Search results for: thermal resilience
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4430

Search results for: thermal resilience

950 Urban Planning Patterns after (COVID-19): An Assessment toward Resiliency

Authors: Mohammed AL-Hasani

Abstract:

The Pandemic COVID-19 altered the daily habits and affected the functional performance of the cities after this crisis leaving remarkable impacts on many metropolises worldwide. It is so obvious that having more densification in the city leads to more threats altering this main approach that was called for achieving sustainable development. The main goal to achieve resiliency in the cities, especially in forcing risks, is to deal with a planning system that is able to resist, absorb, accommodate and recover from the impacts that had been affected. Many Cities in London, Wuhan, New York, and others worldwide carried different planning approaches and varied in reaction to safeguard the impacts of the pandemic. The cities globally varied from the radiant pattern predicted by Le Corbusier, or having multi urban centers more like the approach of Frank Lloyd Wright’s Broadacre City, or having linear growth or gridiron expansion that was common by Doxiadis, compact pattern, and many other hygiene patterns. These urban patterns shape the spatial distribution and Identify both open and natural spaces with gentrified and gentrifying areas. This crisis paid attention to reassess many planning approaches and examine the existing urban patterns focusing more on the aim of continuity and resiliency in managing the crises within the rapid transformation and the power of market forces. According to that, this paper hypothesized that those urban planning patterns determine the method of reaction in assuring quarantine for the inhabitance and the performance of public services and need to be updated through carrying out an innovative urban management system and adopt further resilience patterns in prospective urban planning approaches. This paper investigates the adaptivity and resiliency of variant urban planning patterns regarding selected cities worldwide that affected by COVID-19 and their role in applying certain management strategies in controlling the pandemic spread, finding out the main potentials that should be included in prospective planning approaches. The examination encompasses the spatial arrangement, blocks definition, plots arrangement, and urban space typologies. This paper aims to investigate the urban patterns to deliberate also the debate between densification as one of the more sustainable planning approaches and disaggregation tendency that was followed after the pandemic by restructuring and managing its application according to the assessment of the spatial distribution and urban patterns. The biggest long-term threat to dense cities proves the need to shift to online working and telecommuting, creating a mixture between using cyber and urban spaces to remobilize the city. Reassessing spatial design and growth, open spaces, urban population density, and public awareness are the main solutions that should be carried out to face the outbreak in our current cities that should be managed from global to tertiary levels and could develop criteria for designing the prospective cities

Keywords: COVID-19, densification, resiliency, urban patterns

Procedia PDF Downloads 131
949 Application of Molecular Materials in the Manufacture of Flexible and Organic Devices for Photovoltaic Applications

Authors: Mariana Gomez Gomez, Maria Elena Sanchez Vergara

Abstract:

Many sustainable approaches to generate electric energy have emerged in the last few decades; one of them is through solar cells. Yet, this also has the disadvantage of highly polluting inorganic semiconductor manufacturing processes. Therefore, the use of molecular semiconductors must be considered. In this work, allene compounds C24H26O4 and C24H26O5 were used as dopants to manufacture semiconductors films based on PbPc by high-vacuum evaporation technique. IR spectroscopy was carried out to determine the phase and any significant chemical changes which may occur during the thermal evaporation. According to UV-visible spectroscopy and Tauc’s model, the deposition process generated thin films with an activation energy range of 1.47 to 1.55 eV for direct transitions and 1.29 to 1.33 eV for indirect transitions. These values place the manufactured films within the range of low bandgap semiconductors. The flexible devices were manufactured: polyethylene terephthalate (PET), Indium tin oxide (ITO)/organic semiconductor/ Cubic Close Packed (CCP). The characterization of the devices was carried out by evaluating electrical conductivity using the four-probe collinear method. I-V curves were obtained under different lighting conditions at room temperature. OS1 (PbPc/C24H26O4) showed an Ohmic behavior, while OS2 (PbPc/C24H26O5) reached higher current values ​​at lower voltages. The results obtained show that the semiconductors devices doped with allene compounds can be used in the manufacture of optoelectronic devices.

Keywords: electrical properties, optical gap, phthalocyanine, thin film.

Procedia PDF Downloads 250
948 Training During Emergency Response to Build Resiliency in Water, Sanitation, and Hygiene

Authors: Lee Boudreau, Ash Kumar Khaitu, Laura A. S. MacDonald

Abstract:

In April 2015, a magnitude 7.8 earthquake struck Nepal, killing, injuring, and displacing thousands of people. The earthquake also damaged water and sanitation service networks, leading to a high risk of diarrheal disease and the associated negative health impacts. In response to the disaster, the Environment and Public Health Organization (ENPHO), a Kathmandu-based non-governmental organization, worked with the Centre for Affordable Water and Sanitation Technology (CAWST), a Canadian education, training and consulting organization, to develop two training programs to educate volunteers on water, sanitation, and hygiene (WASH) needs. The first training program was intended for acute response, with the second focusing on longer term recovery. A key focus was to equip the volunteers with the knowledge and skills to formulate useful WASH advice in the unanticipated circumstances they would encounter when working in affected areas. Within the first two weeks of the disaster, a two-day acute response training was developed, which focused on enabling volunteers to educate those affected by the disaster about local WASH issues, their link to health, and their increased importance immediately following emergency situations. Between March and October 2015, a total of 19 training events took place, with over 470 volunteers trained. The trained volunteers distributed hygiene kits and liquid chlorine for household water treatment. They also facilitated health messaging and WASH awareness activities in affected communities. A three-day recovery phase training was also developed and has been delivered to volunteers in Nepal since October 2015. This training focused on WASH issues during the recovery and reconstruction phases. The interventions and recommendations in the recovery phase training focus on long-term WASH solutions, and so form a link between emergency relief strategies and long-term development goals. ENPHO has trained 226 volunteers during the recovery phase, with training ongoing as of April 2016. In the aftermath of the earthquake, ENPHO found that its existing pool of volunteers were more than willing to help those in their communities who were more in need. By training these and new volunteers, ENPHO was able to reach many more communities in the immediate aftermath of the disaster; together they reached 11 of the 14 earthquake-affected districts. The collaboration between ENPHO and CAWST in developing the training materials was a highly collaborative and iterative process, which enabled the training materials to be developed within a short response time. By training volunteers on basic WASH topics during both the immediate response and the recovery phase, ENPHO and CAWST have been able to link immediate emergency relief to long-term developmental goals. While the recovery phase training continues in Nepal, CAWST is planning to decontextualize the training used in both phases so that it can be applied to other emergency situations in the future. The training materials will become part of the open content materials available on CAWST’s WASH Resources website.

Keywords: water and sanitation, emergency response, education and training, building resilience

Procedia PDF Downloads 307
947 Synthesis of Amine Functionalized MOF-74 for Carbon Dioxide Capture

Authors: Ghulam Murshid, Samil Ullah

Abstract:

Scientific studies suggested that the incremented greenhouse gas concentration in the atmosphere, particularly of carbon dioxide (CO2) is one of the major factors in global warming. The concentration of CO2 in our climate has crossed the milestone level of 400 parts per million (ppm) hence breaking the record of human history. A report by 49 researchers from 10 countries said, 'Global CO2 emissions from burning fossil fuels will rise to a record 36 billion metric tons (39.683 billion tons) this year.' Main contributors of CO2 in to the atmosphere are usage of fossil fuel, transportation sector and power generation plants. Among all available technologies, which include; absorption via chemicals, membrane separation, cryogenic and adsorption are in practice around the globe. Adsorption of CO2 using metal organic frameworks (MOF) is getting interest of researcher around the globe. In the current work, MOF-74 as well as modified MOF-74 with a sterically hindered amine (AMP) was synthesized and characterized. The modification was carried out using a sterically hindered amine in order to study the effect on its adsorption capacity. Resulting samples were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscope (FESEM), Thermal Gravimetric Analyser (TGA) and Brunauer-Emmett-Teller (BET). The FTIR results clearly confirmed the formation of MOF-74 structure and the presence of AMP. FESEM and TEM revealed the topography and morphology of the both MOF-74 and amine modified MOF. BET isotherm result shows that due to the addition of AMP in to the structure, significant enhancement of CO2 adsorption was observed.

Keywords: adsorbents, amine, CO2, global warming

Procedia PDF Downloads 423
946 Perceived Procedural Justice and Organizational Citizenship Behavior: Evidence from a Security Organization

Authors: Noa Nelson, Orit Appel, Rachel Ben-ari

Abstract:

Organizational Citizenship Behavior (OCB) is voluntary employee behavior that contributes to the organization beyond formal job requirements. It can take different forms, such as helping teammates (OCB toward individuals; hence, OCB-I), or staying after hours to attend a task force (OCB toward the organization; hence, OCB-O). Generally, OCB contributes substantially to organizational climate, goals, productivity, and resilience, so organizations need to understand what encourages it. This is particularly challenging in security organizations. Security work is characterized by high levels of stress and burnout, which is detrimental to OCB, and security organizational design emphasizes formal rules and clear hierarchies, leaving employees with less freedom for voluntary behavior. The current research explored the role of Perceived Procedural Justice (PPJ) in enhancing OCB in a security organization. PPJ refers to how fair decision-making processes are perceived to be. It involves the sense that decision makers are objective, attentive to everyone's interests, respectful in their communications and participatory - allowing individuals a voice in decision processes. Justice perceptions affect motivation, and it was specifically suggested that PPJ creates an attachment to one's organization and personal interest in its success. Accordingly, PPJ had been associated with OCB, but hardly any research tested their association with security organizations. The current research was conducted among prison guards in the Israel Prison Service, to test a correlational and a causal association between PPJ and OCB. It differentiated between perceptions of direct commander procedural justice (CPJ), and perceptions of organization procedural justice (OPJ), hypothesizing that CPJ would relate to OCB-I, while OPJ would relate to OCB-O. In the first study, 336 prison guards (305 male) from 10 different prisons responded to questionnaires measuring their own CPJ, OPJ, OCB-I, and OCB-O. Hierarchical linear regression analyses indicated the significance of commander procedural justice (CPJ): It associated with OCB-I and also associated with OPJ, which, in turn, associated with OCB-O. The second study tested CPJ's causal effects on prison guards' OCB-I and OCB-O; 311 prison guards (275 male) from 14 different prisons read scenarios that described either high or low CPJ, and then evaluated the likelihood of that commander's prison guards performing OCB-I and OCB-O. In this study, CPJ enhanced OCB-O directly. It also contributed to OCB-I, indirectly: CPJ enhanced the motivation for collaboration with the commander, which respondents also evaluated after reading scenarios. Collaboration, in turn, associated with OCB-I. The studies demonstrate that procedural justice, especially commander's PJ, promotes OCB in security work environments. This is important because extraordinary teamwork and motivation are needed to deal with emergency situations and with delicate security challenges. Following the studies, the Israel Prison Service implemented personal procedural justice training for commanders and unit level programs for procedurally just decision processes. From a theoretical perspective, the studies extend the knowledge on PPJ and OCB to security work environments and contribute evidence on PPJ's causal effects. They also call for further research, to understand the mechanisms through which different types of PPJ affect different types of OCB.

Keywords: organizational citizenship behavior, perceived procedural justice, prison guards, security organizations

Procedia PDF Downloads 221
945 Crosslinked Porous 3-Dimensional Cellulose Nanofibers/Gelatin Based Biocomposite Aerogels for Tissue Engineering Application

Authors: Ali Mirtaghavi, Andy Baldwin, Rajendarn Muthuraj, Jack Luo

Abstract:

Recent advances in biomaterials have led to utilizing biopolymers to develop 3D scaffolds in tissue regeneration. One of the major challenges of designing biomaterials for 3D scaffolds is to mimic the building blocks similar to the extracellular matrix (ECM) of the native tissues. Biopolymer based aerogels obtained by freeze-drying have shown to provide structural similarities to the ECM owing to their 3D format and a highly porous structure with interconnected pores, similar to the ECM. Gelatin (GEL) is known to be a promising biomaterial with inherent regenerative characteristics owing to its chemical similarities to the ECM in native tissue, biocompatibility abundance, cost-effectiveness and accessible functional groups, which makes it facile for chemical modifications with other biomaterials to form biocomposites. Despite such advantages, gelatin offers poor mechanical properties, sensitive enzymatic degradation and high viscosity at room temperature which limits its application and encourages its use to develop biocomposites. Hydrophilic biomass-based cellulose nanofibrous (CNF) has been explored to use as suspension for biocomposite aerogels for the development of 3D porous structures with excellent mechanical properties, biocompatibility and slow enzymatic degradation. In this work, CNF biocomposite aerogels with various ratios of CNF:GEL) (90:10, 70:30 and 50:50) were prepared by freeze-drying technique, and their properties were investigated in terms of physicochemical, mechanical and biological characteristics. Epichlorohydrin (EPH) was used to investigate the effect of chemical crosslinking on the molecular interaction of CNF: GEL, and its effects on physicochemical, mechanical and biological properties of the biocomposite aerogels. Ultimately, chemical crosslinking helped to improve the mechanical resilience of the resulting aerogels. Amongst all the CNF-GEL composites, the crosslinked CNF: GEL (70:30) biocomposite was found to be favourable for cell attachment and viability. It possessed highly porous structure (porosity of ~93%) with pore sizes ranging from 16-110 µm, adequate mechanical properties (compression modulus of ~47 kPa) and optimal biocompatibility both in-vitro and in-vivo, as well as controlled enzymatic biodegradation, high water penetration, which could be considered a suitable option for wound healing application. In-vivo experiments showed improvement on inflammation and foreign giant body cell reaction for the crosslinked CNF: GEL (70:30) compared to the other samples. This could be due to the superior interaction of CNF with gelatin through chemical crosslinking, resulting in more optimal in-vivo improvement. In-vitro cell culture investigation on human dermal fibroblasts showed satisfactory 3D cell attachment over time. Overall, it has been observed that the developed CNF: GEL aerogel can be considered as a potential scaffold for soft tissue regeneration application.

Keywords: 3D scaffolds, aerogels, Biocomposites , tissue engineering

Procedia PDF Downloads 130
944 Characterisation of Wind-Driven Ventilation in Complex Terrain Conditions

Authors: Daniel Micallef, Damien Bounaudet, Robert N. Farrugia, Simon P. Borg, Vincent Buhagiar, Tonio Sant

Abstract:

The physical effects of upstream flow obstructions such as vegetation on cross-ventilation phenomena of a building are important for issues such as indoor thermal comfort. Modelling such effects in Computational Fluid Dynamics simulations may also be challenging. The aim of this work is to establish the cross-ventilation jet behaviour in such complex terrain conditions as well as to provide guidelines on the implementation of CFD numerical simulations in order to model complex terrain features such as vegetation in an efficient manner. The methodology consists of onsite measurements on a test cell coupled with numerical simulations. It was found that the cross-ventilation flow is highly turbulent despite the very low velocities encountered internally within the test cells. While no direct measurement of the jet direction was made, the measurements indicate that flow tends to be reversed from the leeward to the windward side. Modelling such a phenomenon proves challenging and is strongly influenced by how vegetation is modelled. A solid vegetation tends to predict better the direction and magnitude of the flow than a porous vegetation approach. A simplified terrain model was also shown to provide good comparisons with observation. The findings have important implications on the study of cross-ventilation in complex terrain conditions since the flow direction does not remain trivial, as with the traditional isolated building case.

Keywords: complex terrain, cross-ventilation, wind driven ventilation, wind resource, computational fluid dynamics, CFD

Procedia PDF Downloads 396
943 Setting the Baseline for a Sentinel System for the Identification of Occupational Risk Factors in Africa

Authors: Menouni Aziza, Chbihi Kaoutar, Duca Radu Corneliu, Gilissen Liesbeth, Bounou Salim, Godderis Lode, El Jaafari Samir

Abstract:

In Africa, environmental and occupational health risks are mostly underreported. The aim of this research is to develop and implement a sentinel surveillance system comprising training and guidance of occupational physicians (OC) who will report new work-related diseases in African countries. A group of 30 OC are recruited and trained in each of the partner countries (Morocco, Benin and Ethiopia). Each committed OC is asked to recruit 50 workers during a consultation in a time-frame of 6 months (1500 workers per country). Workers are asked to fill out an online questionnaire about their health status and work conditions, including exposure to 20 chemicals. Urine and blood samples are then collected for human biomonitoring of common exposures. Some preliminary results showed that 92% of the employees surveyed are exposed to physical constraints, 44% to chemical agents, and 24% to biological agents. The most common physical constraints are manual handling of loads, noise pollution and thermal pollution. The most frequent chemical risks are exposure to pesticides and fuels. This project will allow a better understanding of effective sentinel systems as a promising method to gather high quality data, which can support policy-making in terms of preventing emerging work-related diseases.

Keywords: sentinel system, occupational diseases, human biomonitoring, Africa

Procedia PDF Downloads 82
942 Comparative Analysis of Water-Based Alumina Nanoparticles with Water-Based Cupric Nanoparticles Past an Exponentially Accelerated Vertical Radiative Riga Plate with Heat Transfer

Authors: Kanayo Kenneth Asogwa

Abstract:

The influence of the flow of nanoparticles in nanofluids across a vertical surface is significant, and its application in medical sciences, engineering, pharmaceutical, and food industries is enormous & widely published. However, the comparative examination of alumina nanoparticles with cupric nanoparticles past a rapid progressive Riga plate remains unknown. Thus, this report investigates water-based alumina and cupric nanoparticles passing through an exponentially accelerated Riga plate. Nanofluids containing copper (II) oxide (CuO) and aluminum oxide (Al2O3) nanoparticles are considered. The Laplace transform technique is used to solve the partial differential equations guiding the flow. The effect of various factors on skin friction coefficient, Nusselt number, velocity and temperature profiles is investigated and reported in tabular and graphical form. The upsurge of Modified Hartmann number and radiative impact improves copper (II) oxide nanofluid compared to aluminum oxide nanofluid due to Lorentz force and since CuO is a better heat conductor. At the same time, heat absorption and reactive species favor a slight decline in Alumina nanofluid than Cupric nanofluid in the thermal and velocity fields. The higher density of Cupric nanofluid is enhanced by increasing nanoparticle volume fraction over Alumina nanofluid with a decline in velocity distribution.

Keywords: alumina, cupric, nanoparticles, water-based

Procedia PDF Downloads 203
941 Synthesis and Characterization of Carboxymethyl Cellulose-Chitosan Based Composite Hydrogels for Biomedical and Non-Biomedical Applications

Authors: K. Uyanga, W. Daoud

Abstract:

Hydrogels have attracted much academic and industrial attention due to their unique properties and potential biomedical and non-biomedical applications. Limitations on extending their applications have resulted from the synthesis of hydrogels using toxic materials and complex irreproducible processing techniques. In order to promote environmental sustainability, hydrogel efficiency, and wider application, this study focused on the synthesis of composite hydrogels matrices from an edible non-toxic crosslinker-citric acid (CA) using a simple low energy processing method based on carboxymethyl cellulose (CMC) and chitosan (CSN) natural polymers. Composite hydrogels were developed by chemical crosslinking. The results demonstrated that CMC:2CSN:CA exhibited good performance properties and super-absorbency 21× its original weight. This makes it promising for biomedical applications such as chronic wound healing and regeneration, next generation skin substitute, in situ bone regeneration and cell delivery. On the other hand, CMC:CSN:CA exhibited durable well-structured internal network with minimum swelling degrees, water absorbency, excellent gel fraction, and infra-red reflectance. These properties make it a suitable composite hydrogel matrix for warming effect and controlled and efficient release of loaded materials. CMC:2CSN:CA and CMC:CSN:CA composite hydrogels developed also exhibited excellent chemical, morphological, and thermal properties.

Keywords: citric acid, fumaric acid, tartaric acid, zinc nitrate hexahydrate

Procedia PDF Downloads 153
940 Experimental Studies on Fly Ash-Waste Sludge Mix Reinforced with Geofibres

Authors: Malik Shoeb Ahmad

Abstract:

The aim of the present study is to carry out investigations on Class F fly ash obtained from NTPC thermal power plant, Dadri, U.P. (India) and electroplating waste sludge from Aligarh, U.P. (India) along with geofibre for its subsequent utilization in various geotechnical and highway engineering applications. The experimental studies such as California bearing ratio (CBR) tests were carried out to evaluate the strength of plain fly ash as well as fly ash-waste sludge mix reinforced with geofibre, as the CBR value is the vital parameters used in the design of flexible and rigid pavements. Results of the study show that the strength of the mix is highly dependent on the curing period and the sludge and geofibre content. The CBR values were determined for mix containing fly ash (83.5-93.5%), waste sludge (5-15%) and 1-2% geofibre. However, out of the various combinations of mixes the CBR value of the mix 88.5%FA+10%S+1.5%GF at 28 days of curing was found to be 53.52% when compared with the strength of plain fly ash. It has been observed that the fibre inclusion increases the strength of the plain fly ash and fly ash-waste sludge specimens by changing their brittle to ductile behavior. The TCLP leaching test was also conducted to determine the heavy metal concentration in the optimized mix. The results of TCLP test show that the heavy metal concentration in the mix 88.5%FA+10%S+1.5%G at 28 days of curing reduced substantially from 24 to 98% when compared with the concentration of heavy metals in the waste sludge collected from source. It has also been observed that the pH of the leachate of this mix is between 9-11, which ensures the proper stabilization of the heavy metals present in the mix. Hence, this study will certainly help in mass scale utilization of two industrial wastes viz., electroplating waste and fly ash, which are causing pollution to the environment to a great extent.

Keywords: Dadri fly ash, geofibre, electroplating waste sludge, CBR, TCLP

Procedia PDF Downloads 344
939 Thermochemical Modelling for Extraction of Lithium from Spodumene and Prediction of Promising Reagents for the Roasting Process

Authors: Allen Yushark Fosu, Ndue Kanari, James Vaughan, Alexandre Changes

Abstract:

Spodumene is a lithium-bearing mineral of great interest due to increasing demand of lithium in emerging electric and hybrid vehicles. The conventional method of processing the mineral for the metal requires inevitable thermal transformation of α-phase to the β-phase followed by roasting with suitable reagents to produce lithium salts for downstream processes. The selection of appropriate reagent for roasting is key for the success of the process and overall lithium recovery. Several researches have been conducted to identify good reagents for the process efficiency, leading to sulfation, alkaline, chlorination, fluorination, and carbonizing as the methods of lithium recovery from the mineral.HSC Chemistry is a thermochemical software that can be used to model metallurgical process feasibility and predict possible reaction products prior to experimental investigation. The software was employed to investigate and explain the various reagent characteristics as employed in literature during spodumene roasting up to 1200°C. The simulation indicated that all used reagents for sulfation and alkaline were feasible in the direction of lithium salt production. Chlorination was only feasible when Cl2 and CaCl2 were used as chlorination agents but not NaCl nor KCl. Depending on the kind of lithium salt formed during carbonizing and fluorination, the process was either spontaneous or nonspontaneous throughout the temperature range investigated. The HSC software was further used to simulate and predict some promising reagents which may be equally good for roasting the mineral for efficient lithium extraction but have not yet been considered by researchers.

Keywords: thermochemical modelling, HSC chemistry software, lithium, spodumene, roasting

Procedia PDF Downloads 160
938 Fabrication Characteristics and Mechanical Behaviour of Fly Ash-Alumina Reinforced Zn-27Al Alloy Matrix Hybrid Composite Using Stir-Casting Technique

Authors: Oluwagbenga B. Fatile, Felix U. Idu, Olajide T. Sanya

Abstract:

This paper reports the viability of developing Zn-27Al alloy matrix hybrid composites reinforced with alumina, graphite and fly ash (a solid waste byproduct of coal in thermal power plants). This research work was aimed at developing low cost-high performance Zn-27Al matrix composite with low density. Alumina particulates (Al2O3), graphite added with 0, 2, 3, 4, and 5 wt% fly ash were utilized to prepare 10wt% reinforcing phase with Zn-27Al alloy as matrix using two-step stir casting method. Density measurement estimated percentage porosity, tensile testing, micro hardness measurement, and optical microscopy were used to assess the performance of the composites produced. The results show that the hardness, ultimate tensile strength, and percent elongation of the hybrid composites decrease with increase in fly ash content. The maximum decrease in hardness and ultimate tensile strength of 13.72% and 15.25% respectively were observed for composite grade containing 5wt% fly ash. The percentage elongation of composite sample without fly ash is 8.9% which is comparable with that of the sample containing 2wt% fly ash with percentage elongation of 8.8%. The fracture toughness of the fly ash containing composites was, however, superior to those of composites without fly ash with 5wt% fly ash containing composite exhibiting the highest fracture toughness. The results show that fly ash can be utilized as complementary reinforcement in ZA-27 alloy matrix composite to reduce cost.

Keywords: fly ash, hybrid composite, mechanical behaviour, stir-cast

Procedia PDF Downloads 335
937 Added Value of 3D Ultrasound Image Guided Hepatic Interventions by X Matrix Technology

Authors: Ahmed Abdel Sattar Khalil, Hazem Omar

Abstract:

Background: Image-guided hepatic interventions are integral to the management of infective and neoplastic liver lesions. Over the past decades, 2D ultrasound was used for guidance of hepatic interventions; with the recent advances in ultrasound technology, 3D ultrasound was used to guide hepatic interventions. The aim of this study was to illustrate the added value of 3D image guided hepatic interventions by x matrix technology. Patients and Methods: This prospective study was performed on 100 patients who were divided into two groups; group A included 50 patients who were managed by 2D ultrasonography probe guidance, and group B included 50 patients who were managed by 3D X matrix ultrasonography probe guidance. Thermal ablation was done for 70 patients, 40 RFA (20 by the 2D probe and 20 by the 3D x matrix probe), and 30 MWA (15 by the 2D probe and 15 by the 3D x matrix probe). Chemical ablation (PEI) was done on 20 patients (10 by the 2D probe and 10 by the 3D x matrix probe). Drainage of hepatic collections and biopsy from undiagnosed hepatic focal lesions was done on 10 patients (5 by the 2D probe and 5 by the 3D x matrix probe). Results: The efficacy of ultrasonography-guided hepatic interventions by 3D x matrix probe was higher than the 2D probe but not significantly higher, with a p-value of 0.705, 0.5428 for RFA, MWA respectively, 0.5312 for PEI, 0.2918 for drainage of hepatic collections and biopsy. The complications related to the use of the 3D X matrix probe were significantly lower than the 2D probe, with a p-value of 0.003. The timing of the procedure was shorter by the usage of 3D x matrix probe in comparison to the 2D probe with a p-value of 0.08,0.34 for RFA and PEI and significantly shorter for MWA, and drainage of hepatic collection, biopsy with a P-value of 0.02,0.001 respectively. Conclusions: 3D ultrasonography-guided hepatic interventions by  x matrix probe have better efficacy, less complication, and shorter time of procedure than the 2D ultrasonography-guided hepatic interventions.

Keywords: 3D, X matrix, 2D, ultrasonography, MWA, RFA, PEI, drainage of hepatic collections, biopsy

Procedia PDF Downloads 95
936 Evaluation of Non-Staggered Body-Fitted Grid Based Solution Method in Application to Supercritical Fluid Flows

Authors: Suresh Sahu, Abhijeet M. Vaidya, Naresh K. Maheshwari

Abstract:

The efforts to understand the heat transfer behavior of supercritical water in supercritical water cooled reactor (SCWR) are ongoing worldwide to fulfill the future energy demand. The higher thermal efficiency of these reactors compared to a conventional nuclear reactor is one of the driving forces for attracting the attention of nuclear scientists. In this work, a solution procedure has been described for solving supercritical fluid flow problems in complex geometries. The solution procedure is based on non-staggered grid. All governing equations are discretized by finite volume method (FVM) in curvilinear coordinate system. Convective terms are discretized by first-order upwind scheme and central difference approximation has been used to discretize the diffusive parts. k-ε turbulence model with standard wall function has been employed. SIMPLE solution procedure has been implemented for the curvilinear coordinate system. Based on this solution method, 3-D Computational Fluid Dynamics (CFD) code has been developed. In order to demonstrate the capability of this CFD code in supercritical fluid flows, heat transfer to supercritical water in circular tubes has been considered as a test problem. Results obtained by code have been compared with experimental results reported in literature.

Keywords: curvilinear coordinate, body-fitted mesh, momentum interpolation, non-staggered grid, supercritical fluids

Procedia PDF Downloads 130
935 Optimization the Conditions of Electrophoretic Deposition Fabrication of Graphene-Based Electrode to Consider Applications in Electro-Optical Sensors

Authors: Sepehr Lajevardi Esfahani, Shohre Rouhani, Zahra Ranjbar

Abstract:

Graphene has gained much attention owing to its unique optical and electrical properties. Charge carriers in graphene sheets (GS) carry out a linear dispersion relation near the Fermi energy and behave as massless Dirac fermions resulting in unusual attributes such as the quantum Hall effect and ambipolar electric field effect. It also exhibits nondispersive transport characteristics with an extremely high electron mobility (15000 cm2/(Vs)) at room temperature. Recently, several progresses have been achieved in the fabrication of single- or multilayer GS for functional device applications in the fields of optoelectronic such as field-effect transistors ultrasensitive sensors and organic photovoltaic cells. In addition to device applications, graphene also can serve as reinforcement to enhance mechanical, thermal, or electrical properties of composite materials. Electrophoretic deposition (EPD) is an attractive method for development of various coatings and films. It readily applied to any powdered solid that forms a stable suspension. The deposition parameters were controlled in various thicknesses. In this study, the graphene electrodeposition conditions were optimized. The results were obtained from SEM, Ohm resistance measuring technique and AFM characteristic tests. The minimum sheet resistance of electrodeposited reduced graphene oxide layers is achieved at conditions of 2 V in 10 s and it is annealed at 200 °C for 1 minute.

Keywords: electrophoretic deposition (EPD), graphene oxide (GO), electrical conductivity, electro-optical devices

Procedia PDF Downloads 190
934 Noise and Thermal Analyses of Memristor-Based Phase Locked Loop Integrated Circuit

Authors: Naheem Olakunle Adesina

Abstract:

The memristor is considered as one of the promising candidates for mamoelectronic engineering and applications. Owing to its high compatibility with CMOS, nanoscale size, and low power consumption, memristor has been employed in the design of commonly used circuits such as phase-locked loop (PLL). In this paper, we designed a memristor-based loop filter (LF) together with other components of PLL. Following this, we evaluated the noise-rejection feature of loop filter by comparing the noise levels of input and output signals of the filter. Our SPICE simulation results showed that memristor behaves like a linear resistor at high frequencies. The result also showed that loop filter blocks the high-frequency components from phase frequency detector so as to provide a stable control voltage to the voltage controlled oscillator (VCO). In addition, we examined the effects of temperature on the performance of the designed phase locked loop circuit. A critical temperature, where there is frequency drift of VCO as a result of variations in control voltage, is identified. In conclusion, the memristor is a suitable choice for nanoelectronic systems owing to a small area, low power consumption, dense nature, high switching speed, and endurance. The proposed memristor-based loop filter, together with other components of the phase locked loop, can be designed using memristive emulator and EDA tools in current CMOS technology and simulated.

Keywords: Fast Fourier Transform, hysteresis curve, loop filter, memristor, noise, phase locked loop, voltage controlled oscillator

Procedia PDF Downloads 188
933 Solid-State Synthesis Approach and Optical study of Red Emitting Phosphors Li₃BaSrxCa₁₋ₓEu₂.₇Gd₀.₃(MoO₄)₈ for White LEDs

Authors: Priyansha Sharma, Sibani Mund, Sivakumar Vaidyanathan

Abstract:

Solid-state synthesis methods were used for the synthesis of pure red emissive Li¬3BaSrxCa(1-x)Eu2.7Gd0.3(MoO4)8 (x = 0.0 to 1.0) phosphors, XRD, SEM, and FTIR spectra were used to characterize the materials, and their optical properties were thoroughly investigated. PL studies were examined at different excitations 230 nm, 275nm, 465nm, and 395 nm. All the spectra show similar emissions with the highest transition at 616 nm due to ED transition. The given phosphor Li¬3BaSr0.25Ca0.75Eu2.7Gd0.3(MoO4)8 shows the highest intensity and is thus chosen for the temperature-dependent and Quantum yield study. According to the PL investigation, the phosphor-containing Eu3+ emits red light due to the (5D0 7F2) transition. The excitation analysis shows that all of the Eu3+ activated phosphors exhibited broad absorption due to the charge transfer band, O2-Mo6+, O2-Eu3+ transition, as well as narrow absorption bands related to the Eu3+ ion's 4f-4f electronic transition. Excitation spectra show Charge transfer band at 275 nm shows the highest intensity. The primary band in the spectra refers to Eu3+ ions occupying the lattice's non-centrosymmetric location. All of the compositions are monoclinic crystal structures with space group C2/c and match with reference powder patterns. The thermal stability of the 3BaSr0.25Ca0.75Eu2.7Gd0.3(MoO4)8 phosphor was investigated at (300 k- 500 K) as well as at low temperature from (20 K to 275 K) to be utilized for red and white LED fabrication. The Decay Lifetime of all the phosphor was measured. The best phosphor was used for White and Red LED fabrication.

Keywords: PL, phosphor, quantum yield, white LED

Procedia PDF Downloads 76
932 Evaluating Mechanical Properties of CoNiCrAlY Coating from Miniature Specimen Testing at Elevated Temperature

Authors: W. Wen, G. Jackson, S. Maskill, D. G. McCartney, W. Sun

Abstract:

CoNiCrAlY alloys have been widely used as bond coats for thermal barrier coating (TBC) systems because of low cost, improved control of composition, and the feasibility to tailor the coatings microstructures. Coatings are in general very thin structures, and therefore it is impossible to characterize the mechanical responses of the materials via conventional mechanical testing methods. Due to this reason, miniature specimen testing methods, such as the small punch test technique, have been developed. This paper presents some of the recent research in evaluating the mechanical properties of the CoNiCrAlY coatings at room and high temperatures, through the use of small punch testing and the developed miniature specimen tensile testing, applicable to a range of temperature, to investigate the elastic-plastic and creep behavior as well as ductile-brittle transition temperature (DBTT) behavior. An inverse procedure was developed to derive the mechanical properties from such tests for the coating materials. A two-layer specimen test method is also described. The key findings include: 1) the temperature-dependent coating properties can be accurately determined by the miniature tensile testing within a wide range of temperature; 2) consistent DBTTs can be identified by both the SPT and miniature tensile tests (~ 650 °C); and 3) the FE SPT modelling has shown good capability of simulating the early local cracking. In general, the temperature-dependent material behaviors of the CoNiCrAlY coating has been effectively characterized using miniature specimen testing and inverse method.

Keywords: NiCoCrAlY coatings, mechanical properties, DBTT, miniature specimen testing

Procedia PDF Downloads 169
931 Microwave Assisted Solvent-free Catalytic Transesterification of Glycerol to Glycerol Carbonate

Authors: Wai Keng Teng, Gek Cheng Ngoh, Rozita Yusoff, Mohamed Kheireddine Aroua

Abstract:

As a by-product of the biodiesel industries, glycerol has been vastly generated which surpasses the market demand. It is imperative to develop an efficient glycerol valorization processes in minimizing the net energy requirement and intensifying the biodiesel production. In this study, base-catalyzed transesterification of glycerol with dimethyl carbonate using microwave irradiation as heating method to produce glycerol carbonate was conducted by varing grades of glycerol i.e. 70%, 86% and 99% purity that obtained from biodiesel plant. Metal oxide catalysts were used with varying operating parameters including reaction time, DMC/glycerol molar ratio, catalyst weight %, temperature and stirring speed. From the study on the effect of different operating parameters; it was found that the type of catalyst used has the most significant effect on the transesterification reaction. Admist the metal oxide catalysts examined, CaO gave the best performance. This study indicates the feasibility of producing glycerol carbonate using different grade of glycerol in both conventional thermal activation and microwave irradiation with CaO as catalyst. Microwave assisted transesterification (MAT) of glycerol into glycerol carbonate has demostrated itself as an energy efficient route by achieving 94.3% yield of GC at 65°C, 5 minutes reaction time, 1 wt% CaO and DMC/glycerol molar ratio of 2. The advantages of MAT transesterification route has made the direct utilization of bioglycerol from biodiesel production without the need of purification. This has marked a more economical and less-energy intensive glycerol carbonate synthesis route.

Keywords: base-catalyzed transesterification, glycerol, glycerol carbonate, microwave irradiation

Procedia PDF Downloads 288
930 Harnessing Artificial Intelligence for Early Detection and Management of Infectious Disease Outbreaks

Authors: Amarachukwu B. Isiaka, Vivian N. Anakwenze, Chinyere C. Ezemba, Chiamaka R. Ilodinso, Chikodili G. Anaukwu, Chukwuebuka M. Ezeokoli, Ugonna H. Uzoka

Abstract:

Infectious diseases continue to pose significant threats to global public health, necessitating advanced and timely detection methods for effective outbreak management. This study explores the integration of artificial intelligence (AI) in the early detection and management of infectious disease outbreaks. Leveraging vast datasets from diverse sources, including electronic health records, social media, and environmental monitoring, AI-driven algorithms are employed to analyze patterns and anomalies indicative of potential outbreaks. Machine learning models, trained on historical data and continuously updated with real-time information, contribute to the identification of emerging threats. The implementation of AI extends beyond detection, encompassing predictive analytics for disease spread and severity assessment. Furthermore, the paper discusses the role of AI in predictive modeling, enabling public health officials to anticipate the spread of infectious diseases and allocate resources proactively. Machine learning algorithms can analyze historical data, climatic conditions, and human mobility patterns to predict potential hotspots and optimize intervention strategies. The study evaluates the current landscape of AI applications in infectious disease surveillance and proposes a comprehensive framework for their integration into existing public health infrastructures. The implementation of an AI-driven early detection system requires collaboration between public health agencies, healthcare providers, and technology experts. Ethical considerations, privacy protection, and data security are paramount in developing a framework that balances the benefits of AI with the protection of individual rights. The synergistic collaboration between AI technologies and traditional epidemiological methods is emphasized, highlighting the potential to enhance a nation's ability to detect, respond to, and manage infectious disease outbreaks in a proactive and data-driven manner. The findings of this research underscore the transformative impact of harnessing AI for early detection and management, offering a promising avenue for strengthening the resilience of public health systems in the face of evolving infectious disease challenges. This paper advocates for the integration of artificial intelligence into the existing public health infrastructure for early detection and management of infectious disease outbreaks. The proposed AI-driven system has the potential to revolutionize the way we approach infectious disease surveillance, providing a more proactive and effective response to safeguard public health.

Keywords: artificial intelligence, early detection, disease surveillance, infectious diseases, outbreak management

Procedia PDF Downloads 68
929 Design and Analysis of Crankshaft Using Al-Al2O3 Composite Material

Authors: Palanisamy Samyraj, Sriram Yogesh, Kishore Kumar, Vaishak Cibi

Abstract:

The project is about design and analysis of crankshaft using Al-Al2O3 composite material. The project is mainly concentrated across two areas one is to design and analyze the composite material, and the other is to work on the practical model. Growing competition and the growing concern for the environment has forced the automobile manufactures to meet conflicting demands such as increased power and performance, lower fuel consumption, lower pollution emission and decrease noise and vibration. Metal matrix composites offer good properties for a number of automotive components. The work reports on studies on Al-Al2O3 as the possible alternative material for a crank shaft. These material have been considered for use in various components in engines due to the high amount of strength to weight ratio. These materials are significantly taken into account for their light weight, high strength, high specific modulus, low co-efficient of thermal expansion, good air resistance properties. In addition high specific stiffness, superior high temperature, mechanical properties and oxidation resistance of Al2O3 have developed some advanced materials that are Al-Al2O3 composites. Crankshafts are used in automobile industries. Crankshaft is connected to the connecting rod for the movement of the piston which is subjected to high stresses which cause the wear of the crankshaft. Hence using composite material in crankshaft gives good fuel efficiency, low manufacturing cost, less weight.

Keywords: metal matrix composites, Al-Al2O3, high specific modulus, strength to weight ratio

Procedia PDF Downloads 277
928 Analysis of Accurate Direct-Estimation of the Maximum Power Point and Thermal Characteristics of High Concentration Photovoltaic Modules

Authors: Yan-Wen Wang, Chu-Yang Chou, Jen-Cheng Wang, Min-Sheng Liao, Hsuan-Hsiang Hsu, Cheng-Ying Chou, Chen-Kang Huang, Kun-Chang Kuo, Joe-Air Jiang

Abstract:

Performance-related parameters of high concentration photovoltaic (HCPV) modules (e.g. current and voltage) are required when estimating the maximum power point using numerical and approximation methods. The maximum power point on the characteristic curve for a photovoltaic module varies when temperature or solar radiation is different. It is also difficult to estimate the output performance and maximum power point (MPP) due to the special characteristics of HCPV modules. Based on the p-n junction semiconductor theory, a brand new and simple method is presented in this study to directly evaluate the MPP of HCPV modules. The MPP of HCPV modules can be determined from an irradiated I-V characteristic curve, because there is a non-linear relationship between the temperature of a solar cell and solar radiation. Numerical simulations and field tests are conducted to examine the characteristics of HCPV modules during maximum output power tracking. The performance of the presented method is evaluated by examining the dependence of temperature and irradiation intensity on the MPP characteristics of HCPV modules. These results show that the presented method allows HCPV modules to achieve their maximum power and perform power tracking under various operation conditions. A 0.1% error is found between the estimated and the real maximum power point.

Keywords: energy performance, high concentrated photovoltaic, maximum power point, p-n junction semiconductor

Procedia PDF Downloads 585
927 Modelling the Tensile Behavior of Plasma Sprayed Freestanding Yttria Stabilized Zirconia Coatings

Authors: Supriya Patibanda, Xiaopeng Gong, Krishna N. Jonnalagadda, Ralph Abrahams

Abstract:

Yttria stabilized zirconia (YSZ) is used as a top coat in thermal barrier coatings in high-temperature turbine/jet engine applications. The mechanical behaviour of YSZ depends on the microstructural features like crack density and porosity, which are a result of coating method. However, experimentally ascertaining their individual effect is difficult due to the inherent challenges involved like material synthesis and handling. The current work deals with the development of a phenomenological model to replicate the tensile behavior of air plasma sprayed YSZ obtained from experiments. Initially, uniaxial tensile experiments were performed on freestanding YSZ coatings of ~300 µm thick for different crack densities and porosities. The coatings exhibited a nonlinear behavior and also a huge variation in strength values. With the obtained experimental tensile curve as a base and crack density and porosity as prime variables, a phenomenological model was developed using ABAQUS interface with new user material defined employing VUMAT sub routine. The relation between the tensile stress and the crack density was empirically established. Further, a parametric study was carried out to investigate the effect of the individual features on the non-linearity in these coatings. This work enables to generate new coating designs by varying the key parameters and predicting the mechanical properties with the help of a simulation, thereby minimizing experiments.

Keywords: crack density, finite element method, plasma sprayed coatings, VUMAT

Procedia PDF Downloads 149
926 Surface Temperature of Asphalt Pavements with Colored Cement-Based Grouting Materials Containing Ceramic Waste Powder and Zeolite

Authors: H. Higashiyama, M. Sano, F. Nakanishi, M. Sugiyama, M. Kawanishi, S. Tsukuma

Abstract:

The heat island phenomenon and extremely hot summer climate are becoming environmental problems in Japan. Cool pavements reduce the surface temperature compared to conventional asphalt pavements in the hot summer climate and improve the thermal environment in the urban area. The authors have studied cement–based grouting materials poured into voids in porous asphalt pavements to reduce the road surface temperature. For the cement–based grouting material, cement, ceramic waste powder, and natural zeolite were used. This cement–based grouting material developed reduced the road surface temperature by 20 °C or more in the hot summer season. Considering the urban landscape, this study investigates the effect of surface temperature reduction of colored cement–based grouting materials containing pigments poured into voids in porous asphalt pavements by measuring the surface temperature of asphalt pavements outdoors. The yellow color performed the same as the original cement–based grouting material containing no pigment and was thermally better performance than the other color. However, all the tested cement–based grouting materials performed well for reducing the surface temperature and for creating the urban landscape.

Keywords: ceramic waste powder, natural zeolite, road surface temperature, asphalt pavement, urban landscape

Procedia PDF Downloads 316
925 Towards the Enhancement of Thermoelectric Properties by Controlling the Thermoelectrical Nature of Grain Boundaries in Polycrystalline Materials

Authors: Angel Fabian Mijangos, Jaime Alvarez Quintana

Abstract:

Waste heat occurs in many areas of daily life because world’s energy consumption is inefficient. In general, generating 1 watt of power requires about 3 watt of energy input and involves dumping into the environment the equivalent of about 2 watts of power in the form of heat. Therefore, an attractive and sustainable solution to the energy problem would be the development of highly efficient thermoelectric devices which could help to recover this waste heat. This work presents the influence on the thermoelectric properties of metallic, semiconducting, and dielectric nanoparticles added into the grain boundaries of polycrystalline antimony (Sb) and bismuth (Bi) matrixes in order to obtain p- and n-type thermoelectric materials, respectively, by hot pressing methods. Results show that thermoelectric properties are significantly affected by the electrical and thermal nature as well as concentration of nanoparticles. Nevertheless, by optimizing the amount of the nanoparticles on the grain boundaries, an oscillatory behavior in ZT as function of the concentration of the nanoscale constituents is present. This effect is due to energy filtering mechanism which module the quantity of charge transport in the system and affects thermoelectric properties. Accordingly, a ZTmax can be accomplished through the addition of the appropriate amount of nanoparticles into the grain boundaries region. In this case, till three orders of amelioration on ZT is reached in both systems compared with the reference sample of each one. This approach paves the way to pursuit high performance thermoelectric materials in a simple way and opens a new route towards the enhancement of the thermoelectric figure of merit.

Keywords: energy filtering, grain boundaries, thermoelectric, nanostructured materials

Procedia PDF Downloads 255
924 Dielectric Properties of Thalium Selenide Thin Films at Radio Wave Frequencies

Authors: Onur Potok, Deniz Deger, Kemal Ulutas, Sahin Yakut, Deniz Bozoglu

Abstract:

Thalium Selenide (TlSe) is used for optoelectronic devices, pressure sensitive detectors, and gamma-ray detectors. The TlSe samples were grown as large single crystals using the Stockbarger-Bridgman method. The thin films, in the form of Al/TlSe/Al, were deposited on the microscope slide in different thicknesses (300-3000 Å) using thermal evaporation technique at 10-5 Torr. The dielectric properties of (TlSe) thin films, capacitance (C) and dielectric loss factor (tanδ), were measured in a frequency range of 10-105 Hz, and temperatures between 213K and 393K via Broadband Dielectric Spectroscopy analyzer. The dielectric constant (ε’) and the dielectric loss (ε’’) of the thin films were derived from measured parameters (C and tanδ). These results showed that the dielectric properties of TlSe thin films are frequency and temperature dependent. The capacitance and the dielectric constant decrease with increasing frequency and decreasing temperature. The dielectric loss of TlSe thin films decreases with increasing frequency, on the other hand, they increase with increasing temperature and increasing thicknesses. There is two relaxation region in the investigated frequency and temperature interval. These regions can be called as low and high-frequency dispersion regions. Low-frequency dispersion region can be attributed to the polarization of the main part of the chain structure of TlSe while high-frequency dispersion region can be attributed to the polarization of side parts of the structure.

Keywords: thin films, thallium selenide, dielectric spectroscopy, binary compounds

Procedia PDF Downloads 154
923 Understanding the Impact of Out-of-Sequence Thrust Dynamics on Earthquake Mitigation: Implications for Hazard Assessment and Disaster Planning

Authors: Rajkumar Ghosh

Abstract:

Earthquakes pose significant risks to human life and infrastructure, highlighting the importance of effective earthquake mitigation strategies. Traditional earthquake modelling and mitigation efforts have largely focused on the primary fault segments and their slip behaviour. However, earthquakes can exhibit complex rupture dynamics, including out-of-sequence thrust (OOST) events, which occur on secondary or subsidiary faults. This abstract examines the impact of OOST dynamics on earthquake mitigation strategies and their implications for hazard assessment and disaster planning. OOST events challenge conventional seismic hazard assessments by introducing additional fault segments and potential rupture scenarios that were previously unrecognized or underestimated. Consequently, these events may increase the overall seismic hazard in affected regions. The study reviews recent case studies and research findings that illustrate the occurrence and characteristics of OOST events. It explores the factors contributing to OOST dynamics, such as stress interactions between fault segments, fault geometry, and mechanical properties of fault materials. Moreover, it investigates the potential triggers and precursory signals associated with OOST events to enhance early warning systems and emergency response preparedness. The abstract also highlights the significance of incorporating OOST dynamics into seismic hazard assessment methodologies. It discusses the challenges associated with accurately modelling OOST events, including the need for improved understanding of fault interactions, stress transfer mechanisms, and rupture propagation patterns. Additionally, the abstract explores the potential for advanced geophysical techniques, such as high-resolution imaging and seismic monitoring networks, to detect and characterize OOST events. Furthermore, the abstract emphasizes the practical implications of OOST dynamics for earthquake mitigation strategies and urban planning. It addresses the need for revising building codes, land-use regulations, and infrastructure designs to account for the increased seismic hazard associated with OOST events. It also underscores the importance of public awareness campaigns to educate communities about the potential risks and safety measures specific to OOST-induced earthquakes. This sheds light on the impact of out-of-sequence thrust dynamics in earthquake mitigation. By recognizing and understanding OOST events, researchers, engineers, and policymakers can improve hazard assessment methodologies, enhance early warning systems, and implement effective mitigation measures. By integrating knowledge of OOST dynamics into urban planning and infrastructure development, societies can strive for greater resilience in the face of earthquakes, ultimately minimizing the potential for loss of life and infrastructure damage.

Keywords: earthquake mitigation, out-of-sequence thrust, seismic, satellite imagery

Procedia PDF Downloads 90
922 Development of Stability Indicating Method and Characterization of Degradation Impurity of Nirmaltrelvir in Its Self-Emulsifying Drug Delivery System

Authors: Ravi Patel, Ravisinh Solanki, Dignesh Khunt

Abstract:

A stability-indicating reverse phase high performance liquid chromatography (RP-HPLC) method was developed and validated for estimating Nirmatrelvir in its self-emulsifying drug delivery system (SEDDS). The separation of Nirmatrelvir and its degradation products was accomplished by employing an Agilent Zorbax Eclipse plus C18 (250 mm x 4.6 mm, 5 µm) column, through which the mobile phase 5 mM phosphate buffer (pH 4.0) as mobile phase A and Acetonitrile as mobile phase B in a ratio of (40:60 % v/v) was pumped at a flow rate of 1.0 mL/min, through the HPLC system. Chromatographic separation and elution were monitored by a photo-diode array detector at 210 nm. Stress studies have been employed to evaluate this method's ability to indicate stability. Nirmatrelvir was exposed to several stress conditions, such as acid, alkali, oxidative, photolytic, and thermal degradations. Significant degradation was observed during acid and alkali hydrolysis, and the resulting degradation product was successfully separated from the Nirmatrelvir peak, preventing any interference. Furthermore, the primary degradant produced under alkali degradation conditions was identified using UPLC-ESI-TQ-MS/MS. The method was validated in accordance with the International Council on Harmonization (ICH) and found to be selective, precise, accurate, linear, and robust. The apparent permeability of Nirmatrelvir SEDDS was 4.20 ± 0.21×10-6 cm/sec, and the average proportion of free drug recovered was 0.5%. The method developed in this study was feasible and accurate for routine quality control evaluation of Nirmatrelvir SEDDS.

Keywords: Nirmatrelvir, SEDDS, degradation study, HPLC, LC-MS/MS

Procedia PDF Downloads 19
921 Catalytic Pyrolysis of Barley Straw for the Production of Fuels and Chemicals

Authors: Funda Ates

Abstract:

Primary energy sources, such as petroleum, coal and natural gas are principle responsible of world’s energy consumption. However, the rapid worldwide increase in the depletion of these energy sources is remarkable. In addition to this, they have damaging environmentally effect. Renewable energy sources are capable of providing a considerable fraction of World energy demand in this century. Biomass is one of the most abundant and utilized sources of renewable energy in the world. It can be converted into commercial fuels, suitable to substitute for fossil fuels. A high number of biomass types can be converted through thermochemical processes into solid, liquid or gaseous fuels. Pyrolysis is the thermal decomposition of biomass in the absence of air or oxygen. In this study, barley straw has been investigated as an alternative feedstock to obtain fuels and chemicals via pyrolysis in fixed-bed reactor. The influence of pyrolysis temperature in the range 450–750 °C as well as the catalyst effects on the products was investigated and the obtained results were compared. The results indicated that a maximum oil yield of 20.4% was obtained at a moderate temperature of 550 °C. Oil yield decreased by using catalyst. Pyrolysis oils were examined by using instrumental analysis and GC/MS. Analyses revealed that the pyrolysis oils were chemically very heterogeneous at all temperatures. It was determined that the most abundant compounds composing the bio-oil were phenolics. Catalyst decreased the reaction temperature. Most of the components obtained using a catalyst at moderate temperatures was close to those obtained at high temperatures without using a catalyst. Moreover, the use of a catalyst also decreased the amount of oxygenated compounds produced.

Keywords: Barley straw, pyrolysis, catalyst, phenolics

Procedia PDF Downloads 226