Search results for: elevated temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7426

Search results for: elevated temperature

3916 Influence of Smoking on Fine And Ultrafine Air Pollution Pm in Their Pulmonary Genetic and Epigenetic Toxicity

Authors: Y. Landkocz, C. Lepers, P.J. Martin, B. Fougère, F. Roy Saint-Georges. A. Verdin, F. Cazier, F. Ledoux, D. Courcot, F. Sichel, P. Gosset, P. Shirali, S. Billet

Abstract:

In 2013, the International Agency for Research on Cancer (IARC) classified air pollution and fine particles as carcinogenic to humans. Causal relationships exist between elevated ambient levels of airborne particles and increase of mortality and morbidity including pulmonary diseases, like lung cancer. However, due to a double complexity of both physicochemical Particulate Matter (PM) properties and tumor mechanistic processes, mechanisms of action remain not fully elucidated. Furthermore, because of several common properties between air pollution PM and tobacco smoke, like the same route of exposure and chemical composition, potential mechanisms of synergy could exist. Therefore, smoking could be an aggravating factor of the particles toxicity. In order to identify some mechanisms of action of particles according to their size, two samples of PM were collected: PM0.03 2.5 and PM0.33 2.5 in the urban-industrial area of Dunkerque. The overall cytotoxicity of the fine particles was determined on human bronchial cells (BEAS-2B). Toxicological study focused then on the metabolic activation of the organic compounds coated onto PM and some genetic and epigenetic changes induced on a co-culture model of BEAS-2B and alveolar macrophages isolated from bronchoalveolar lavages performed in smokers and non-smokers. The results showed (i) the contribution of the ultrafine fraction of atmospheric particles to genotoxic (eg. DNA double-strand breaks) and epigenetic mechanisms (eg. promoter methylation) involved in tumor processes, and (ii) the influence of smoking on the cellular response. Three main conclusions can be discussed. First, our results showed the ability of the particles to induce deleterious effects potentially involved in the stages of initiation and promotion of carcinogenesis. The second conclusion is that smoking affects the nature of the induced genotoxic effects. Finally, the in vitro developed cell model, using bronchial epithelial cells and alveolar macrophages can take into account quite realistically, some of the existing cell interactions existing in the lung.

Keywords: air pollution, fine and ultrafine particles, genotoxic and epigenetic alterations, smoking

Procedia PDF Downloads 332
3915 Effects of a Brisk-Walking Program on Anxiety, Depression and Self-Concept in Adolescents: A Time-Series Design

Authors: Ming Yi Hsu, Hui Jung Chao

Abstract:

The anxiety and depression adolescents in Taiwan experience can cause suicide attempts and result in unfortunate deaths. An effective method for relieving anxiety and depression is brisk walking; a moderate and low intensity aerobic exercise, which uses large muscle groups rhythmically. The research purpose was to investigate the effects of a 12-week, school-based, brisk-walking program in decreasing anxiety and depression, and in improving self-concept among high school students living in central Taiwan. A quasi-experiment using the time series design (T1 T2 X T3 T4) was conducted. The Beck Youth Inventories 2 (BYI-II) Chinese version was given four times: the first time T1 was in the 4th week prior to intervention, T2 was in the intervention week, T3 was in the 6th week after the start of the intervention period and T4 was in the 12th week post intervention. The baseline phase of the time series constituted T1 and T2. The intervention phase constituted T2, T3, and T4. The amounts of brisk walking were recorded by self-report The Generalized Estimating Equation (GEE) was used to examine the effects of brisk walking on anxiety, depression, and self-concept. The independent t-test was used to compare mean scores on three dependent variables between brisk walking over and less than 90-minutes per week. Findings revealed that levels of anxiety and self-concept had nonsignificant change during the baseline phase, while the level of depression increased significantly. In contrast, the study demonstrated significant decreases in anxiety and depression as well as increases in positive self-concept (p=.001, p<.001, p=.017) during the intervention phase. Furthermore, a subgroup analysis was completed on participants who demonstrated elevated anxiety (23.4%), and depression (29.7%), and below average self-concept (18.6%) at baseline (T2). The subgroup of anxious, depressed, or low self-concept participants who received the brisk-walking intervention demonstrated significant decreases in anxiety and depression, and significant increases in self-concept scores. Participants who engaged in brisk walking over 90 minutes per week reported decreased mean scores on anxiety (t=-2.395, p=.035) and depression (t=-2.142, p=.036) in contrast with those who engaged in brisk-walking time less than 90 minutes per week. Regarding the effects on participants whose anxiety, scores were within the normal range at baseline, there was demonstrated significant decrease in the level of anxiety when they increased their time on brisk walking before each term examination. Overall, the brisk-walking program was effective and feasible to promote adolescents’ mental health by decreasing anxiety and depression as well as elevating self-concept. It also helped adolescents from anxiety before term examinations.

Keywords: adolescents, anxiety, depression, self-concept

Procedia PDF Downloads 181
3914 Effect of Heavy Metals on the Life History Trait of Heterocephalobellus sp. and Cephalobus sp. (Nematode: Cephalobidae) Collected from a Small-Scale Mining Site, Davao de Oro, Philippines

Authors: Alissa Jane S. Mondejar, Florifern C. Paglinawan, Nanette Hope N. Sumaya, Joey Genevieve T. Martinez, Mylah Villacorte-Tabelin

Abstract:

Mining is associated with increased heavy metals in the environment, and heavy metal contamination disrupts the activities of soil fauna, such as nematodes, causing changes in the function of the soil ecosystem. Previous studies found that nematode community composition and diversity indices were strongly affected by heavy metals (e.g., Pb, Cu, and Zn). In this study, the influence of heavy metals on nematode survivability and reproduction were investigated. Life history analysis of the free-living nematodes, Heterocephalobellus sp. and Cephalobus sp. (Rhabditida: Cephalobidae) were assessed using the hanging drop technique, a technique often used in life history trait experiments. The nematodes were exposed to different temperatures, i.e.,20°C, 25°C, and 30°C, in different groups (control and heavy metal exposed) and fed with the same bacterial density of 1×109 Escherichia coli cells ml-1 for 30 days. Results showed that increasing temperature and exposure to heavy metals had a significant influence on the survivability and egg production of both species. Heterocephalobellus sp. and Cephalobus sp., when exposed to 20°C survived longer and produced few numbers of eggs but without subsequent hatching. Life history parameters of Heterocephalobellus sp. showed that the value of parameters was higher in the control group under net production rate (R0), fecundity (mx) which is also the same value for the total fertility rate (TFR), generation times (G0, G₁, and Gh) and Population doubling time (PDT). However, a lower rate of natural increase (rm) was observed since generation times were higher. Meanwhile, the life history parameters of Cephalobus sp. showed that the value of net production rate (R0) was higher in the exposed group. Fecundity (mx) which is also the same value for the TFR, G0, G1, Gh, and PDT, were higher in the control group. However, a lower rate of natural increase (rm) was observed since generation times were higher. In conclusion, temperature and exposure to heavy metals had a negative influence on the life history of the nematodes, however, further experiments should be considered.

Keywords: artisanal and small-scale gold mining (ASGM), hanging drop method, heavy metals, life history trait.

Procedia PDF Downloads 73
3913 Bioproduction of L(+)-Lactic Acid and Purification by Ion Exchange Mechanism

Authors: Zelal Polat, Şebnem Harsa, Semra Ülkü

Abstract:

Lactic acid exists in nature optically in two forms, L(+), D(-)-lactic acid, and has been used in food, leather, textile, pharmaceutical and cosmetic industries. Moreover, L(+)-lactic acid constitutes the raw material for the production of poly-L-lactic acid which is used in biomedical applications. Microbially produced lactic acid was aimed to be recovered from the fermentation media efficiently and economically. Among the various downstream operations, ion exchange chromatography is highly selective and yields a low cost product recovery within a short period of time. In this project, Lactobacillus casei NRRL B-441 was used for the production of L(+)-lactic acid from whey by fermentation at pH 5.5 and 37°C that took 12 hours. The product concentration was 50 g/l with 100% L(+)-lactic acid content. Next, the suitable resin was selected due to its high sorption capacity with rapid equilibrium behavior. Dowex marathon WBA, weakly basic anion exchanger in OH form reached the equilibrium in 15 minutes. The batch adsorption experiments were done approximately at pH 7.0 and 30°C and sampling was continued for 20 hours. Furthermore, the effect of temperature and pH was investigated and their influence was found to be unimportant. All the adsorption/desorption experiments were applied to both model lactic acid and biomass free fermentation broth. The ion exchange equilibria of lactic acid and L(+)-lactic acid in fermentation broth on Dowex marathon WBA was explained by Langmuir isotherm. The maximum exchange capacity (qm) for model lactic acid was 0.25 g La/g wet resin and for fermentation broth 0.04 g La/g wet resin. The equilibrium loading and exchange efficiency of L(+)-lactic acid in fermentation broth were reduced as a result of competition by other ionic species. The competing ions inhibit the binding of L(+)-lactic acid to the free sites of ion exchanger. Moreover, column operations were applied to recover adsorbed lactic acid from the ion exchanger. 2.0 M HCl was the suitable eluting agent to recover the bound L(+)-lactic acid with a flowrate of 1 ml/min at ambient temperature. About 95% of bound L(+)-lactic acid was recovered from Dowex marathon WBA. The equilibrium was reached within 15 minutes. The aim of this project was to investigate the purification of L(+)-lactic acid with ion exchange method from fermentation broth. The additional goals were to investigate the end product purity, to obtain new data on the adsorption/desorption behaviours of lactic acid and applicability of the system in industrial usage.

Keywords: fermentation, ion exchange, lactic acid, purification, whey

Procedia PDF Downloads 490
3912 Condition for Plasma Instability and Stability Approaches

Authors: Ratna Sen

Abstract:

As due to very high temperature of Plasma it is very difficult to confine it for sufficient time so that nuclear fusion reactions to take place, As we know Plasma escapes faster than the binary collision rates. We studied the ball analogy and the ‘energy principle’ and calculated the total potential energy for the whole Plasma. If δ ⃗w is negative, that is decrease in potential energy then the plasma will be unstable. We also discussed different approaches of stability analysis such as Nyquist Method, MHD approximation and Vlasov approach of plasma stability. So that by using magnetic field configurations we can able to create a stable Plasma in Tokamak for generating energy for future generations.

Keywords: jello, magnetic field configuration, MHD approximation, energy principle

Procedia PDF Downloads 423
3911 Hot Carrier Photocurrent as a Candidate for an Intrinsic Loss in a Single Junction Solar Cell

Authors: Jonas Gradauskas, Oleksandr Masalskyi, Ihor Zharchenko

Abstract:

The advancement in improving the efficiency of conventional solar cells toward the Shockley-Queisser limit seems to be slowing down or reaching a point of saturation. The challenges hindering the reduction of this efficiency gap can be categorized into extrinsic and intrinsic losses, with the former being theoretically avoidable. Among the five intrinsic losses, two — the below-Eg loss (resulting from non-absorption of photons with energy below the semiconductor bandgap) and thermalization loss —contribute to approximately 55% of the overall lost fraction of solar radiation at energy bandgap values corresponding to silicon and gallium arsenide. Efforts to minimize the disparity between theoretically predicted and experimentally achieved efficiencies in solar cells necessitate the integration of innovative physical concepts. Hot carriers (HC) present a contemporary approach to addressing this challenge. The significance of hot carriers in photovoltaics is not fully understood. Although their excessive energy is thought to indirectly impact a cell's performance through thermalization loss — where the excess energy heats the lattice, leading to efficiency loss — evidence suggests the presence of hot carriers in solar cells. Despite their exceptionally brief lifespan, tangible benefits arise from their existence. The study highlights direct experimental evidence of hot carrier effect induced by both below- and above-bandgap radiation in a singlejunction solar cell. Photocurrent flowing across silicon and GaAs p-n junctions is analyzed. The photoresponse consists, on the whole, of three components caused by electron-hole pair generation, hot carriers, and lattice heating. The last two components counteract the conventional electron-hole generation-caused current required for successful solar cell operation. Also, a model of the temperature coefficient of the voltage change of the current–voltage characteristic is used to obtain the hot carrier temperature. The distribution of cold and hot carriers is analyzed with regard to the potential barrier height of the p-n junction. These discoveries contribute to a better understanding of hot carrier phenomena in photovoltaic devices and are likely to prompt a reevaluation of intrinsic losses in solar cells.

Keywords: solar cell, hot carriers, intrinsic losses, efficiency, photocurrent

Procedia PDF Downloads 48
3910 Ethanol Precipitation and Characterization of L-Asparaginase from Aspergillus oryzae

Authors: L. L. Tundisi, A. Pessoa Jr., E. B. Tambourgi, E. Silveira, P. G. Mazzola

Abstract:

L-asparaginase (L-ASNase) is the gold standard treatment for acute lymphoblastic leukemia that mainly affects pediatric patients; treatment increases survival from 20% to 90%. The characterization of other L-Asparaginases, apart from the most used from Escherichia coli and Erwinia chrysanthemi, has been reported, but the choice of the most appropriate is still under debate. This choice should be based on its pharmacokinetics, immune hypersensitivity, doses, prices, pharmacodynamics. The main factors influencing the antileukemic activity of ASNase are enzymatic activity, Km, glutaminase activity, clearance of the enzyme and development of resistance. However, most of the commercialized enzyme present an intrinsic glutaminase activity, which is responsible for some side effects. In this study, glutaminase free asparaginase produced from Aspergillus oryzae was precipitated in different percentages of ethanol (0–80%), until optimum ethanol concentration of 60% (w/w) was found. Following, precipitation of crude L-ASNase was performed in a single step, using 60% (w/w) ethanol, under constant agitation and temperature. It presented activity of 135.45 U/mg and after gel filtration chromatography with Sephadex G-the enzymatic activity was 322.02 U/mg. The apparent molecular mass of the purified L-ASNase fraction was estimated by 10% SDS-PAGE. Proteins were stained with Coomassie Brilliant Blue R-250. The molar mass range was from 10 kDa to 250 kDa. L-ASNase from Aspergillus oryzae was characterized aiming possible therapeutic use. Four different buffers (phosphate-citrate buffer pH 2.6 to 5.8; phosphate buffer pH 5.8 to 7.4; Tris - HCl pH 7.4 to 9.0; and carbonate buffer pH 9.8 to 10.6) were used to measure the optimum pH for L-ASNase activity. The optimum temperature for enzyme activity was measured at optimal pH conditions (Tris-HCl and phosphate buffer, pH 7.4) at different temperatures ranging from 5 to 55°C. All activities were calculated by quantifying the free ammonia, using the Nessler reagent. The kinetic parameters calculation, e.g. Michaelis-Menten constant (Km), maximum velocity (Vmax) and Hills coefficient (n), were performed by incubating the enzyme in different concentrations of the substrate at optimum conditions of pH and fitted on Hill’s equation. This glutaminase free asparaginase showed a low Km (3.39 mM and 3.81 mM) and enzymatic activity of 135.45 U/mg after precipitation with ethanol. After gel filtration chromatography it rose to 322.02 U/mg. Optimum activity was found between pH 5.8 - 9.0, best activity results with phosphate buffer pH 7.4 and Tris-HCl pH 7.4 and showed activity from 5°C to 55°C. These results indicate that L-ASNase from A. oryzae has the potential for human use.

Keywords: biopharmaceuticals, bioprocessing, bioproducts, biotechnology, enzyme activity, ethanol precipitation

Procedia PDF Downloads 277
3909 Climate Change and Migration in the Semi-arid Tropic and Eastern Regions of India: Exploring Alternative Adaptation Strategies

Authors: Gauri Sreekumar, Sabuj Kumar Mandal

Abstract:

Contributing about 18% to India’s Gross Domestic Product, the agricultural sector plays a significant role in the Indian rural economy. Despite being the primary source of livelihood for more than half of India’s population, most of them are marginal and small farmers facing several challenges due to agro-climatic shocks. Climate change is expected to increase the risk in the regions that are highly agriculture dependent. With systematic and scientific evidence of changes in rainfall, temperature and other extreme climate events, migration started to emerge as a survival strategy for the farm households. In this backdrop, our present study aims to combine the two strands of literature and attempts to explore whether migration is the only adaptation strategy for the farmers once they experience crop failures due adverse climatic condition. Combining the temperature and rainfall information from the weather data provided by the Indian Meteorological Department with the household level panel data on Indian states belonging to the Eastern and Semi-Arid Tropics regions from the Village Dynamics in South Asia (VDSA) collected by the International Crop Research Institute for the Semi-arid Tropics, we form a rich panel data for the years 2010-2014. A Recursive Econometric Model is used to establish the three-way nexus between climate change-yield-migration while addressing the role of irrigation and local non-farm income diversification. Using Three Stage Least Squares Estimation method, we find that climate change induced yield loss is a major driver of farmers’ migration. However, irrigation and local level non-farm income diversification are found to mitigate the adverse impact of climate change on migration. Based on our empirical results, we suggest for enhancing irrigation facilities and making local non-farm income diversification opportunities available to increase farm productivity and thereby reduce farmers’ migration.

Keywords: climate change, migration, adaptation, mitigation

Procedia PDF Downloads 50
3908 The Applications of Zero Water Discharge (ZWD) Systems for Environmental Management

Authors: Walter W. Loo

Abstract:

China declared the “zero discharge rules which leave no toxics into our living environment and deliver blue sky, green land and clean water to many generations to come”. The achievement of ZWD will provide conservation of water, soil and energy and provide drastic increase in Gross Domestic Products (GDP). Our society’s engine needs a major tune up; it is sputtering. ZWD is achieved in world’s space stations – no toxic air emission and the water is totally recycled and solid wastes all come back to earth. This is all done with solar power. These are all achieved under extreme temperature, pressure and zero gravity in space. ZWD can be achieved on earth under much less fluctuations in temperature, pressure and normal gravity environment. ZWD systems are not expensive and will have multiple beneficial returns on investment which are both financially and environmentally acceptable. The paper will include successful case histories since the mid-1970s. ZWD discharge can be applied to the following types of projects: nuclear and coal fire power plants with a closed loop system that will eliminate thermal water discharge; residential communities with wastewater treatment sump and recycle the water use as a secondary water supply; waste water treatment Plants with complete water recycling including water distillation to produce distilled water by very economical 24-hours solar power plant. Landfill remediation is based on neutralization of landfilled gas odor and preventing anaerobic leachate formation. It is an aerobic condition which will render landfill gas emission explosion proof. Desert development is the development of recovering soil moisture from soil and completing a closed loop water cycle by solar energy within and underneath an enclosed greenhouse. Salt-alkali land development can be achieved by solar distillation of salty shallow water into distilled water. The distilled water can be used for soil washing and irrigation and complete a closed loop water cycle with energy and water conservation. Heavy metals remediation can be achieved by precipitation of dissolved toxic metals below the plant or vegetation root zone by solar electricity without pumping and treating. Soil and groundwater remediation - abandoned refineries, chemical and pesticide factories can be remediated by in-situ electrobiochemical and bioventing treatment method without pumping or excavation. Toxic organic chemicals are oxidized into carbon dioxide and heavy metals precipitated below plant and vegetation root zone. New water sources: low temperature distilled water can be recycled for repeated use within a greenhouse environment by solar distillation; nano bubble water can be made from the distilled water with nano bubbles of oxygen, nitrogen and carbon dioxide from air (fertilizer water) and also eliminate the use of pesticides because the nano oxygen will break the insect growth chain in the larvae state. Three dimensional high yield greenhouses can be constructed by complete water recycling using the vadose zone soil as a filter with no farming wastewater discharge.

Keywords: greenhouses, no discharge, remediation of soil and water, wastewater

Procedia PDF Downloads 335
3907 Berberine Ameliorates Glucocorticoid-Induced Hyperglycemia: An In-Vitro and In-Vivo Study

Authors: Mrinal Gupta, Mohammad Rumman, Babita Singh Abbas Ali Mahdi, Shivani Pandey

Abstract:

Introduction: Berberine (BBR), a bioactive compound isolated from Coptidis Rhizoma, possesses diverse pharmacological activities, including anti-bacterial, anti-inflammatory, antitumor, hypolipidemic, and anti-diabetic. However, its role as an anti-diabetic agent in animal models of dexamethasone (Dex)-induced diabetes remains unknown. Studies have shown that natural compounds, including aloe, caper, cinnamon, cocoa, green and black tea, and turmeric, can be used for treating Type 2 diabetes mellitus (DM). Compared to conventional drugs, natural compounds have fewer side effects and are easily available. Herein, we studied the anti-diabetic effects of BBR in a mice model of Dex-induced diabetes. Methods: HepG2 cell line was used for glucose release and glycogen synthesis studies. Cell proliferation was measured by methylthiotetrazole (MTT) assay. For animal studies, mice were treated with Dex (2 mg/kg, i.m.) for 30 days and the effect of BBR at the doses 100, 200, and 500 mg/kg (p.o.) was analyzed. Glucose, insulin, and pyruvate tests were performed to evaluate the development of the diabetic model. An echo MRI was performed to assess the fat mass. Further, to elucidate the mechanism of action of BBR, mRNA expression of genes regulating gluconeogenesis, glucose uptake, and glycolysis were analyzed. Results: In vitro BBR had no impact on cell viability up to a concentration of 50μM. Moreover, BBR suppressed the hepatic glucose release and improved glucose tolerance in HepG2 cells. In vivo, BBR improved glucose homeostasis in diabetic mice, as evidenced by enhanced glucose clearance, increased glycolysis, elevated glucose uptake, and decreased gluconeogenesis. Further, Dex treatment increased the total fat mass in mice, which was ameliorated by BBR treatment. Conclusion: BBR improves glucose tolerance by increasing glucose clearance, inhibiting hepatic glucose release, and decreasing obesity. Thus, BBR may become a potential therapeutic agent for treating glucocorticoid-induced diabetes and obesity in the future.

Keywords: glucocorticoid, hyperglycemia, berberine, HepG2 cells, insulin resistance, glucose

Procedia PDF Downloads 44
3906 Thermal Perception by Older People in Open Spaces in Madrid: Relationships between Weather Parameters and Personal Characteristics

Authors: María Teresa Baquero, Ester Higueras

Abstract:

One of the challenges facing 21st century cities, is their adaptation to the phenomenon of an ageing population. International policies have been developed, such as the "Global Network for Age-friendly Cities and Communities". These cities must recognize the diversity of the elderly population, and facilitate an active, healthy, satisfied aging and promote inclusion. In order to promote active and healthy aging, older people should be encouraged to engage in physical activity, sunbathe, socialize and enjoy the public open spaces in the city. Some studies recognize thermal comfort as one of the factors that most influence the use of public open spaces. However, although some studies have shown vulnerability to thermal extremes and environmental conditions in older people, there is little research on thermal comfort for older adults, because it is usually analyzed based on the characteristics of the ¨average young person¨ without considering the physiological, physical and psychological differences that characterize the elderly. This study analyzes the relationship between the microclimate parameters as air temperature, relative humidity, wind speed and sky view factor (SVF) with the personal thermal perception of older adults in three public spaces in Madrid, through a mixed methodology that combines weather measurements with interviews, made during the year 2018. Statistical test like Chi-square, Spearman, and analysis of variance were used to analyze the relationship between preference votes and thermal sensation votes with environmental and personal parameters. The results show that there is a significant correlation between thermal sensation and thermal preference with the measured air temperature, age, level of clothing, the color of clothing, season, time of the day and kind of space while no influence of gender or other environmental variables was detected. These data would contribute to the design of comfortable public spaces that improve the welfare of the elderly contributing to "active and healthy aging" as one of the 21st century challenges cities face.

Keywords: healthy ageing, older adults, outdoor public space, thermal perception

Procedia PDF Downloads 117
3905 Significance of Molecular Autophagic Pathway in Gaucher Disease Pathology

Authors: Ozlem Oral, Emre Taskin, Aysel Yuce, Serap Dokmeci, Devrim Gozuacik

Abstract:

Autophagy is an evolutionary conserved lysosome-dependent catabolic pathway, responsible for the degradation of long-lived proteins, abnormal aggregates and damaged organelles which cannot be degraded by the ubiquitin-proteasome system. Lysosomes degrade the substrates through the activity of lysosomal hydrolases and lysosomal membrane-bound proteins. Mutations in the coding region of these proteins cause malfunctional lysosomes, which contributes to the pathogenesis of lysosomal storage diseases. Gaucher disease is a lysosomal storage disease resulting from the mutation of a lysosomal membrane-associated glycoprotein called glucocerebrosidase and its cofactor saposin C. The disease leads to intracellular accumulation of glucosylceramide and other glycolipids. Because of the essential role of lysosomes in autophagic degradation, Gaucher disease may directly be linked to this pathway. In this study, we investigated the expression of autophagy and/or lysosome-related genes and proteins in fibroblast cells isolated from patients with different mutations. We carried out confocal microscopy analysis and examined autophagic flux by utilizing the differential pH sensitivities of RFP and GFP in mRFP-GFP-LC3 probe. We also evaluated lysosomal pH by active lysosome staining and lysosomal enzyme activity. Beside lysosomes, we also performed proteasomal activity and cell death analysis in patient samples. Our data showed significant attenuation in the expression of key autophagy-related genes and accumulation of their proteins in mutant cells. We found decreased the ability of autophagosomes to fuse with lysosomes, associated with elevated lysosomal pH and reduced lysosomal enzyme activity. Proteasomal degradation and cell death analysis showed reduced proteolytic activity of the proteasome, which consequently leads to increased susceptibility to cell death. Our data indicate that the major degradation pathways are affected by multifunctional lysosomes in mutant patient cells and may underlie in the mechanism of clinical severity of Gaucher patients. (This project is supported by TUBITAK-3501-National Young Researchers Career Development Program, Project No: 112T130).

Keywords: autophagy, Gaucher's disease, glucocerebrosidase, mutant fibroblasts

Procedia PDF Downloads 314
3904 Communities as a Source of Evidence: A Case of Advocating for Improved Human Resources for Health in Uganda

Authors: Asinguza P. Allan

Abstract:

The Advocacy for Better Health aims to equip citizens with enabling environment and systems to effectively advocate for strong action plans to improve health services. This is because the 2020 Government target for Uganda to transform into a middle income country will be achieved if investment is made in keeping the population healthy and productive. Citizen participation as an important foundation for change has been emphasized to gather data through participatory rural appraisal and inform evidence-based advocacy for recruitment and motivation of human resources. Citizens conduct problem ranking during advocacy forums on staffing levels and health worker absenteeism. Citizens prioritised inadequate number of midwives and absenteeism. On triangulation, health worker to population ratio in Uganda remains at 0.25/1,000 which is far below the World Health Organization (WHO) threshold of 2.3/1,000. Working with IntraHealth, the project advocated for recruitment of critical skilled staff (doctors and midwives) and scale up health workers motivation strategy to reduce Uganda’s Neonatal Mortality Rate of 22/1,000 and Maternal Mortality Ratio of 320/100,000. Government has committed to increase staffing to 80% by 2018 (10 districts have passed ordinances and revived use of duty rosters to address health worker absenteeism. On the other hand, the better health advocacy debate has been elevated with need to increase health sector budget allocations from 8% to 10%. The project has learnt that building a body of evidence from citizens enhances the advocacy agenda. Communities will further monitor government commitments to reduce Neonatal Mortality Rate and Maternal Mortality Ratio. The project has learnt that interface meeting between duty bearers and the community allows for immediate feedback and the process is a strong instrument for empowerment. It facilitates monitoring and performance evaluation of services, projects and government administrative units (like district assemblies) by the community members themselves. This, in turn, makes the human resources in health to be accountable, transparent and responsive to communities where they work. This, in turn, promotes human resource performance.

Keywords: advocacy, empowerment, evidence, human resources

Procedia PDF Downloads 202
3903 Effect of Gas-Diffusion Oxynitriding on Microstructure and Hardness of Ti-6Al-4V Alloys

Authors: Dong Bok Lee, Min Jung Kim

Abstract:

The commercially available titanium alloy, Ti-6Al-4V, was oxynitrided in the deoxygenated nitrogen gas at high temperatures followed by cooling in oxygen-containing nitrogen in order to analyze the influence of oxynitriding parameters on the phase modification, hardness, and the microstructural evolution of the oxynitrided coating. The surface microhardness of the oxynitrided alloy increased due to the strengthening effect of the formed titanium oxynitrides, TiNxOy. The maximum microhardness was obtained, when TiNxOy had near equiatomic composition of nitrogen and oxygen. It could be attained under the optimum oxygen partial pressure and temperature-time condition.

Keywords: titanium alloy, oxynitriding, gas diffusion, surface treatment

Procedia PDF Downloads 300
3902 Khaya Cellulose Supported Copper Nanoparticles for Chemo Selective Aza-Michael Reactions

Authors: M. Shaheen Sarkar, M. Lutfor Rahman, Mashitah Mohd Yusoff

Abstract:

We prepared a highly active Khaya cellulose supported poly(hydroxamic acid) copper nanoparticles by the surface modification of Khaya cellulose through graft co-polymerization and subsequently amidoximation. The Cu-nanoparticle (0.05 mol% to 50 mol ppm) was selectively promoted Aza-Michael reaction of aliphatic amines to give the corresponding alkylated products at room temperature in methanol. The supported nanoparticle was easy to recover and reused seven times without significance loss of its activity.

Keywords: Aza-Michael, copper, cellulose, nanoparticles, poly(hydroxamic acid)

Procedia PDF Downloads 325
3901 Development of Light-Weight Refractory Bricks

Authors: Liaqat Ali, Furqan Ahmad

Abstract:

The heat losses should be controlled during the high temperature processes from energy conservation point of view. For this purpose, refractories with low thermal conductivity, high porosity and good mechanical strength along with low price are desirable. In this work, various combinations of naturally occurring, locally available, cheap raw materials, namely, clay, rice husk and saw dust were used. Locally produced insulating firebricks (IFBs) cannot be used at higher than a few hundred °C and possess low strength as well. Various process parameters were studied and the refractories with desirable properties were produced, which can be used up to 1200 °C.

Keywords: firebricks, mechanical strength, thermal conductivity, refractory bricks

Procedia PDF Downloads 312
3900 LTE Modelling of a DC Arc Ignition on Cold Electrodes

Authors: O. Ojeda Mena, Y. Cressault, P. Teulet, J. P. Gonnet, D. F. N. Santos, MD. Cunha, M. S. Benilov

Abstract:

The assumption of plasma in local thermal equilibrium (LTE) is commonly used to perform electric arc simulations for industrial applications. This assumption allows to model the arc using a set of magneto-hydromagnetic equations that can be solved with a computational fluid dynamic code. However, the LTE description is only valid in the arc column, whereas in the regions close to the electrodes the plasma deviates from the LTE state. The importance of these near-electrode regions is non-trivial since they define the energy and current transfer between the arc and the electrodes. Therefore, any accurate modelling of the arc must include a good description of the arc-electrode phenomena. Due to the modelling complexity and computational cost of solving the near-electrode layers, a simplified description of the arc-electrode interaction was developed in a previous work to study a steady high-pressure arc discharge, where the near-electrode regions are introduced at the interface between arc and electrode as boundary conditions. The present work proposes a similar approach to simulate the arc ignition in a free-burning arc configuration following an LTE description of the plasma. To obtain the transient evolution of the arc characteristics, appropriate boundary conditions for both the near-cathode and the near-anode regions are used based on recent publications. The arc-cathode interaction is modeled using a non-linear surface heating approach considering the secondary electron emission. On the other hand, the interaction between the arc and the anode is taken into account by means of the heating voltage approach. From the numerical modelling, three main stages can be identified during the arc ignition. Initially, a glow discharge is observed, where the cold non-thermionic cathode is uniformly heated at its surface and the near-cathode voltage drop is in the order of a few hundred volts. Next, a spot with high temperature is formed at the cathode tip followed by a sudden decrease of the near-cathode voltage drop, marking the glow-to-arc discharge transition. During this stage, the LTE plasma also presents an important increase of the temperature in the region adjacent to the hot spot. Finally, the near-cathode voltage drop stabilizes at a few volts and both the electrode and plasma temperatures reach the steady solution. The results after some seconds are similar to those presented for thermionic cathodes.

Keywords: arc-electrode interaction, thermal plasmas, electric arc simulation, cold electrodes

Procedia PDF Downloads 105
3899 Assessment of Climate Change Impacts on the Hydrology of Upper Guder Catchment, Upper Blue Nile

Authors: Fikru Fentaw Abera

Abstract:

Climate changes alter regional hydrologic conditions and results in a variety of impacts on water resource systems. Such hydrologic changes will affect almost every aspect of human well-being. The goal of this paper is to assess the impact of climate change on the hydrology of Upper Guder catchment located in northwest of Ethiopia. The GCM derived scenarios (HadCM3 A2a & B2a SRES emission scenarios) experiments were used for the climate projection. The statistical downscaling model (SDSM) was used to generate future possible local meteorological variables in the study area. The down-scaled data were then used as input to the soil and water assessment tool (SWAT) model to simulate the corresponding future stream flow regime in Upper Guder catchment of the Abay River Basin. A semi distributed hydrological model, SWAT was developed and Generalized Likelihood Uncertainty Estimation (GLUE) was utilized for uncertainty analysis. GLUE is linked with SWAT in the Calibration and Uncertainty Program known as SWAT-CUP. Three benchmark periods simulated for this study were 2020s, 2050s and 2080s. The time series generated by GCM of HadCM3 A2a and B2a and Statistical Downscaling Model (SDSM) indicate a significant increasing trend in maximum and minimum temperature values and a slight increasing trend in precipitation for both A2a and B2a emission scenarios in both Gedo and Tikur Inch stations for all three bench mark periods. The hydrologic impact analysis made with the downscaled temperature and precipitation time series as input to the hydrological model SWAT suggested for both A2a and B2a emission scenarios. The model output shows that there may be an annual increase in flow volume up to 35% for both emission scenarios in three benchmark periods in the future. All seasons show an increase in flow volume for both A2a and B2a emission scenarios for all time horizons. Potential evapotranspiration in the catchment also will increase annually on average 3-15% for the 2020s and 7-25% for the 2050s and 2080s for both A2a and B2a emissions scenarios.

Keywords: climate change, Guder sub-basin, GCM, SDSM, SWAT, SWAT-CUP, GLUE

Procedia PDF Downloads 344
3898 PWM Harmonic Injection and Frequency-Modulated Triangular Carrier to Improve the Lives of the Transformers

Authors: Mario J. Meco-Gutierrez, Francisco Perez-Hidalgo, Juan R. Heredia-Larrubia, Antonio Ruiz-Gonzalez, Francisco Vargas-Merino

Abstract:

More and more applications power inverters connected to transformers, for example, the connection facilities to the power grid renewable generation. It is well known that the quality of signal power inverters it is not a pure sine. The harmonic content produced negative effects, one of which is the heating of electrical machines and therefore, affects the life of the machines. The decrease of life of transformers can be calculated by Arrhenius or Montsinger equation. Analyzing this expression any (long-term) decrease of a transformer temperature for 6º C - 7º C means doubles its life-expectancy. Methodologies: This work presents the technique of pulse width modulation (PWM) with an injection of harmonic and triangular frequency carrier modulated in frequency. This technique is used to improve the quality of the output voltage signal of the power inverters controlled PWM. The proposed technique increases in the fundamental term and a significant reduction in low order harmonics with the same commutations per time that control sine PWM. To achieve this, the modulating wave is compared to a triangular carrier with variable frequency over the period of the modulator. Therefore, it is, advantageous for the modulating signal to have a large amount of sinusoidal “information” in the areas of greater sampling. A triangular signal with a frequency that varies over the modulator’s period is used as a carrier, for obtaining more samples in the area with the greatest slope. A power inverter controlled by PWM proposed technique is connected to a transformer. Results: In order to verify the derived thermal parameters under different operation conditions, another ambient and loading scenario is involved for a further verification, which was sampled from the same power transformer. Temperatures of different parts of the transformer will be exposed for each PWM control technique analyzed. An assessment of the temperature be done with different techniques PWM control and hence the life of the transformer is calculated for each technique. Conclusion: This paper analyzes such as transformer heating produced by this technique and compared with other forms of PWM control. In it can be seen as a reduction the harmonic content produces less heat transformer and therefore, an increase in the life of the transformer.

Keywords: heating, power-inverter, PWM, transformer

Procedia PDF Downloads 400
3897 Chemical Synthesis and Microwave Sintering of SnO2-Based Nanoparticles for Varistor Films

Authors: Glauco M. M. M. Lustosa, João Paulo C. Costa, Leinig Antônio Perazolli, Maria Aparecida Zaghete

Abstract:

SnO2 has electrical conductivity due to the excess of electrons and structural defects, being its electrical behavior highly dependent on sintering temperature and chemical composition. The addition of metals modifiers into the crystalline structure can improve and controlling the behavior of some semiconductor oxides that can therefore develop different applications such as varistors (ceramic with non-ohmic behavior between current and voltage, i.e. conductive during normal operation and resistive during overvoltage). The polymeric precursor method, based on the complexation reaction between metal ion and policarboxylic acid and then polymerized with ethylene glycol, was used to obtain nanopowders ceramic. The metal immobilization reduces its segregation during the decomposition of the polyester resulting in a crystalline oxide with high chemical homogeneity. The preparation of films from ceramics nanoparticles using electrophoretic deposition method (EPD) brings prospects for a new generation of smaller size devices with easy integration technology. EPD allows to control time and current and therefore it can have control of the thickness, surface roughness and the film density, quickly and with low production costs. The sintering process is key to control size and grain boundary density of the film. In this step, there is the diffusion of metals that promote densification and control of intrinsic defects or change these defects which will form and modify the potential barrier in the grain boundary. The use of microwave oven for sintering is an advantageous process due to the fast and homogeneous heating rate, promoting the diffusion and densification without irregular grain growth. This research was done a comparative study of sintering temperature by use of zinc as modifier agent to verify the influence on sintering step aiming to promote densification and grain growth, which influences the potential barrier formation and then changed the electrical behavior. SnO2-nanoparticles were obtained with 1 %mol of ZnO + 0.05 %mol of Nb2O5 (SZN), deposited as film through EPD (voltage 2 kV, time of 10 min) on Si/Pt substrate. Sintering was made in a microwave oven at 800, 900 and 1000 °C. For complete coverage of the substrate by nanoparticles with low surface roughness and uniform thickness was added 0.02 g of solid iodine in alcoholic suspension SnO2 to increase particle surface charge. They were also used magneto in EPD system that improved the deposition rate forming a compact film. Using a scanning electron microscope of high resolution (SEM_FEG) it was observed nanoparticles with average size between 10-20 nm, after sintering the average size was 150 to 200 nm and thickness of 5 µm. Also, it was verified that the temperature at 1000 °C was the most efficient in sintering. The best sintering time was also recorded and determined as 40 minutes. After sintering, the films were recovered with Cr3+ ions layer by EPD, then the films were again thermally treated. The electrical characterizations (nonlinear coefficient of 11.4, voltage rupture of ~60 V and leakage current = 4.8x10−6 A), allow considering the new methodology suitable for prepare SnO2-based varistor applied for development of electrical protection devices for low voltage.

Keywords: chemical synthesis, electrophoretic deposition, microwave sintering, tin dioxide

Procedia PDF Downloads 253
3896 Geochemical Characteristics and Chemical Toxicity: Appraisal of Groundwater Uranium With Other Geogenic Contaminants in Various Districts of Punjab, India

Authors: Tanu Sharma, Bikramjit Singh Bajwa, Inderpreet Kaur

Abstract:

Monitoring of groundwater in Tarn-Taran, Bathinda, Faridkot and Mansa districts of Punjab state, India is essential where this freshwater resource is being over-exploited causing quality deterioration, groundwater depletion and posing serious threats to residents. The present integrated study was done to appraise quality and suitability of groundwater for drinking/irrigation purposes, hydro-geochemical characteristics, source identification and associated health risks. In the present study, groundwater of various districts of Punjab state was found to be heavily contaminated with As followed by U, thus posing high cancerous risks to local residents via ingestion, along with minor contamination of Fe, Mn, Pb and F−. Most health concerns in the study region were due to the elevated concentrations of arsenic in groundwater with average values of 130 µg L-1, 176 µg L-1, 272 µg L-1 and 651 µg L-1 in Tarn-Taran, Bathinda, Faridkot and Mansa districts, respectively, which is quite high as compared to the safe limit as recommended by BIS i.e. 10 µg L-1. In Tarn-Taran, Bathinda, Faridkot and Mansa districts, average uranium contents were found to be 37 µg L-1, 88 µg L-1, 61 µg L-1 and 104 µg L-1, with 51 %, 74 %, 61 % and 71 % samples, respectively, being above the WHO limit of 30 µg L-1 in groundwater. Further, the quality indices showed that groundwater of study region is suited for irrigation but not appropriate for drinking purposes. Hydro-geochemical studies revealed that most of the collected groundwater samples belonged to Ca2+ - Mg2+ - HCO3- type showing dominance of MgCO3 type which indicates the presence of temporary hardness in groundwater. Rock-water reactions and reverse ion exchange were the predominant factors for controlling hydro-geochemistry in the study region. Dissolution of silicate minerals caused the dominance of Na+ ions in the aquifers of study region. Multivariate statistics revealed that along with geogenic sources, contribution of anthropogenic activities such as injudicious application of agrochemicals and domestic waste discharge was also very significant. The results obtained abolished the myth that uranium is only root cause for large number of cancer patients in study region as arsenic and mercury were also present in groundwater at levels that were of health concern to groundwater.

Keywords: uranium, trace elements, multivariate data analysis, risk assessment

Procedia PDF Downloads 61
3895 Metformin and Its Combination with Sodium Hydrosulfide Influences Plasma Galectin-3 and CSE/H₂S System in Diabetic Rat's Heart

Authors: I. V. Palamarchuk, N. V. Zaichko

Abstract:

Background and Aims: Galectin-3 is a marker of subclinical cardiac injury and is elevated in individuals with type 2 diabetes mellitus; while hydrogen sulfide (H₂S), metabolite of sulfur-containing amino acids, is considered having antifibrogenic effects. This study was designed to investigate whether metformin and its combination with NaHS can influence plasma galectin-3 and cystathionine-γ-lyase/hydrogen sulfide (CSE/H₂S) system in diabetic rat’s heart. Methods: 32 healthy male rats (180-250 g) were divided into 4 groups. To induct diabetes, rats (group 2-4) were injected with streptozotocin (STZ, 40 mg/kg/i.p., 0.1 M citrate buffer (pH 4.5). Rats from 3d (STZ+Metf) and 4th (STZ+Metf+NaHS) groups were given metformin (500 mg/kg/day) orally, and rats from 4th (STZ+Metf+NaHS) group were injected sodium hydrosulfide (NaHS, 3 mg/kg/i.p.) once per day starting from 3 to 28 day after streptozotocin injection. Rats of first group (control) were administered the equivalent volumes of 0.9% NaCl. Plasma galectin-3 was measured by ELISA. Rats’ hearts were sampled for determination of H2S by reaction with N,N-Dimethyl-p-phenylenediamine. Determination of CSE gene expression was performed in real time using PCR in the presence of SYBR Green I, using DT-Light detecting amplifier ('DNA-technology', Russia). Results: Induction of streptozotocin diabetes (STZ-diabetes, group 2) was followed by low myocardial H2S concentration and CSE expression (by 35%, p < 0.05 and 60.5%, p < 0.001 respectively, than that in controls), while plasma galectin-3 in this group was significantly higher than in controls (by 3.8 times, p < 0.05). Administration of metformin (group 3) resulted in significantly higher H₂S concentration (by 28.5%, p < 0.05), whereas CSE expression was only by 6% more than that in STZ-diabetes, as well as plasma galectin-3 was only by 14.8% lower in comparison with untreated diabetic rats. The inhibition of H₂S generation and CSE activity by diabetes was greatly attenuated in STZ+Metf+NaHS group. The combination of metformin with NaHS significantly stimulated H₂S production (by 48%, p < 0.05 and 15%, p < 0.05 more than STZ-diabetes and STZ+Metf respectively) and CSE gene expression (by 64.8%, p < 0.05 compared to STZ-diabetes and by 55.4%,p < 0.05 compared to STZ+Metf). Besides, plasma galectin-3 in rats receiving metformin and NaHS was significantly lower by 42%, p < 0.05 and 32.5%, p < 0.05 compared to STZ-diabetes and STZ+Metf groups respectively. Conclusions: To summarize, dysfunction of CSE/H2S system and galectin-3 stimulation was found in streptozotocin-induced diabetic rats. Metformin and its combination with exogenous H2S effectively prevented the development of metabolic changes induced by diabetes. These findings suggest that CSE/H₂S system can be integrated into pathogenesis of diabetic complications through modulation of pro-inflammatory and pro-fibrogenic mediator galectin-3.

Keywords: cystathionine-γ-lyase, diabetic heart, galectin-3, hydrogen sulfide, metformin, sodium hydrosulfide

Procedia PDF Downloads 208
3894 Modelling the Physicochemical Properties of Papaya Based-Cookies Using Response Surface Methodology

Authors: Mayowa Saheed Sanusi A, Musiliu Olushola Sunmonua, Abdulquadri Alakab Owolabi Raheema, Adeyemi Ikimot Adejokea

Abstract:

The development of healthy cookies for health-conscious consumers cannot be overemphasized in the present global health crisis. This study was aimed to evaluate and model the influence of ripeness levels of papaya puree (unripe, ripe and overripe), oven temperature (130°C, 150°C and 170°C) and oven rack speed (stationary, 10 and 20 rpm) on physicochemical properties of papaya-based cookies using Response Surface Methodology (RSM). The physicochemical properties (baking time, cookies mass, cookies thickness, spread ratio, proximate composition, Calcium, Vitamin C and Total Phenolic Content) were determined using standard procedures. The data obtained were statistically analysed at p≤0.05 using ANOVA. The polynomial regression model of response surface methodology was used to model the physicochemical properties. The adequacy of the models was determined using the coefficient of determination (R²) and the response optimizer of RSM was used to determine the optimum physicochemical properties for the papaya-based cookies. Cookies produced from overripe papaya puree were observed to have the shortest baking time; ripe papaya puree favors cookies spread ratio, while the unripe papaya puree gives cookies with the highest mass and thickness. The highest crude protein content, fiber content, calcium content, Vitamin C and Total Phenolic Content (TPC) were observed in papaya based-cookies produced from overripe puree. The models for baking time, cookies mass, cookies thickness, spread ratio, moisture content, crude protein and TPC were significant, with R2 ranging from 0.73 – 0.95. The optimum condition for producing papaya based-cookies with desirable physicochemical properties was obtained at 149°C oven temperature, 17 rpm oven rack speed and with the use of overripe papaya puree. The Information on the use of puree from unripe, ripe and overripe papaya can help to increase the use of underutilized unripe or overripe papaya and also serve as a strategic means of obtaining a fat substitute to produce new products with lower production cost and health benefit.

Keywords: papaya based-cookies, modeling, response surface methodology, physicochemical properties

Procedia PDF Downloads 147
3893 Solid Polymer Electrolyte Membranes Based on Siloxane Matrix

Authors: Natia Jalagonia, Tinatin Kuchukhidze

Abstract:

Polymer electrolytes (PE) play an important part in electrochemical devices such as batteries and fuel cells. To achieve optimal performance, the PE must maintain a high ionic conductivity and mechanical stability at both high and low relative humidity. The polymer electrolyte also needs to have excellent chemical stability for long and robustness. According to the prevailing theory, ionic conduction in polymer electrolytes is facilitated by the large-scale segmental motion of the polymer backbone, and primarily occurs in the amorphous regions of the polymer electrolyte. Crystallinity restricts polymer backbone segmental motion and significantly reduces conductivity. Consequently, polymer electrolytes with high conductivity at room temperature have been sought through polymers which have highly flexible backbones and have largely amorphous morphology. The interest in polymer electrolytes was increased also by potential applications of solid polymer electrolytes in high energy density solid state batteries, gas sensors and electrochromic windows. Conductivity of 10-3 S/cm is commonly regarded as a necessary minimum value for practical applications in batteries. At present, polyethylene oxide (PEO)-based systems are most thoroughly investigated, reaching room temperature conductivities of 10-7 S/cm in some cross-linked salt in polymer systems based on amorphous PEO-polypropylene oxide copolymers.. It is widely accepted that amorphous polymers with low glass transition temperatures Tg and a high segmental mobility are important prerequisites for high ionic conductivities. Another necessary condition for high ionic conductivity is a high salt solubility in the polymer, which is most often achieved by donors such as ether oxygen or imide groups on the main chain or on the side groups of the PE. It is well established also that lithium ion coordination takes place predominantly in the amorphous domain, and that the segmental mobility of the polymer is an important factor in determining the ionic mobility. Great attention was pointed to PEO-based amorphous electrolyte obtained by synthesis of comb-like polymers, by attaching short ethylene oxide unit sequences to an existing amorphous polymer backbone. The aim of presented work is to obtain of solid polymer electrolyte membranes using PMHS as a matrix. For this purpose the hydrosilylation reactions of α,ω-bis(trimethylsiloxy)methyl¬hydrosiloxane with allyl triethylene-glycol mo¬nomethyl ether and vinyltriethoxysilane at 1:28:7 ratio of initial com¬pounds in the presence of Karstedt’s catalyst, platinum hydrochloric acid (0.1 M solution in THF) and platinum on the carbon catalyst in 50% solution of anhydrous toluene have been studied. The synthesized olygomers are vitreous liquid products, which are well soluble in organic solvents with specific viscosity ηsp ≈ 0.05 - 0.06. The synthesized olygomers were analysed with FTIR, 1H, 13C, 29Si NMR spectroscopy. Synthesized polysiloxanes were investigated with wide-angle X-ray, gel-permeation chromatography, and DSC analyses. Via sol-gel processes of doped with lithium trifluoromethylsulfonate (triflate) or lithium bis¬(trifluoromethylsulfonyl)¬imide polymer systems solid polymer electrolyte membranes have been obtained. The dependence of ionic conductivity as a function of temperature and salt concentration was investigated and the activation energies of conductivity for all obtained compounds are calculated

Keywords: synthesis, PMHS, membrane, electrolyte

Procedia PDF Downloads 238
3892 Extraction of Cellulose Nanocrystals from Soy Pods

Authors: Maycon dos Santos, Marivane Turim Koschevic, Karina Sayuri Ueda, Marcello Lima Bertuci, Farayde Matta Fackhouri, Silvia Maria Martelli

Abstract:

The use of cellulose nanocrystals as reinforcing agents in polymer nanocomposites is promising. In this study, we tested four different methods of mercerization were divided into two stages. The sample was treated in 5% NaOH solution for 30 minutes at 50 ° C in the first stage and 30vol H2O2 for 2 hours at 50 ° C in the second step, which showed better results. For the extraction of the sample obtained nanocrystals positive result was that the solution was treated with H2SO4 60% (w / w) for 1 hour at 50 ° C. The results were positive and showed that it is possible to extract CNC at low temperatures.

Keywords: soy pods, cellulose nanocrystals, temperature, acid concentration

Procedia PDF Downloads 278
3891 A Numerical Study on the Influence of CO2 Dilution on Combustion Characteristics of a Turbulent Diffusion Flame

Authors: Yasaman Tohidi, Rouzbeh Riazi, Shidvash Vakilipour, Masoud Mohammadi

Abstract:

The objective of the present study is to numerically investigate the effect of CO2 replacement of N2 in air stream on the flame characteristics of the CH4 turbulent diffusion flame. The Open source Field Operation and Manipulation (OpenFOAM) has been used as the computational tool. In this regard, laminar flamelet and modified k-ε models have been utilized as combustion and turbulence models, respectively. Results reveal that the presence of CO2 in air stream changes the flame shape and maximum flame temperature. Also, CO2 dilution causes an increment in CO mass fraction.

Keywords: CH4 diffusion flame, CO2 dilution, OpenFOAM, turbulent flame

Procedia PDF Downloads 259
3890 Study of the Adsorption of Metal Ions Ag+ Mg2+, Ni2+ by the Chemical and Electrochemical Polydibenzoether Crown

Authors: Dalila Chouder, Djaafer Benachour

Abstract:

This work concerns the study of the adsorption of metal ions Ag +, Mg +, and Ni2+ in aqueous medium by polydibenzoether-ROWN based on three factors: Temperature, time and concentration. The polydibenzoether crown was synthesized by two means: Chemical and electrochemical. The behavior of the two polymers has been different, and turns out very interesting for chemical polydibenzoether crown has identified conditions. Chemical and électronique polydibenzoether crown have different extraction screw vi property of adsoption of ions fifférents, this study also shows that plyméres doped may have an advantageous electrical conductivity.

Keywords: polymerization, electrochemical, conductivity, complexing metal ions

Procedia PDF Downloads 249
3889 Structural Analysis of Phase Transformation and Particle Formation in Metastable Metallic Thin Films Grown by Plasma-Enhanced Atomic Layer Deposition

Authors: Pouyan Motamedi, Ken Bosnick, Ken Cadien, James Hogan

Abstract:

Growth of conformal ultrathin metal films has attracted a considerable amount of attention recently. Plasma-enhanced atomic layer deposition (PEALD) is a method capable of growing conformal thin films at low temperatures, with an exemplary control over thickness. The authors have recently reported on growth of metastable epitaxial nickel thin films via PEALD, along with a comprehensive characterization of the films and a study on the relationship between the growth parameters and the film characteristics. The goal of the current study is to use the mentioned films as a case study to investigate the temperature-activated phase transformation and agglomeration in ultrathin metallic films. For this purpose, metastable hexagonal nickel thin films were annealed using a controlled heating/cooling apparatus. The transformations in the crystal structure were observed via in-situ synchrotron x-ray diffraction. The samples were annealed to various temperatures in the range of 400-1100° C. The onset and progression of particle formation were studied in-situ via laser measurements. In addition, a four-point probe measurement tool was used to record the changes in the resistivity of the films, which is affected by phase transformation, as well as roughening and agglomeration. Thin films annealed at various temperature steps were then studied via atomic force microscopy, scanning electron microscopy and high-resolution transmission electron microscopy, in order to get a better understanding of the correlated mechanisms, through which phase transformation and particle formation occur. The results indicate that the onset of hcp-to-bcc transformation is at 400°C, while particle formations commences at 590° C. If the annealed films are quenched after transformation, but prior to agglomeration, they show a noticeable drop in resistivity. This can be attributed to the fact that the hcp films are grown epitaxially, and are under severe tensile strain, and annealing leads to relaxation of the mismatch strain. In general, the results shed light on the nature of structural transformation in nickel thin films, as well as metallic thin films, in general.

Keywords: atomic layer deposition, metastable, nickel, phase transformation, thin film

Procedia PDF Downloads 316
3888 Qualitative Modeling of Transforming Growth Factor Beta-Associated Biological Regulatory Network: Insight into Renal Fibrosis

Authors: Ayesha Waqar Khan, Mariam Altaf, Jamil Ahmad, Shaheen Shahzad

Abstract:

Kidney fibrosis is an anticipated outcome of possibly all types of progressive chronic kidney disease (CKD). Epithelial-mesenchymal transition (EMT) signaling pathway is responsible for production of matrix-producing fibroblasts and myofibroblasts in diseased kidney. In this study, a discrete model of TGF-beta (transforming growth factor) and CTGF (connective tissue growth factor) was constructed using Rene Thomas formalism to investigate renal fibrosis turn over. The kinetic logic proposed by Rene Thomas is a renowned approach for modeling of Biological Regulatory Networks (BRNs). This modeling approach uses a set of constraints which represents the dynamics of the BRN thus analyzing the pathway and predicting critical trajectories that lead to a normal or diseased state. The molecular connection between TGF-beta, Smad 2/3 (transcription factor) phosphorylation and CTGF is modeled using GenoTech. The order of BRN is CTGF, TGF-B, and SMAD3 respectively. The predicted cycle depicts activation of TGF-B (TGF-β) via cleavage of its own pro-domain (0,1,0) and presentation to TGFR-II receptor phosphorylating SMAD3 (Smad2/3) in the state (0,1,1). Later TGF-B is turned off (0,0,1) thereby activating SMAD3 that further stimulates the expression of CTGF in the state (1,0,1) and itself turns off in (1,0,0). Elevated CTGF expression reactivates TGF-B (1,1,0) and the cycle continues. The predicted model has generated one cycle and two steady states. Cyclic behavior in this study represents the diseased state in which all three proteins contribute to renal fibrosis. The proposed model is in accordance with the experimental findings of the existing diseased state. Extended cycle results in enhanced CTGF expression through Smad2/3 and Smad4 translocation in the nucleus. The results suggest that the system converges towards organ fibrogenesis if CTGF remains constructively active along with Smad2/3 and Smad 4 that plays an important role in kidney fibrosis. Therefore, modeling regulatory pathways of kidney fibrosis will escort to the progress of therapeutic tools and real-world useful applications such as predictive and preventive medicine.

Keywords: CTGF, renal fibrosis signaling pathway, system biology, qualitative modeling

Procedia PDF Downloads 164
3887 Optimization of Fermentation Conditions for Extracellular Production of the Oncolytic Enzyme, L-Asparaginase, by New Subsp. Streptomyces Rochei Subsp. Chromatogenes NEAE-K Using Response Surface Methodology under Solid State Fermentation

Authors: Noura El-Ahmady El-Naggar

Abstract:

L-asparaginase is an important enzyme as therapeutic agents used in combination therapy with other drugs in the treatment of acute lymphoblastic leukemia in children. L-asparaginase producing actinomycete strain, NEAE-K, was isolated from soil sample and identified on the basis of morphological, cultural, physiological and biochemical properties, together with 16S rDNA sequence as new subsp. Streptomyces rochei subsp. chromatogenes NEAE-K and sequencing product (1532 bp) was deposited in the GenBank database under accession number KJ200343. The study was conducted to screen parameters affecting the production of L-asparaginase by Streptomyces rochei subsp. chromatogenes NEAE-K on solid state fermentation using Plackett–Burman experimental design. Sixteen different independent variables including incubation time, moisture content, inoculum size, temperature, pH, soybean meal+ wheat bran, dextrose, fructose, L-asparagine, yeast extract, KNO3, K2HPO4, MgSO4.7H2O, NaCl, FeSO4. 7H2O, CaCl2, and three dummy variables were screened in Plackett–Burman experimental design of 20 trials. The most significant independent variables affecting enzyme production (dextrose, L-asparagine and K2HPO4) were further optimized by the central composite design. As a result, a medium of the following formula is the optimum for producing an extracellular L-asparaginase by Streptomyces rochei subsp. chromatogenes NEAE-K from solid state fermentation: g/L (soybean meal+ wheat bran 15, dextrose 3, fructose 4, L-asparagine 8, yeast extract 2, KNO3 1, K2HPO4 2, MgSO4.7H2O 0.5, NaCl 0.1, FeSO4. 7H2O 0.02, CaCl2 0.01), incubation time 7 days, moisture content 50%, inoculum size 3 mL, temperature 30°C, pH 8.5.

Keywords: streptomyces rochei subsp. chromatogenes neae-k, 16s rrna, identification, solid state fermentation, l-asparaginase production, plackett-burman design, central composite design

Procedia PDF Downloads 394