Numerical Analysis of a Pilot Solar Chimney Power Plant

Authors: Ehsan Gholamalizadeh, Jae Dong Chung

Abstract:

Solar chimney power plant is a feasible solar thermal system which produces electricity from the Sun. The objective of this study is to investigate buoyancy-driven flow and heat transfer through a built pilot solar chimney system called 'Kerman Project'. The system has a chimney with the height and diameter of 60 m and 3 m, respectively, and the average radius of its solar collector is about 20 m, and also its average collector height is about 2 m. A three-dimensional simulation was conducted to analyze the system, using computational fluid dynamics (CFD). In this model, radiative transfer equation was solved using the discrete ordinates (DO) radiation model taking into account a non-gray radiation behavior. In order to modelling solar irradiation from the sun’s rays, the solar ray tracing algorithm was coupled to the computation via a source term in the energy equation. The model was validated with comparing to the experimental data of the Manzanares prototype and also the performance of the built pilot system. Then, based on the numerical simulations, velocity and temperature distributions through the system, the temperature profile of the ground surface and the system performance were presented. The analysis accurately shows the flow and heat transfer characteristics through the pilot system and predicts its performance.

Keywords: buoyancy-driven flow, computational fluid dynamics, heat transfer, renewable energy, solar chimney power plant

Procedia PDF Downloads 262
1123 Water Gas Shift Activity of PtBi/CeO₂ Catalysts for Hydrogen Production

Authors: N. Laosiripojana, P. Tepamatr

Abstract:

The influence of bismuth on the water gas shift activities of Pt on ceria was studied. The flow reactor was used to study the activity of the catalysts in temperature range 100-400°C. The feed gas composition contains 5%CO, 10% H₂O and balance N₂. The total flow rate was 100 mL/min. The outlet gas was analyzed by on-line gas chromatography with thermal conductivity detector. The catalytic activities of bimetallic 1%Pt1%Bi/CeO₂ catalyst were greatly enhanced when compared with the activities of monometallic 2%Pt/CeO₂ catalyst. The catalysts were characterized by X-ray diffraction (XRD), Temperature-Programmed Reduction (TPR) and surface area analysis. X-ray diffraction pattern of Pt/CeO₂ and PtBi/CeO₂ indicated slightly shift of diffraction angle when compared with pure ceria. This result was due to strong metal-support interaction between platinum and ceria solid solution, causing conversion of Ce⁴⁺ to larger Ce³⁺. The distortions inside ceria lattice structure generated strain into the oxide lattice and facilitated the formation of oxygen vacancies which help to increase water gas shift performance. The H₂-Temperature Programmed Reduction indicated that the reduction peak of surface oxygen of 1%Pt1%Bi/CeO₂ shifts to lower temperature than that of 2%Pt/CeO₂ causing the enhancement of the water gas shift activity of this catalyst. Pt played an important role in catalyzing the surface reduction of ceria and addition of Bi alter the reduction temperature of surface ceria resulting in the improvement of the water gas shift activity of Pt catalyst.

Keywords: bismuth, platinum, water gas shift, ceria

Procedia PDF Downloads 348
1122 Signal Processing Techniques for Adaptive Beamforming with Robustness

Authors: Ju-Hong Lee, Ching-Wei Liao

Abstract:

Adaptive beamforming using antenna array of sensors is useful in the process of adaptively detecting and preserving the presence of the desired signal while suppressing the interference and the background noise. For conventional adaptive array beamforming, we require a prior information of either the impinging direction or the waveform of the desired signal to adapt the weights. The adaptive weights of an antenna array beamformer under a steered-beam constraint are calculated by minimizing the output power of the beamformer subject to the constraint that forces the beamformer to make a constant response in the steering direction. Hence, the performance of the beamformer is very sensitive to the accuracy of the steering operation. In the literature, it is well known that the performance of an adaptive beamformer will be deteriorated by any steering angle error encountered in many practical applications, e.g., the wireless communication systems with massive antennas deployed at the base station and user equipment. Hence, developing effective signal processing techniques to deal with the problem due to steering angle error for array beamforming systems has become an important research work. In this paper, we present an effective signal processing technique for constructing an adaptive beamformer against the steering angle error. The proposed array beamformer adaptively estimates the actual direction of the desired signal by using the presumed steering vector and the received array data snapshots. Based on the presumed steering vector and a preset angle range for steering mismatch tolerance, we first create a matrix related to the direction vector of signal sources. Two projection matrices are generated from the matrix. The projection matrix associated with the desired signal information and the received array data are utilized to iteratively estimate the actual direction vector of the desired signal. The estimated direction vector of the desired signal is then used for appropriately finding the quiescent weight vector. The other projection matrix is set to be the signal blocking matrix required for performing adaptive beamforming. Accordingly, the proposed beamformer consists of adaptive quiescent weights and partially adaptive weights. Several computer simulation examples are provided for evaluating and comparing the proposed technique with the existing robust techniques.

Keywords: adaptive beamforming, robustness, signal blocking, steering angle error

Procedia PDF Downloads 124
1121 Influence of Environmental Conditions on a Solar Assisted Mashing Process

Authors: Ana Fonseca, Stefany Villacis

Abstract:

In this paper, the influence of several scenarios on a model of solar assisted mashing process in a brewery, while applying the model to different locations and therefore changing the environmental conditions, was analyzed. Assorted beer producer locations in different countries around the globe with contrasting climatic zones such as Guayaquil (Ecuador), Bangkok (Thailand), Mumbai (India), Veracruz (Mexico) and Brisbane (Australia) were evaluated and compared with a base case study Oldenburg (Germany), and results were drawn. The evaluation was restricted to the results obtained using TRNSYS 16 as simulating tool. On the base case, an annual Solar Fraction (SF) of 0.50 was encountered, results showed highly affection when modifying the pump control of the primary circuit and when increasing the area of collectors. A sensitivity analysis of the system for the selected locations was performed, resulting in Guayaquil the highest annual SF with a ratio of 2.5 times the expected value as compared with the base case. In contrast, Brisbane presented the lowest ratio, resulting in half of the expected one due to its lower irradiance. In conclusion, cities in Sunbelt countries have the technical potential to apply solar heat for their low-temperature industrial processes, in this case implementing a green brewery in Guayaquil.

Keywords: evacuated tubular solar collector, irradiance, mashing process, solar fraction, solar thermal

Procedia PDF Downloads 140
1120 The Effects of Oxygen Partial Pressure to the Anti-Corrosion Layer in the Liquid Metal Coolant: A Density Functional Theory Simulation

Authors: Rui Tu, Yakui Bai, Huailin Li

Abstract:

The lead-bismuth eutectic (LBE) alloy is a promising candidate of coolant in the fast neutron reactors and accelerator-driven systems (ADS) because of its good properties, such as low melting point, high neutron yields and high thermal conductivity. Although the corrosion of the structure materials caused by the liquid metal (LM) coolant is a challenge to the safe operating of a lead-bismuth eutectic nuclear reactor. Thermodynamic theories, experiential formulas and experimental data can be used for explaining the maintenance of the protective oxide layers on stainless steels under satisfaction oxygen concentration, but the atomic scale insights of such anti-corrosion mechanisms are little known. In the present work, the first-principles calculations are carried out to study the effects of oxygen partial pressure on the formation energies of the liquid metal coolant relevant impurity defects in the anti-corrosion oxide films on the surfaces of the structure materials. These approaches reveal the microscope mechanisms of the corrosion of the structure materials, especially for the influences from the oxygen partial pressure. The results are helpful for identifying a crucial oxygen concentration for corrosion control, which can ensure the systems to be operated safely under certain temperatures.

Keywords: oxygen partial pressure, liquid metal coolant, TDDFT, anti-corrosion layer, formation energy

Procedia PDF Downloads 131
1119 Preparation of Core-Shell AgBr/Cationic Polymer Nanocomposite with Dual Biocidal Modes and Sustained Release of Ag+ Ions

Authors: Rongzhou Wang

Abstract:

Research on designing nano-antibacterial agent with potent and long-lasting antibacterial property is demanding and provoking work. In this study, a core-shell AgBr/cationic polymer nanocomposite (AgBr/NPVP-H10) were synthesized and its structure confirmed by Fourier Transform Infrared Spectrometer (FT-IR), Nuclear Magnetic Resonance (1H NMR) and X-ray diffraction (XRD), and the cationic polymer contents were determined with Thermal Gravimetric Analyzer (TGA). The morphology was directly observed by Transmission Electron Microscope (TEM) which showed that the nanoparticle contains single core and organic shell and had an average diameter of 30.1 nm. The antibacterial test against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli illuminated that this nanocomposite had potent bactericidal activity, which can be attributed to the contact-killing of cationic polymers and releasing-killing of Ag+ ions. In addition, cationic polymer encapsulating AgBr cores gave the resin discs sustained release of Ag+ ions, which may result in long-lasting bactericidal activity. The AgBr/NPVP-H10 nanoparticle with the dual bactericidal capability and long term antimicrobial effect is a promising material aimed at preventing bacterial infection.

Keywords: core-shell nanocomposite, cationic polymer, dual antibacterial capability, long-lasting antibacterial activity

Procedia PDF Downloads 191
1118 Hybrid Laser-Gas Metal Arc Welding of ASTM A106-B Steel Pipes

Authors: Masoud Mohammadpour, Nima Yazdian, Radovan Kovacevic

Abstract:

The Oil and Gas industries are vigorously looking for new ways to increase the efficiency of their pipeline constructions. Besides the other approaches, implementing of new welding methods for joining pipes can be the best candidate on this regard. Hybrid Laser Arc Welding (HLAW) with the capabilities of high welding speed, deep penetration, and excellent gap bridging ability can be a possible alternative method in pipeline girth welding. This paper investigates the feasibility of applying the HLAW to join ASTM A106-B as the mostly used piping material for transporting high-temperature and high-pressure fluids and gases. The experiments were carried out on six-inch diameter pipes with the wall thickness of 10mm. AWS ER 70 S6 filler wire with diameter of 1.2mm was employed. Relating to this welding procedure, characterization of welded samples such as hardness, tensile testing and Charpy V-notch testing were performed and the results will be reported in this paper. In order to have better understanding about the thermal history and the microstructural alterations caused by the welding heat cycle, a comprehensive Finite Element (FE) model was also conducted. The obtained results have shown that the Gas Metal Arc Welding (GMAW) procedure with the minimum number of 5 passes to complete the wall thickness, was reduced to only single pass by using the HLAW process with the welding time less than 15s.

Keywords: finite element modeling, high-temperature service, hybrid laser/arc welding, welding pipes

Procedia PDF Downloads 207
1117 Nano-Coating for Corrosion Prevention

Authors: M. J. Suriani, F. Mansor, W. Siti Maizurah, I. Nurizwani

Abstract:

Silicon Carbide (SiC) is one of the Silicon-based materials, which get interested by the researcher. SiC is an emerging semiconductor material, which has received a great deal of attention due to their application in high frequency and high power systems. Although its superior characteristic for a semiconductor material, its outstanding mechanical properties, chemical inertness and thermal stability has gained important aspect for a surface coating for deployment in extreme environments. Very high frequency (VHF)-PECVD technique utilized to deposit nano ns-SiC film in which variation in chamber pressure, substrate temperature, RF power and precursor gases flow rate will be investigated in order to get a good quality of thin film coating. Characterization of the coating performed in order to study the surface morphology, structural information. This performance of coating evaluated through corrosion test to determine the effectiveness of the coating for corrosion prevention. Ns-SiC film expected to possess better corrosion resistance and optical properties, as well as preserving the metal from the marine environment. Through this research project, corrosion protection performance by applying coating will be explored to obtain a great corrosion prevention method to the shipping and oil and gas industry in Malaysia. Besides, the cost of repair and maintenance spending by the government of Malaysia can be reduced through practicing this method.

Keywords: composite materials, marine corrosion, nano-composite, nano structure–coating

Procedia PDF Downloads 470
1116 Optimization of Ultrasound Assisted Extraction and Characterization of Functional Properties of Dietary Fiber from Oat Cultivar S2000

Authors: Muhammad Suhail Ibrahim, Muhammad Nadeem, Waseem Khalid, Ammara Ainee, Taleeha Roheen, Sadaf Javaria, Aftab Ahmed, Hira Fatima, Mian Nadeem Riaz, Muhammad Zubair Khalid, Isam A. Mohamed Ahmed J, Moneera O. Aljobair

Abstract:

This study was executed to explore the efficacy of ultrasound-assisted extraction of dietary fiber from oat cultivar S2000. Extraction (variables time, temperature and amplitude) was optimized by using response surface methodology (RSM) conducted by Box Behnken Design (BBD). The effect of time, temperature and amplitude were studied at three levels. It was observed that time and temperature exerted more impact on extraction efficiency as compared to amplitude. The highest yield of total dietary fiber (TDF), soluble dietary fiber (SDF) and In-soluble dietary fiber (IDF) fractions were observed under ultrasound processing for 20 min at 40 ◦C with 80% amplitude. Characterization of extracted dietary fiber showed that it had better crystallinity, thermal properties and good fibrous structure. It also showed better functional properties as compared to traditionally extracted dietary fiber. Furthermore, dietary fibers from oats may offer high-value utilization and the expansion of comprehensive utilization in functional food and nutraceutical development.

Keywords: extraction, ultrasonication, response surface methodology, box behnken design

Procedia PDF Downloads 50
1115 Thermal and Starvation Effects on Lubricated Elliptical Contacts at High Rolling/Sliding Speeds

Authors: Vinod Kumar, Surjit Angra

Abstract:

The objective of this theoretical study is to develop simple design formulas for the prediction of minimum film thickness and maximum mean film temperature rise in lightly loaded high-speed rolling/sliding lubricated elliptical contacts incorporating starvation effect. Herein, the reported numerical analysis focuses on thermoelastohydrodynamically lubricated rolling/sliding elliptical contacts, considering the Newtonian rheology of lubricant for wide range of operating parameters, namely load characterized by Hertzian pressure (PH = 0.01 GPa to 0.10 GPa), rolling speed (>10 m/s), slip parameter (S varies up to 1.0), and ellipticity ratio (k = 1 to 5). Starvation is simulated by systematically reducing the inlet supply. This analysis reveals that influences of load, rolling speed, and level of starvation are significant on the minimum film thickness. However, the maximum mean film temperature rise is strongly influenced by slip in addition to load, rolling speed, and level of starvation. In the presence of starvation, reduction in minimum film thickness and increase in maximum mean film temperature are observed. Based on the results of this study, empirical relations are developed for the prediction of dimensionless minimum film thickness and dimensionless maximum mean film temperature rise at the contacts in terms of various operating parameters.

Keywords: starvation, lubrication, elliptical contact, traction, minimum film thickness

Procedia PDF Downloads 392
1114 Alumina Supported Cu-Mn-La Catalysts for CO and VOCs Oxidation

Authors: Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Petya Cv. Petrova, Georgi V. Avdeev, Diana D. Nihtianova, Krasimir I. Ivanov, Tatyana T. Tabakova

Abstract:

Recently, copper and manganese-containing systems are recognized as active and selective catalysts in many oxidation reactions. The main idea of this study is to obtain more information about γ-Al2O3 supported Cu-La catalysts and to evaluate their activity to simultaneous oxidation of CO, CH3OH and dimethyl ether (DME). The catalysts were synthesized by impregnation of support with a mixed aqueous solution of nitrates of copper, manganese and lanthanum under different conditions. XRD, HRTEM/EDS, TPR and thermal analysis were performed to investigate catalysts’ bulk and surface properties. The texture characteristics were determined by Quantachrome Instruments NOVA 1200e specific surface area and pore analyzer. The catalytic measurements of single compounds oxidation were carried out on continuous flow equipment with a four-channel isothermal stainless steel reactor in a wide temperature range. On the basis of XRD analysis and HRTEM/EDS, it was concluded that the active component of the mixed Cu-Mn-La/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio and consisted of at least four compounds – CuO, La2O3, MnO2 and Cu1.5Mn1.5O4. A homogeneous distribution of the active component on the carrier surface was found. The chemical composition strongly influenced catalytic properties. This influence was quite variable with regards to the different processes.

Keywords: Cu-Mn-La oxide catalysts, carbon oxide, VOCs, deep oxidation

Procedia PDF Downloads 260
1113 The Impact of Built Environment Design on Users’ Psychology to Foster Pro-Environmental Behavior in University Open Spaces

Authors: Rehab Mahmoud El Sayed, Toka Fahmy Nasr, Dalia M. Rasmi

Abstract:

Environmental psychology studies the interaction between the user and the environment. This field is crucial in understanding how the built environment affects human behaviour, moods and feelings. Studying and understanding the aspects and influences of environmental psychology is a crucial key to investigating how the design can influence human behaviour to be environmentally friendly. This is known as pro-environmental behaviour where human actions are sustainable and impacts the environment positively. Accordingly, this paper aims to explore the impact of built environment design on environmental psychology to foster pro-environmental behaviour in university campus open spaces. In order to achieve this, an exploratory research method was conducted where a detailed study of the influences of environmental psychology was done and clarified its elements. Moreover, investigating the impact of design elements on human psychology took place. Besides, an empirical study of the outdoor spaces of the British University in Egypt occurred and a survey for students and staff was distributed. The research concluded that the four main psychological aspects are mostly influenced by the following design elements colours, lighting and thermal comfort respectively. Additionally, focusing on these design elements in the design process will create a sustainable environment. As a consequence, the pro-environmental behaviour of the user will be fostered.

Keywords: environmental psychology, pro-environmental behavior, sustainable environment, psychological influences

Procedia PDF Downloads 84
1112 Concerns for Extreme Climate Conditions and Their Implications in Southwest Nigeria

Authors: Oyenike Eludoyin

Abstract:

Extreme climate conditions are deviation from the norms and are capable of causing upsets in many important environmental parameter including disruption of water balance and air temperature balance. Studies have shown that extreme climate conditions can foretell disaster in regions with inadequate early warning systems. In this paper, we combined geographical information systems, statistics and social surveys to evaluate the physiologic indices [(Dewpoint Temperature (Td), Effective Temperature Index (ETI) and Relative Strain Index (RSI)] and extreme climate conditions in different parts of southwest Nigeria. This was with the view to assessing the nature and the impact of the conditions on the people and their coping strategies. The results indicate that minimum, mean and maximum temperatures were higher in 1960-1990 than 1991-2013 periods at most areas, and more than 80% of the people adapt to thermal stress by changing wear type or cloth, installing air conditioner and fan at home and/or work place and sleeping outside at certain period of the night and day. With respect to livelihoods, about 52% of the interviewed farmers indicated that too early rainfall, late rainfall, prolonged dryness after an initial rainfall, excessive rainfall and windstorms caused low crop yields. Main (76%) coping strategies were changing of planting dates, diversification of crops, and practices of mulching and intercropping. Government or institutional support was less than 20%.

Keywords: coping strategies, extreme climate, livelihoods, physiologic comfort

Procedia PDF Downloads 280