Search results for: flow theory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9167

Search results for: flow theory

5657 Trauma in the Unconsoled: A Crisis of the Self

Authors: Assil Ghariri

Abstract:

This article studies the process of rewriting the self through memory in Kazuo Ishiguro’s novel, the Unconsoled (1995). It deals with the journey that the protagonist Mr. Ryder takes through the unconscious, in search for his real self, in which trauma stands as an obstacle. The article uses Carl Jung’s theory of archetypes. Trauma, in this article, is discussed as one of the true obstacles of the unconscious that prevent people from realizing the truth about their selves.

Keywords: Carl Jung, Kazuo Ishiguro, memory, trauma

Procedia PDF Downloads 397
5656 Nudging the Criminal Justice System into Listening to Crime Victims in Plea Agreements

Authors: Dana Pugach, Michal Tamir

Abstract:

Most criminal cases end with a plea agreement, an issue whose many aspects have been discussed extensively in legal literature. One important feature, however, has gained little notice, and that is crime victims’ place in plea agreements following the federal Crime Victims Rights Act of 2004. This law has provided victims some meaningful and potentially revolutionary rights, including the right to be heard in the proceeding and a right to appeal against a decision made while ignoring the victim’s rights. While victims’ rights literature has always emphasized the importance of such right, references to this provision in the general literature about plea agreements are sparse, if existing at all. Furthermore, there are a few cases only mentioning this right. This article purports to bridge between these two bodies of legal thinking – the vast literature concerning plea agreements and victims’ rights research– by using behavioral economics. The article will, firstly, trace the possible structural reasons for the failure of this right to be materialized. Relevant incentives of all actors involved will be identified as well as their inherent consequential processes that lead to the victims’ rights malfunction. Secondly, the article will use nudge theory in order to suggest solutions that will enhance incentives for the repeat players in the system (prosecution, judges, defense attorneys) and lead to the strengthening of weaker group’s interests – the crime victims. Behavioral psychology literature recognizes that the framework in which an individual confronts a decision can significantly influence his decision. Richard Thaler and Cass Sunstein developed the idea of ‘choice architecture’ - ‘the context in which people make decisions’ - which can be manipulated to make particular decisions more likely. Choice architectures can be changed by adjusting ‘nudges,’ influential factors that help shape human behavior, without negating their free choice. The nudges require decision makers to make choices instead of providing a familiar default option. In accordance with this theory, we suggest a rule, whereby a judge should inquire the victim’s view prior to accepting the plea. This suggestion leaves the judge’s discretion intact; while at the same time nudges her not to go directly to the default decision, i.e. automatically accepting the plea. Creating nudges that force actors to make choices is particularly significant when an actor intends to deviate from routine behaviors but experiences significant time constraints, as in the case of judges and plea bargains. The article finally recognizes some far reaching possible results of the suggestion. These include meaningful changes to the earlier stages of criminal process even before reaching court, in line with the current criticism of the plea agreements machinery.

Keywords: plea agreements, victims' rights, nudge theory, criminal justice

Procedia PDF Downloads 320
5655 Polymer Mixing in the Cavity Transfer Mixer

Authors: Giovanna Grosso, Martien A. Hulsen, Arash Sarhangi Fard, Andrew Overend, Patrick. D. Anderson

Abstract:

In many industrial applications and, in particular in polymer industry, the quality of mixing between different materials is fundamental to guarantee the desired properties of finished products. However, properly modelling and understanding polymer mixing often presents noticeable difficulties, because of the variety and complexity of the physical phenomena involved. This is the case of the Cavity Transfer Mixer (CTM), for which a clear understanding of mixing mechanisms is still missing, as well as clear guidelines for the system optimization. This device, invented and patented by Gale at Rapra Technology Limited, is an add-on to be mounted downstream of existing extruders, in order to improve distributive mixing. It consists of two concentric cylinders, the rotor and stator, both provided with staggered rows of hemispherical cavities. The inner cylinder (rotor) rotates, while the outer (stator) remains still. At the same time, the pressure load imposed upstream, pushes the fluid through the CTM. Mixing processes are driven by the flow field generated by the complex interaction between the moving geometry, the imposed pressure load and the rheology of the fluid. In such a context, the present work proposes a complete and accurate three dimensional modelling of the CTM and results of a broad range of simulations assessing the impact on mixing of several geometrical and functioning parameters. Among them, we find: the number of cavities per row, the number of rows, the size of the mixer, the rheology of the fluid and the ratio between the rotation speed and the fluid throughput. The model is composed of a flow part and a mixing part: a finite element solver computes the transient velocity field, which is used in the mapping method implementation in order to simulate the concentration field evolution. Results of simulations are summarized in guidelines for the device optimization.

Keywords: Mixing, non-Newtonian fluids, polymers, rheology.

Procedia PDF Downloads 375
5654 A Methodology for Seismic Performance Enhancement of RC Structures Equipped with Friction Energy Dissipation Devices

Authors: Neda Nabid

Abstract:

Friction-based supplemental devices have been extensively used for seismic protection and strengthening of structures, however, the conventional use of these dampers may not necessarily lead to an efficient structural performance. Conventionally designed friction dampers follow a uniform height-wise distribution pattern of slip load values for more practical simplicity. This can lead to localizing structural damage in certain story levels, while the other stories accommodate a negligible amount of relative displacement demand. A practical performance-based optimization methodology is developed to tackle with structural damage localization of RC frame buildings with friction energy dissipation devices under severe earthquakes. The proposed methodology is based on the concept of uniform damage distribution theory. According to this theory, the slip load values of the friction dampers redistribute and shift from stories with lower relative displacement demand to the stories with higher inter-story drifts to narrow down the discrepancy between the structural damage levels in different stories. In this study, the efficacy of the proposed design methodology is evaluated through the seismic performance of five different low to high-rise RC frames equipped with friction wall dampers under six real spectrum-compatible design earthquakes. The results indicate that compared to the conventional design, using the suggested methodology to design friction wall systems can lead to, by average, up to 40% reduction of maximum inter-story drift; and incredibly more uniform height-wise distribution of relative displacement demands under the design earthquakes.

Keywords: friction damper, nonlinear dynamic analysis, RC structures, seismic performance, structural damage

Procedia PDF Downloads 223
5653 Navigating the Case-Based Learning Multimodal Learning Environment: A Qualitative Study Across the First-Year Medical Students

Authors: Bhavani Veasuvalingam

Abstract:

Case-based learning (CBL) is a popular instructional method aimed to bridge theory to clinical practice. This study aims to explore CBL mixed modality curriculum in influencing students’ learning styles and strategies that support learning. An explanatory sequential mixed method study was employed with initial phase, 44-itemed Felderman’s Index of Learning Style (ILS) questionnaire employed across year one medical students (n=142) using convenience sampling to describe the preferred learning styles. The qualitative phase utilised three focus group discussions (FGD) to explore in depth on the multimodal learning style exhibited by the students. Most students preferred combination of learning stylesthat is reflective, sensing, visual and sequential i.e.: RSVISeq style (24.64%) from the ILS analysis. The frequency of learning preference from processing to understanding were well balanced, with sequential-global domain (66.2%); sensing-intuitive (59.86%), active- reflective (57%), and visual-verbal (51.41%). The qualitative data reported three major themes, namely Theme 1: CBL mixed modalities navigates learners’ learning style; Theme 2: Multimodal learners active learning strategies supports learning. Theme 3: CBL modalities facilitating theory into clinical knowledge. Both quantitative and qualitative study strongly reports the multimodal learning style of the year one medical students. Medical students utilise multimodal learning styles to attain the clinical knowledge when learning with CBL mixed modalities. Educators’ awareness of the multimodal learning style is crucial in delivering the CBL mixed modalities effectively, considering strategic pedagogical support students to engage and learn CBL in bridging the theoretical knowledge into clinical practice.

Keywords: case-based learning, learnign style, medical students, learning

Procedia PDF Downloads 92
5652 On Constructing a Cubically Convergent Numerical Method for Multiple Roots

Authors: Young Hee Geum

Abstract:

We propose the numerical method defined by xn+1 = xn − λ[f(xn − μh(xn))/]f'(xn) , n ∈ N, and determine the control parameter λ and μ to converge cubically. In addition, we derive the asymptotic error constant. Applying this proposed scheme to various test functions, numerical results show a good agreement with the theory analyzed in this paper and are proven using Mathematica with its high-precision computability.

Keywords: asymptotic error constant, iterative method, multiple root, root-finding

Procedia PDF Downloads 218
5651 Theoretical Investigations on Optical Properties of GaFeMnN Quaternary Compound

Authors: H. A. Bentounes, A. Abbad, W. Benstaali

Abstract:

Using first principles calculations based on the density functional theory and local spin density approximation, we investigate optical properties of GaFeMnN quaternary compound. Results show that optical properties confirm that GaFeMnN can be a good candidate in the design of thin film solar cells in the visible and ultraviolet parts of the spectrum, and a good sensor in the infrared

Keywords: GaN, optical absorption, semi-metallic, dielectric function

Procedia PDF Downloads 367
5650 An Improved Approach for Hybrid Rocket Injection System Design

Authors: M. Invigorito, G. Elia, M. Panelli

Abstract:

Hybrid propulsion combines beneficial properties of both solid and liquid rockets, such as multiple restarts, throttability as well as simplicity and reduced costs. A nitrous oxide (N2O)/paraffin-based hybrid rocket engine demonstrator is currently under development at the Italian Aerospace Research Center (CIRA) within the national research program HYPROB, funded by the Italian Ministry of Research. Nitrous oxide belongs to the class of self-pressurizing propellants that exhibit a high vapor pressure at standard ambient temperature. This peculiar feature makes those fluids very attractive for space rocket applications because it avoids the use of complex pressurization systems, leading to great benefits in terms of weight savings and reliability. To avoid feed-system-coupled instabilities, the phase change is required to occur through the injectors. In this regard, the oxidizer is stored in liquid condition while target chamber pressures are designed to lie below vapor pressure. The consequent cavitation and flash vaporization constitute a remarkably complex phenomenology that arises great modelling challenges. Thus, it is clear that the design of the injection system is fundamental for the full exploitation of hybrid rocket engine throttability. The Analytical Hierarchy Process has been used to select the injection architecture as best compromise among different design criteria such as functionality, technology innovation and cost. The impossibility to use engineering simplified relations for the dimensioning of the injectors led to the needs of applying a numerical approach based on OpenFOAM®. The numerical tool has been validated with selected experimental data from literature. Quantitative, as well as qualitative comparisons are performed in terms of mass flow rate and pressure drop across the injector for several operating conditions. The results show satisfactory agreement with the experimental data. Modeling assumptions, together with their impact on numerical predictions are discussed in the paper. Once assessed the reliability of the numerical tool, the injection plate has been designed and sized to guarantee the required amount of oxidizer in the combustion chamber and therefore to assure high combustion efficiency. To this purpose, the plate has been designed with multiple injectors whose number and diameter have been selected in order to reach the requested mass flow rate for the two operating conditions of maximum and minimum thrust. The overall design has been finally verified through three-dimensional computations in cavitating non-reacting conditions and it has been verified that the proposed design solution is able to guarantee the requested values of mass flow rates.

Keywords: hybrid rocket, injection system design, OpenFOAM®, cavitation

Procedia PDF Downloads 211
5649 Chemical Warfare Agent Simulant by Photocatalytic Filtering Reactor: Effect of Operating Parameters

Authors: Youcef Serhane, Abdelkrim Bouzaza, Dominique Wolbert, Aymen Amin Assadi

Abstract:

Throughout history, the use of chemical weapons is not exclusive to combats between army corps; some of these weapons are also found in very targeted intelligence operations (political assassinations), organized crime, and terrorist organizations. To improve the speed of action, important technological devices have been developed in recent years, in particular in the field of protection and decontamination techniques to better protect and neutralize a chemical threat. In order to assess certain protective, decontaminating technologies or to improve medical countermeasures, tests must be conducted. In view of the great toxicity of toxic chemical agents from (real) wars, simulants can be used, chosen according to the desired application. Here, we present an investigation about using a photocatalytic filtering reactor (PFR) for highly contaminated environments containing diethyl sulfide (DES). This target pollutant is used as a simulant of CWA, namely of Yperite (Mustard Gas). The influence of the inlet concentration (until high concentrations of DES (1200 ppmv, i.e., 5 g/m³ of air) has been studied. Also, the conversion rate was monitored under different relative humidity and different flow rates (respiratory flow - standards: ISO / DIS 8996 and NF EN 14387 + A1). In order to understand the efficacity of pollutant neutralization by PFR, a kinetic model based on the Langmuir–Hinshelwood (L–H) approach and taking into account the mass transfer step was developed. This allows us to determine the adsorption and kinetic degradation constants with no influence of mass transfer. The obtained results confirm that this small configuration of reactor presents an extremely promising way for the use of photocatalysis for treatment to deal with highly contaminated environments containing real chemical warfare agents. Also, they can give birth to an individual protection device (an autonomous cartridge for a gas mask).

Keywords: photocatalysis, photocatalytic filtering reactor, diethylsulfide, chemical warfare agents

Procedia PDF Downloads 101
5648 Lie Symmetry of a Nonlinear System Characterizing Endemic Malaria

Authors: Maba Boniface Matadi

Abstract:

This paper analyses the model of Malaria endemic from the point of view of the group theoretic approach. The study identified new independent variables that lead to the transformation of the nonlinear model. Furthermore, corresponding determining equations were constructed, and new symmetries were found. As a result, the findings of the study demonstrate of the integrability of the model to present an invariant solution for the Malaria model.

Keywords: group theory, lie symmetry, invariant solutions, malaria

Procedia PDF Downloads 107
5647 Quantitative Research on the Effects of Following Brands on Twitter on Consumer Brand Attitude

Authors: Yujie Wei

Abstract:

Twitter uses a variety of narrative methods (e.g., messages, featured videos, music, and actual events) to strengthen its cultivation effect. Consumers are receiving mass-produced brand stores or images made by brand managers according to strict market specifications. Drawing on the cultivation theory, this quantitative research investigates how following a brand on Twitter for 12 weeks can cultivate their attitude toward the brand and influence their purchase intentions. We conducted three field experiments on Twitter to test the cultivation effects of following a brand for 12 weeks on consumer attitude toward the followed brand. The cultivation effects were measured by comparing the changes in consumer attitudes before and after they have followed a brand over time. The findings of our experiments suggest that when consumers are exposed to a brand’s stable, pervasive, and recurrent tweets on Twitter for 12 weeks, their attitude toward a brand can be significantly changed, which confirms the cultivating effects on consumer attitude. Also, the results indicate that branding activities on Twitter, when properly implemented, can be very effective in changing consumer attitudes toward a brand, increasing the purchase intentions, and increasing their willingness to spread the word-of-mouth for the brand on social media. The cultivation effects are moderated by brand type and consumer age. The research provides three major marketing implications. First, Twitter marketers should create unique content to engage their brand followers to change their brand attitude through steady, cumulative exposure to the branding activities on Twitter. Second, there is a significant moderating effect of brand type on the cultivation effects, so Twitter marketers should align their branding content with the brand type to better meet the needs and wants of consumers for different types of brands. Finally, Twitter marketers should adapt their tweeting strategies according to the media consumption preferences of different age groups of their target markets. This empirical research proves that content is king.

Keywords: tweeting, cultivation theory, consumer brand attitude, purchase intentions, word-of-mouth

Procedia PDF Downloads 103
5646 Synthesis of Double Dye-Doped Silica Nanoparticles and Its Application in Paper-Based Chromatography

Authors: Ka Ho Yau, Jan Frederick Engels, Kwok Kei Lai, Reinhard Renneberg

Abstract:

Lateral flow test is a prevalent technology in various sectors such as food, pharmacology and biomedical sciences. Colloidal gold (CG) is widely used as the signalling molecule because of the ease of synthesis, bimolecular conjugation and its red colour due to intrinsic SPRE. However, the production of colloidal gold is costly and requires vigorous conditions. The stability of colloidal gold are easily affected by environmental factors such as pH, high salt content etc. Silica nanoparticles are well known for its ease of production and stability over a wide range of solvents. Using reverse micro-emulsion (w/o), silica nanoparticles with different sizes can be produced precisely by controlling the amount of water. By incorporating different water-soluble dyes, a rainbow colour of the silica nanoparticles could be produced. Conjugation with biomolecules such as antibodies can be achieved after surface modification of the silica nanoparticles with organosilane. The optimum amount of the antibodies to be labelled was determined by Bradford Assay. In this work, we have demonstrated the ability of the dye-doped silica nanoparticles as a signalling molecule in lateral flow test, which showed a semi-quantitative measurement of the analyte. The image was further analysed for the LOD=10 ng of the analyte. The working range and the linear range of the test were from 0 to 2.15μg/mL and from 0 to 1.07 μg/mL (R2=0.988) respectively. The performance of the tests was comparable to those using colloidal gold with the advantages of lower cost, enhanced stability and having a wide spectrum of colours. The positives lines can be imaged by naked eye or by using a mobile phone camera for a better quantification. Further research has been carried out in multicolour detection of different biomarkers simultaneously. The preliminary results were promising as there was little cross-reactivity being observed for an optimized system. This approach provides a platform for multicolour detection for a set of biomarkers that enhances the accuracy of diseases diagnostics.

Keywords: colorimetric detection, immunosensor, paper-based biosensor, silica

Procedia PDF Downloads 379
5645 Construction of a Dynamic Migration Model of Extracellular Fluid in Brain for Future Integrated Control of Brain State

Authors: Tomohiko Utsuki, Kyoka Sato

Abstract:

In emergency medicine, it is recognized that brain resuscitation is very important for the reduction of mortality rate and neurological sequelae. Especially, the control of brain temperature (BT), intracranial pressure (ICP), and cerebral blood flow (CBF) are most required for stabilizing brain’s physiological state in the treatment for such as brain injury, stroke, and encephalopathy. However, the manual control of BT, ICP, and CBF frequently requires the decision and operation of medical staff, relevant to medication and the setting of therapeutic apparatus. Thus, the integration and the automation of the control of those is very effective for not only improving therapeutic effect but also reducing staff burden and medical cost. For realizing such integration and automation, a mathematical model of brain physiological state is necessary as the controlled object in simulations, because the performance test of a prototype of the control system using patients is not ethically allowed. A model of cerebral blood circulation has already been constructed, which is the most basic part of brain physiological state. Also, a migration model of extracellular fluid in brain has been constructed, however the condition that the total volume of intracranial cavity is almost changeless due to the hardness of cranial bone has not been considered in that model. Therefore, in this research, the dynamic migration model of extracellular fluid in brain was constructed on the consideration of the changelessness of intracranial cavity’s total volume. This model is connectable to the cerebral blood circulation model. The constructed model consists of fourteen compartments, twelve of which corresponds to perfused area of bilateral anterior, middle and posterior cerebral arteries, the others corresponds to cerebral ventricles and subarachnoid space. This model enable to calculate the migration of tissue fluid from capillaries to gray matter and white matter, the flow of tissue fluid between compartments, the production and absorption of cerebrospinal fluid at choroid plexus and arachnoid granulation, and the production of metabolic water. Further, the volume, the colloid concentration, and the tissue pressure of/in each compartment are also calculable by solving 40-dimensional non-linear simultaneous differential equations. In this research, the obtained model was analyzed for its validation under the four condition of a normal adult, an adult with higher cerebral capillary pressure, an adult with lower cerebral capillary pressure, and an adult with lower colloid concentration in cerebral capillary. In the result, calculated fluid flow, tissue volume, colloid concentration, and tissue pressure were all converged to suitable value for the set condition within 60 minutes at a maximum. Also, because these results were not conflict with prior knowledge, it is certain that the model can enough represent physiological state of brain under such limited conditions at least. One of next challenges is to integrate this model and the already constructed cerebral blood circulation model. This modification enable to simulate CBF and ICP more precisely due to calculating the effect of blood pressure change to extracellular fluid migration and that of ICP change to CBF.

Keywords: dynamic model, cerebral extracellular migration, brain resuscitation, automatic control

Procedia PDF Downloads 149
5644 Application of Flory Paterson’s Theory on the Volumetric Properties of Liquid Mixtures: 1,2-Dichloroethane with Aliphatic and Cyclic Ethers

Authors: Linda Boussaid, Farid Brahim Belaribi

Abstract:

The physico-chemical properties of liquid materials in the industrial field, in general, and in that of the chemical industries, in particular, constitutes a prerequisite for the design of equipment, for the resolution of specific problems (related to the techniques of purification and separation, at risk in the transport of certain materials, etc.) and, therefore, at the production stage. Chloroalkanes, ethers constitute three chemical families having an industrial, theoretical and environmental interest. For example, these compounds are used in various applications in the chemical and pharmaceutical industries. In addition, they contribute to the particular thermodynamic behavior (deviation from ideality, association, etc.) of certain mixtures which constitute a severe test for predictive theoretical models. Finally, due to the degradation of the environment in the world, a renewed interest is observed for ethers, because some of their physicochemical properties could contribute to lower pollution (ethers would be used as additives in aqueous fuels.). This work is a thermodynamic, experimental and theoretical study of the volumetric properties of liquid binary systems formed from compounds belonging to the chemical families of chloroalkanes, ethers, having an industrial, theoretical and environmental interest. Experimental determination of the densities and excess volumes of the systems studied, at different temperatures in the interval [278.15-333.15] K and at atmospheric pressure, using an AntonPaar vibrating tube densitometer of the DMA5000 type. This contribution of experimental data, on the volumetric properties of the binary liquid mixtures of 1,2-dichloroethane with an ether, supplemented by an application of the theoretical model of Prigogine-Flory-Patterson PFP, will probably contribute to the enrichment of the thermodynamic database and the further development of the theory of Flory in its Prigogine-Flory-Patterson (PFP) version, for a better understanding of the thermodynamic behavior of these liquid binary mixtures

Keywords: prigogine-flory-patterson (pfp), propriétés volumétrique , volume d’excés, ethers

Procedia PDF Downloads 86
5643 The Influence of Bentonite on the Rheology of Geothermal Grouts

Authors: A. N. Ghafar, O. A. Chaudhari, W. Oettel, P. Fontana

Abstract:

This study is a part of the EU project GEOCOND-Advanced materials and processes to improve performance and cost-efficiency of shallow geothermal systems and underground thermal storage. In heat exchange boreholes, to improve the heat transfer between the pipes and the surrounding ground, the space between the pipes and the borehole wall is normally filled with geothermal grout. Traditionally, bentonite has been a crucial component in most commercially available geothermal grouts to assure the required stability and impermeability. The investigations conducted in the early stage of this project during the benchmarking tests on some commercial grouts showed considerable sensitivity of the rheological properties of the tested grouts to the mixing parameters, i.e., mixing time and velocity. Further studies on this matter showed that bentonite, which has been one of the important constituents in most grout mixes, was probably responsible for such behavior. Apparently, proper amount of shear should be applied during the mixing process to sufficiently activate the bentonite. The higher the amount of applied shear the more the activation of bentonite, resulting in change in the grout rheology. This explains why, occasionally in the field applications, the flow properties of the commercially available geothermal grouts using different mixing conditions (mixer type, mixing time, mixing velocity) are completely different than expected. A series of tests were conducted on the grout mixes, with and without bentonite, using different mixing protocols. The aim was to eliminate/reduce the sensitivity of the rheological properties of the geothermal grouts to the mixing parameters by replacing bentonite with polymeric (non-clay) stabilizers. The results showed that by replacing bentonite with a proper polymeric stabilizer, the sensitivity of the grout mix on mixing time and velocity was to a great extent diminished. This can be considered as an alternative for the developers/producers of geothermal grouts to provide enhanced materials with less uncertainty in obtained results in the field applications.

Keywords: flow properties, geothermal grout, mixing time, mixing velocity, rheological properties

Procedia PDF Downloads 118
5642 The Asymptotic Hole Shape in Long Pulse Laser Drilling: The Influence of Multiple Reflections

Authors: Torsten Hermanns, You Wang, Stefan Janssen, Markus Niessen, Christoph Schoeler, Ulrich Thombansen, Wolfgang Schulz

Abstract:

In long pulse laser drilling of metals, it can be demonstrated that the ablation shape approaches a so-called asymptotic shape such that it changes only slightly or not at all with further irradiation. These findings are already known from ultra short pulse (USP) ablation of dielectric and semiconducting materials. The explanation for the occurrence of an asymptotic shape in long pulse drilling of metals is identified, a model for the description of the asymptotic hole shape numerically implemented, tested and clearly confirmed by comparison with experimental data. The model assumes a robust process in that way that the characteristics of the melt flow inside the arising melt film does not change qualitatively by changing the laser or processing parameters. Only robust processes are technically controllable and thus of industrial interest. The condition for a robust process is identified by a threshold for the mass flow density of the assist gas at the hole entrance which has to be exceeded. Within a robust process regime the melt flow characteristics can be captured by only one model parameter, namely the intensity threshold. In analogy to USP ablation (where it is already known for a long time that the resulting hole shape results from a threshold for the absorbed laser fluency) it is demonstrated that in the case of robust long pulse ablation the asymptotic shape forms in that way that along the whole contour the absorbed heat flux density is equal to the intensity threshold. The intensity threshold depends on the special material and radiation properties and has to be calibrated be one reference experiment. The model is implemented in a numerical simulation which is called AsymptoticDrill and requires such a few amount of resources that it can run on common desktop PCs, laptops or even smart devices. Resulting hole shapes can be calculated within seconds what depicts a clear advantage over other simulations presented in literature in the context of industrial every day usage. Against this background the software additionally is equipped with a user-friendly GUI which allows an intuitive usage. Individual parameters can be adjusted using sliders while the simulation result appears immediately in an adjacent window. A platform independent development allow a flexible usage: the operator can use the tool to adjust the process in a very convenient manner on a tablet during the developer can execute the tool in his office in order to design new processes. Furthermore, at the best knowledge of the authors AsymptoticDrill is the first simulation which allows the import of measured real beam distributions and thus calculates the asymptotic hole shape on the basis of the real state of the specific manufacturing system. In this paper the emphasis is placed on the investigation of the effect of multiple reflections on the asymptotic hole shape which gain in importance when drilling holes with large aspect ratios.

Keywords: asymptotic hole shape, intensity threshold, long pulse laser drilling, robust process

Procedia PDF Downloads 208
5641 Multiple Intelligences to Improve Pronunciation

Authors: Jean Pierre Ribeiro Daquila

Abstract:

This paper aims to analyze the use of the Theory of Multiple Intelligences as a tool to facilitate students’ learning. This theory, proposed by the American psychologist and educator Howard Gardner, was first established in 1983 and advocates that human beings possess eight intelligence and not only one, as defended by psychologists prior to his theory. These intelligence are bodily-kinesthetic intelligence, musical, linguistic, logical-mathematical, spatial, interpersonal, intrapersonal, and naturalist. This paper will focus on bodily-kinesthetic intelligence. Spatial and bodily-kinesthetic intelligences are sensed by athletes, dancers, and others who use their bodies in ways that exceed normal abilities. These are intelligences that are closely related. A quarterback or a ballet dancer needs to have both an awareness of body motions and abilities as well as a sense of the space involved in the action. Nevertheless, there are many reasons which make classical ballet dance more integrated with other intelligences. Ballet dancers make it look effortless as they move across the stage, from the lifts to the toe points; therefore, there is acting both in the performance of the repertoire and in hiding the pain or physical stress. The ballet dancer has to have great mathematical intelligence to perform a fast allegro; for instance, each movement has to be executed in a specific millisecond. Flamenco dancers need to rely as well on their mathematic abilities, as the footwork requires the ability to make half, two, three, four or even six movements in just one beat. However, the precision of the arm movements is freer than in ballet dance; for this reason, ballet dancers need to be more holistically aware of their movements; therefore, our experiment will test whether this greater attention required by ballet dancers makes them acquire better results in the training sessions when compared to flamenco dancers. An experiment will be carried out in this study by training ballet dancers through dance (four years of experience dancing minimum – experimental group 1); a group of flamenco dancers (four years of experience dancing minimum – experimental group 2). Both experimental groups will be trained in two different domains – phonetics and chemistry – to examine whether there is a significant improvement in these areas compared to the control group (a group of regular students who will receive the same training through a traditional method). However, this paper will focus on phonetic training. Experimental group 1 will be trained with the aid of classical music plus bodily work. Experimental group 2 will be trained with flamenco rhythm and kinesthetic work. We would like to highlight that this study takes dance as an example of a possible area of strength; nonetheless, other types of arts can and should be used to support students, such as drama, creative writing, music and others. The main aim of this work is to suggest that other intelligences, in the case of this study, bodily-kinesthetic, can be used to help improve pronunciation.

Keywords: multiple intelligences, pronunciation, effective pronunciation trainings, short drills, musical intelligence, bodily-kinesthetic intelligence

Procedia PDF Downloads 90
5640 Simulation of Hydraulic Fracturing Fluid Cleanup for Partially Degraded Fracturing Fluids in Unconventional Gas Reservoirs

Authors: Regina A. Tayong, Reza Barati

Abstract:

A stable, fast and robust three-phase, 2D IMPES simulator has been developed for assessing the influence of; breaker concentration on yield stress of filter cake and broken gel viscosity, varying polymer concentration/yield stress along the fracture face, fracture conductivity, fracture length, capillary pressure changes and formation damage on fracturing fluid cleanup in tight gas reservoirs. This model has been validated as against field data reported in the literature for the same reservoir. A 2-D, two-phase (gas/water) fracture propagation model is used to model our invasion zone and create the initial conditions for our clean-up model by distributing 200 bbls of water around the fracture. A 2-D, three-phase IMPES simulator, incorporating a yield-power-law-rheology has been developed in MATLAB to characterize fluid flow through a hydraulically fractured grid. The variation in polymer concentration along the fracture is computed from a material balance equation relating the initial polymer concentration to total volume of injected fluid and fracture volume. All governing equations and the methods employed have been adequately reported to permit easy replication of results. The effect of increasing capillary pressure in the formation simulated in this study resulted in a 10.4% decrease in cumulative production after 100 days of fluid recovery. Increasing the breaker concentration from 5-15 gal/Mgal on the yield stress and fluid viscosity of a 200 lb/Mgal guar fluid resulted in a 10.83% increase in cumulative gas production. For tight gas formations (k=0.05 md), fluid recovery increases with increasing shut-in time, increasing fracture conductivity and fracture length, irrespective of the yield stress of the fracturing fluid. Mechanical induced formation damage combined with hydraulic damage tends to be the most significant. Several correlations have been developed relating pressure distribution and polymer concentration to distance along the fracture face and average polymer concentration variation with injection time. The gradient in yield stress distribution along the fracture face becomes steeper with increasing polymer concentration. The rate at which the yield stress (τ_o) is increasing is found to be proportional to the square of the volume of fluid lost to the formation. Finally, an improvement on previous results was achieved through simulating yield stress variation along the fracture face rather than assuming constant values because fluid loss to the formation and the polymer concentration distribution along the fracture face decreases as we move away from the injection well. The novelty of this three-phase flow model lies in its ability to (i) Simulate yield stress variation with fluid loss volume along the fracture face for different initial guar concentrations. (ii) Simulate increasing breaker activity on yield stress and broken gel viscosity and the effect of (i) and (ii) on cumulative gas production within reasonable computational time.

Keywords: formation damage, hydraulic fracturing, polymer cleanup, multiphase flow numerical simulation

Procedia PDF Downloads 128
5639 From Clients to Colleagues: Supporting the Professional Development of Survivor Social Work Students

Authors: Stephanie Jo Marchese

Abstract:

This oral presentation is a reflective piece regarding current social work teaching methods that value and devalue the lived experiences of survivor students. This presentation grounds the term ‘survivor’ in feminist frameworks. A survivor-defined approach to feminist advocacy assumes an individual’s agency, considers each case and needs independent of generalizations, and provides resources and support to empower victims. Feminist ideologies are ripe arenas to update and influence the rapport-building schools of social work have with these students. Survivor-based frameworks are rooted in nuanced understandings of intersectional realities, staunchly combat both conscious and unconscious deficit lenses wielded against victims, elevate lived experiences to the realm of experiential expertise, and offer alternatives to traditional power structures and knowledge exchanges. Actively importing a survivor framework into the methodology of social work teaching breaks open barriers many survivor students have faced in institutional settings, this author included. The profession of social work is at an important crux of change, both in the United States and globally. The United States is currently undergoing a radical change in its citizenry and outlier communities have taken to the streets again in opposition to their othered-ness. New waves of students are entering this field, emboldened by their survival of personal and systemic oppressions- heavily influenced by third-wave feminism, critical race theory, queer theory, among other post-structuralist ideologies. Traditional models of sociological and psychological studies are actively being challenged. The profession of social work was not founded on the diagnosis of disorders but rather a grassroots-level activism that heralded and demanded resources for oppressed communities. Institutional and classroom acceptance and celebration of survivor narratives can catapult the resurgence of these values needed in the profession’s service-delivery models and put social workers back in the driver's seat of social change (a combined advocacy and policy perspective), moving away from outsider-based intervention models. Survivor students should be viewed as agents of change, not solely former victims and clients. The ideas of this presentation proposal are supported through various qualitative interviews, as well as reviews of ‘best practices’ in the field of education that incorporate feminist methods of inclusion and empowerment. Curriculum and policy recommendations are also offered.

Keywords: deficit lens bias, empowerment theory, feminist praxis, inclusive teaching models, strengths-based approaches, social work teaching methods

Procedia PDF Downloads 286
5638 Influence of Hygro-Thermo-Mechanical Loading on Buckling and Vibrational Behavior of FG-CNT Composite Beam with Temperature Dependent Characteristics

Authors: Puneet Kumar, Jonnalagadda Srinivas

Abstract:

The authors report here vibration and buckling analysis of functionally graded carbon nanotube-polymer composite (FG-CNTPC) beams under hygro-thermo-mechanical environments using higher order shear deformation theory. The material properties of CNT and polymer matrix are often affected by temperature and moisture content. A micromechanical model with agglomeration effect is employed to compute the elastic, thermal and moisture properties of the composite beam. The governing differential equation of FG-CNTRPC beam is developed using higher-order shear deformation theory to account shear deformation effects. The elastic, thermal and hygroscopic strain terms are derived from variational principles. Moreover, thermal and hygroscopic loads are determined by considering uniform, linear and sinusoidal variation of temperature and moisture content through the thickness. Differential equations of motion are formulated as an eigenvalue problem using appropriate displacement fields and solved by using finite element modeling. The obtained results of natural frequencies and critical buckling loads show a good agreement with published data. The numerical illustrations elaborate the dynamic as well as buckling behavior under uniaxial load for different environmental conditions, boundary conditions and volume fraction distribution profile, beam slenderness ratio. Further, comparisons are shown at different boundary conditions, temperatures, degree of moisture content, volume fraction as well as agglomeration of CNTs, slenderness ratio of beam for different shear deformation theories.

Keywords: hygrothermal effect, free vibration, buckling load, agglomeration

Procedia PDF Downloads 261
5637 Compatibility of Sulphate Resisting Cement with Super and Hyper-Plasticizer

Authors: Alper Cumhur, Hasan Baylavlı, Eren Gödek

Abstract:

Use of superplasticity chemical admixtures in concrete production is widespread all over the world and has become almost inevitable. Super-plasticizers (SPA), extend the setting time of concrete by adsorbing onto cement particles and provide concrete to preserve its fresh state workability properties. Hyper-plasticizers (HPA), as a special type of superplasticizer, provide the production of qualified concretes by increasing the workability properties of concrete, effectively. However, compatibility of cement with super and hyper-plasticizers is quite important for achieving efficient workability in order to produce qualified concretes. In 2011, the EN 197-1 standard is edited and cement classifications were updated. In this study, the compatibility of hyper-plasticizer and CEM I SR0 type sulphate resisting cement (SRC) that firstly classified in EN 197-1 is investigated. Within the scope of the experimental studies, a reference cement mortar was designed with a water/cement ratio of 0.50 confirming to EN 196-1. Fresh unit density of mortar was measured and spread diameters (at 0, 60, 120 min after mix preparation) and setting time of reference mortar were determined with flow table and Vicat tests, respectively. Three mortars are being re-prepared with using both super and hyper-plasticizer confirming to ASTM C494 by 0.50, 0.75 and 1.00% of cement weight. Fresh unit densities, spread diameters and setting times of super and hyper plasticizer added mortars (SPM, HPM) will be determined. Theoretical air-entrainment values of both SPMs and HPMs will be calculated by taking the differences between the densities of plasticizer added mortars and reference mortar. The flow table and Vicat tests are going to be repeated to these mortars and results will be compared. In conclusion, compatibility of SRC with SPA and HPA will be investigated. It is expected that optimum dosages of SPA and HPA will be determined for providing the required workability and setting conditions of SRC mortars, and the advantages/disadvantages of both SPA and HPA will be discussed.

Keywords: CEM I SR0, hyper-plasticizer, setting time, sulphate resisting cement, super-plasticizer, workability

Procedia PDF Downloads 213
5636 3D Numerical Modelling of a Pulsed Pumping Process of a Large Dense Non-Aqueous Phase Liquid Pool: In situ Pilot-Scale Case Study of Hexachlorobutadiene in a Keyed Enclosure

Authors: Q. Giraud, J. Gonçalvès, B. Paris

Abstract:

Remediation of dense non-aqueous phase liquids (DNAPLs) represents a challenging issue because of their persistent behaviour in the environment. This pilot-scale study investigates, by means of in situ experiments and numerical modelling, the feasibility of the pulsed pumping process of a large amount of a DNAPL in an alluvial aquifer. The main compound of the DNAPL is hexachlorobutadiene, an emerging organic pollutant. A low-permeability keyed enclosure was built at the location of the DNAPL source zone in order to isolate a finite undisturbed volume of soil, and a 3-month pulsed pumping process was applied inside the enclosure to exclusively extract the DNAPL. The water/DNAPL interface elevation at both the pumping and observation wells and the cumulated pumped volume of DNAPL were also recorded. A total volume of about 20m³ of purely DNAPL was recovered since no water was extracted during the process. The three-dimensional and multiphase flow simulator TMVOC was used, and a conceptual model was elaborated and generated with the pre/post-processing tool mView. Numerical model consisted of 10 layers of variable thickness and 5060 grid cells. Numerical simulations reproduce the pulsed pumping process and show an excellent match between simulated, and field data of DNAPL cumulated pumped volume and a reasonable agreement between modelled and observed data for the evolution of the water/DNAPL interface elevations at the two wells. This study offers a new perspective in remediation since DNAPL pumping system optimisation may be performed where a large amount of DNAPL is encountered.

Keywords: dense non-aqueous phase liquid (DNAPL), hexachlorobutadiene, in situ pulsed pumping, multiphase flow, numerical modelling, porous media

Procedia PDF Downloads 172
5635 Numerical Modeling of Turbulent Natural Convection in a Square Cavity

Authors: Mohammadreza Sedighi, Mohammad Said Saidi, Hesamoddin Salarian

Abstract:

A numerical study has been performed to investigate the effect of using different turbulent models on natural convection flow field and temperature distributions in partially heated square cavity compare to benchmark. The temperature of the right vertical wall is lower than that of heater while other walls are insulated. The commercial CFD codes are used to model. Standard k-w model provided good agreement with the experimental data.

Keywords: Buoyancy, Cavity, CFD, Heat Transfer, Natural Convection, Turbulence

Procedia PDF Downloads 336
5634 Constrains to Financial Engineering for Liquidity Management: A Multiple Case Study of Islamic Banks

Authors: Sadia Bibi, Karim Ullah

Abstract:

Islamic banks have excess liquidity, which needs proper management to earn a high rate of return on them to remain competitive. However, they lack assets-backed avenues and rely on a few sukuks, which led them to liquidity management issues. Financial engineering comes forward to innovate and develop instruments for the requisite financial problem. Still, they face many challenges, explored in the context of liquidity management in Islamic banks. The rigorous literature review shows that Shariah compliance, competition from the conventional banks, lack of sufficient instruments, derivatives are still not accepted as legitimate products, the inter-bank market being less developed, and no possibility of lender of last resort is the six significant constraints to financial engineering for liquidity management of Islamic banks. To further explore the problem, a multiple case study strategy is used to extend and develop the theory with the philosophical stance of social constructivism. Narrative in-depth interviews over the telephone are conducted with key personnel at treasury departments of selected banks. Data is segregated and displayed using NVivo 11 software, and the thematic analysis approach identifies themes related to the constraints. The exploration of further constraints to financial engineering for liquidity management of Islamic banks achieves the research aim. The theory is further developed by the addition of three more constraints to the theoretical framework, which are i) lack of skilled human resources, ii) lack of unified vision, and iii) lack of government support to the Islamic banks. These study findings are fruitful for the use of the government, regulatory authorities of the banking sector, the State Bank of Pakistan (Central Bank), and the product design & development division of Islamic banks to make the financial engineering process feasible and resolve liquidity management issues of Islamic banks.

Keywords: financial engineering, liquidity management, Islamic banks, shariah compliance

Procedia PDF Downloads 73
5633 Cognitive Behaviour Drama: A Research-Based Intervention Model to Improve Social Thinking in High-Functioning Children with Autism

Authors: Haris Karnezi, Kevin Tierney

Abstract:

Cognitive Behaviour Drama is a research-based intervention model that brought together the science of psychology with the art form of drama to create an unobtrusive and exciting approach that would provide children on the higher end of the autism spectrum the motivation to explore the rules of social interaction and develop competencies associated with communicative success. The method involves engaging the participants in exciting fictional scenarios and encouraging them to seek various solutions on a number of problems that will lead them to an understanding of causal relationships and how a different course of action may lead to a different outcome. The sessions are structured to offer opportunities to the participants to practice target behaviours and understand the functions they serve. The study involved six separate interventions and employed both single case and group designs. Overall 8 children aged between 6 to 13 years, diagnosed with ASD participated in the study. Outcomes were measured using theory of mind tests, executive functioning tests, behavioural observations, pre and post intervention standardised social competence questionnaires for parents and teachers. Collectively, the results indicated positive changes in the self esteem and behaviour of all eight participants. In particular, improvements in the ability to solve theory of mind tasks were noted in the younger group; and qualitative improvements in social communication, in terms of verbal (content) and non verbal expression (body posture, vocal expression, fluency, eye contact, reduction of ritualistic mannerisms) were noted in the older group. The need for reliable impact measures to assess the effectiveness of the model in generating global changes in the participants’ behaviour outside the therapeutic context was identified.

Keywords: autism, drama, intervention, social skills

Procedia PDF Downloads 157
5632 The Changes in Motivations and the Use of Translation Strategies in Crowdsourced Translation: A Case Study on Global Voices’ Chinese Translation Project

Authors: Ya-Mei Chen

Abstract:

Online crowdsourced translation, an innovative translation practice brought by Web 2.0 technologies and the democratization of information, has become increasingly popular in the Internet era. Carried out by grass-root internet users, crowdsourced translation contains fundamentally different features from its off-line traditional counterpart, such as voluntary participation and parallel collaboration. To better understand such a participatory and collaborative nature, this paper will use the online Chinese translation project of Global Voices as a case study to investigate the following issues: (1) the changes in volunteer translators’ and reviewers’ motivations for participation, (2) translators’ and reviewers’ use of translation strategies and (3) the correlations of translators’ and reviewers’ motivations and strategies with the organizational mission, the translation style guide, the translator-reviewer interaction, the mediation of the translation platform and various types of capital within the translation field. With an aim to systematically explore the above three issues, this paper will collect both quantitative and qualitative data and then draw upon Engestrom’s activity theory and Bourdieu’s field theory as a theoretical framework to analyze the data in question. An online anonymous questionnaire will be conducted to obtain the quantitative data. The questionnaire will contain questions related to volunteer translators’ and reviewers’ backgrounds, participation motivations, translation strategies and mutual relations as well as the operation of the translation platform. Concerning the qualitative data, they will come from (1) a comparative study between some English news texts published on Global Voices and their Chinese translations, (2) an analysis of the online discussion forum associated with Global Voices’ Chinese translation project and (3) the information about the project’s translation mission and guidelines. It is hoped that this research, through a detailed sociological analysis of a cause-driven crowdsourced translation project, can enable translation researchers and practitioners to adequately meet the translation challenges appearing in the digital age.

Keywords: crowdsourced translation, global voices, motivation, translation strategies

Procedia PDF Downloads 367
5631 CSR Communication Strategies: Stakeholder and Institutional Theories Perspective

Authors: Stephanie Gracelyn Rahaman, Chew Yin Teng, Manjit Singh Sandhu

Abstract:

Corporate scandals have made stakeholders apprehensive of large companies and expect greater transparency in CSR matters. However, companies find it challenging to strategically communicate CSR to intended stakeholders and in the process may fall short on maximizing on CSR efforts. Given that stakeholders have the ability to either reward good companies or take legal action or boycott against corporate brands who do not act socially responsible, companies must create shared understanding of their CSR activities. As a result, communication has become a strategy for many companies to demonstrate CSR engagement and to minimize stakeholder skepticism. The main objective of this research is to examine the types of CSR communication strategies and predictors that guide CSR communication strategies. Employing Morsing & Schultz’s guide on CSR communication strategies, the study integrates stakeholder and institutional theory to develop a conceptual framework. The conceptual framework hypothesized that stakeholder (instrumental and normative) and institutional (regulatory environment, nature of business, mimetic intention, CSR focus and corporate objectives) dimensions would drive CSR communication strategies. Preliminary findings from semi-structured interviews in Malaysia are consistent with the conceptual model in that stakeholder and institutional expectations guide CSR communication strategies. Findings show that most companies use two-way communication strategies. Companies that identified employees, the public or customers as key stakeholders have started to embrace social media to be in-sync with new trends of communication. This is especially with the Gen Y which is their priority. Some companies creatively use multiple communication channels because they recognize different stakeholders favor different communication channels. Therefore, it appears that companies use two-way communication strategies to complement the perceived limitation of one-way communication strategies as some companies prefer a more interactive platform to strategically engage stakeholders in CSR communication. In addition to stakeholders, institutional expectations also play a vital role in influencing CSR communication. Due to industry peer pressures, corporate objectives (attract international investors and customers), companies may be more driven to excel in social performance. For these reasons companies tend to go beyond the basic mandatory requirement, excel in CSR activities and be known as companies that champion CSR. In conclusion, companies use more two-way than one-way communication and companies use a combination of one and two-way communication to target different stakeholders resulting from stakeholder and institutional dimensions. Finally, in order to find out if the conceptual framework actually fits the Malaysian context, companies’ responses for expected organizational outcomes from communicating CSR were gathered from the interview transcripts. Thereafter, findings are presented to show some of the key organizational outcomes (visibility and brand recognition, portray responsible image, attract prospective employees, positive word-of-mouth, etc.) that companies in Malaysia expect from CSR communication. Based on these findings the conceptual framework has been refined to show the new identified organizational outcomes.

Keywords: CSR communication, CSR communication strategies, stakeholder theory, institutional theory, conceptual framework, Malaysia

Procedia PDF Downloads 285
5630 Financial Performance Model of Local Economic Enterprises in Matalam, Cotabato

Authors: Kristel Faye Tandog

Abstract:

The State Owned Enterprise (SOE) or also called Public Enterprise (PE) has been playing a vital role in a country’s social and economic development. Following this idea, this study focused on the Factor Structures of Financial Performance of the Local Economic Enterprises (LEEs) namely: Food Court, Market, Slaughterhouse, and Terminal in Matalam, Cotabato. It aimed to determine the profile of the LEEs in terms of organizational structure, manner of creation, years in operation, source of initial operating requirements, annual operating budget, geographical location, and size or description of the facility. This study also included the different financial ratios of LEE that covered a five year period from Calendar Year 2009 to 2013. Primary data using survey questionnaire was administered to 468 respondents and secondary data were sourced out from the government archives and financial documents of the said LGU. There were 12 dominant factors identified namely: “management”, “enforcement of laws”, “strategic location”, “existence of non-formal competitors”, “proper maintenance”, “pricing”, “customer service”, “collection process”, “rentals and services”, “efficient use of resources”, “staffing”, and “timeliness and accuracy”. On the other hand, the financial performance of the LEE of Matalam, Cotabato using financial ratios needs reformatting. This denotes that refinement as to the following ratios: Cash Flow Indicator, Activity, Profitability and Growth is necessary. The cash flow indicator ratio showed difficulty in covering its debts in successive years. Likewise, the activity ratios showed that the LEE had not been effective in putting its investment at work. Moreover, profitability ratios revealed that it had operated in minimum capacity and had incurred net losses and thus, it had a weak profit performance. Furthermore, growth ratios showed that LEE had a declining growth trend particularly in net income.

Keywords: factor structures, financial performance, financial ratios, state owned enterprises

Procedia PDF Downloads 253
5629 Experimental Study Analysis of Flow over Pickup Truck’s Cargo Area Using Bed Covers

Authors: Jonathan Rodriguez, Dominga Guerrero, Surupa Shaw

Abstract:

Automobiles are modeled in various forms, and they interact with air when in motion. Aerodynamics is the study of such interactions where solid bodies affect the way air moves around them. The shape of solid bodies can impact the ease at which they move against the flow of air; due to which any additional freightage, or loads, impact its aerodynamics. It is important to transport people and cargo safely. Despite the various safety measures, there are a large number of vehicle-related accidents. This study precisely explores the effects an automobile experiences, with added cargo and covers. The addition of these items changes the original vehicle shape and the approved design for safe driving. This paper showcases the effects of the changed vehicle shape and design via experimental testing conducted on a physical 1:27 scale and CAD model of an F-150 pickup truck, the most common pickup truck in the United States, with differently shaped loads and weight traveling at a constant speed. The additional freightage produces unwanted drag or lift resulting in lower fuel efficiencies and unsafe driving conditions. This study employs an adjustable external shell on the F-150 pickup truck to create a controlled aerodynamic geometry to combat the detrimental effects of additional freightage. The results utilize colored powder [ which acts as a visual medium for the interaction of air with the vehicle], to highlight the impact of the additional freight on the automobile’s external shell. This will be done along with simulation models using Altair CFD software of twelve cases regarding the effects of an added load onto an F-150 pickup truck. This paper is an attempt toward standardizing the geometric design of the external shell, given the uniqueness of every load and its placement on the vehicle; while providing real-time data to be compared to simulation results from the existing literature.

Keywords: aerodynamics, CFD, freightage, pickup cover

Procedia PDF Downloads 162
5628 Three Decades of the Fourth Estate in Ghana: Issues, Challenges and the Way Forward

Authors: Samuel Pimpong

Abstract:

In most liberal and constitutional democracies, the media serves as a dominant power in the construction of the fundamental building blocks for the consolidation of democratic governance. However, the extent to which the media can enhance democratic consolidation in a country depends to a large extent on the independence of the media, the robustness of legislative frameworks and the safety of journalists in discharging their duties without fear or favor. This study sought to examine pertinent issues, practices and challenges facing the media in Ghana’s Fourth Republic and attempts to make recommendations regarding the way forward. The work adopted a qualitative study approach. A total of sixteen (16) participants were purposively selected for face-to-face interviews. The study hinges on the democratic participant media theory and the development media theory. Primary data was analyzed via thematic analysis procedure. The study revealed that although Ghana has repealed its criminal libel laws, nonetheless other statutory Acts, such as the Electronic Communications Act 2008 (ACT 775) and the Criminal and other offences Act 1960 (Act 29), among others continue to stifle freedom of expression. On the other hand, press freedom is being abused by the use of fake content publication. Further, the study revealed that the absence of a comprehensive regulatory structure impedes the activities carried out by the media. Consequently, the study recommends a regulatory structure to oversee media activities and content, as the National Media Commission (NMC) lacks the authority to do so. In this direction, the study recommends a limitation on the role of the National Communications Authority (NCA) to administer broadcasting signals and transfer its licensing and sanctioning powers to the NMC in order to create one sole and completely independent media regulatory authority that deals with all media related issues.

Keywords: media, constitutional democracy, democratic consolidation, fourth republic

Procedia PDF Downloads 67