Search results for: low temperature heat sources
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12054

Search results for: low temperature heat sources

8544 Methane versus Carbon Dioxide Mitigation Prospects

Authors: Alexander J. Severinsky, Allen L. Sessoms

Abstract:

Atmospheric carbon dioxide (CO₂) has dominated the discussion about the causes of climate change. This is a reflection of the time horizon that has become the norm adopted by the IPCC as the planning horizon. Recently, it has become clear that a 100-year time horizon is much too long, and yet almost all mitigation efforts, including those in the near-term horizon of 30 years, are geared toward it. In this paper, we show that, for a 30-year time horizon, methane (CH₄) is the greenhouse gas whose radiative forcing exceeds that of CO₂. In our analysis, we used radiative forcing of greenhouse gases in the atmosphere since they directly affect the temperature rise on Earth. In 2019, the radiative forcing of methane was ~2.5 W/m² and that of carbon dioxide ~2.1 W/m². Under a business-as-usual (BAU) scenario until 2050, such forcing would be ~2.8 W/m² and ~3.1 W/m², respectively. There is a substantial spread in the data for anthropogenic and natural methane emissions as well as CH₄ leakages from production to consumption. We estimated the minimum and maximum effects of the reduction of these leakages. Such action may reduce the annual radiative forcing of all CH₄ emissions by between ~15% and ~30%. This translates into a reduction of the RF by 2050 from ~2.8 W/m² to ~2.5 W/m² in the case of the minimum effect and to ~2.15 W/m² in the case of the maximum. Under the BAU, we found that the RF of CO₂ would increase from ~2.1 W/m² nowadays to ~3.1 W/m² by 2050. We assumed a reduction of 50% of anthropogenic emission linearly over the next 30 years. That would reduce radiative forcing from ~3.1 W/m² to ~2.9 W/m². In the case of ‘net zero,’ the other 50% of reduction of only anthropogenic emissions would be limited to either from sources of emissions or directly from the atmosphere. The total reduction would be from ~3.1 to ~2.7, or ~0.4 W/m². To achieve the same radiative forcing as in the scenario of maximum reduction of methane leakages of ~2.15 W/m², then an additional reduction of radiative forcing of CO₂ would be approximately 2.7 -2.15=0.55 W/m². This is a much larger value than in expectations from ‘net zero’. In total, one needs to remove from the atmosphere ~660 GT to match the maximum reduction of current methane leakages and ~270 GT to achieve ‘net zero.’ This amounts to over 900 GT in total.

Keywords: methane leakages, methane radiative forcing, methane mitigation, methane net zero

Procedia PDF Downloads 150
8543 Ultrasonic Studies of Polyurea Elastomer Composites with Inorganic Nanoparticles

Authors: V. Samulionis, J. Banys, A. Sánchez-Ferrer

Abstract:

Inorganic nanoparticles are used for fabrication of various composites based on polymer materials because they exhibit a good homogeneity and solubility of the composite material. Multifunctional materials based on composites of a polymer containing inorganic nanotubes are expected to have a great impact on industrial applications in the future. An emerging family of such composites are polyurea elastomers with inorganic MoS2 nanotubes or MoSI nanowires. Polyurea elastomers are a new kind of materials with higher performance than polyurethanes. The improvement of mechanical, chemical and thermal properties is due to the presence of hydrogen bonds between the urea motives which can be erased at high temperature softening the elastomeric network. Such materials are the combination of amorphous polymers above glass transition and crosslinkers which keep the chains into a single macromolecule. Polyurea exhibits a phase separated structure with rigid urea domains (hard domains) embedded in a matrix of flexible polymer chains (soft domains). The elastic properties of polyurea can be tuned over a broad range by varying the molecular weight of the components, the relative amount of hard and soft domains, and concentration of nanoparticles. Ultrasonic methods as non-destructive techniques can be used for elastomer composites characterization. In this manner, we have studied the temperature dependencies of the longitudinal ultrasonic velocity and ultrasonic attenuation of these new polyurea elastomers and composites with inorganic nanoparticles. It was shown that in these polyurea elastomers large ultrasonic attenuation peak and corresponding velocity dispersion exists at 10 MHz frequency below room temperature and this behaviour is related to glass transition Tg of the soft segments in the polymer matrix. The relaxation parameters and Tg depend on the segmental molecular weight of the polymer chains between crosslinking points, the nature of the crosslinkers in the network and content of MoS2 nanotubes or MoSI nanowires. The increase of ultrasonic velocity in composites modified by nanoparticles has been observed, showing the reinforcement of the elastomer. In semicrystalline polyurea elastomer matrices, above glass transition, the first order phase transition from quasi-crystalline to the amorphous state has been observed. In this case, the sharp ultrasonic velocity and attenuation anomalies were observed near the transition temperature TC. Ultrasonic attenuation maximum related to glass transition was reduced in quasicrystalline polyureas indicating less influence of soft domains below TC. The first order phase transition in semicrystalline polyurea elastomer samples has large temperature hysteresis (> 10 K). The impact of inorganic MoS2 nanotubes resulted in the decrease of the first order phase transition temperature in semicrystalline composites.

Keywords: inorganic nanotubes, polyurea elastomer composites, ultrasonic velocity, ultrasonic attenuation

Procedia PDF Downloads 302
8542 Production of Chromium Matrix Composite Reinforced by WC by Powder Metallurgy

Authors: Ahmet Yonetken, Ayhan Erol

Abstract:

Intermetallic materials advanced technology materials that have outstanding mechanical and physical properties for high temperature applications. Especially creep resistance, low density and high hardness properties stand out in such intermetallics. The microstructure, mechanical properties of %80Cr-%10Ti and %10WC powders were investigated using specimens produced by tube furnace sintering at 1000-1400°C temperature. A composite consisting of ternary additions, a metallic phase, Ti,Cr and WC have been prepared under Ar shroud and then tube furnace sintered. XRD, SEM (Scanning Electron Microscope), were investigated to characterize the properties of the specimens. Experimental results carried out for composition %80Cr-%10Ti and %10WC at 1400°C suggest that the best properties as 292HV and 5,34g/cm3 density were obtained at 1400°C.

Keywords: ceramic-metal, composites, powder metallurgy, sintering

Procedia PDF Downloads 472
8541 Microbiological Analysis of Biofuels in Order to Follow Stability on Room Temperature

Authors: Radovan Cobanovic, Milica Rankov Sicar

Abstract:

Biodiesel refers to a vegetable oil - or animal fat-based diesel fuel consisting of long-chain alkyl (methyl, ethyl, or propyl) esters. It is derived by alcoholysis of triacylglycerols (triglycerides) from various lipid based materials that can be traditionally categorized into the following main groups: vegetable oils, animal fats, waste and algal oils. The goal of this study was to evaluate microbiological stability of biodiesel samples since it has been made from vegetable oil or animal fat which was stored on room temperature. For the purposes of this study, analyzes were conducted on six samples of biodiesel first at zero sample at the reception day than fifth, thirtieth, sixtieth, ninetieth and one hundred twentieth day from the day of reception. During this period, biodiesel samples were subjected to microbiological analyses (Salmonella spp., Listeria monocytogenes, Enterobacteriaceae and total plate count). All analyses were tested according to ISO methodology: Salmonella spp ISO 6579, Listeria monocytogenes ISO 11290-2, Enterobacteriaceae ISO 21528-1, total plate count ISO 4833-1. The results obtained after the analyses which were done according to the plan during the 120 days indicate that are no changes of products concerning microbiological analyses. Salmonella spp., Listeria monocytogenes, Enterobacteriaceae were not detected and results for total plate count showed values < 10 cfu/g for all six samples. On the basis of this monitoring under defined storage conditions at room temperatures, the results showed that biodiesel is very stable as far as microbiological analysis were concerned.

Keywords: biodiesel, microbiology, room temperature, stability

Procedia PDF Downloads 287
8540 Study of Temperature and Precipitation Changes Based on the Scenarios (IPCC) in the Caspian Sea City: Case Study in Gillan Province

Authors: Leila Rashidian, Mina Rajabali

Abstract:

Industrialization has made progress and comfort for human beings in many aspects. It is not only achievement for the global environment but also factor for destruction and disruption of the Earth's climate. In this study, we used LARS.WG model and down scaling of general circulation climate model HADCM-3 daily precipitation amounts, minimum and maximum temperature and daily sunshine hours. These data are provided by the meteorological organization for Caspian Sea coastal station such as Anzali, Manjil, Rasht, Lahijan and Astara since their establishment is from 1982 until 2010. According to the IPCC scenarios, including series A1b, A2, B1, we tried to simulate data from 2010 to 2040. The rainfall pattern has changed. So we have a rainfall distribution inappropriate in different months.

Keywords: climate change, Lars.WG, HADCM3, Gillan province, climatic parameters, A2 scenario

Procedia PDF Downloads 288
8539 Experimental Analysis of the Performance of a System for Freezing Fish Products Equipped with a Modulating Vapour Injection Scroll Compressor

Authors: Domenico Panno, Antonino D’amico, Hamed Jafargholi

Abstract:

This paper presents an experimental analysis of the performance of a system for freezing fish products equipped with a modulating vapour injection scroll compressor operating with R448A refrigerant. Freezing is a critical process for the preservation of seafood products, as it influences quality, food safety, and environmental sustainability. The use of a modulating scroll compressor with vapour injection, associated with the R448A refrigerant, is proposed as a solution to optimize the performance of the system, reducing energy consumption and mitigating the environmental impact. The stream injection modulating scroll compressor represents an advanced technology that allows you to adjust the compressor capacity based on the actual cooling needs of the system. Vapour injection allows the optimization of the refrigeration cycle, reducing the evaporation temperature and improving the overall efficiency of the system. The use of R448A refrigerant, with a low Global Warming Potential (GWP), is part of an environmental sustainability perspective, helping to reduce the climate impact of the system. The aim of this research was to evaluate the performance of the system through a series of experiments conducted on a pilot plant for the freezing of fish products. Several operational variables were monitored and recorded, including evaporation temperature, condensation temperature, energy consumption, and freezing time of seafood products. The results of the experimental analysis highlighted the benefits deriving from the use of the modulating vapour injection scroll compressor with the R448A refrigerant. In particular, a significant reduction in energy consumption was recorded compared to conventional systems. The modulating capacity of the compressor made it possible to adapt the cold production to variations in the thermal load, ensuring optimal operation of the system and reducing energy waste. Furthermore, the use of an electronic expansion valve highlighted greater precision in the control of the evaporation temperature, with minimal deviation from the desired set point. This helped ensure better quality of the final product, reducing the risk of damage due to temperature changes and ensuring uniform freezing of the fish products. The freezing time of seafood has been significantly reduced thanks to the configuration of the entire system, allowing for faster production and greater production capacity of the plant. In conclusion, the use of a modulating vapour injection scroll compressor operating with R448A has proven effective in improving the performance of a system for freezing fish products. This technology offers an optimal balance between energy efficiency, temperature control, and environmental sustainability, making it an advantageous choice for food industries.

Keywords: scroll compressor, vapor injection, refrigeration system, EER

Procedia PDF Downloads 53
8538 Development of Sustainable Building Environmental Model (SBEM) in Hong Kong

Authors: Kwok W. Mui, Ling T. Wong, F. Xiao, Chin T. Cheung, Ho C. Yu

Abstract:

This study addresses a concept of the Sustainable Building Environmental Model (SBEM) developed to optimize energy consumption in air conditioning and ventilation (ACV) systems without any deterioration of indoor environmental quality (IEQ). The SBEM incorporates two main components: an adaptive comfort temperature control module (ACT) and a new carbon dioxide demand control module (nDCV). These two modules take an innovative approach to maintain satisfaction of the Indoor Environmental Quality (IEQ) with optimum energy consumption, they provide a rational basis of effective control. A total of 2133 sets of measurement data of indoor air temperature (Ta), relative humidity (Rh) and carbon dioxide concentration (CO2) were conducted in some Hong Kong offices to investigate the potential of integrating the SBEM. A simulation was used to evaluate the dynamic performance of the energy and air conditioning system with the integration of the SBEM in an air-conditioned building. It allows us make a clear picture of the control strategies and performed any pre-tuned of controllers before utilized in real systems. With the integration of SBEM, it was able to save up to 12.3% in simulation and 15% in field measurement of overall electricity consumption, and maintain the average carbon dioxide concentration within 1000ppm and occupant dissatisfaction in 20%.

Keywords: sustainable building environmental model (SBEM), adaptive comfort temperature (ACT), new demand control ventilation (nDCV), energy saving

Procedia PDF Downloads 642
8537 Effects of Process Parameters on the Yield of Oil from Coconut Fruit

Authors: Ndidi F. Amulu, Godian O. Mbah, Maxwel I. Onyiah, Callistus N. Ude

Abstract:

Analysis of the properties of coconut (Cocos nucifera) and its oil was evaluated in this work using standard analytical techniques. The analyses carried out include proximate composition of the fruit, extraction of oil from the fruit using different process parameters and physicochemical analysis of the extracted oil. The results showed the percentage (%) moisture, crude lipid, crude protein, ash, and carbohydrate content of the coconut as 7.59, 55.15, 5.65, 7.35, and 19.51 respectively. The oil from the coconut fruit was odourless and yellowish liquid at room temperature (30oC). The treatment combinations used (leaching time, leaching temperature and solute: solvent ratio) showed significant differences (P˂0.05) in the yield of oil from coconut flour. The oil yield ranged between 36.25%-49.83%. Lipid indices of the coconut oil indicated the acid value (AV) as 10.05 Na0H/g of oil, free fatty acid (FFA) as 5.03%, saponification values (SV) as 183.26 mgKOH-1 g of oil, iodine value (IV) as 81.00 I2/g of oil, peroxide value (PV) as 5.00 ml/ g of oil and viscosity (V) as 0.002. A standard statistical package minitab version 16.0 program was used in the regression analysis and analysis of variance (ANOVA). The statistical software mentioned above was also used to generate various plots such as single effect plot, interactions effect plot and contour plot. The response or yield of oil from the coconut flour was used to develop a mathematical model that correlates the yield to the process variables studied. The maximum conditions obtained that gave the highest yield of coconut oil were leaching time of 2 hrs, leaching temperature of 50 oC and solute/solvent ratio of 0.05 g/ml.

Keywords: coconut, oil-extraction, optimization, physicochemical, proximate

Procedia PDF Downloads 356
8536 Investigating Climate Change Trend Based on Data Simulation and IPCC Scenario during 2010-2030 AD: Case Study of Fars Province

Authors: Leila Rashidian, Abbas Ebrahimi

Abstract:

The development of industrial activities, increase in fossil fuel consumption, vehicles, destruction of forests and grasslands, changes in land use, and population growth have caused to increase the amount of greenhouse gases especially CO2 in the atmosphere in recent decades. This has led to global warming and climate change. In the present paper, we have investigated the trend of climate change according to the data simulation during the time interval of 2010-2030 in the Fars province. In this research, the daily climatic parameters such as maximum and minimum temperature, precipitation and number of sunny hours during the 1977-2008 time interval for synoptic stations of Shiraz and Abadeh and during 1995-2008 for Lar stations and also the output of HADCM3 model in 2010-2030 time interval have been used based on the A2 propagation scenario. The results of the model show that the average temperature will increase by about 1 degree centigrade and the amount of precipitation will increase by 23.9% compared to the observational data. In conclusion, according to the temperature increase in this province, the amount of precipitation in the form of snow will be reduced and precipitations often will occur in the form of rain. This 1-degree centigrade increase during the season will reduce production by 6 to 10% because of shortening the growing period of wheat.

Keywords: climate change, Lars WG, HADCM3, Gillan province, climatic parameters, A2 scenario

Procedia PDF Downloads 219
8535 The Effect of Sulfur and Calcium on the Formation of Dioxin in a Bubbling Fluidized Bed Incinerator

Authors: Chien-Song Chyang, Wei-Chih Wang

Abstract:

For the incineration process, the inhibition of dioxin formation is an important issue. Many investigations indicate that adding sulfur compounds in the combustion process can be an effectively inhibition for the dioxin formation. In the process, the ratio of sulfur-to-chlorine plays an important role for the reduction efficiency of dioxin formation. Ca-base sorbent is also a common used for the acid gas removing. Moreover, that is also the indirectly way for dioxin inhibition. Although sulfur and calcium can reduce the dioxin formation, it still have some confusion exists between these additives. To understand and clarify the relationship between the dioxin and simultaneous addition of sulfur and calcium are presented in this study. The experimental data conducted in a pilot scale fluidized bed combustion system at various operating conditions are analysis comprehensively. The focus is on the dioxin of fly ash in this study. The experimental data in this study showed that the PCDD/Fs concentration in the fly ash collected from the baghouse is increased slightly as the simultaneous addition of sulfur and calcium. This work described the CO concentration with the addition of sulfur and calcium at the freeboard temperature from 800°C to 900°C, which is raised by the fuel complexity. The positive correlation exists between the dioxin concentration and CO concentration and carbon contained in the fly ash.. At the same sulfur/chlorine ratio, the toxic equivalent quantity (TEQ) can be reduced by increasing the actual concentration of sulfur and calcium. The homologue profiles showed that the P₅CDD and P₅CDF were the two major sources for the toxicity of dioxin. 2,3,7,8-TCDD and 2,3,7,8-TCDF reduced by the addition of pyrite and hydrated lime. The experimental results showed that the trend of PCDD/Fs concentration in the fly ash was different by the different sulfur/chlorine ratio with the addition of sulfur at 800°C.

Keywords: reduction of dioxin emissions, sulfur-to-chlorine ratio, de-chlorination, Ca-based sorbent

Procedia PDF Downloads 150
8534 An Investigation on the Effect of Window Tinting on Thermal Comfort inside Office Buildings

Authors: S. El-Azzeh, A. Al-Aqqad, M. Salem, H. Al-Khaldi, S. Thaher

Abstract:

Thermal comfort studies are very important during the early stages of the building’s design. If this study was ignored, problems will start to occur for the occupants in the future. In hot climates, where solar radiations are entering buildings all year long, occupant’s thermal comfort in office buildings needs to be examined. This study aims to investigate the thermal comfort at an existing office building at the Australian College of Kuwait and test its validity and improve occupant’s thermal satisfaction by covering windows with a heat rejection tint material that enables sunlight to pass through the office while reflecting solar heat outside. Environmental variables were measured using thermal comfort data logger INNOVA 1221 to find the predicted mean vote (PMV) in the selected location. Also, subjective variables were measured to find the actual mean vote (AMV) through surveys distributed among occupants in the selected case study office. All the variables collected were analyzed and classified according to international standards ISO 7730 and ASHRAE55. The results of this study showed improvement in both PMV and AMV. The mean value of PMV based on the original design was 0.691 which dropped to 0.32 after installation and it still at comfort zone. Also, the mean value of the AMV has improved for the first occupant, where before it was -0.46 and it became -1 which is cooler. For the other occupant, it was slightly warm with a mean value of 0.9 and it was improved and became cooler with a -0.25 mean value based on American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) seven-point scale.

Keywords: thermal comfort, office buildings, indoor environments, predicted mean vote

Procedia PDF Downloads 201
8533 A Comparative Analysis of Machine Learning Techniques for PM10 Forecasting in Vilnius

Authors: Mina Adel Shokry Fahim, Jūratė Sužiedelytė Visockienė

Abstract:

With the growing concern over air pollution (AP), it is clear that this has gained more prominence than ever before. The level of consciousness has increased and a sense of knowledge now has to be forwarded as a duty by those enlightened enough to disseminate it to others. This realisation often comes after an understanding of how poor air quality indices (AQI) damage human health. The study focuses on assessing air pollution prediction models specifically for Lithuania, addressing a substantial need for empirical research within the region. Concentrating on Vilnius, it specifically examines particulate matter concentrations 10 micrometers or less in diameter (PM10). Utilizing Gaussian Process Regression (GPR) and Regression Tree Ensemble, and Regression Tree methodologies, predictive forecasting models are validated and tested using hourly data from January 2020 to December 2022. The study explores the classification of AP data into anthropogenic and natural sources, the impact of AP on human health, and its connection to cardiovascular diseases. The study revealed varying levels of accuracy among the models, with GPR achieving the highest accuracy, indicated by an RMSE of 4.14 in validation and 3.89 in testing.

Keywords: air pollution, anthropogenic and natural sources, machine learning, Gaussian process regression, tree ensemble, forecasting models, particulate matter

Procedia PDF Downloads 59
8532 Hydrodynamics and Heat Transfer Characteristics of a Solar Thermochemical Fluidized Bed Reactor

Authors: Selvan Bellan, Koji Matsubara, Nobuyuki Gokon, Tatsuya Kodama, Hyun Seok-Cho

Abstract:

In concentrated solar thermal industry, fluidized-bed technology has been used to produce hydrogen by thermochemical two step water splitting cycles, and synthetic gas by gasification of coal coke. Recently, couple of fluidized bed reactors have been developed and tested at Niigata University, Japan, for two-step thermochemical water splitting cycles and coal coke gasification using Xe light, solar simulator. The hydrodynamic behavior of the gas-solid flow plays a vital role in the aforementioned fluidized bed reactors. Thus, in order to study the dynamics of dense gas-solid flow, a CFD-DEM model has been developed; in which the contact forces between the particles have been calculated by the spring-dashpot model, based on the soft-sphere method. Heat transfer and hydrodynamics of a solar thermochemical fluidized bed reactor filled with ceria particles have been studied numerically and experimentally for beam-down solar concentrating system. An experimental visualization of particles circulation pattern and mixing of two-tower fluidized bed system has been presented. Simulation results have been compared with experimental data to validate the CFD-DEM model. Results indicate that the model can predict the particle-fluid flow of the two-tower fluidized bed reactor. Using this model, the key operating parameters can be optimized.

Keywords: solar reactor, CFD-DEM modeling, fluidized bed, beam-down solar concentrating system

Procedia PDF Downloads 200
8531 Thermally Stimulated Depolarization Current (TSDC) and Transient Current Study in Polysulfone (PSF) and Polyvinylidenefluoride (PVDF) Blends

Authors: S. Patel, T. Mitra, R. Dubey, J. Keller

Abstract:

In the present investigations, an attempt has been made to study the charge storage mechanism and mechanism for the flow of transient charging and discharging current in an amorphous polymer (Polysulfone) (PSF) and a semi-crystalline polar Polyvinylidene fluoride (PVDF) blends in ratio PSF: PVDF: 80:20;85:15;90:10 and 95:05 at various poling temperatures (i.e. 60, 75, 90 and 1150C) and with field strength (100, 150, 200 and 250kVcm⁻¹). Thermally stimulated depolarizing current TSDC thermograms for (Polysulfone (PSF) and Polyvinylidene fluoride (PVDF) Blends sample have been obtained under different polarizing conditions. Peaks are found at high-temperature side. The variation of structure on blending and poling condition affects the magnitude of TSDC. The activation energy values have been calculated using the initial rise method of Garlick and Gibson. The transient current with the similar polarizing condition has been investigated over a period of 3X10³ sec. The observed characteristics obey Curie-Von Schweidler law in the studied temperature range. The charging current versus polarizing temperature curves at a constant time, i.e., isochronal current characteristics were studied and the activation energies were calculated. The activation energy in transient thermograms calculated by different methods is in good agreement with the values obtained from TSDC studies.

Keywords: activation energy, polysulfone (PSF), polyvinylidenefluoride (PVDF), thermally stimulated depolarizing current (TSDC)

Procedia PDF Downloads 175
8530 Hydrothermal Aging Behavior of Continuous Carbon Fiber Reinforced Polyamide 6 Composites

Authors: Jifeng Zhang , Yongpeng Lei

Abstract:

Continuous carbon fiber reinforced polyamide 6 (CF/PA6) composites are potential for application in the automotive industry due to their high specific strength and stiffness. However, PA6 resin is sensitive to the moisture in the hydrothermal environment and CF/PA6 composites might undergo several physical and chemical changes, such as plasticization, swelling, and hydrolysis, which induces a reduction of mechanical properties. So far, little research has been reported on the assessment of the effects of hydrothermal aging on the mechanical properties of continuous CF/PA6 composite. This study deals with the effects of hydrothermal aging on moisture absorption and mechanical properties of polyamide 6 (PA6) and polyamide 6 reinforced with continuous carbon fibers composites (CF/PA6) by immersion in distilled water at 30 ℃, 50 ℃, 70 ℃, and 90 ℃. Degradation of mechanical performance has been monitored, depending on the water absorption content and the aging temperature. The experimental results reveal that under the same aging condition, the PA6 resin absorbs more water than the CF/PA6 composite, while the water diffusion coefficient of CF/PA6 composite is higher than that of PA6 resin because of interfacial diffusion channel. In mechanical properties degradation process, an exponential reduction in tensile strength and elastic modulus are observed in PA6 resin as aging temperature and water absorption content increases. The degradation trend of flexural properties of CF/PA6 is the same as that of tensile properties of PA6 resin. Moreover, the water content plays a decisive role in mechanical degradation compared with aging temperature. In contrast, hydrothermal environment has mild effect on the tensile properties of CF/PA6 composites. The elongation at breakage of PA6 resin and CF/PA6 reaches the highest value when their water content reaches 6% and 4%, respectively. Dynamic mechanical analysis (DMA) and scanning electron microscope (SEM) were also used to explain the mechanism of mechanical properties alteration. After exposed to the hydrothermal environment, the Tg (glass transition temperature) of samples decreases dramatically with water content increase. This reduction can be ascribed to the plasticization effect of water. For the unaged specimens, the fibers surface is coated with resin and the main fracture mode is fiber breakage, indicating that a good adhesion between fiber and matrix. However, with absorbed water content increasing, the fracture mode transforms to fiber pullout. Finally, based on Arrhenius methodology, a predictive model with relate to the temperature and water content has been presented to estimate the retention of mechanical properties for PA6 and CF/PA6.

Keywords: continuous carbon fiber reinforced polyamide 6 composite, hydrothermal aging, Arrhenius methodology, interface

Procedia PDF Downloads 126
8529 Spatial Analysis the Suitability Area for Jatropha curcas L. as an Alternative to Biodiesel in Central Kalimantan, Indonesia

Authors: Rizki Oktariza, Sri Fauza Pratiwi, Hilza Ikhsanti

Abstract:

Human depends on fossil fuels as the bigger sources of considerable energy in all sectors. Based on that cases, we are needed alternative energy to supplies needed for fuel, one of them by using energy fuel from the biodiesel. The raw materials that can be used for producing the biodiesel energy are Jatropha curcas L. In Indonesia, the availability of land for the development of the Jatropha curcas L which has very appropriate Indonesia reached 14.2 million hectares, with an area of suitable in Kalimantan around 10 million hectares. In Central Kalimantan, as one of the provinces of Kalimantan, has considerable potential planting Jatropha curcas L because of the physical condition and have a largest of the agricultural land. To support the potential of Jatropha curcas L in Central Kalimantan, spatial analysis is needed to find out the appropriate areas for Jatropha curcas L growing land. The suitability of region is influenced by several variables i.e., rainfall, the slope of the land, the surface temperature and the altitude of a region. The compliance of criteria are divided into four criteria: high suitable (S1), moderately suitable (S2), marginally suitable (S3), not suitable (N). The suitability of the region is based on these variables and made an overlay analysis of these variables by using Geographic Information System. Based on this overlay analysis will results a map of the suitability area for planting Jatropha curcas L, which is distribution criteria is high suitable (S1) of 213,245 ha, moderately suitable (S2) of 14,389,353 ha, marginally suitable (S3) 360,357 ha, not suitable (N) 0.020 ha.

Keywords: geographic information system, Jatropha curcas L., overlay, the suitable area

Procedia PDF Downloads 178
8528 Influence of Infrared Radiation on the Growth Rate of Microalgae Chlorella sorokiniana

Authors: Natalia Politaeva, Iuliia Smiatskaia, Iuliia Bazarnova, Iryna Atamaniuk, Kerstin Kuchta

Abstract:

Nowadays, the progressive decrease of primary natural resources and ongoing upward trend in terms of energy demand, have resulted in development of new generation technological processes which are focused on step-wise production and residues utilization. Thus, microalgae-based 3rd generation bioeconomy is considered one of the most promising approaches that allow production of value-added products and sophisticated utilization of residues biomass. In comparison to conventional biomass, microalgae can be cultivated in wide range of conditions without compromising food and feed production, and thus, addressing issues associated with negative social and environmental impacts. However, one of the most challenging tasks is to undergo seasonal variations and to achieve optimal growing conditions for indoor closed systems that can cover further demand for material and energetic utilization of microalgae. For instance, outdoor cultivation in St. Petersburg (Russia) is only suitable within rather narrow time frame (from mid-May to mid-September). At earlier and later periods, insufficient sunlight and heat for the growth of microalgae were detected. On the other hand, without additional physical effects, the biomass increment in summer is 3-5 times per week, depending on the solar radiation and the ambient temperature. In order to increase biomass production, scientists from all over the world have proposed various technical solutions for cultivators and have been studying the influence of various physical factors affecting biomass growth namely: magnetic field, radiation impact, and electric field, etc. In this paper, the influence of infrared radiation (IR) and fluorescent light on the growth rate of microalgae Chlorella sorokiniana has been studied. The cultivation of Chlorella sorokiniana was carried out in 500 ml cylindrical glass vessels, which were constantly aerated. To accelerate the cultivation process, the mixture was stirred for 15 minutes at 500 rpm following 120 minutes of rest time. At the same time, the metabolic needs in nutrients were provided by the addition of micro- and macro-nutrients in the microalgae growing medium. Lighting was provided by fluorescent lamps with the intensity of 2500 ± 300 lx. The influence of IR was determined using IR lamps with a voltage of 220 V, power of 250 W, in order to achieve the intensity of 13 600 ± 500 lx. The obtained results show that under the influence of fluorescent lamps along with the combined effect of active aeration and variable mixing, the biomass increment on the 2nd day was three times, and on the 7th day, it was eight-fold. The growth rate of microalgae under the influence of IR radiation was lower and has reached 22.6·106 cells·mL-1. However, application of IR lamps for the biomass growth allows maintaining the optimal temperature of microalgae suspension at approximately 25-28°C, which might especially be beneficial during the cold season in extreme climate zones.

Keywords: biomass, fluorescent lamp, infrared radiation, microalgae

Procedia PDF Downloads 191
8527 Molecular Dynamics Simulation Studies of Thermal Effects Created by High-Intensity, Ultra-Short Pulses Induced Cell Membrane Electroporation

Authors: Jiahui Song

Abstract:

The use of electric fields with high intensity (~ 100kV/cm or higher) and ultra short pulse durations (nanosecond range) has been a recent development. Most of the studies of electroporation have ignored possible thermal effects because of the small duration of the applied voltage pulses. However, it has been predicted membrane temperature gradients ranging from 0.2×109 to 109 K/m. This research focuses on thermal effects that drive for electroporative enhancements, even though the actual temperature values might not have changed appreciably from their equilibrium levels. The dynamics of pore formation with the application of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. MD simulations of a lipid layer with constant electric field strength of 0.5 V/nm at 25 °C and 47 °C are implemented to simulate the appropriate thermal effects. The GROMACS provides the force fields for the lipid membranes, which is taken to comprise of dipalmitoyl-phosphatidyl-choline (DPPC) molecules. The water model mimicks the aqueous environment surrounding the membrane. Velocities of water and membrane molecules are generated randomly at each simulation run according to a Maxwellian distribution. The high background electric field is typically used in MD simulations to probe electroporation. It serves as an accelerated test of the pore formation process since low electric fields would take inordinately long simulation time. MD simulation shows no pore is formed in a 1-ns snapshot for a DPPC membrane set at a temperature of 25°C after a 0.5 V/nm electric field is applied. A nano-sized pore is clearly seen in a 0.75-ns snapshot on the same geometry, but with the membrane surfaces kept at temperatures of 47°C. And the pore increases at 1 ns. The MD simulation results suggest the possibility that the increase in temperature can result in different degrees of electrically stimulated bio-effects. The results points to the role of thermal effects in facilitating and accelerating the electroporation process.

Keywords: high-intensity, ultra-short, electroporation, thermal effects, molecular dynamics

Procedia PDF Downloads 56
8526 Dissolution Leaching Kinetics of Ulexite in Disodium Hydrogen Phosphate Solutions

Authors: Betül Özgenç, Soner Kuşlu, Sabri Çolak, Turan Çalban

Abstract:

The aim of this study was investigate the leaching kinetics of ulexite in disodium hydrogen phosphate solutions in a mechanical agitation system. Reaction temperature, concentration of disodium hydrogen phosphate solutions, stirring speed, solid/liquid ratio and ulexite particle size were selected as parameters. The experimental results were successfully correlated by linear regression using Statistica program. Dissolution curves were evaluated shrinking core models for solid-fluid systems. It was observed that increase in the reaction temperature and decrease in the solid/liquid ratio causes an increase the dissolution rate of ulexite. The activation energy was found to be 63.4 kJ/mol. The leaching of ulexite was controlled by chemical reaction.

Keywords: ulexite, disodium hydrogen phosphate, leaching kinetics

Procedia PDF Downloads 414
8525 Thermoelectrical Properties of Cs Doped BiCuSeO as Promising Oxide Materials for Thermoelectric Energy Converter

Authors: Abdenour Achour, Kan Chen, Mike Reece, Zhaorong Huang

Abstract:

Here we report the synthesis of pure and cost effective of BiCuSeO by a flux method in air, and the enhancement of the thermoelectric performance by Cs doping. The comparison between our synthesis and the usual vacuum furnace method has been studied for the pristine oxyselenides BiCuSeO. We report for very high Seebeck coefficients up to 516 μV K⁻¹ at room temperature with the electrical conductivity of 5.20 S cm⁻¹ which lead to a high power factor of 140 µWm⁻¹K⁻². We also report at the high temperatures the lowest thermal conductivity value of 0.42 µWm⁻¹K⁻¹. Upon doping with Cs, enhanced electrical conductivity coupled with a moderate Seebeck coefficient lead to a power factor of 338 µWm⁻¹K⁻² at 682 K. Moreover, it shows a very low thermal conductivity in the temperature range of 300 to 682 K (0.75 to 0.35 Wm⁻¹K⁻¹). By optimizing the power factor and reducing the thermal conductivity, this results in a high ZT of ~ 0.66 at 682 K for Bi0.995Cs0.005CuSeO.

Keywords: BiCuSeO, Cs doping, thermoelectric, oxyselenide

Procedia PDF Downloads 302
8524 Investigation of Geothermal Gradient of the Niger Delta from Recent Studies

Authors: Adedapo Jepson Olumide, Kurowska Ewa, K. Schoeneich, Ikpokonte A. Enoch

Abstract:

In this paper, subsurface temperature measured from continuous temperature logs were used to determine the geothermal gradient of NigerDelta sedimentary basin. The measured temperatures were corrected to the true subsurface temperatures by applying the American Association of Petroleum Resources (AAPG) correction factor, borehole temperature correction factor with La Max’s correction factor and Zeta Utilities borehole correction factor. Geothermal gradient in this basin ranges from 1.20C to 7.560C/100m. Six geothermal anomalies centres were observed at depth in the southern parts of the Abakaliki anticlinorium around Onitsha, Ihiala, Umuaha area and named A1 to A6 while two more centre appeared at depth of 3500m and 4000m named A7 and A8 respectively. Anomaly A1 describes the southern end of the Abakaliki anticlinorium and extends southwards, anomaly A2 to A5 were found associated with a NW-SE structural alignment of the Calabar hinge line with structures describing the edge of the Niger Delta basin with the basement block of the Oban massif. Anomaly A6 locates in the south-eastern part of the basin offshore while A7 and A8 are located in the south western part of the basin offshore. At the average exploratory depth of 3500m, the geothermal gradient values for these anomalies A1, A2, A3, A4, A5, A6, A7, and A8 are 6.50C/100m, 1.750C/100m, 7.50C/100m, 1.250C/100m, 6.50C/100m, 5.50C/100m, 60C/100m, and 2.250C/100m respectively. Anomaly A8 area may yield higher thermal value at greater depth than 3500m. These results show that anomalies areas of A1, A3, A5, A6 and A7 are potentially prospective and explorable for geothermal energy using abandoned oil wells in the study area. Anomalies A1, A3.A5, A6 occur at areas where drilled boreholes were not exploitable for oil and gas but for the remaining areas where wells are so exploitable there appears no geothermal anomaly. Geothermal energy is environmentally friendly, clean and reversible.

Keywords: temperature logs, geothermal gradient anomalies, alternative energy, Niger delta basin

Procedia PDF Downloads 285
8523 Antibiotic Treatment of Apical Periodontitis

Authors: Ilma Robo, Saimir Heta, Gerhard Nokaj

Abstract:

Introduction: The method of treatment and the treatment protocols of apical periodontitis are now known, but the ongoing debate remains on whether or not prescription antibiotics should be given to patients suffering from this type of pathology. In fact, as an indication for prescribing antibiotics, this type of pathology remains between clinical indication and contraindication. Material and Methods: This article is of the short-communication type and has the sole purpose of analyzing the clinical picture of apical periodontitis and the fact that the appearance and extent of this pathology in the periapex area passes the stage when the host or the immune cells of the organism of the affected individual, react against bacterial factors. Results: Determining whether or not to prescribe systemic antibiotics according to literature sources can be avoided. In some cases, research in this field about this pathology even indicates endodontic rinsers or irrigants, such as chlorhexidine, in typical cases, mainly in persistent apical periodontitis. Conclusions: In times when bacterial resistance is a hot topic in some fields of scientific research, it is important to divide dental pathologies of bacterial origin into those when systemic antibiotic prescriptions must be given and those when every clinical issue is resolved only with endodontic root canal treatment. Even certain sources of published literature show the specifics of the most effective antibiotics against the bacterial flora causing the pathology of apical periodontitis.

Keywords: endodontic treatment, apical periodontitis, antibiotics, chlorhexidine

Procedia PDF Downloads 78
8522 Cross Carpeting in Nigerian Politics: Some Legal and Moral Issues Generated

Authors: Agbana Olaseinde Julius, Opadere Olaolu Stephen

Abstract:

The concept of cross carpeting is as old as politics itself. Basically, it entails an individual leaving a political party/group, to join another. The reasons for which cross carpeting is embarked upon are diverse: ideological differences; ethnic and/or religious differences; access to actual or perceived better political opportunities; liberty of association; rancor; etc. The current democratic dispensation in Nigeria has experienced renewed and rather alarming rate of cross carpeting, for reasons including those enumerated above and others. Right to cross carpet is inherent in a democratic setting as well as the political stakeholder; so does it also comprise of the constitutional right of ‘freedom of association’. However, the current species of cross carpeting in Nigeria requires scrutiny, in view of some potential legal and moral challenges it poses for both the present and the future. Cross carpeting is considered both legal and constitutional, but the current spate raises the question of expediency, particularly in a nascent democracy. It is considered to have a propensity of negatively impacting political stability in a polity with fragile nerves. Importantly too, cross carpeting is considered a potential damage to the psyche of posterity with regards to a warped disposition to promises, honour and integrity. The perceived peculiar dimension of cross carpeting in Nigeria raises questions on the quality of leadership presently obtainable in the country, vis-à-vis greed, self-centeredness, disregard for the concern and interest of avowed followers/fans, entrenchment of distrust, etc. Thus, the study made use of primary and secondary sources of information. The primary sources included the Constitutions of the Federal Republic of Nigeria 1999 (as amended); judicial decisions; and the Electoral Act, 2010 (as Amended). The secondary sources comprised of information from books, journals, newspapers, magazines and Internet documents. Data obtained from these sources were subjected to content analysis. Findings of this study show that though the act of cross carpeting may not be in breach of any Statute or Law, it however, in most cases, breaches the morals of expediency. The morality thereof is far from justifiable, and should be condemned in the interest of the present and posterity. There is a great and urgent need to embark on a re-entrenchment of the culture of political ideology in the Nigerian polity, as obtainable in developed democracies. In conclusion, the need to exercise the right of cross carpeting with caution cannot be overemphasized. Membership of a political group/party should be backed by commitment to well defined ideologies and values. Commitment to them should be regarded akin to that found in the family, which is not easily or flippantly jettisoned.

Keywords: cross-carpeting, Nigeria, legal, moral issues, politics

Procedia PDF Downloads 451
8521 Complicity of Religion in Legalizing Corruption: Perspective from an Emerging Economy

Authors: S. Opadere Olaolu

Abstract:

Religion, as a belief-system, has been with humanity for a long time. It has been recognised to impact the lives of individuals, groups, and communities that hold it dear. Whether the impact is regarded as positive or not depends on the assessor. Thus, for reasons of likely subjectiveness, possible irrationality, and even outright deliberate abuse, most emerging economies seek to follow the pattern of separating the State from religion; yet it is certain that the influence of religion on the State is incontrovertible. Corruption, on the other hand, though difficult to define in precise terms, is clearly perceptible. It could manifest in very diverse ways, including the abuse of a position of trust for the gain of an individual, or of a group with shared ulterior motive. Religion has been perceived, among others, as a means to societal stability, marital stability, infusion of moral rectitude, and conscience with regards to right and wrong. In time past, credible and dependable characters reposed largely and almost exclusively with those bearing deep religious conviction. Even in the political circle, it was thought that the involvement of those committed to religion would bring about positive changes, for the benefit of the society at large. On the contrary, in recent times, religion has failed in these lofty expectations. The level of corruption in most developing economies, and the increase of religion seem to be advancing pari passu. For instance, religion has encroached into political space, and vice versa, without any differentiable posture to the issue of corruption. Worse still, religion appears to be aiding and abetting corruption, overtly and/or covertly. Therefore, this discourse examined from the Nigerian perspective—as a developing economy—, and from a multidisciplinary stand-point of Law and Religion, the issue of religion; secularism; corruption; romance of religion and politics; inability of religion to exemplify moral rectitude; indulgence of corruption by religion; and the need to keep religion in private sphere, with proper checks. The study employed primary and secondary sources of information. The primary sources included the Constitutions of the Federal Republic of Nigeria 1999, as amended; judicial decisions; and the Bible. The secondary sources comprised of information from books, journals, newspapers, magazines and Internet documents. Data obtained from these sources were subjected to content analysis. Findings of this study include the breach of constitutional provisions to keep religion out of State affairs; failure of religion to curb corruption; outright indulgence of corruption by religion; and religion having become a political tool. In conclusion, it is considered apposite still to keep the State out of religion, and to seek enforcement of the constitutional provisions in this respect. The stamp of legality placed on overt and covert corruption by religion should be removed by all means.

Keywords: corruption, complicity, legalizing, religion

Procedia PDF Downloads 414
8520 Three-Dimensional Fluid-Structure-Thermal Coupling Dynamics Simulation Model of a Gas-Filled Fluid-Resistance Damper and Experimental Verification

Authors: Wenxue Xu

Abstract:

Fluid resistance damper is an important damping element to attenuate vehicle vibration. It converts vibration energy into thermal energy dissipation through oil throttling. It is a typical fluid-solid-heat coupling problem. A complete three-dimensional flow-structure-thermal coupling dynamics simulation model of a gas-filled fluid-resistance damper was established. The flow-condition-based interpolation (FCBI) method and direct coupling calculation method, the unit's FCBI-C fluid numerical analysis method and iterative coupling calculation method are used to achieve the damper dynamic response of the piston rod under sinusoidal excitation; the air chamber inflation pressure, spring compression characteristics, constant flow passage cross-sectional area and oil parameters, etc. The system parameters, excitation frequency, and amplitude and other excitation parameters are analyzed and compared in detail for the effects of differential pressure characteristics, velocity characteristics, flow characteristics and dynamic response of valve opening, floating piston response and piston rod output force characteristics. Experiments were carried out on some simulation analysis conditions. The results show that the node-based FCBI (flow-condition-based interpolation) fluid numerical analysis method and direct coupling calculation method can better guarantee the conservation of flow field calculation, and the calculation step is larger, but the memory is also larger; if the chamber inflation pressure is too low, the damper will become cavitation. The inflation pressure will cause the speed characteristic hysteresis to increase, and the sealing requirements are too strict. The spring compression characteristics have a great influence on the damping characteristics of the damper, and reasonable damping characteristic needs to properly design the spring compression characteristics; the larger the cross-sectional area of the constant flow channel, the smaller the maximum output force, but the more stable when the valve plate is opening.

Keywords: damper, fluid-structure-thermal coupling, heat generation, heat transfer

Procedia PDF Downloads 146
8519 Upconversion Nanoparticles for Imaging and Controlled Photothermal Release of Anticancer Drug in Breast Cancer

Authors: Rishav Shrestha, Yong Zhang

Abstract:

The Anti-Stoke upconversion process has been used extensively for bioimaging and is recently being used for photoactivated therapy in cancer utilizing upconversion nanoparticles (UCNs). The UCNs have an excitation band at 980nm; 980nm laser excitation used to produce UV/Visible emissions also produce a heating effect. Light-to-heat conversion has been observed in nanoparticles(NPs) doped with neodymium(Nd) or ytterbium(Yb)/erbium(Er) ions. Despite laser-induced heating in Rare-earth doped NPs being proven to be a relatively efficient process, only few attempts to use them as photothermal agents in biosystems have been made up to now. Gold nanoparticles and carbon nanotubes are the most researched and developed for photothermal applications. Both have large heating efficiency and outstanding biocompatibility. However, they show weak fluorescence which makes them harder to track in vivo. In that regard, UCNs are attractive due to their excellent optical features in addition to their light-to-heat conversion and excitation by NIR, for imaging and spatiotemporally releasing drugs. In this work, we have utilized a simple method to coat Nd doped UCNs with thermoresponsive polymer PNIPAM on which 4-Hydroxytamoxifen (4-OH-T) is loaded. Such UCNs demonstrate a high loading efficiency and low leakage of 4-OH-T. Encouragingly, the release of 4-OH-T can be modulated by varying the power and duration of the NIR. Such UCNs were then used to demonstrate imaging and controlled photothermal release of 4-OH-T in MCF-7 breast cancer cells.

Keywords: cancer therapy, controlled release, photothermal release, upconversion nanoparticles

Procedia PDF Downloads 426
8518 Influence of Temperature and Immersion on the Behavior of a Polymer Composite

Authors: Quentin C.P. Bourgogne, Vanessa Bouchart, Pierre Chevrier, Emmanuel Dattoli

Abstract:

This study presents an experimental and theoretical work conducted on a PolyPhenylene Sulfide reinforced with 40%wt of short glass fibers (PPS GF40) and its matrix. Thermoplastics are widely used in the automotive industry to lightweight automotive parts. The replacement of metallic parts by thermoplastics is reaching under-the-hood parts, near the engine. In this area, the parts are subjected to high temperatures and are immersed in cooling liquid. This liquid is composed of water and glycol and can affect the mechanical properties of the composite. The aim of this work was thus to quantify the evolution of mechanical properties of the thermoplastic composite, as a function of temperature and liquid aging effects, in order to develop a reliable design of parts. An experimental campaign in the tensile mode was carried out at different temperatures and for various glycol proportions in the cooling liquid, for monotonic and cyclic loadings on a neat and a reinforced PPS. The results of these tests allowed to highlight some of the main physical phenomena occurring during these solicitations under tough hydro-thermal conditions. Indeed, the performed tests showed that temperature and liquid cooling aging can affect the mechanical behavior of the material in several ways. The more the cooling liquid contains water, the more the mechanical behavior is affected. It was observed that PPS showed a higher sensitivity to absorption than to chemical aggressiveness of the cooling liquid, explaining this dominant sensitivity. Two kinds of behaviors were noted: an elasto-plastic type under the glass transition temperature and a visco-pseudo-plastic one above it. It was also shown that viscosity is the leading phenomenon above the glass transition temperature for the PPS and could also be important under this temperature, mostly under cyclic conditions and when the stress rate is low. Finally, it was observed that soliciting this composite at high temperatures is decreasing the advantages of the presence of fibers. A new phenomenological model was then built to take into account these experimental observations. This new model allowed the prediction of the evolution of mechanical properties as a function of the loading environment, with a reduced number of parameters compared to precedent studies. It was also shown that the presented approach enables the description and the prediction of the mechanical response with very good accuracy (2% of average error at worst), over a wide range of hydrothermal conditions. A temperature-humidity equivalence principle was underlined for the PPS, allowing the consideration of aging effects within the proposed model. Then, a limit of improvement of the reachable accuracy was determinate for all models using this set of data by the application of an artificial intelligence-based model allowing a comparison between artificial intelligence-based models and phenomenological based ones.

Keywords: aging, analytical modeling, mechanical testing, polymer matrix composites, sequential model, thermomechanical

Procedia PDF Downloads 121
8517 Magnetic Structure and Transitions in 45% Mn Substituted HoFeO₃: A Neutron Diffraction Study

Authors: Karthika Chandran, Pulkit Prakash, Amitabh Das, Santhosh P. N.

Abstract:

Rare earth orthoferrites (RFeO₃) exhibit interesting and useful magnetic properties like multiferroicity, magnetodielectric coupling, spin reorientation (SR) and exchange bias. B site doped RFeO₃ are attracting attention due to the complex and tuneable magnetic transitions. In this work, 45% Mn-doped HoFeO₃ polycrystalline sample (HoFe₀.₅₅Mn₀.₄₅O₃) was synthesized by a solid-state reaction method. The magnetic structure and transitions were studied by magnetization measurements and neutron powder diffraction methods. The neutron diffraction patterns were taken at 13 different temperatures from 7°K to 300°K (7°K and 25°K to 300°K in 25°K intervals). The Rietveld refinement was carried out by using a FULLPROF suite. The magnetic space groups and the irreducible representations were obtained by SARAh module. The room temperature neutron diffraction refinement results indicate that the sample crystallizes in an orthorhombic perovskite structure with Pnma space group with lattice parameters a = 5.6626(3) Ǻ, b = 7.5241(3) Ǻ and c = 5.2704(2) Ǻ. The temperature dependent magnetization (M-T) studies indicate the presence of two magnetic transitions in the system ( TN Fe/Mn~330°K and TSR Fe/Mn ~290°K). The inverse susceptibility vs. temperature curve shows a linear behavior above 330°K. The Curie-Weiss fit in this region gives negative Curie constant (-34.9°K) indicating the antiferromagnetic nature of the transition. The neutron diffraction refinement results indicate the presence of mixed magnetic phases Γ₄(AₓFᵧG

Keywords: neutron powder diffraction, rare earth orthoferrites, Rietveld analysis, spin reorientation

Procedia PDF Downloads 152
8516 Influence of Biochar Application on Growth, Dry Matter Yield and Nutrition of Corn (Zea mays L.) Grown on Sandy Loam Soils of Gujarat, India

Authors: Pravinchandra Patel

Abstract:

Sustainable agriculture in sandy loam soil generally faces large constraints due to low water holding and nutrient retention capacity, and accelerated mineralization of soil organic matter. There is need to increase soil organic carbon in the soil for higher crop productivity and soil sustainability. Recently biochar is considered as sixth element and work as a catalyst for increasing crop yield, soil fertility, soil sustainability and mitigation of climate change. Biochar was generated at the Sansoli Farm of Anand Agricultural University, Gujarat, India by pyrolysis at temperatures (250-400°C) in absence of oxygen using slow chemical process (using two kilns) from corn stover (Zea mays, L), cluster bean stover (Cyamopsis tetragonoloba) and Prosopis julifera wood. There were 16 treatments; 4 organic sources (3 biochar; corn stover biochar (MS), cluster bean stover (CB) & Prosopis julifera wood (PJ) and one farmyard manure-FYM) with two rate of application (5 & 10 metric tons/ha), so there were eight treatments of organic sources. Eight organic sources was applied with the recommended dose of fertilizers (RDF) (80-40-0 kg/ha N-P-K) while remaining eight organic sources were kept without RDF. Application of corn stover biochar @ 10 metric tons/ha along with RDF (RDF+MS) increased dry matter (DM) yield, crude protein (CP) yield, chlorophyll content and plant height (at 30 and 60 days after sowing) than CB and PJ biochar and FYM. Nutrient uptake of P, K, Ca, Mg, S and Cu were significantly increased with the application of RDF + corn stover @ 10 metric tons/ha while uptake of N and Mn were significantly increased in RDF + corn stover @ 5 metric tons/ha. It was found that soil application of corn stover biochar @ 10 metric tons/ha along with the recommended dose of chemical fertilizers (RDF+MS ) exhibited the highest impact in obtaining significantly higher dry matter and crude protein yields and larger removal of nutrients from the soil and it also beneficial for built up nutrients in soil. It also showed significantly higher organic carbon content and cation exchange capacity in sandy loam soil. The lower dose of corn stover biochar @ 5 metric tons/ha (RDF+ MS) was also remained the second highest for increasing dry matter and crude protein yields of forage corn crop which ultimately resulted in larger removals of nutrients from the soil. This study highlights the importance of mixing of biochar along with recommended dose of fertilizers on its synergistic effect on sandy loam soil nutrient retention, organic carbon content and water holding capacity hence, the amendment value of biochar in sandy loam soil.

Keywords: biochar, corn yield, plant nutrient, fertility status

Procedia PDF Downloads 151
8515 Temperature Effect on Changing of Electrical Impedance and Permittivity of Ouargla (Algeria) Dunes Sand at Different Frequencies

Authors: Naamane Remita, Mohammed laïd Mechri, Nouredine Zekri, Smaïl Chihi

Abstract:

The goal of this study is the estimation real and imaginary components of both electrical impedance and permittivity z', z'' and ε', ε'' respectively, in Ouargla dunes sand at different temperatures and different frequencies, with alternating current (AC) equal to 1 volt, using the impedance spectroscopy (IS). This method is simple and non-destructive. the results can frequently be correlated with a number of physical properties, dielectric properties and the impacts of the composition on the electrical conductivity of solids. The experimental results revealed that the real part of impedance is higher at higher temperature in the lower frequency region and gradually decreases with increasing frequency. As for the high frequencies, all the values of the real part of the impedance were positive. But at low frequency the values of the imaginary part were positive at all temperatures except for 1200 degrees which were negative. As for the medium frequencies, the reactance values were negative at temperatures 25, 400, 200 and 600 degrees, and then became positive at the rest of the temperatures. At high frequencies of the order of MHz, the values of the imaginary part of the electrical impedance were in contrast to what we recorded for the middle frequencies. The results showed that the electrical permittivity decreases with increasing frequency, at low frequency we recorded permittivity values of 10+ 11, and at medium frequencies it was 10+ 07, while at high frequencies it was 10+ 02. The values of the real part of the electrical permittivity were taken large values at the temperatures of 200 and 600 degrees Celsius and at the lowest frequency, while the smallest value for the permittivity was recorded at the temperature of 400 degrees Celsius at the highest frequency. The results showed that there are large values of the imaginary part of the electrical permittivity at the lowest frequency and then it starts decreasing as the latter increases (the higher the frequency the lower the values of the imaginary part of the electrical permittivity). The character of electrical impedance variation indicated an opportunity to realize the polarization of Ouargla dunes sand and acquaintance if this compound consumes or produces energy. It’s also possible to know the satisfactory of equivalent electric circuit, whether it’s miles induction or capacitance.

Keywords: electrical impedance, electrical permittivity, temperature, impedance spectroscopy, dunes sand ouargla

Procedia PDF Downloads 53