Search results for: automobile manufacturing industries
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3620

Search results for: automobile manufacturing industries

140 Biodegradation of Chlorophenol Derivatives Using Macroporous Material

Authors: Dmitriy Berillo, Areej K. A. Al-Jwaid, Jonathan L. Caplin, Andrew Cundy, Irina Savina

Abstract:

Chlorophenols (CPs) are used as a precursor in the production of higher CPs and dyestuffs, and as a preservative. Contamination by CPs of the ground water is located in the range from 0.15-100mg/L. The EU has set maximum concentration limits for pesticides and their degradation products of 0.1μg/L and 0.5μg/L, respectively. People working in industries which produce textiles, leather products, domestic preservatives, and petrochemicals are most heavily exposed to CPs. The International Agency for Research on Cancers categorized CPs as potential human carcinogens. Existing multistep water purification processes for CPs such as hydrogenation, ion exchange, liquid-liquid extraction, adsorption by activated carbon, forward and inverse osmosis, electrolysis, sonochemistry, UV irradiation, and chemical oxidation are not always cost effective and can cause the formation of even more toxic or mutagenic derivatives. Bioremediation of CPs derivatives utilizing microorganisms results in 60 to 100% decontamination efficiency and the process is more environmentally-friendly compared with existing physico-chemical methods. Microorganisms immobilized onto a substrate show many advantages over free bacteria systems, such as higher biomass density, higher metabolic activity, and resistance to toxic chemicals. They also enable continuous operation, avoiding the requirement for biomass-liquid separation. The immobilized bacteria can be reused several times, which opens the opportunity for developing cost-effective processes for wastewater treatment. In this study, we develop a bioremediation system for CPs based on macroporous materials, which can be efficiently used for wastewater treatment. Conditions for the preparation of the macroporous material from specific bacterial strains (Pseudomonas mendocina and Rhodococus koreensis) were optimized. The concentration of bacterial cells was kept constant; the difference was only the type of cross-linking agents used e.g. glutaraldehyde, novel polymers, which were utilized at concentrations of 0.5 to 1.5%. SEM images and rheology analysis of the material indicated a monolithic macroporous structure. Phenol was chosen as a model system to optimize the function of the cryogel material and to estimate its enzymatic activity, since it is relatively less toxic and harmful compared to CPs. Several types of macroporous systems comprising live bacteria were prepared. The viability of the cross-linked bacteria was checked using Live/Dead BacLight kit and Laser Scanning Confocal Microscopy, which revealed the presence of viable bacteria with the novel cross-linkers, whereas the control material cross-linked with glutaraldehyde(GA), contained mostly dead cells. The bioreactors based on bacteria were used for phenol degradation in batch mode at an initial concentration of 50mg/L, pH 7.5 and a temperature of 30°C. Bacterial strains cross-linked with GA showed insignificant ability to degrade phenol and for one week only, but a combination of cross-linking agents illustrated higher stability, viability and the possibility to be reused for at least five weeks. Furthermore, conditions for CPs degradation will be optimized, and the chlorophenol degradation rates will be compared to those for phenol. This is a cutting-edge bioremediation approach, which allows the purification of waste water from sustainable compounds without a separation step to remove free planktonic bacteria. Acknowledgments: Dr. Berillo D. A. is very grateful to Individual Fellowship Marie Curie Program for funding of the research.

Keywords: bioremediation, cross-linking agents, cross-linked microbial cell, chlorophenol degradation

Procedia PDF Downloads 197
139 A Self-Heating Gas Sensor of SnO2-Based Nanoparticles Electrophoretic Deposited

Authors: Glauco M. M. M. Lustosa, João Paulo C. Costa, Sonia M. Zanetti, Mario Cilense, Leinig Antônio Perazolli, Maria Aparecida Zaghete

Abstract:

The contamination of the environment has been one of the biggest problems of our time, mostly due to developments of many industries. SnO2 is an n-type semiconductor with band gap about 3.5 eV and has its electrical conductivity dependent of type and amount of modifiers agents added into matrix ceramic during synthesis process, allowing applications as sensing of gaseous pollutants on ambient. The chemical synthesis by polymeric precursor method consists in a complexation reaction between tin ion and citric acid at 90 °C/2 hours and subsequently addition of ethyleneglycol for polymerization at 130 °C/2 hours. It also prepared polymeric resin of zinc, cobalt and niobium ions. Stoichiometric amounts of the solutions were mixed to obtain the systems (Zn, Nb)-SnO2 and (Co, Nb) SnO2 . The metal immobilization reduces its segregation during the calcination resulting in a crystalline oxide with high chemical homogeneity. The resin was pre-calcined at 300 °C/1 hour, milled in Atritor Mill at 500 rpm/1 hour, and then calcined at 600 °C/2 hours. X-Ray Diffraction (XDR) indicated formation of SnO2 -rutile phase (JCPDS card nº 41-1445). The characterization by Scanning Electron Microscope of High Resolution showed spherical ceramic powder nanostructured with 10-20 nm of diameter. 20 mg of SnO2 -based powder was kept in 20 ml of isopropyl alcohol and then taken to an electrophoretic deposition (EPD) system. The EPD method allows control the thickness films through the voltage or current applied in the electrophoretic cell and by the time used for deposition of ceramics particles. This procedure obtains films in a short time with low costs, bringing prospects for a new generation of smaller size devices with easy integration technology. In this research, films were obtained in an alumina substrate with interdigital electrodes after applying 2 kV during 5 and 10 minutes in cells containing alcoholic suspension of (Zn, Nb)-SnO2 and (Co, Nb) SnO2 of powders, forming a sensing layer. The substrate has designed integrated micro hotplates that provide an instantaneous and precise temperature control capability when a voltage is applied. The films were sintered at 900 and 1000 °C in a microwave oven of 770 W, adapted by the research group itself with a temperature controller. This sintering is a fast process with homogeneous heating rate which promotes controlled growth of grain size and also the diffusion of modifiers agents, inducing the creation of intrinsic defects which will change the electrical characteristics of SnO2 -based powders. This study has successfully demonstrated a microfabricated system with an integrated micro-hotplate for detection of CO and NO2 gas at different concentrations and temperature, with self-heating SnO2 - based nanoparticles films, being suitable for both industrial process monitoring and detection of low concentrations in buildings/residences in order to safeguard human health. The results indicate the possibility for development of gas sensors devices with low power consumption for integration in portable electronic equipment with fast analysis. Acknowledgments The authors thanks to the LMA-IQ for providing the FEG-SEM images, and the financial support of this project by the Brazilian research funding agencies CNPq, FAPESP 2014/11314-9 and CEPID/CDMF- FAPESP 2013/07296-2.

Keywords: chemical synthesis, electrophoretic deposition, self-heating, gas sensor

Procedia PDF Downloads 259
138 Electret: A Solution of Partial Discharge in High Voltage Applications

Authors: Farhina Haque, Chanyeop Park

Abstract:

The high efficiency, high field, and high power density provided by wide bandgap (WBG) semiconductors and advanced power electronic converter (PEC) topologies enabled the dynamic control of power in medium to high voltage systems. Although WBG semiconductors outperform the conventional Silicon based devices in terms of voltage rating, switching speed, and efficiency, the increased voltage handling properties, high dv/dt, and compact device packaging increase local electric fields, which are the main causes of partial discharge (PD) in the advanced medium and high voltage applications. PD, which occurs actively in voids, triple points, and airgaps, is an inevitable dielectric challenge that causes insulation and device aging. The aging process accelerates over time and eventually leads to the complete failure of the applications. Hence, it is critical to mitigating PD. Sharp edges, airgaps, triple points, and bubbles are common defects that exist in any medium to high voltage device. The defects are created during the manufacturing processes of the devices and are prone to high-electric-field-induced PD due to the low permittivity and low breakdown strength of the gaseous medium filling the defects. A contemporary approach of mitigating PD by neutralizing electric fields in high power density applications is introduced in this study. To neutralize the locally enhanced electric fields that occur around the triple points, airgaps, sharp edges, and bubbles, electrets are developed and incorporated into high voltage applications. Electrets are electric fields emitting dielectric materials that are embedded with electrical charges on the surface and in bulk. In this study, electrets are fabricated by electrically charging polyvinylidene difluoride (PVDF) films based on the widely used triode corona discharge method. To investigate the PD mitigation performance of the fabricated electret films, a series of PD experiments are conducted on both the charged and uncharged PVDF films under square voltage stimuli that represent PWM waveform. In addition to the use of single layer electrets, multiple layers of electrets are also experimented with to mitigate PD caused by higher system voltages. The electret-based approach shows great promise in mitigating PD by neutralizing the local electric field. The results of the PD measurements suggest that the development of an ultimate solution to the decades-long dielectric challenge would be possible with further developments in the fabrication process of electrets.

Keywords: electrets, high power density, partial discharge, triode corona discharge

Procedia PDF Downloads 184
137 An Investigation on MgAl₂O₄ Based Mould System in Investment Casting Titanium Alloy

Authors: Chen Yuan, Nick Green, Stuart Blackburn

Abstract:

The investment casting process offers a great freedom of design combined with the economic advantage of near net shape manufacturing. It is widely used for the production of high value precision cast parts in particularly in the aerospace sector. Various combinations of materials have been used to produce the ceramic moulds, but most investment foundries use a silica based binder system in conjunction with fused silica, zircon, and alumino-silicate refractories as both filler and coarse stucco materials. However, in the context of advancing alloy technologies, silica based systems are struggling to keep pace, especially when net-shape casting titanium alloys. Study has shown that the casting of titanium based alloys presents considerable problems, including the extensive interactions between the metal and refractory, and the majority of metal-mould interaction is due to reduction of silica, present as binder and filler phases, by titanium in the molten state. Cleaner, more refractory systems are being devised to accommodate these changes. Although yttria has excellent chemical inertness to titanium alloy, it is not very practical in a production environment combining high material cost, short slurry life, and poor sintering properties. There needs to be a cost effective solution to these issues. With limited options for using pure oxides, in this work, a silica-free magnesia spinel MgAl₂O₄ was used as a primary coat filler and alumina as a binder material to produce facecoat in the investment casting mould. A comparison system was also studied with a fraction of the rare earth oxide Y₂O₃ adding into the filler to increase the inertness. The stability of the MgAl₂O₄/Al₂O₃ and MgAl₂O₄/Y₂O₃/Al₂O₃ slurries was assessed by tests, including pH, viscosity, zeta-potential and plate weight measurement, and mould properties such as friability were also measured. The interaction between the face coat and titanium alloy was studied by both a flash re-melting technique and a centrifugal investment casting method. The interaction products between metal and mould were characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS). The depth of the oxygen hardened layer was evaluated by micro hardness measurement. Results reveal that introducing a fraction of Y₂O₃ into magnesia spinel can significantly increase the slurry life and reduce the thickness of hardened layer during centrifugal casting.

Keywords: titanium alloy, mould, MgAl₂O₄, Y₂O₃, interaction, investment casting

Procedia PDF Downloads 90
136 Environmental Impact of Autoclaved Aerated Concrete in Modern Construction: A Case Study from the New Egyptian Administrative Capital

Authors: Esraa A. Khalil, Mohamed N. AbouZeid

Abstract:

Building materials selection is critical for the sustainability of any project. The choice of building materials has a huge impact on the built environment and cost of projects. Building materials emit huge amount of carbon dioxide (CO2) due to the use of cement as a basic component in the manufacturing process and as a binder, which harms our environment. Energy consumption from buildings has increased in the last few years; a huge amount of energy is being wasted from using unsustainable building and finishing materials, as well as from the process of heating and cooling of buildings. In addition, the construction sector in Egypt is taking a good portion of the economy; however, there is a lack of awareness of buildings environmental impacts on the built environment. Using advanced building materials and different wall systems can help in reducing heat consumption, the project’s initial and long-term costs, and minimizing the environmental impacts. Red Bricks is one of the materials that are being used widely in Egypt. There are many other types of bricks such as Autoclaved Aerated Concrete (AAC); however, the use of Red Bricks is dominating the construction industry due to its affordability and availability. This research focuses on the New Egyptian Administrative Capital as a case study to investigate the potential of the influence of using different wall systems such as AAC on the project’s cost and the environment. The aim of this research is to conduct a comparative analysis between the traditional and most commonly used bricks in Egypt, which is Red Bricks, and AAC wall systems. Through an economic and environmental study, the difference between the two wall systems will be justified to encourage the utilization of uncommon techniques in the construction industry to build more affordable, energy efficient and sustainable buildings. The significance of this research is to show the potential of using AAC in the construction industry and its positive influences. The study analyzes the factors associated with choosing suitable building materials for different projects according to the need and criteria of each project and its nature without harming the environment and wasting materials that could be saved or recycled. The New Egyptian Administrative Capital is considered as the country’s new heart, where ideas regarding energy savings and environmental benefits are taken into consideration. Meaning that, Egypt is taking good steps to move towards more sustainable construction. According to the analysis and site visits, there is a potential in reducing the initial costs of buildings by 12.1% and saving energy by using different techniques up to 25%. Interviews with the mega structures project engineers and managers reveal that they are more open to introducing sustainable building materials that will help in saving the environment and moving towards green construction as well as to studying more effective techniques for energy conservation.

Keywords: AAC blocks, building material, environmental impact, modern construction, new Egyptian administrative capital

Procedia PDF Downloads 103
135 Working Capital Management Practices in Small Businesses in Victoria

Authors: Ranjith Ihalanayake, Lalith Seelanatha, John Breen

Abstract:

In this study, we explored the current working capital management practices as applied in small businesses in Victoria, filling an existing theoretical and empirical gap in literature in general and in Australia in particular. Amidst the current global competitive and dynamic environment, the short term insolvency of small businesses is very critical for the long run survival. A firm’s short-term insolvency is dependent on the availability of sufficient working capital for feeding day to day operational activities. Therefore, given the reliance for short-term funding by small businesses, it has been recognized that the efficient management of working capital is crucial in respect of the prosperity and survival of such firms. Against this background, this research was an attempt to understand the current working capital management strategies and practices used by the small scale businesses. To this end, we conducted an internet survey among 220 small businesses operating in Victoria, Australia. The survey results suggest that the majority of respondents are owner-manager (73%) and male (68%). Respondents participated in this survey mostly have a degree (46%). About a half of respondents are more than 50 years old. Most of respondents (64%) have business management experience more than ten years. Similarly, majority of them (63%) had experience in the area of their current business. Types of business of the respondents are: Private limited company (41%), sole proprietorship (37%), and partnership (15%). In addition, majority of the firms are service companies (63%), followed by retailed companies (25%), and manufacturing (17%). Size of companies of this survey varies, 32% of them have annual sales $100,000 or under, while 22% of them have revenue more than $1,000,000 every year. In regards to the total assets, majority of respondents (43%) have total assets $100,000 or less while 20% of respondents have total assets more than $1,000,000. In regards to WCMPs, results indicate that almost 70% of respondents mentioned that they are responsible for managing their business working capital. The survey shows that majority of respondents (65.5%) use their business experience to identify the level of investment in working capital, compared to 22% of respondents who seek advice from professionals. The other 10% of respondents, however, follow industry practice to identify the level of working capital. The survey also shows that more than a half of respondents maintain good liquidity financial position for their business by having accounts payable less than accounts receivable. This study finds that majority of small business companies in western area of Victoria have a WCM policy but only about 8 % of them have a formal policy. Majority of the businesses (52.7%) have an informal policy while 39.5% have no policy. Of those who have a policy, 44% described their working capital management policies as a compromise policy while 35% described their policy as a conservative policy. Only 6% of respondents apply aggressive policy. Overall the results indicate that the small businesses pay less attention into the management of working capital of their business despite its significance in the successful operation of the business. This approach may be adopted during favourable economic times. However, during relatively turbulent economic conditions, such an approach could lead to greater financial difficulties i.e. short-term financial insolvency.

Keywords: small business, working capital management, Australia, sufficient, financial insolvency

Procedia PDF Downloads 336
134 A Village Transformed as Census Town a Case Study of Village Nilpur, Tehsil Rajpura, District Patiala (Punjab, India)

Authors: Preetinder Kaur Randhawa

Abstract:

The rural areas can be differentiated from urban areas in terms of their economic activities as rural areas are primarily involved in agricultural sector and provide natural resources whereas, urban areas are primarily involved in infrastructure sector and provide manufacturing services. Census of India defines a Census Town as an area which satisfies the following three criteria i.e. population exceeds 5000, at least 75 percent of male population engaged in non-agricultural sector and minimum population density of 400 persons per square kilometers. Urban areas can be attributed to the improvement of transport facilities, the massive decline in agricultural, especially male workers and workers shift to non-agricultural activities. This study examines the pattern, process of rural areas transformed into urban areas/ census town. The study has analyzed the various factors which are responsible for land transformation as well as the socio-economic transformation of the village population. Nilpur (CT) which belongs to Rajpura Tehsil in Patiala district, Punjab has been selected for the present study. The methodology adopted includes qualitative and quantitative research design, methods based on secondary data. Secondary data has been collected from unpublished revenue record office of Rajpura Tehsil and Primary Census Abstract of Patiala district, Census of India 2011. The results have showed that rate of transformation of a village to census town in Rajpura Tehsil has been one of highest among other villages. The census town has evolved through the evolutionary process of human settlement which grows in size, population and physical development. There must be a complete economic transformation and attainment of high level of technological development. Urban design and construction of buildings and infrastructure can be carried out better and faster and can be used to aid human habitation with the enhancement of quality of life. The study has concluded that in the selected area i.e Nilpur (CT) literacy rate has increased to 72.1 percent in year 2011 from 67.6 percent in year 2001. Similarly non-agricultural work force has increased to 95.2 percent in year 2011 from 81.1 percent in year 2001. It is very much clear that the increased literacy rate has put a positive impact on the involvement of non-agricultural workers have enhanced. The study has concluded that rural-urban linkages are important tools for understanding complexities of people livelihood and their strategies which involve mobility migration and the diversification of income sources and occupations.

Keywords: Census Town, India, Nilpur, Punjab

Procedia PDF Downloads 234
133 Isosorbide Bis-Methyl Carbonate: Opportunities for an Industrial Model Based on Biomass

Authors: Olga Gomez De Miranda, Jose R. Ochoa-Gomez, Stefaan De Wildeman, Luciano Monsegue, Soraya Prieto, Leire Lorenzo, Cristina Dineiro

Abstract:

The chemical industry is facing a new revolution. As long as processes based on the exploitation of fossil resources emerged with force in the XIX century, Society currently demands a new radical change that will lead to the complete and irreversible implementation of a circular sustainable economic model. The implementation of biorefineries will be essential for this. There, renewable raw materials as sugars and other biomass resources are exploited for the development of new materials that will partially replace their petroleum-derived homologs in a safer, and environmentally more benign approach. Isosorbide, (1,4:3,6-dianhydro-d-glucidol) is a primary bio-based derivative obtained from the plant (poly) saccharides and a very interesting example of a useful chemical produced in biorefineries. It can, in turn, be converted to other secondary monomers as isosorbide bis-methyl carbonate (IBMC), whose main field of application can be as a key biodegradable intermediary substitute of bisphenol-A in the manufacture of polycarbonates, or as an alternative to the toxic isocyanates in the synthesis of new polyurethanes (non-isocyanate polyurethanes) both with a huge application market. New products will present advantageous mechanical or optical properties, as well as improved behavior in non-toxicity and biodegradability aspects in comparison to their petro-derived alternatives. A robust production process of IBMC, a biomass-derived chemical, is here presented. It can be used with different raw material qualities using dimethyl carbonate (DMC) as both co-reactant and solvent. It consists of the transesterification of isosorbide with DMC under soft operational conditions, using different basic catalysts, always active with the isosorbide characteristics and purity. Appropriate isolation processes have been also developed to obtain crude IBMC yields higher than 90%, with oligomers production lower than 10%, independently of the quality of the isosorbide considered. All of them are suitable to be used in polycondensation reactions for polymers obtaining. If higher qualities of IBMC are needed, a purification treatment based on nanofiltration membranes has been also developed. The IBMC reaction-isolation conditions established in the laboratory have been successfully modeled using appropriate software programs and moved to a pilot-scale (production of 100 kg of IBMC). It has been demonstrated that a highly efficient IBMC production process able to be up-scaled under suitable market conditions has been obtained. Operational conditions involved the production of IBMC involve soft temperature and energy needs, no additional solvents, and high operational efficiency. All of them are according to green manufacturing rules.

Keywords: biomass, catalyst, isosorbide bis-methyl carbonate, polycarbonate, polyurethane, transesterification

Procedia PDF Downloads 112
132 Industrial Waste Multi-Metal Ion Exchange

Authors: Thomas S. Abia II

Abstract:

Intel Chandler Site has internally developed its first-of-kind (FOK) facility-scale wastewater treatment system to achieve multi-metal ion exchange. The process was carried out using a serial process train of carbon filtration, pH / ORP adjustment, and cationic exchange purification to treat dilute metal wastewater (DMW) discharged from a substrate packaging factory. Spanning a trial period of 10 months, a total of 3,271 samples were collected and statistically analyzed (average baseline + standard deviation) to evaluate the performance of a 95-gpm, multi-reactor continuous copper ion exchange treatment system that was consequently retrofitted for manganese ion exchange to meet environmental regulations. The system is also equipped with an inline acid and hot caustic regeneration system to rejuvenate exhausted IX resins and occasionally remove surface crud. Data generated from lab-scale studies was transferred to system operating modifications following multiple trial-and-error experiments. Despite the DMW treatment system failing to meet internal performance specifications for manganese output, it was observed to remove the cation notwithstanding the prevalence of copper in the waste stream. Accordingly, the average manganese output declined from 6.5 + 5.6 mg¹L⁻¹ at pre-pilot to 1.1 + 1.2 mg¹L⁻¹ post-pilot (83% baseline reduction). This milestone was achieved regardless of the average influent manganese to DMW increasing from 1.0 + 13.7 mg¹L⁻¹ at pre-pilot to 2.1 + 0.2 mg¹L⁻¹ post-pilot (110% baseline uptick). Likewise, the pre-trial and post-trial average influent copper values to DMW were 22.4 + 10.2 mg¹L⁻¹ and 32.1 + 39.1 mg¹L⁻¹, respectively (43% baseline increase). As a result, the pre-trial and post-trial average copper output values were 0.1 + 0.5 mg¹L⁻¹ and 0.4 + 1.2 mg¹L⁻¹, respectively (300% baseline uptick). Conclusively, the operating pH range upstream of treatment (between 3.5 and 5) was shown to be the largest single point of influence for optimizing manganese uptake during multi-metal ion exchange. However, the high variability of the influent copper-to-manganese ratio was observed to adversely impact the system functionality. The journal herein intends to discuss the operating parameters such as pH and oxidation-reduction potential (ORP) that were shown to influence the functional versatility of the ion exchange system significantly. The literature also proposes to discuss limitations of the treatment system such as influent copper-to-manganese ratio variations, operational configuration, waste by-product management, and system recovery requirements to provide a balanced assessment of the multi-metal ion exchange process. The take-away from this literature is intended to analyze the overall feasibility of ion exchange for metals manufacturing facilities that lack the capability to expand hardware due to real estate restrictions, aggressive schedules, or budgetary constraints.

Keywords: copper, industrial wastewater treatment, multi-metal ion exchange, manganese

Procedia PDF Downloads 127
131 Ethical, Legal and Societal Aspects of Unmanned Aircraft in Defence

Authors: Henning Lahmann, Benjamyn I. Scott, Bart Custers

Abstract:

Suboptimal adoption of AI in defence organisations carries risks for the protection of the freedom, safety, and security of society. Despite the vast opportunities that defence AI-technology presents, there are also a variety of ethical, legal, and societal concerns. To ensure the successful use of AI technology by the military, ethical, legal, and societal aspects (ELSA) need to be considered, and their concerns continuously addressed at all levels. This includes ELSA considerations during the design, manufacturing and maintenance of AI-based systems, as well as its utilisation via appropriate military doctrine and training. This raises the question how defence organisations can remain strategically competitive and at the edge of military innovation, while respecting the values of its citizens. This paper will explain the set-up and share preliminary results of a 4-year research project commissioned by the National Research Council in the Netherlands on the ethical, legal, and societal aspects of AI in defence. The project plans to develop a future-proof, independent, and consultative ecosystem for the responsible use of AI in the defence domain. In order to achieve this, the lab shall devise a context-dependent methodology that focuses on the ‘analysis’, ‘design’ and ‘evaluation’ of ELSA of AI-based applications within the military context, which include inter alia unmanned aircraft. This is bolstered as the Lab also recognises and complements the existing methods in regards to human-machine teaming, explainable algorithms, and value-sensitive design. Such methods will be modified for the military context and applied to pertinent case-studies. These case-studies include, among others, the application of autonomous robots (incl. semi- autonomous) and AI-based methods against cognitive warfare. As the perception of the application of AI in the military context, by both society and defence personnel, is important, the Lab will study how these perceptions evolve and vary in different contexts. Furthermore, the Lab will monitor – as they may influence people’s perception – developments in the global technological, military and societal spheres. Although the emphasis of the research project is on different forms of AI in defence, it focuses on several case studies. One of these case studies is on unmanned aircraft, which will also be the focus of the paper. Hence, ethical, legal, and societal aspects of unmanned aircraft in the defence domain will be discussed in detail, including but not limited to privacy issues. Typical other issues concern security (for people, objects, data or other aircraft), privacy (sensitive data, hindrance, annoyance, data collection, function creep), chilling effects, PlayStation mentality, and PTSD.

Keywords: autonomous weapon systems, unmanned aircraft, human-machine teaming, meaningful human control, value-sensitive design

Procedia PDF Downloads 77
130 Application of Large Eddy Simulation-Immersed Boundary Volume Penalization Method for Heat and Mass Transfer in Granular Layers

Authors: Artur Tyliszczak, Ewa Szymanek, Maciej Marek

Abstract:

Flow through granular materials is important to a vast array of industries, for instance in construction industry where granular layers are used for bulkheads and isolators, in chemical engineering and catalytic reactors where large surfaces of packed granular beds intensify chemical reactions, or in energy production systems, where granulates are promising materials for heat storage and heat transfer media. Despite the common usage of granulates and extensive research performed in this field, phenomena occurring between granular solid elements or between solids and fluid are still not fully understood. In the present work we analyze the heat exchange process between the flowing medium (gas, liquid) and solid material inside the granular layers. We consider them as a composite of isolated solid elements and inter-granular spaces in which a gas or liquid can flow. The structure of the layer is controlled by shapes of particular granular elements (e.g., spheres, cylinders, cubes, Raschig rings), its spatial distribution or effective characteristic dimension (total volume or surface area). We will analyze to what extent alteration of these parameters influences on flow characteristics (turbulent intensity, mixing efficiency, heat transfer) inside the layer and behind it. Analysis of flow inside granular layers is very complicated because the use of classical experimental techniques (LDA, PIV, fibber probes) inside the layers is practically impossible, whereas the use of probes (e.g. thermocouples, Pitot tubes) requires drilling of holes inside the solid material. Hence, measurements of the flow inside granular layers are usually performed using for instance advanced X-ray tomography. In this respect, theoretical or numerical analyses of flow inside granulates seem crucial. Application of discrete element methods in combination with the classical finite volume/finite difference approaches is problematic as a mesh generation process for complex granular material can be very arduous. A good alternative for simulation of flow in complex domains is an immersed boundary-volume penalization (IB-VP) in which the computational meshes have simple Cartesian structure and impact of solid objects on the fluid is mimicked by source terms added to the Navier-Stokes and energy equations. The present paper focuses on application of the IB-VP method combined with large eddy simulation (LES). The flow solver used in this work is a high-order code (SAILOR), which was used previously in various studies, including laminar/turbulent transition in free flows and also for flows in wavy channels, wavy pipes and over various shape obstacles. In these cases a formal order of approximation turned out to be in between 1 and 2, depending on the test case. The current research concentrates on analyses of the flows in dense granular layers with elements distributed in a deterministic regular manner and validation of the results obtained using LES-IB method and body-fitted approach. The comparisons are very promising and show very good agreement. It is found that the size, number of elements and their distribution have huge impact on the obtained results. Ordering of the granular elements (or lack of it) affects both the pressure drop and efficiency of the heat transfer as it significantly changes mixing process.

Keywords: granular layers, heat transfer, immersed boundary method, numerical simulations

Procedia PDF Downloads 112
129 Enhancing Plant Throughput in Mineral Processing Through Multimodal Artificial Intelligence

Authors: Muhammad Bilal Shaikh

Abstract:

Mineral processing plants play a pivotal role in extracting valuable minerals from raw ores, contributing significantly to various industries. However, the optimization of plant throughput remains a complex challenge, necessitating innovative approaches for increased efficiency and productivity. This research paper investigates the application of Multimodal Artificial Intelligence (MAI) techniques to address this challenge, aiming to improve overall plant throughput in mineral processing operations. The integration of multimodal AI leverages a combination of diverse data sources, including sensor data, images, and textual information, to provide a holistic understanding of the complex processes involved in mineral extraction. The paper explores the synergies between various AI modalities, such as machine learning, computer vision, and natural language processing, to create a comprehensive and adaptive system for optimizing mineral processing plants. The primary focus of the research is on developing advanced predictive models that can accurately forecast various parameters affecting plant throughput. Utilizing historical process data, machine learning algorithms are trained to identify patterns, correlations, and dependencies within the intricate network of mineral processing operations. This enables real-time decision-making and process optimization, ultimately leading to enhanced plant throughput. Incorporating computer vision into the multimodal AI framework allows for the analysis of visual data from sensors and cameras positioned throughout the plant. This visual input aids in monitoring equipment conditions, identifying anomalies, and optimizing the flow of raw materials. The combination of machine learning and computer vision enables the creation of predictive maintenance strategies, reducing downtime and improving the overall reliability of mineral processing plants. Furthermore, the integration of natural language processing facilitates the extraction of valuable insights from unstructured textual data, such as maintenance logs, research papers, and operator reports. By understanding and analyzing this textual information, the multimodal AI system can identify trends, potential bottlenecks, and areas for improvement in plant operations. This comprehensive approach enables a more nuanced understanding of the factors influencing throughput and allows for targeted interventions. The research also explores the challenges associated with implementing multimodal AI in mineral processing plants, including data integration, model interpretability, and scalability. Addressing these challenges is crucial for the successful deployment of AI solutions in real-world industrial settings. To validate the effectiveness of the proposed multimodal AI framework, the research conducts case studies in collaboration with mineral processing plants. The results demonstrate tangible improvements in plant throughput, efficiency, and cost-effectiveness. The paper concludes with insights into the broader implications of implementing multimodal AI in mineral processing and its potential to revolutionize the industry by providing a robust, adaptive, and data-driven approach to optimizing plant operations. In summary, this research contributes to the evolving field of mineral processing by showcasing the transformative potential of multimodal artificial intelligence in enhancing plant throughput. The proposed framework offers a holistic solution that integrates machine learning, computer vision, and natural language processing to address the intricacies of mineral extraction processes, paving the way for a more efficient and sustainable future in the mineral processing industry.

Keywords: multimodal AI, computer vision, NLP, mineral processing, mining

Procedia PDF Downloads 47
128 Novel Framework for MIMO-Enhanced Robust Selection of Critical Control Factors in Auto Plastic Injection Moulding Quality Optimization

Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari

Abstract:

Apparent quality defects such as warpage, shrinkage, weld line, etc. are such an irresistible phenomenon in mass production of auto plastic appearance parts. These frequently occurred manufacturing defects should be satisfied concurrently so as to achieve a final product with acceptable quality standards. Determining the significant control factors that simultaneously affect multiple quality characteristics can significantly improve the optimization results by eliminating the deviating effect of the so-called ineffective outliers. Hence, a robust quantitative approach needs to be developed upon which major control factors and their level can be effectively determined to help improve the reliability of the optimal processing parameter design. Hence, the primary objective of current study was to develop a systematic methodology for selection of significant control factors (SCF) relevant to multiple quality optimization of auto plastic appearance part. Auto bumper was used as a specimen with the most identical quality and production characteristics to APAP group. A preliminary failure modes and effect analysis (FMEA) was conducted to nominate a database of pseudo significant significant control factors prior to the optimization phase. Later, CAE simulation Moldflow analysis was implemented to manipulate four rampant plastic injection quality defects concerned with APAP group including warpage deflection, volumetric shrinkage, sink mark and weld line. Furthermore, a step-backward elimination searching method (SESME) has been developed for systematic pre-optimization selection of SCF based on hierarchical orthogonal array design and priority-based one-way analysis of variance (ANOVA). The development of robust parameter design in the second phase was based on DOE module powered by Minitab v.16 statistical software. Based on the F-test (F 0.05, 2, 14) one-way ANOVA results, it was concluded that for warpage deflection, material mixture percentage was the most significant control factor yielding a 58.34% of contribution while for the other three quality defects, melt temperature was the most significant control factor with a 25.32%, 84.25%, and 34.57% contribution for sin mark, shrinkage and weld line strength control. Also, the results on the he least significant control factors meaningfully revealed injection fill time as the least significant factor for both warpage and sink mark with respective 1.69% and 6.12% contribution. On the other hand, for shrinkage and weld line defects, the least significant control factors were holding pressure and mold temperature with a 0.23% and 4.05% overall contribution accordingly.

Keywords: plastic injection moulding, quality optimization, FMEA, ANOVA, SESME, APAP

Procedia PDF Downloads 328
127 Combat Plastic Entering in Kanpur City, Uttar Pradesh, India Marine Environment

Authors: Arvind Kumar

Abstract:

The city of Kanpur is located in the terrestrial plain area on the bank of the river Ganges and is the second largest city in the state of Uttar Pradesh. The city generates approximately 1400-1600 tons per day of MSW. Kanpur has been known as a major point and non-points-based pollution hotspot for the river Ganges. The city has a major industrial hub, probably the largest in the state, catering to the manufacturing and recycling of plastic and other dry waste streams. There are 4 to 5 major drains flowing across the city, which receive a significant quantity of waste leakage, which subsequently adds to the Ganges flow and is carried to the Bay of Bengal. A river-to-sea flow approach has been established to account for leaked waste into urban drains, leading to the build-up of marine litter. Throughout its journey, the river accumulates plastic – macro, meso, and micro, from various sources and transports it towards the sea. The Ganges network forms the second-largest plastic-polluting catchment in the world, with over 0.12 million tonnes of plastic discharged into marine ecosystems per year and is among 14 continental rivers into which over a quarter of global waste is discarded 3.150 Kilo tons of plastic waste is generated in Kanpur, out of which 10%-13% of plastic is leaked into the local drains and water flow systems. With the Support of Kanpur Municipal Corporation, 1TPD capacity MRF for drain waste management was established at Krishna Nagar, Kanpur & A German startup- Plastic Fisher, was identified for providing a solution to capture the drain waste and achieve its recycling in a sustainable manner with a circular economy approach. The team at Plastic Fisher conducted joint surveys and identified locations on 3 drains at Kanpur using GIS maps developed during the survey. It suggested putting floating 'Boom Barriers' across the drains with a low-cost material, which reduced their cost to only 2000 INR per barrier. The project was built upon the self-sustaining financial model. The project includes activities where a cost-efficient model is developed and adopted for a socially self-inclusive model. The project has recommended the use of low-cost floating boom barriers for capturing waste from drains. This involves a one-time time cost and has no operational cost. Manpower is engaged in fishing and capturing immobilized waste, whose salaries are paid by the Plastic Fisher. The captured material is sun-dried and transported to the designated place, where the shed and power connection, which act as MRF, are provided by the city Municipal corporation. Material aggregation, baling, and transportation costs to end-users are borne by Plastic Fisher as well.

Keywords: Kanpur, marine environment, drain waste management, plastic fisher

Procedia PDF Downloads 44
126 Option Pricing Theory Applied to the Service Sector

Authors: Luke Miller

Abstract:

This paper develops an options pricing methodology to value strategic pricing strategies in the services sector. More specifically, this study provides a unifying taxonomy of current service sector pricing practices, frames these pricing decisions as strategic real options, demonstrates accepted option valuation techniques to assess service sector pricing decisions, and suggests future research areas where pricing decisions and real options overlap. Enhancing revenue in the service sector requires proactive decision making in a world of uncertainty. In an effort to strategically price service products, revenue enhancement necessitates a careful study of the service costs, customer base, competition, legalities, and shared economies with the market. Pricing decisions involve the quality of inputs, manpower, and best practices to maintain superior service. These decisions further hinge on identifying relevant pricing strategies and understanding how these strategies impact a firm’s value. A relatively new area of research applies option pricing theory to investments in real assets and is commonly known as real options. The real options approach is based on the premise that many corporate decisions to invest or divest in assets are simply an option wherein the firm has the right to make an investment without any obligation to act. The decision maker, therefore, has more flexibility and the value of this operating flexibility should be taken into consideration. The real options framework has already been applied to numerous areas including manufacturing, inventory, natural resources, research and development, strategic decisions, technology, and stock valuation. Additionally, numerous surveys have identified a growing need for the real options decision framework within all areas of corporate decision-making. Despite the wide applicability of real options, no study has been carried out linking service sector pricing decisions and real options. This is surprising given the service sector comprises 80% of the US employment and Gross Domestic Product (GDP). Identifying real options as a practical tool to value different service sector pricing strategies is believed to have a significant impact on firm decisions. This paper identifies and discusses four distinct pricing strategies available to the service sector from an options’ perspective: (1) Cost-based profit margin, (2) Increased customer base, (3) Platform pricing, and (4) Buffet pricing. Within each strategy lie several pricing tactics available to the service firm. These tactics can be viewed as options the decision maker has to best manage a strategic position in the market. To demonstrate the effectiveness of including flexibility in the pricing decision, a series of pricing strategies were developed and valued using a real options binomial lattice structure. The options pricing approach discussed in this study allows service firms to directly incorporate market-driven perspectives into the decision process and thus synchronizing service operations with organizational economic goals.

Keywords: option pricing theory, real options, service sector, valuation

Procedia PDF Downloads 334
125 Artificial Intelligence Impact on the Australian Government Public Sector

Authors: Jessica Ho

Abstract:

AI has helped government, businesses and industries transform the way they do things. AI is used in automating tasks to improve decision-making and efficiency. AI is embedded in sensors and used in automation to help save time and eliminate human errors in repetitive tasks. Today, we saw the growth in AI using the collection of vast amounts of data to forecast with greater accuracy, inform decision-making, adapt to changing market conditions and offer more personalised service based on consumer habits and preferences. Government around the world share the opportunity to leverage these disruptive technologies to improve productivity while reducing costs. In addition, these intelligent solutions can also help streamline government processes to deliver more seamless and intuitive user experiences for employees and citizens. This is a critical challenge for NSW Government as we are unable to determine the risk that is brought by the unprecedented pace of adoption of AI solutions in government. Government agencies must ensure that their use of AI complies with relevant laws and regulatory requirements, including those related to data privacy and security. Furthermore, there will always be ethical concerns surrounding the use of AI, such as the potential for bias, intellectual property rights and its impact on job security. Within NSW’s public sector, agencies are already testing AI for crowd control, infrastructure management, fraud compliance, public safety, transport, and police surveillance. Citizens are also attracted to the ease of use and accessibility of AI solutions without requiring specialised technical skills. This increased accessibility also comes with balancing a higher risk and exposure to the health and safety of citizens. On the other side, public agencies struggle with keeping up with this pace while minimising risks, but the low entry cost and open-source nature of generative AI led to a rapid increase in the development of AI powered apps organically – “There is an AI for That” in Government. Other challenges include the fact that there appeared to be no legislative provisions that expressly authorise the NSW Government to use an AI to make decision. On the global stage, there were too many actors in the regulatory space, and a sovereign response is needed to minimise multiplicity and regulatory burden. Therefore, traditional corporate risk and governance framework and regulation and legislation frameworks will need to be evaluated for AI unique challenges due to their rapidly evolving nature, ethical considerations, and heightened regulatory scrutiny impacting the safety of consumers and increased risks for Government. Creating an effective, efficient NSW Government’s governance regime, adapted to the range of different approaches to the applications of AI, is not a mere matter of overcoming technical challenges. Technologies have a wide range of social effects on our surroundings and behaviours. There is compelling evidence to show that Australia's sustained social and economic advancement depends on AI's ability to spur economic growth, boost productivity, and address a wide range of societal and political issues. AI may also inflict significant damage. If such harm is not addressed, the public's confidence in this kind of innovation will be weakened. This paper suggests several AI regulatory approaches for consideration that is forward-looking and agile while simultaneously fostering innovation and human rights. The anticipated outcome is to ensure that NSW Government matches the rising levels of innovation in AI technologies with the appropriate and balanced innovation in AI governance.

Keywords: artificial inteligence, machine learning, rules, governance, government

Procedia PDF Downloads 51
124 Critical Conditions for the Initiation of Dynamic Recrystallization Prediction: Analytical and Finite Element Modeling

Authors: Pierre Tize Mha, Mohammad Jahazi, Amèvi Togne, Olivier Pantalé

Abstract:

Large-size forged blocks made of medium carbon high-strength steels are extensively used in the automotive industry as dies for the production of bumpers and dashboards through the plastic injection process. The manufacturing process of the large blocks starts with ingot casting, followed by open die forging and a quench and temper heat treatment process to achieve the desired mechanical properties and numerical simulation is widely used nowadays to predict these properties before the experiment. But the temperature gradient inside the specimen remains challenging in the sense that the temperature before loading inside the material is not the same, but during the simulation, constant temperature is used to simulate the experiment because it is assumed that temperature is homogenized after some holding time. Therefore to be close to the experiment, real distribution of the temperature through the specimen is needed before the mechanical loading. Thus, We present here a robust algorithm that allows the calculation of the temperature gradient within the specimen, thus representing a real temperature distribution within the specimen before deformation. Indeed, most numerical simulations consider a uniform temperature gradient which is not really the case because the surface and core temperatures of the specimen are not identical. Another feature that influences the mechanical properties of the specimen is recrystallization which strongly depends on the deformation conditions and the type of deformation like Upsetting, Cogging...etc. Indeed, Upsetting and Cogging are the stages where the greatest deformations are observed, and a lot of microstructural phenomena can be observed, like recrystallization, which requires in-depth characterization. Complete dynamic recrystallization plays an important role in the final grain size during the process and therefore helps to increase the mechanical properties of the final product. Thus, the identification of the conditions for the initiation of dynamic recrystallization is still relevant. Also, the temperature distribution within the sample and strain rate influence the recrystallization initiation. So the development of a technique allowing to predict the initiation of this recrystallization remains challenging. In this perspective, we propose here, in addition to the algorithm allowing to get the temperature distribution before the loading stage, an analytical model leading to determine the initiation of this recrystallization. These two techniques are implemented into the Abaqus finite element software via the UAMP and VUHARD subroutines for comparison with a simulation where an isothermal temperature is imposed. The Artificial Neural Network (ANN) model to describe the plastic behavior of the material is also implemented via the VUHARD subroutine. From the simulation, the temperature distribution inside the material and recrystallization initiation is properly predicted and compared to the literature models.

Keywords: dynamic recrystallization, finite element modeling, artificial neural network, numerical implementation

Procedia PDF Downloads 64
123 In-Situ Formation of Particle Reinforced Aluminium Matrix Composites by Laser Powder Bed Fusion of Fe₂O₃/AlSi12 Powder Mixture Using Consecutive Laser Melting+Remelting Strategy

Authors: Qimin Shi, Yi Sun, Constantinus Politis, Shoufeng Yang

Abstract:

In-situ preparation of particle-reinforced aluminium matrix composites (PRAMCs) by laser powder bed fusion (LPBF) additive manufacturing is a promising strategy to strengthen traditional Al-based alloys. The laser-driven thermite reaction can be a practical mechanism to in-situ synthesize PRAMCs. However, introducing oxygen elements through adding Fe₂O₃ makes the powder mixture highly sensitive to form porosity and Al₂O₃ film during LPBF, bringing challenges to producing dense Al-based materials. Therefore, this work develops a processing strategy combined with consecutive high-energy laser melting scanning and low-energy laser remelting scanning to prepare PRAMCs from a Fe₂O₃/AlSi12 powder mixture. The powder mixture consists of 5 wt% Fe₂O₃ and the remainder AlSi12 powder. The addition of 5 wt% Fe₂O₃ aims to achieve balanced strength and ductility. A high relative density (98.2 ± 0.55 %) was successfully obtained by optimizing laser melting (Emelting) and laser remelting surface energy density (Eremelting) to Emelting = 35 J/mm² and Eremelting = 5 J/mm². Results further reveal the necessity of increasing Emelting, to improve metal liquid’s spreading/wetting by breaking up the Al₂O₃ films surrounding the molten pools; however, the high-energy laser melting produced much porosity, including H₂₋, O₂₋ and keyhole-induced pores. The subsequent low-energy laser remelting could close the resulting internal pores, backfill open gaps and smoothen solidified surfaces. As a result, the material was densified by repeating laser melting and laser remelting layer by layer. Although with two-times laser scanning, the microstructure still shows fine cellular Si networks with Al grains inside (grain size of about 370 nm) and in-situ nano-precipitates (Al₂O₃, Si, and Al-Fe(-Si) intermetallics). Finally, the fine microstructure, nano-structured dispersion strengthening, and high-level densification strengthened the in-situ PRAMCs, reaching yield strength of 426 ± 4 MPa and tensile strength of 473 ± 6 MPa. Furthermore, the results can expect to provide valuable information to process other powder mixtures with severe porosity/oxide-film formation potential, considering the evidenced contribution of laser melting/remelting strategy to densify material and obtain good mechanical properties during LPBF.

Keywords: densification, laser powder bed fusion, metal matrix composites, microstructures, mechanical properties

Procedia PDF Downloads 138
122 An Overview on Micro Irrigation-Accelerating Growth of Indian Agriculture

Authors: Rohit Lall

Abstract:

The adoption of Micro Irrigation (MI) technologies in India has helped in achieving higher cropping and irrigation intensity with significant savings on resource savings such as labour, fertilizer and improved crop yields. These technologies have received considerable attention from policymakers, growers and researchers over the years for its perceived ability to contribute towards agricultural productivity and economic growth with the well-being of the growers of the country. Keeping the pace with untapped theoretical potential to cover government had launched flagship programs/centre sector schemes with earmarked budget to capture the potential under these waters saving techniques envisaged under these technologies by way of providing financial assistance to the beneficiaries for adopting these technologies. Micro Irrigation technologies have been in the special attention of the policymakers over the years. India being an agrarian economy having engaged 75% of the population directly or indirectly having skilled, semi-skilled and entrepreneurs in the sector with focused attention and financial allocations from the government under these technologies in covering the untapped potential under Pradhan Mantri Krishi Sinchayee Yojana (PMKSY) 'Per Drop More Crop component.' During the year 2004, a Taskforce on Micro Irrigation was constituted to estimate the potential of these technologies in India which was estimated 69.5 million hectares by the Task Force Report on MI however only 10.49 million hectares have been achieved so far. Technology collaborations by leading manufacturing companies in overseas have proved to a stepping stone in technology advancement and product up gradation with increased efficiencies. Joint ventures by the leading MI companies have added huge business volumes which have not only accelerated the momentum of achieving the desired goal but in terms of area coverage but had also generated opportunities for the polymer manufacturers in the country. To provide products matching the global standards Bureau of Indian Standards have constituted a sectional technical committee under the Food and Agriculture Department (FAD)-17 to formulated/devise and revise standards pertaining to MI technologies. The research lobby has also contributed at large by developing in-situ analysis proving MI technologies a boon for farming community of the country with resource conservation of which water is of paramount importance. Thus, Micro Irrigation technologies have proved to be the key tool for feeding the grueling demand of food basket of the growing population besides maintaining soil health and have been contributing towards doubling of farmers’ income.

Keywords: task force on MI, standards, per drop more crop, doubling farmers’ income

Procedia PDF Downloads 107
121 Collaborative Environmental Management: A Case Study Research of Stakeholders' Collaboration in the Nigerian Oil-Producing Region

Authors: Favour Makuochukwu Orji, Yingkui Zhao

Abstract:

A myriad of environmental issues face the Nigerian industrial region, resulting from; oil and gas production, mining, manufacturing and domestic wastes. Amidst these, much effort has been directed by stakeholders in the Nigerian oil producing regions, because of the impacts of the region on the wider Nigerian economy. Research to date has suggested that collaborative environmental management could be an effective approach in managing environmental issues; but little attention has been given to the roles and practices of stakeholders in effecting a collaborative environmental management framework for the Nigerian oil-producing region. This paper produces a framework to expand and deepen knowledge relating to stakeholders aspects of collaborative roles in managing environmental issues in the Nigeria oil-producing region. The knowledge is derived from analysis of stakeholders’ practices – studied through multiple case studies using document analysis. Selected documents of key stakeholders – Nigerian government agencies, multi-national oil companies and host communities, were analyzed. Open and selective coding was employed manually during document analysis of data collected from the offices and websites of the stakeholders. The findings showed that the stakeholders have a range of roles, practices, interests, drivers and barriers regarding their collaborative roles in managing environmental issues. While they have interests for efficient resource use, compliance to standards, sharing of responsibilities, generating of new solutions, and shared objectives; there is evidence of major barriers which includes resource allocation, disjointed policy and regulation, ineffective monitoring, diverse socio- economic interests, lack of stakeholders’ commitment and limited knowledge sharing. However, host communities hold deep concerns over the collaborative roles of stakeholders for economic interests, particularly, where government agencies and multi-national oil companies are involved. With these barriers and concerns, a genuine stakeholders’ collaboration is found to be limited, and as a result, optimal environmental management practices and policies have not been successfully implemented in the Nigeria oil-producing region. A framework is produced that describes practices that characterize collaborative environmental management might be employed to satisfy the stakeholders’ interests. The framework recommends critical factors, based on the findings, which may guide a collaborative environmental management in the oil producing regions. The recommendations are designed to re-define the practices of stakeholders in managing environmental issues in the oil producing regions, not as something wholly new, but as an approach essential for implementing a sustainable environmental policy. This research outcome may clarify areas for future research as well as to contribute to industry guidance in the area of collaborative environmental management.

Keywords: collaborative environmental management framework, case studies, document analysis, multinational oil companies, Nigerian oil producing regions, Nigerian government agencies, stakeholders analysis

Procedia PDF Downloads 156
120 Features of Composites Application in Shipbuilding

Authors: Valerii Levshakov, Olga Fedorova

Abstract:

Specific features of ship structures, made from composites, i.e. simultaneous shaping of material and structure, large sizes, complicated outlines and tapered thickness have defined leading role of technology, integrating test results from material science, designing and structural analysis. Main procedures of composite shipbuilding are contact molding, vacuum molding and winding. Now, the most demanded composite shipbuilding technology is the manufacture of structures from fiberglass and multilayer hybrid composites by means of vacuum molding. This technology enables the manufacture of products with improved strength properties (in comparison with contact molding), reduction of production duration, weight and secures better environmental conditions in production area. Mechanized winding is applied for the manufacture of parts, shaped as rotary bodies – i.e. parts of ship, oil and other pipelines, deep-submergence vehicles hulls, bottles, reservoirs and other structures. This procedure involves processing of reinforcing fiberglass, carbon and polyaramide fibers. Polyaramide fibers have tensile strength of 5000 MPa, elastic modulus value of 130 MPa and rigidity of the same can be compared with rigidity of fiberglass, however, the weight of polyaramide fiber is 30% less than weight of fiberglass. The same enables to the manufacture different structures, including that, using both – fiberglass and organic composites. Organic composites are widely used for the manufacture of parts with size and weight limitations. High price of polyaramide fiber restricts the use of organic composites. Perspective area of winding technology development is the manufacture of carbon fiber shafts and couplings for ships. JSC ‘Shipbuilding & Shiprepair Technology Center’ (JSC SSTC) developed technology of dielectric uncouplers for cryogenic lines, cooled by gaseous or liquid cryogenic agents (helium, nitrogen, etc.) for temperature range 4.2-300 K and pressure up to 30 MPa – the same is used for separating components of electro physical equipment with different electrical potentials. Dielectric uncouplers were developed, the manufactured and tested in accordance with International Thermonuclear Experimental Reactor (ITER) Technical specification. Spiral uncouplers withstand operating voltage of 30 kV, direct-flow uncoupler – 4 kV. Application of spiral channel instead of rectilinear enables increasing of breakdown potential and reduction of uncouplers sizes. 95 uncouplers were successfully the manufactured and tested. At the present time, Russian the manufacturers of ship composite structures have started absorption of technology of manufacturing the same using automated prepreg laminating; this technology enables the manufacture of structures with improved operational specifications.

Keywords: fiberglass, infusion, polymeric composites, winding

Procedia PDF Downloads 217
119 Safety Assessment of Traditional Ready-to-Eat Meat Products Vended at Retail Outlets in Kebbi and Sokoto States, Nigeria

Authors: M. I. Ribah, M. Jibir, Y. A. Bashar, S. S. Manga

Abstract:

Food safety is a significant and growing public health problem in the world and Nigeria as a developing country, since food-borne diseases are important contributors to the huge burden of sickness and death of humans. In Nigeria, traditional ready-to-eat meat products (RTE-MPs) like balangu, tsire, guru and dried meat products like kilishi, dambun nama, banda, were reported to be highly appreciated because of their eating qualities. The consumption of these products was considered as safe due to the treatments that are usually involved during their production process. However, during processing and handling, the products could be contaminated by pathogens that could cause food poisoning. Therefore, a hazard identification for pathogenic bacteria on some traditional RTE-MPs was conducted in Kebbi and Sokoto States, Nigeria. A total of 116 RTE-MPs (balangu-38, kilishi-39 and tsire-39) samples were obtained from retail outlets and analyzed using standard cultural microbiological procedures in general and selective enrichment media to isolate the target pathogens. A six-fold serial dilution was prepared and using the pour plating method, colonies were counted. Serial dilutions were selected based on the prepared pre-labeled Petri dishes for each sample. A volume of 10-12 ml of molten Nutrient agar cooled to 42-45°C was poured into each Petri dish and 1 ml each from dilutions of 102, 104 and 106 for every sample was respectively poured on a pre-labeled Petri plate after which colonies were counted. The isolated pathogens were identified and confirmed after series of biochemical tests. Frequencies and percentages were used to describe the presence of pathogens. The General Linear Model was used to analyze data on pathogen presence according to RTE-MPs and means were separated using the Tukey test at 0.05 confidence level. Of the 116 RTE-MPs samples collected, 35 (30.17%) samples were found to be contaminated with some tested pathogens. Prevalence results showed that Escherichia coli, salmonella and Staphylococcus aureus were present in the samples. Mean total bacterial count was 23.82×106 cfu/g. The frequency of individual pathogens isolated was; Staphylococcus aureus 18 (15.51%), Escherichia coli 12 (10.34%) and Salmonella 5 (4.31%). Also, among the RTE-MPs tested, the total bacterial counts were found to differ significantly (P < 0.05), with 1.81, 2.41 and 2.9×104 cfu/g for tsire, kilishi, and balangu, respectively. The study concluded that the presence of pathogenic bacteria in balangu could pose grave health risks to consumers, and hence, recommended good manufacturing practices in the production of balangu to improve the products’ safety.

Keywords: ready-to-eat meat products, retail outlets, public health, safety assessment

Procedia PDF Downloads 108
118 Linkages between Innovation Policies and SMEs' Innovation Activities: Empirical Evidence from 15 Transition Countries

Authors: Anita Richter

Abstract:

Innovation is one of the key foundations of competitive advantage, generating growth and welfare worldwide. Consequently, all firms should innovate to bring new ideas to the market. Innovation is a vital growth driver, particularly for transition countries to move towards knowledge-based, high-income economies. However, numerous barriers, such as financial, regulatory or infrastructural constraints prevent, in particular, new and small firms in transition countries from innovating. Thus SMEs’ innovation output may benefit substantially from government support. This research paper aims to assess the effect of government interventions on innovation activities in SMEs in emerging countries. Until now academic research related to the innovation policies focused either on single country and/or high-income countries assessments and less on cross-country and/or low and middle-income countries. Therefore the paper seeks to close the research gap by providing empirical evidence from 8,500 firms in 15 transition countries (Eastern Europe, South Caucasus, South East Europe, Middle East and North Africa). Using firm-level data from the Business Environment and Enterprise Performance Survey of the World Bank and EBRD and policy data from the SME Policy Index of the OECD, the paper investigates how government interventions affect SME’s likelihood of investing in any technological and non-technological innovation. Using the Standard Linear Regression, the impact of government interventions on SMEs’ innovation output and R&D activities is measured. The empirical analysis suggests that a firm’s decision to invest into innovative activities is sensitive to government interventions. A firm’s likelihood to invest into innovative activities increases by 3% to 8%, if the innovation eco-system noticeably improves (measured by an increase of 1 level in the SME Policy Index). At the same time, a better eco-system encourages SMEs to invest more in R&D. Government reforms in establishing a dedicated policy framework (IP legislation), institutional infrastructure (science and technology parks, incubators) and financial support (public R&D grants, innovation vouchers) are particularly relevant to stimulate innovation performance in SMEs. Particular segments of the SME population, namely micro and manufacturing firms, are more likely to benefit from an increased innovation framework conditions. The marginal effects are particularly strong on product innovation, process innovation, and marketing innovation, but less on management innovation. In conclusion, government interventions supporting innovation will likely lead to higher innovation performance of SMEs. They increase productivity at both firm and country level, which is a vital step in transitioning towards knowledge-based market economies.

Keywords: innovation, research and development, government interventions, economic development, small and medium-sized enterprises, transition countries

Procedia PDF Downloads 307
117 Analysis Rescuers' Viewpoint about Victims Tracking in Earthquake by Using Radio Frequency Identification (RFID)

Authors: Sima Ajami, Batool Akbari

Abstract:

Background: Radio frequency identification (RFID) system has been successfully applied to the areas of manufacturing, supply chain, agriculture, transportation, healthcare, and services. The RFID is already used to track and trace the victims in a disaster situation. Data can be collected in real time and be immediately available to emergency personnel and saves time by the RFID. Objectives: The aim of this study was, first, to identify stakeholders and customers for rescuing earthquake victims, second, to list key internal and external factors to use RFID to track earthquake victims, finally, to assess SWOT for rescuers' viewpoint. Materials and Methods: This study was an applied and analytical study. The study population included scholars, experts, planners, policy makers and rescuers in the "red crescent society of Isfahan province", "disaster management Isfahan province", "maintenance and operation department of Isfahan", "fire and safety services organization of Isfahan municipality", and "medical emergencies and disaster management center of Isfahan". After that, researchers held a workshop to teach participants about RFID and its usages in tracking earthquake victims. In the meanwhile of the workshop, participants identified, listed, and weighed key internal factors (strengths and weaknesses; SW) and external factors (opportunities and threats; OT) to use RFID in tracking earthquake victims. Therefore, participants put weigh strengths, weaknesses, opportunities, and threats (SWOT) and their weighted scales were calculated. Then, participants' opinions about this issue were assessed. Finally, according to the SWOT matrix, strategies to solve the weaknesses, problems, challenges, and threats through opportunities and strengths were proposed by participants. Results: The SWOT analysis showed that the total weighted score for internal and external factors were 3.91 (Internal Factor Evaluation) and 3.31 (External Factor Evaluation) respectively. Therefore, it was in a quadrant SO strategies cell in the SWOT analysis matrix and aggressive strategies were resulted. Organizations, scholars, experts, planners, policy makers and rescue workers should plan to use RFID technology in order to save more victims and manage their life. Conclusions: Researchers suppose to apply SO strategies and use a firm’s internal strength to take advantage of external opportunities. It is suggested, policy maker should plan to use the most developed technologies to save earthquake victims and deliver the easiest service to them. To do this, education, informing, and encouraging rescuers to use these technologies is essential. Originality/ Value: This study was a research paper that showed how RFID can be useful to track victims in earthquake.

Keywords: frequency identification system, strength, weakness, earthquake, victim

Procedia PDF Downloads 308
116 Evaluation of Batch Splitting in the Context of Load Scattering

Authors: S. Wesebaum, S. Willeke

Abstract:

Production companies are faced with an increasingly turbulent business environment, which demands very high production volumes- and delivery date flexibility. If a decoupling by storage stages is not possible (e.g. at a contract manufacturing company) or undesirable from a logistical point of view, load scattering effects the production processes. ‘Load’ characterizes timing and quantity incidence of production orders (e.g. in work content hours) to workstations in the production, which results in specific capacity requirements. Insufficient coordination between load (demand capacity) and capacity supply results in heavy load scattering, which can be described by deviations and uncertainties in the input behavior of a capacity unit. In order to respond to fluctuating loads, companies try to implement consistent and realizable input behavior using the capacity supply available. For example, a uniform and high level of equipment capacity utilization keeps production costs down. In contrast, strong load scattering at workstations leads to performance loss or disproportionately fluctuating WIP, whereby the logistics objectives are affected negatively. Options for reducing load scattering are e.g. shifting the start and end dates of orders, batch splitting and outsourcing of operations or shifting to other workstations. This leads to an adjustment of load to capacity supply, and thus to a reduction of load scattering. If the adaptation of load to capacity cannot be satisfied completely, possibly flexible capacity must be used to ensure that the performance of a workstation does not decrease for a given load. Where the use of flexible capacities normally raises costs, an adjustment of load to capacity supply reduces load scattering and, in consequence, costs. In the literature you mostly find qualitative statements for describing load scattering. Quantitative evaluation methods that describe load mathematically are rare. In this article the authors discuss existing approaches for calculating load scattering and their various disadvantages such as lack of opportunity for normalization. These approaches are the basis for the development of our mathematical quantification approach for describing load scattering that compensates the disadvantages of the current quantification approaches. After presenting our mathematical quantification approach, the method of batch splitting will be described. Batch splitting allows the adaptation of load to capacity to reduce load scattering. After describing the method, it will be explicitly analyzed in the context of the logistic curve theory by Nyhuis using the stretch factor α1 in order to evaluate the impact of the method of batch splitting on load scattering and on logistic curves. The conclusion of this article will be to show how the methods and approaches presented can help companies in a turbulent environment to quantify the occurring work load scattering accurately and apply an efficient method for adjusting work load to capacity supply. In this way, the achievements of the logistical objectives are increased without causing additional costs.

Keywords: batch splitting, production logistics, production planning and control, quantification, load scattering

Procedia PDF Downloads 379
115 New Insulation Material for Solar Thermal Collectors

Authors: Nabila Ihaddadene, Razika Ihaddadene, Abdelwahaab Betka

Abstract:

1973 energy crisis (rising oil prices) pushed the world to consider other alternative energy resources to existing conventional energies consisting predominantly of hydrocarbons. Renewable energies such as solar, the wind and geothermal have received renewed interest, especially to preserve nature ( the low-temperature rise of global environmental problems). Solar energy as an available, cheap and environmental friendly alternative source has various applications such as heating, cooling, drying, power generation, etc. In short, there is no life on earth without this enormous nuclear reactor, called the sun. Among available solar collector designs, flat plate collector (FPC) is low-temperature applications (heating water, space heating, etc.) due to its simple design and ease of manufacturing. Flat plate collectors are permanently fixed in position and do not track the sun (non-concentrating collectors). They operate by converting solar radiation into heat and transferring that heat to a working fluid (usually air, water, water plus antifreeze additive) flowing through them. An FPC generally consists of the main following components: glazing, absorber plate of high absorptivity, fluid tubes welded to or can be an integral part of the absorber plate, insulation and container or casing of the above-mentioned components. Insulation is of prime importance in thermal applications. There are three main families of insulation: mineral insulation; vegetal insulation and synthetic organic insulation. The old houses of the inhabitants of North Africa were built of brick made of composite material that is clay and straw. These homes are characterized by their thermal comfort; i.e. the air inside these houses is cool in summer and warm in winter. So, the material composed from clay and straw act as a thermal insulation. In this research document, the polystyrene used as insulation in the ET200 flat plate solar collector is replaced by the cheapest natural material which is clay and straw. Trials were carried out on a solar energy demonstration system (ET 200). This system contains a solar collector, water storage tank, a high power lamp simulating solar energy and a control and command cabinet. In the experimental device, the polystyrene is placed under the absorber plate and in the edges of the casing containing the components of the solar collector. In this work, we have replaced the polystyrene of the edges by the composite material. The use of the clay and straw as insulation instead of the polystyrene increases temperature difference (T2-T1) between the inlet and the outlet of the absorber by 0.9°C; thus increases the useful power transmitted to water in the solar collector. Tank Water is well heated when using the clay and straw as insulation. However, it is less heated when using the polystyrene as insulation. Clay and straw material improves also the performance of the solar collector by 5.77%. Thus, it is recommended to use this cheapest non-polluting material instead of synthetic insulation to improve the performance of the solar collector.

Keywords: clay, insulation material, polystyrene, solar collector, straw

Procedia PDF Downloads 441
114 Effect of Particle Size Variations on the Tribological Properties of Porcelain Waste Added Epoxy Composites

Authors: B. Yaman, G. Acikbas, N. Calis Acikbas

Abstract:

Epoxy based materials have advantages in tribological applications due to their unique properties such as light weight, self-lubrication capacity and wear resistance. On the other hand, their usage is often limited by their low load bearing capacity and low thermal conductivity values. In this study, it is aimed to improve tribological and also mechanical properties of epoxy by reinforcing with ceramic based porcelain waste. It is well-known that the reuse or recycling of waste materials leads to reduction in production costs, ease of manufacturing, saving energy, etc. From this perspective, epoxy and epoxy matrix composites containing 60wt% porcelain waste with different particle size in the range of below 90µm and 150-250µm were fabricated, and the effect of filler particle size on the mechanical and tribological properties was investigated. The microstructural characterization was carried out by scanning electron microscopy (SEM), and phase analysis was determined by X-ray diffraction (XRD). The Archimedes principle was used to measure the density and porosity of the samples. The hardness values were measured using Shore-D hardness, and bending tests were performed. Microstructural investigations indicated that porcelain particles were homogeneously distributed and no agglomerations were encountered in the epoxy resin. Mechanical test results showed that the hardness and bending strength were increased with increasing particle size related to low porosity content and well embedding to the matrix. Tribological behavior of these composites was evaluated in terms of friction, wear rates and wear mechanisms by ball-on-disk contact with dry and rotational sliding at room temperature against WC ball with a diameter of 3mm. Wear tests were carried out at room temperature (23–25°C) with a humidity of 40 ± 5% under dry-sliding conditions. The contact radius of cycles was set to 5 mm at linear speed of 30 cm/s for the geometry used in this study. In all the experiments, 3N of constant test load was applied at a frequency of 8 Hz and prolonged to 400m wear distance. The friction coefficient of samples was recorded online by the variation in the tangential force. The steady-state CoFs were changed in between 0,29-0,32. The dimensions of the wear tracks (depth and width) were measured as two-dimensional profiles by a stylus profilometer. The wear volumes were calculated by integrating these 2D surface areas over the diameter. Specific wear rates were computed by dividing the wear volume by the applied load and sliding distance. According to the experimental results, the use of porcelain waste in the fabrication of epoxy resin composites can be suggested to be potential materials due to allowing improved mechanical and tribological properties and also providing reduction in production cost.

Keywords: epoxy composites, mechanical properties, porcelain waste, tribological properties

Procedia PDF Downloads 181
113 Challenges of Blockchain Applications in the Supply Chain Industry: A Regulatory Perspective

Authors: Pardis Moslemzadeh Tehrani

Abstract:

Due to the emergence of blockchain technology and the benefits of cryptocurrencies, intelligent or smart contracts are gaining traction. Artificial intelligence (AI) is transforming our lives, and it is being embraced by a wide range of sectors. Smart contracts, which are at the heart of blockchains, incorporate AI characteristics. Such contracts are referred to as "smart" contracts because of the underlying technology that allows contracting parties to agree on terms expressed in computer code that defines machine-readable instructions for computers to follow under specific situations. The transmission happens automatically if the conditions are met. Initially utilised for financial transactions, blockchain applications have since expanded to include the financial, insurance, and medical sectors, as well as supply networks. Raw material acquisition by suppliers, design, and fabrication by manufacturers, delivery of final products to consumers, and even post-sales logistics assistance are all part of supply chains. Many issues are linked with managing supply chains from the planning and coordination stages, which can be implemented in a smart contract in a blockchain due to their complexity. Manufacturing delays and limited third-party amounts of product components have raised concerns about the integrity and accountability of supply chains for food and pharmaceutical items. Other concerns include regulatory compliance in multiple jurisdictions and transportation circumstances (for instance, many products must be kept in temperature-controlled environments to ensure their effectiveness). Products are handled by several providers before reaching customers in modern economic systems. Information is sent between suppliers, shippers, distributors, and retailers at every stage of the production and distribution process. Information travels more effectively when individuals are eliminated from the equation. The usage of blockchain technology could be a viable solution to these coordination issues. In blockchains, smart contracts allow for the rapid transmission of production data, logistical data, inventory levels, and sales data. This research investigates the legal and technical advantages and disadvantages of AI-blockchain technology in the supply chain business. It aims to uncover the applicable legal problems and barriers to the use of AI-blockchain technology to supply chains, particularly in the food industry. It also discusses the essential legal and technological issues and impediments to supply chain implementation for stakeholders, as well as methods for overcoming them before releasing the technology to clients. Because there has been little research done on this topic, it is difficult for industrial stakeholders to grasp how blockchain technology could be used in their respective operations. As a result, the focus of this research will be on building advanced and complex contractual terms in supply chain smart contracts on blockchains to cover all unforeseen supply chain challenges.

Keywords: blockchain, supply chain, IoT, smart contract

Procedia PDF Downloads 98
112 The Impact of Glass Additives on the Functional and Microstructural Properties of Sand-Lime Bricks

Authors: Anna Stepien

Abstract:

The paper presents the results of research on modifications of sand-lime bricks, especially using glass additives (glass fiber and glass sand) and other additives (e.g.:basalt&barite aggregate, lithium silicate and microsilica) as well. The main goal of this paper is to answer the question ‘How to use glass additives in the sand-lime mass and get a better bricks?’ The article contains information on modification of sand-lime bricks using glass fiber, glass sand, microsilica (different structure of silica). It also presents the results of the conducted compression tests, which were focused on compressive strength, water absorption, bulk density, and their microstructure. The Scanning Electron Microscope, spectrum EDS, X-ray diffractometry and DTA analysis helped to define the microstructural changes of modified products. The interpretation of the products structure revealed the existence of diversified phases i.e.the C-S-H and tobermorite. CaO-SiO2-H2O system is the object of intensive research due to its meaning in chemistry and technologies of mineral binding materials. Because the blocks are the autoclaving materials, the temperature of hydrothermal treatment of the products is around 200°C, the pressure - 1,6-1,8 MPa and the time - up to 8hours (it means: 1h heating + 6h autoclaving + 1h cooling). The microstructure of the products consists mostly of hydrated calcium silicates with a different level of structural arrangement. The X-ray diffraction indicated that the type of used sand is an important factor in the manufacturing of sand-lime elements. Quartz sand of a high hardness is also a substrate hardly reacting with other possible modifiers, which may cause deterioration of certain physical and mechanical properties. TG and DTA curves show the changes in the weight loss of the sand-lime bricks specimen against time as well as the endo- and exothermic reactions that took place. The endothermic effect with the maximum at T=573°C is related to isomorphic transformation of quartz. This effect is not accompanied by a change of the specimen weight. The next endothermic effect with the maximum at T=730-760°C is related to the decomposition of the calcium carbonates. The bulk density of the brick it is 1,73kg/dm3, the presence of xonotlite in the microstructure and significant weight loss during DTA and TG tests (around 0,6% after 70 minutes) have been noticed. Silicate elements were assessed on the basis of their compressive property. Orthogonal compositional plan type 3k (with k=2), i.e.full two-factor experiment was applied in order to carry out the experiments both, in the compression strength test and bulk density test. Some modification (e.g.products with barite and basalt aggregate) have improved the compressive strength around 41.3 MPa and water absorption due to capillary raising have been limited to 12%. The next modification was adding glass fiber to sand-lime mass, then glass sand. The results show that the compressive strength was higher than in the case of traditional bricks, while modified bricks were lighter.

Keywords: bricks, fiber, glass, microstructure

Procedia PDF Downloads 332
111 Harnessing the Power of Artificial Intelligence: Advancements and Ethical Considerations in Psychological and Behavioral Sciences

Authors: Nayer Mofidtabatabaei

Abstract:

Advancements in artificial intelligence (AI) have transformed various fields, including psychology and behavioral sciences. This paper explores the diverse ways in which AI is applied to enhance research, diagnosis, therapy, and understanding of human behavior and mental health. We discuss the potential benefits and challenges associated with AI in these fields, emphasizing the ethical considerations and the need for collaboration between AI researchers and psychological and behavioral science experts. Artificial Intelligence (AI) has gained prominence in recent years, revolutionizing multiple industries, including healthcare, finance, and entertainment. One area where AI holds significant promise is the field of psychology and behavioral sciences. AI applications in this domain range from improving the accuracy of diagnosis and treatment to understanding complex human behavior patterns. This paper aims to provide an overview of the various AI applications in psychological and behavioral sciences, highlighting their potential impact, challenges, and ethical considerations. Mental Health Diagnosis AI-driven tools, such as natural language processing and sentiment analysis, can analyze large datasets of text and speech to detect signs of mental health issues. For example, chatbots and virtual therapists can provide initial assessments and support to individuals suffering from anxiety or depression. Autism Spectrum Disorder (ASD) Diagnosis AI algorithms can assist in early ASD diagnosis by analyzing video and audio recordings of children's behavior. These tools help identify subtle behavioral markers, enabling earlier intervention and treatment. Personalized Therapy AI-based therapy platforms use personalized algorithms to adapt therapeutic interventions based on an individual's progress and needs. These platforms can provide continuous support and resources for patients, making therapy more accessible and effective. Virtual Reality Therapy Virtual reality (VR) combined with AI can create immersive therapeutic environments for treating phobias, PTSD, and social anxiety. AI algorithms can adapt VR scenarios in real-time to suit the patient's progress and comfort level. Data Analysis AI aids researchers in processing vast amounts of data, including survey responses, brain imaging, and genetic information. Privacy Concerns Collecting and analyzing personal data for AI applications in psychology and behavioral sciences raise significant privacy concerns. Researchers must ensure the ethical use and protection of sensitive information. Bias and Fairness AI algorithms can inherit biases present in training data, potentially leading to biased assessments or recommendations. Efforts to mitigate bias and ensure fairness in AI applications are crucial. Transparency and Accountability AI-driven decisions in psychology and behavioral sciences should be transparent and subject to accountability. Patients and practitioners should understand how AI algorithms operate and make decisions. AI applications in psychological and behavioral sciences have the potential to transform the field by enhancing diagnosis, therapy, and research. However, these advancements come with ethical challenges that require careful consideration. Collaboration between AI researchers and psychological and behavioral science experts is essential to harness AI's full potential while upholding ethical standards and privacy protections. The future of AI in psychology and behavioral sciences holds great promise, but it must be navigated with caution and responsibility.

Keywords: artificial intelligence, psychological sciences, behavioral sciences, diagnosis and therapy, ethical considerations

Procedia PDF Downloads 49