Search results for: reliable estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3681

Search results for: reliable estimation

261 Edge Enhancement Visual Methodology for Fat Amount and Distribution Assessment in Dry-Cured Ham Slices

Authors: Silvia Grassi, Stefano Schiavon, Ernestina Casiraghi, Cristina Alamprese

Abstract:

Dry-cured ham is an uncooked meat product particularly appreciated for its peculiar sensory traits among which lipid component plays a key role in defining quality and, consequently, consumers’ acceptability. Usually, fat content and distribution are chemically determined by expensive, time-consuming, and destructive analyses. Moreover, different sensory techniques are applied to assess product conformity to desired standards. In this context, visual systems are getting a foothold in the meat market envisioning more reliable and time-saving assessment of food quality traits. The present work aims at developing a simple but systematic and objective visual methodology to assess the fat amount of dry-cured ham slices, in terms of total, intermuscular and intramuscular fractions. To the aim, 160 slices from 80 PDO dry-cured hams were evaluated by digital image analysis and Soxhlet extraction. RGB images were captured by a flatbed scanner, converted in grey-scale images, and segmented based on intensity histograms as well as on a multi-stage algorithm aimed at edge enhancement. The latter was performed applying the Canny algorithm, which consists of image noise reduction, calculation of the intensity gradient for each image, spurious response removal, actual thresholding on corrected images, and confirmation of strong edge boundaries. The approach allowed for the automatic calculation of total, intermuscular and intramuscular fat fractions as percentages of the total slice area. Linear regression models were run to estimate the relationships between the image analysis results and the chemical data, thus allowing for the prediction of the total, intermuscular and intramuscular fat content by the dry-cured ham images. The goodness of fit of the obtained models was confirmed in terms of coefficient of determination (R²), hypothesis testing and pattern of residuals. Good regression models have been found being 0.73, 0.82, and 0.73 the R2 values for the total fat, the sum of intermuscular and intramuscular fat and the intermuscular fraction, respectively. In conclusion, the edge enhancement visual procedure brought to a good fat segmentation making the simple visual approach for the quantification of the different fat fractions in dry-cured ham slices sufficiently simple, accurate and precise. The presented image analysis approach steers towards the development of instruments that can overcome destructive, tedious and time-consuming chemical determinations. As future perspectives, the results of the proposed image analysis methodology will be compared with those of sensory tests in order to develop a fast grading method of dry-cured hams based on fat distribution. Therefore, the system will be able not only to predict the actual fat content but it will also reflect the visual appearance of samples as perceived by consumers.

Keywords: dry-cured ham, edge detection algorithm, fat content, image analysis

Procedia PDF Downloads 164
260 Lake Water Surface Variations and Its Influencing Factors in Tibetan Plateau in Recent 10 Years

Authors: Shanlong Lu, Jiming Jin, Xiaochun Wang

Abstract:

The Tibetan Plateau has the largest number of inland lakes with the highest elevation on the planet. These massive and large lakes are mostly in natural state and are less affected by human activities. Their shrinking or expansion can truly reflect regional climate and environmental changes and are sensitive indicators of global climate change. However, due to the sparsely populated nature of the plateau and the poor natural conditions, it is difficult to effectively obtain the change data of the lake, which has affected people's understanding of the temporal and spatial processes of lake water changes and their influencing factors. By using the MODIS (Moderate Resolution Imaging Spectroradiometer) MOD09Q1 surface reflectance images as basic data, this study produced the 8-day lake water surface data set of the Tibetan Plateau from 2000 to 2012 at 250 m spatial resolution, with a lake water surface extraction method of combined with lake water surface boundary buffer analyzing and lake by lake segmentation threshold determining. Then based on the dataset, the lake water surface variations and their influencing factors were analyzed, by using 4 typical natural geographical zones of Eastern Qinghai and Qilian, Southern Qinghai, Qiangtang, and Southern Tibet, and the watersheds of the top 10 lakes of Qinghai, Siling Co, Namco, Zhari NamCo, Tangra Yumco, Ngoring, UlanUla, Yamdrok Tso, Har and Gyaring as the analysis units. The accuracy analysis indicate that compared with water surface data of the 134 sample lakes extracted from the 30 m Landsat TM (Thematic Mapper ) images, the average overall accuracy of the lake water surface data set is 91.81% with average commission and omission error of 3.26% and 5.38%; the results also show strong linear (R2=0.9991) correlation with the global MODIS water mask dataset with overall accuracy of 86.30%; and the lake area difference between the Second National Lake Survey and this study is only 4.74%, respectively. This study provides reliable dataset for the lake change research of the plateau in the recent decade. The change trends and influencing factors analysis indicate that the total water surface area of lakes in the plateau showed overall increases, but only lakes with areas larger than 10 km2 had statistically significant increases. Furthermore, lakes with area larger than 100 km2 experienced an abrupt change in 2005. In addition, the annual average precipitation of Southern Tibet and Southern Qinghai experienced significant increasing and decreasing trends, and corresponding abrupt changes in 2004 and 2006, respectively. The annual average temperature of Southern Tibet and Qiangtang showed a significant increasing trend with an abrupt change in 2004. The major reason for the lake water surface variation in Eastern Qinghai and Qilian, Southern Qinghai and Southern Tibet is the changes of precipitation, and that for Qiangtang is the temperature variations.

Keywords: lake water surface variation, MODIS MOD09Q1, remote sensing, Tibetan Plateau

Procedia PDF Downloads 221
259 Experimental Investigation of Absorbent Regeneration Techniques to Lower the Cost of Combined CO₂ and SO₂ Capture Process

Authors: Bharti Garg, Ashleigh Cousins, Pauline Pearson, Vincent Verheyen, Paul Feron

Abstract:

The presence of SO₂ in power plant flue gases makes flue gas desulfurization (FGD) an essential requirement prior to post combustion CO₂ (PCC) removal facilities. Although most of the power plants worldwide deploy FGD in order to comply with environmental regulations, generally the achieved SO₂ levels are not sufficiently low for the flue gases to enter the PCC unit. The SO₂ level in the flue gases needs to be less than 10 ppm to effectively operate the PCC installation. The existing FGD units alone cannot bring down the SO₂ levels to or below 10 ppm as required for CO₂ capture. It might require an additional scrubber along with the existing FGD unit to bring the SO₂ to the desired levels. The absence of FGD units in Australian power plants brings an additional challenge. SO₂ concentrations in Australian power station flue gas emissions are in the range of 100-600 ppm. This imposes a serious barrier on the implementation of standard PCC technologies in Australia. CSIRO’s developed CS-Cap process is a unique solution to capture SO₂ and CO₂ in a single column with single absorbent which can potentially bring cost-effectiveness to the commercial deployment of carbon capture in Australia, by removing the need for FGD. Estimated savings of removing SO₂ through a similar process as CS-Cap is around 200 MMUSD for a 500 MW Australian power plant. Pilot plant trials conducted to generate the proof of concept resulted in 100% removal of SO₂ from flue gas without utilising standard limestone-based FGD. In this work, removal of absorbed sulfur from aqueous amine absorbents generated in the pilot plant trials has been investigated by reactive crystallisation and thermal reclamation. More than 95% of the aqueous amines can be reclaimed back from the sulfur loaded absorbent via reactive crystallisation. However, the recovery of amines through thermal reclamation is limited and depends on the sulfur loading on the spent absorbent. The initial experimental work revealed that reactive crystallisation is a better fit for CS-Cap’s sulfur-rich absorbent especially when it is also capable of generating K₂SO₄ crystals of highly saleable quality ~ 99%. Initial cost estimation carried on both the technologies resulted in almost similar capital expenditure; however, the operating cost is considerably higher in thermal reclaimer than that in crystalliser. The experimental data generated in the laboratory from both the regeneration techniques have been used to generate the simulation model in Aspen Plus. The simulation model illustrates the economic benefits which could be gained by removing flue gas desulfurization prior to standard PCC unit and replacing it with a CS-Cap absorber column co-capturing CO₂ and SO₂, and it's absorbent regeneration system which would be either reactive crystallisation or thermal reclamation.

Keywords: combined capture, cost analysis, crystallisation, CS-Cap, flue gas desulfurisation, regeneration, sulfur, thermal reclamation

Procedia PDF Downloads 113
258 Procedure for Monitoring the Process of Behavior of Thermal Cracking in Concrete Gravity Dams: A Case Study

Authors: Adriana de Paula Lacerda Santos, Bruna Godke, Mauro Lacerda Santos Filho

Abstract:

Several dams in the world have already collapsed, causing environmental, social and economic damage. The concern to avoid future disasters has stimulated the creation of a great number of laws and rules in many countries. In Brazil, Law 12.334/2010 was created, which establishes the National Policy on Dam Safety. Overall, this policy requires the dam owners to invest in the maintenance of their structures and to improve its monitoring systems in order to provide faster and straightforward responses in the case of an increase of risks. As monitoring tools, visual inspections has provides comprehensive assessment of the structures performance, while auscultation’s instrumentation has added specific information on operational or behavioral changes, providing an alarm when a performance indicator exceeds the acceptable limits. These limits can be set using statistical methods based on the relationship between instruments measures and other variables, such as reservoir level, time of the year or others instruments measuring. Besides the design parameters (uplift of the foundation, displacements, etc.) the dam instrumentation can also be used to monitor the behavior of defects and damage manifestations. Specifically in concrete gravity dams, one of the main causes for the appearance of cracks, are the concrete volumetric changes generated by the thermal origin phenomena, which are associated with the construction process of these structures. Based on this, the goal of this research is to propose a monitoring process of the thermal cracking behavior in concrete gravity dams, through the instrumentation data analysis and the establishment of control values. Therefore, as a case study was selected the Block B-11 of José Richa Governor Dam Power Plant, that presents a cracking process, which was identified even before filling the reservoir in August’ 1998, and where crack meters and surface thermometers were installed for its monitoring. Although these instruments were installed in May 2004, the research was restricted to study the last 4.5 years (June 2010 to November 2014), when all the instruments were calibrated and producing reliable data. The adopted method is based on simple linear correlations procedures to understand the interactions among the instruments time series, verifying the response times between them. The scatter plots were drafted from the best correlations, which supported the definition of the limit control values. Among the conclusions, it is shown that there is a strong or very strong correlation between ambient temperature and the crack meters and flowmeters measurements. Based on the results of the statistical analysis, it was possible to develop a tool for monitoring the behavior of the case study cracks. Thus it was fulfilled the goal of the research to develop a proposal for a monitoring process of the behavior of thermal cracking in concrete gravity dams.

Keywords: concrete gravity dam, dams safety, instrumentation, simple linear correlation

Procedia PDF Downloads 283
257 Agent-Based Modeling Investigating Self-Organization in Open, Non-equilibrium Thermodynamic Systems

Authors: Georgi Y. Georgiev, Matthew Brouillet

Abstract:

This research applies the power of agent-based modeling to a pivotal question at the intersection of biology, computer science, physics, and complex systems theory about the self-organization processes in open, complex, non-equilibrium thermodynamic systems. Central to this investigation is the principle of Maximum Entropy Production (MEP). This principle suggests that such systems evolve toward states that optimize entropy production, leading to the formation of structured environments. It is hypothesized that guided by the least action principle, open thermodynamic systems identify and follow the shortest paths to transmit energy and matter, resulting in maximal entropy production, internal structure formation, and a decrease in internal entropy. Concurrently, it is predicted that there will be an increase in system information as more information is required to describe the developing structure. To test this, an agent-based model is developed simulating an ant colony's formation of a path between a food source and its nest. Utilizing the Netlogo software for modeling and Python for data analysis and visualization, self-organization is quantified by calculating the decrease in system entropy based on the potential states and distribution of the ants within the simulated environment. External entropy production is also evaluated for information increase and efficiency improvements in the system's action. Simulations demonstrated that the system begins at maximal entropy, which decreases as the ants form paths over time. A range of system behaviors contingent upon the number of ants are observed. Notably, no path formation occurred with fewer than five ants, whereas clear paths were established by 200 ants, and saturation of path formation and entropy state was reached at populations exceeding 1000 ants. This analytical approach identified the inflection point marking the transition from disorder to order and computed the slope at this point. Combined with extrapolation to the final path entropy, these parameters yield important insights into the eventual entropy state of the system and the timeframe for its establishment, enabling the estimation of the self-organization rate. This study provides a novel perspective on the exploration of self-organization in thermodynamic systems, establishing a correlation between internal entropy decrease rate and external entropy production rate. Moreover, it presents a flexible framework for assessing the impact of external factors like changes in world size, path obstacles, and friction. Overall, this research offers a robust, replicable model for studying self-organization processes in any open thermodynamic system. As such, it provides a foundation for further in-depth exploration of the complex behaviors of these systems and contributes to the development of more efficient self-organizing systems across various scientific fields.

Keywords: complexity, self-organization, agent based modelling, efficiency

Procedia PDF Downloads 50
256 Data Quality on Regular Childhood Immunization Programme at Degehabur District: Somali Region, Ethiopia

Authors: Eyob Seife

Abstract:

Immunization is a life-saving intervention which prevents needless suffering through sickness, disability, and death. Emphasis on data quality and use will become even stronger with the development of the immunization agenda 2030 (IA2030). Quality of data is a key factor in generating reliable health information that enables monitoring progress, financial planning, vaccine forecasting capacities, and making decisions for continuous improvement of the national immunization program. However, ensuring data of sufficient quality and promoting an information-use culture at the point of the collection remains critical and challenging, especially in hard-to-reach and pastoralist areas where Degehabur district is selected based on a hypothesis of ‘there is no difference in reported and recounted immunization data consistency. Data quality is dependent on different factors where organizational, behavioral, technical, and contextual factors are the mentioned ones. A cross-sectional quantitative study was conducted on September 2022 in the Degehabur district. The study used the world health organization (WHO) recommended data quality self-assessment (DQS) tools. Immunization tally sheets, registers, and reporting documents were reviewed at 5 health facilities (2 health centers and 3 health posts) of primary health care units for one fiscal year (12 months) to determine the accuracy ratio. The data was collected by trained DQS assessors to explore the quality of monitoring systems at health posts, health centers, and the district health office. A quality index (QI) was assessed, and the accuracy ratio formulated were: the first and third doses of pentavalent vaccines, fully immunized (FI), and the first dose of measles-containing vaccines (MCV). In this study, facility-level results showed both over-reporting and under-reporting were observed at health posts when computing the accuracy ratio of the tally sheet to health post reports found at health centers for almost all antigens verified where pentavalent 1 was 88.3%, 60.4%, and 125.6% for Health posts A, B, and C respectively. For first-dose measles-containing vaccines (MCV), similarly, the accuracy ratio was found to be 126.6%, 42.6%, and 140.9% for Health posts A, B, and C, respectively. The accuracy ratio for fully immunized children also showed 0% for health posts A and B and 100% for health post-C. A relatively better accuracy ratio was seen at health centers where the first pentavalent dose was 97.4% and 103.3% for health centers A and B, while a first dose of measles-containing vaccines (MCV) was 89.2% and 100.9% for health centers A and B, respectively. A quality index (QI) of all facilities also showed results between the maximum of 33.33% and a minimum of 0%. Most of the verified immunization data accuracy ratios were found to be relatively better at the health center level. However, the quality of the monitoring system is poor at all levels, besides poor data accuracy at all health posts. So attention should be given to improving the capacity of staff and quality of monitoring system components, namely recording, reporting, archiving, data analysis, and using information for decision at all levels, especially in pastoralist areas where such kinds of study findings need to be improved beside to improving the data quality at root and health posts level.

Keywords: accuracy ratio, Degehabur District, regular childhood immunization program, quality of monitoring system, Somali Region-Ethiopia

Procedia PDF Downloads 85
255 Application of 2D Electrical Resistivity Tomographic Imaging Technique to Study Climate Induced Landslide and Slope Stability through the Analysis of Factor of Safety: A Case Study in Ooty Area, Tamil Nadu, India

Authors: S. Maniruzzaman, N. Ramanujam, Qazi Akhter Rasool, Swapan Kumar Biswas, P. Prasad, Chandrakanta Ojha

Abstract:

Landslide is one of the major natural disasters in South Asian countries. Applying 2D Electrical Resistivity Tomographic Imaging estimation of geometry, thickness, and depth of failure zone of the landslide can be made. Landslide is a pertinent problem in Nilgris plateau next to Himalaya. Nilgris range consists of hard Archean metamorphic rocks. Intense weathering prevailed during the Pre-Cambrian time had deformed the rocks up to 45m depth. The landslides are dominant in the southern and eastern part of plateau of is comparatively smaller than the northern drainage basins, as it has low density of drainage; coarse texture permitted the more of infiltration of rainwater, whereas in the northern part of the plateau entombed with high density of drainage pattern and fine texture with less infiltration than run off, and low to the susceptible to landslide. To get comprehensive information about the landslide zone 2D Electrical Resistivity Tomographic imaging study with CRM 500 Resistivity meter are used in Coonoor– Mettupalyam sector of Nilgiris plateau. To calculate Factor of Safety the infinite slope model of Brunsden and Prior is used. Factor of Safety can be expressed (FS) as the ratio of resisting forces to disturbing forces. If FS < 1 disturbing forces are larger than resisting forces and failure may occur. The geotechnical parameters of soil samples are calculated on the basis upon the apparent resistivity values for litho units of measured from 2D ERT image of the landslide zone. Relationship between friction angles for various soil properties is established by simple regression analysis from apparent resistivity data. Increase of water content in slide zone reduces the effectiveness of the shearing resistance and increase the sliding movement. Time-lapse resistivity changes to slope failure is determined through geophysical Factor of Safety which depends on resistivity and site topography. This ERT technique infers soil property at variable depths in wider areas. This approach to retrieve the soil property and overcomes the limit of the point of information provided by rain gauges and porous probes. Monitoring of slope stability without altering soil structure through the ERT technique is non-invasive with low cost. In landslide prone area an automated Electrical Resistivity Tomographic Imaging system should be installed permanently with electrode networks to monitor the hydraulic precursors to monitor landslide movement.

Keywords: 2D ERT, landslide, safety factor, slope stability

Procedia PDF Downloads 297
254 Fuzzy Availability Analysis of a Battery Production System

Authors: Merve Uzuner Sahin, Kumru D. Atalay, Berna Dengiz

Abstract:

In today’s competitive market, there are many alternative products that can be used in similar manner and purpose. Therefore, the utility of the product is an important issue for the preferability of the brand. This utility could be measured in terms of its functionality, durability, reliability. These all are affected by the system capabilities. Reliability is an important system design criteria for the manufacturers to be able to have high availability. Availability is the probability that a system (or a component) is operating properly to its function at a specific point in time or a specific period of times. System availability provides valuable input to estimate the production rate for the company to realize the production plan. When considering only the corrective maintenance downtime of the system, mean time between failure (MTBF) and mean time to repair (MTTR) are used to obtain system availability. Also, the MTBF and MTTR values are important measures to improve system performance by adopting suitable maintenance strategies for reliability engineers and practitioners working in a system. Failure and repair time probability distributions of each component in the system should be known for the conventional availability analysis. However, generally, companies do not have statistics or quality control departments to store such a large amount of data. Real events or situations are defined deterministically instead of using stochastic data for the complete description of real systems. A fuzzy set is an alternative theory which is used to analyze the uncertainty and vagueness in real systems. The aim of this study is to present a novel approach to compute system availability using representation of MTBF and MTTR in fuzzy numbers. Based on the experience in the system, it is decided to choose 3 different spread of MTBF and MTTR such as 15%, 20% and 25% to obtain lower and upper limits of the fuzzy numbers. To the best of our knowledge, the proposed method is the first application that is used fuzzy MTBF and fuzzy MTTR for fuzzy system availability estimation. This method is easy to apply in any repairable production system by practitioners working in industry. It is provided that the reliability engineers/managers/practitioners could analyze the system performance in a more consistent and logical manner based on fuzzy availability. This paper presents a real case study of a repairable multi-stage production line in lead-acid battery production factory in Turkey. The following is focusing on the considered wet-charging battery process which has a higher production level than the other types of battery. In this system, system components could exist only in two states, working or failed, and it is assumed that when a component in the system fails, it becomes as good as new after repair. Instead of classical methods, using fuzzy set theory and obtaining intervals for these measures would be very useful for system managers, practitioners to analyze system qualifications to find better results for their working conditions. Thus, much more detailed information about system characteristics is obtained.

Keywords: availability analysis, battery production system, fuzzy sets, triangular fuzzy numbers (TFNs)

Procedia PDF Downloads 209
253 Highly Automated Trucks In Intermodal Logistics: Findings From a Field Test in Railport and Container Depot Operations in Germany

Authors: Dustin Schöder

Abstract:

The potential benefits of the utilization of highly automated and autonomous trucks in logistics operations are the subject of interest to the entire logistics industry. The benefits of the use of these new technologies were scientifically investigated and implemented in roadmaps. So far, reliable data and experiences from real life use cases are still limited. A German research consortium of both academics and industry developed a highly automated (SAE level 4) vehicle for yard operations at railports and container depots. After development and testing, a several month field test at the DUSS Terminal in Ulm-Dornstadt (Germany) and the nearby DB Intermodal Services Container Depot in Ulm-Dornstadt was conducted. The truck was piloted in a shuttle service between both sites. In a holistic automation approach, the vehicle was integrated into a digital communication platform so that the truck could move autonomously without a driver and his manual interactions with a wide variety of stakeholders. The main goal is to investigate the effects of highly automated trucks in the key processes of container loading, unloading and container relocation on holistic railport yard operation. The field test data were used to investigate changes in process efficiency of key processes of railport and container yard operations. Moreover, effects on the capacity utilization and potentials for smothering peak workloads were analyzed. The results state that process efficiency in the piloted use case was significantly higher. The reason for that could be found in the digitalized data exchange and automated dispatch. However, the field test has shown that the effect is greatly varying depending on the ratio of highly automated and manual trucks in the yard as well as on the congestion level in the loading area. Furthermore, the data confirmed that under the right conditions, the capacity utilization of highly automated trucks could be increased. In regard to the potential for smothering peak workloads, no significant findings could be made based on the limited requirements and regulations of railway operation in Germany. In addition, an empirical survey among railport managers, operational supervisors, innovation managers and strategists (n=15) within the logistics industry in Germany was conducted. The goal was to identify key characteristics of future railports and terminals as well as requirements that railports will have to meet in the future. Furthermore, the railport processes where automation and autonomization make the greatest impact, as well as hurdles and challenges in the introduction of new technologies, have been surveyed. Hence, further potential use cases of highly automated and autonomous applications could be identified, and expectations have been mapped. As a result, a highly detailed and practice-based roadmap towards a ‘terminal 4.0’ was developed.

Keywords: highly automated driving, autonomous driving, SAE level 4, railport operations, container depot, intermodal logistics, potentials of autonomization

Procedia PDF Downloads 64
252 Vieira Da Silva's Tiles at Universidade Federal Rural Do Rio de Janeiro: A Conservation and Restoration Project

Authors: Adriana Anselmo Oliveira

Abstract:

The present project showcases a tile work from the Franco-Portuguese artist Maria Helena Vieira da Silva (1908-1992). It is a set of 8 panels composed of figurative and geometric tiles, with extra tiles framing nearby doors and windows in a study room in the (UFRRJ, Universidade Federal Rural do Rio de Janeiro). The aforementioned work was created between 1942 and 1943, during the artist's 6 year exile in the Brazilian city. This one-of-a-kind tileset was designed and made by Vieira da Silva between 1942 and 1943. Over the years, several units were lost, which led to their replacement in the nineties. However, these replacements don't do justice to the original work of art. In 2007, a project was initiated to fully repair and maintain the set. Three panels are removed and restored, but the project is halted. To this day, the three fully restored panels remain in boxes. In 2016 a new restoration project is submitted by the (Faculdade de Belas Artes da Universidade de Lisboa) in collaboration with de (Fundacão Árpád Szenes-Vieira da Silva). There are many varied opinions on restoring and conserving older pieces of art, however, we have the moral duty to safeguard the original materials used by the artist along with the artists original vision and also to care for the future generations of students who will use the space in which the tile-work was inserted. Many tiles have been replaced by white tiles, tiles with a divergent colour pallet and technique, and in a few cases, the incorrect place or way around. These many factors make it increasingly difficult to maintain the artists original vision and destroy and chance of coherence within the artwork itself. The conservative technician cannot make new images to fill the empty spaces or mark the remaining images with their own creative input. with reliable photographic documentation that can provide us with the necessary vision to allow us to proceed with an accurate reconstruction, we have the obligation to proceed and return the piece of art to its true form, as in its current state, it is impossible to maintain its original glory. Using the information we have, we must find a way to differentiate the original tiles from the reconstructions in order to recreate and reclaim the original message from the artist. The objective of this project is to understand the significance of tiles in Vieira da Silva's art as well as the influence they had on the artist's pictorial language since the colour definition on tile work is vastly different from the painting process as the materials change during their merger. Another primary goal is to understand what the previous interventions achieved besides increasing the artworks durability. The main objective is to submit a proposal that can salvage the artist's visual intention and supports it for posteriority. In summary, this proposal goes further than the usual conservative interventions as it intends to recreate the original artistic worth, prioritising the aesthetics and keeping its soul alive.

Keywords: Vieira da Silva, tiles, conservation, restoration

Procedia PDF Downloads 144
251 Influence of Temperature and Immersion on the Behavior of a Polymer Composite

Authors: Quentin C.P. Bourgogne, Vanessa Bouchart, Pierre Chevrier, Emmanuel Dattoli

Abstract:

This study presents an experimental and theoretical work conducted on a PolyPhenylene Sulfide reinforced with 40%wt of short glass fibers (PPS GF40) and its matrix. Thermoplastics are widely used in the automotive industry to lightweight automotive parts. The replacement of metallic parts by thermoplastics is reaching under-the-hood parts, near the engine. In this area, the parts are subjected to high temperatures and are immersed in cooling liquid. This liquid is composed of water and glycol and can affect the mechanical properties of the composite. The aim of this work was thus to quantify the evolution of mechanical properties of the thermoplastic composite, as a function of temperature and liquid aging effects, in order to develop a reliable design of parts. An experimental campaign in the tensile mode was carried out at different temperatures and for various glycol proportions in the cooling liquid, for monotonic and cyclic loadings on a neat and a reinforced PPS. The results of these tests allowed to highlight some of the main physical phenomena occurring during these solicitations under tough hydro-thermal conditions. Indeed, the performed tests showed that temperature and liquid cooling aging can affect the mechanical behavior of the material in several ways. The more the cooling liquid contains water, the more the mechanical behavior is affected. It was observed that PPS showed a higher sensitivity to absorption than to chemical aggressiveness of the cooling liquid, explaining this dominant sensitivity. Two kinds of behaviors were noted: an elasto-plastic type under the glass transition temperature and a visco-pseudo-plastic one above it. It was also shown that viscosity is the leading phenomenon above the glass transition temperature for the PPS and could also be important under this temperature, mostly under cyclic conditions and when the stress rate is low. Finally, it was observed that soliciting this composite at high temperatures is decreasing the advantages of the presence of fibers. A new phenomenological model was then built to take into account these experimental observations. This new model allowed the prediction of the evolution of mechanical properties as a function of the loading environment, with a reduced number of parameters compared to precedent studies. It was also shown that the presented approach enables the description and the prediction of the mechanical response with very good accuracy (2% of average error at worst), over a wide range of hydrothermal conditions. A temperature-humidity equivalence principle was underlined for the PPS, allowing the consideration of aging effects within the proposed model. Then, a limit of improvement of the reachable accuracy was determinate for all models using this set of data by the application of an artificial intelligence-based model allowing a comparison between artificial intelligence-based models and phenomenological based ones.

Keywords: aging, analytical modeling, mechanical testing, polymer matrix composites, sequential model, thermomechanical

Procedia PDF Downloads 102
250 The Processing of Context-Dependent and Context-Independent Scalar Implicatures

Authors: Liu Jia’nan

Abstract:

The default accounts hold the view that there exists a kind of scalar implicature which can be processed without context and own a psychological privilege over other scalar implicatures which depend on context. In contrast, the Relevance Theorist regards context as a must because all the scalar implicatures have to meet the need of relevance in discourse. However, in Katsos, the experimental results showed: Although quantitatively the adults rejected under-informative utterance with lexical scales (context-independent) and the ad hoc scales (context-dependent) at almost the same rate, adults still regarded the violation of utterance with lexical scales much more severe than with ad hoc scales. Neither default account nor Relevance Theory can fully explain this result. Thus, there are two questionable points to this result: (1) Is it possible that the strange discrepancy is due to other factors instead of the generation of scalar implicature? (2) Are the ad hoc scales truly formed under the possible influence from mental context? Do the participants generate scalar implicatures with ad hoc scales instead of just comparing semantic difference among target objects in the under- informative utterance? In my Experiment 1, the question (1) will be answered by repetition of Experiment 1 by Katsos. Test materials will be showed by PowerPoint in the form of pictures, and each procedure will be done under the guidance of a tester in a quiet room. Our Experiment 2 is intended to answer question (2). The test material of picture will be transformed into the literal words in DMDX and the target sentence will be showed word-by-word to participants in the soundproof room in our lab. Reading time of target parts, i.e. words containing scalar implicatures, will be recorded. We presume that in the group with lexical scale, standardized pragmatically mental context would help generate scalar implicature once the scalar word occurs, which will make the participants hope the upcoming words to be informative. Thus if the new input after scalar word is under-informative, more time will be cost for the extra semantic processing. However, in the group with ad hoc scale, scalar implicature may hardly be generated without the support from fixed mental context of scale. Thus, whether the new input is informative or not does not matter at all, and the reading time of target parts will be the same in informative and under-informative utterances. People’s mind may be a dynamic system, in which lots of factors would co-occur. If Katsos’ experimental result is reliable, will it shed light on the interplay of default accounts and context factors in scalar implicature processing? We might be able to assume, based on our experiments, that one single dominant processing paradigm may not be plausible. Furthermore, in the processing of scalar implicature, the semantic interpretation and the pragmatic interpretation may be made in a dynamic interplay in the mind. As to the lexical scale, the pragmatic reading may prevail over the semantic reading because of its greater exposure in daily language use, which may also lead the possible default or standardized paradigm override the role of context. However, those objects in ad hoc scale are not usually treated as scalar membership in mental context, and thus lexical-semantic association of the objects may prevent their pragmatic reading from generating scalar implicature. Only when the sufficient contextual factors are highlighted, can the pragmatic reading get privilege and generate scalar implicature.

Keywords: scalar implicature, ad hoc scale, dynamic interplay, default account, Mandarin Chinese processing

Procedia PDF Downloads 304
249 Potential of Aerodynamic Feature on Monitoring Multilayer Rough Surfaces

Authors: Ibtissem Hosni, Lilia Bennaceur Farah, Saber Mohamed Naceur

Abstract:

In order to assess the water availability in the soil, it is crucial to have information about soil distributed moisture content; this parameter helps to understand the effect of humidity on the exchange between soil, plant cover and atmosphere in addition to fully understanding the surface processes and the hydrological cycle. On the other hand, aerodynamic roughness length is a surface parameter that scales the vertical profile of the horizontal component of the wind speed and characterizes the surface ability to absorb the momentum of the airflow. In numerous applications of the surface hydrology and meteorology, aerodynamic roughness length is an important parameter for estimating momentum, heat and mass exchange between the soil surface and atmosphere. It is important on this side, to consider the atmosphere factors impact in general, and the natural erosion in particular, in the process of soil evolution and its characterization and prediction of its physical parameters. The study of the induced movements by the wind over soil vegetated surface, either spaced plants or plant cover, is motivated by significant research efforts in agronomy and biology. The known major problem in this side concerns crop damage by wind, which presents a booming field of research. Obviously, most models of soil surface require information about the aerodynamic roughness length and its temporal and spatial variability. We have used a bi-dimensional multi-scale (2D MLS) roughness description where the surface is considered as a superposition of a finite number of one-dimensional Gaussian processes each one having a spatial scale using the wavelet transform and the Mallat algorithm to describe natural surface roughness. We have introduced multi-layer aspect of the humidity of the soil surface, to take into account a volume component in the problem of backscattering radar signal. As humidity increases, the dielectric constant of the soil-water mixture increases and this change is detected by microwave sensors. Nevertheless, many existing models in the field of radar imagery, cannot be applied directly on areas covered with vegetation due to the vegetation backscattering. Thus, the radar response corresponds to the combined signature of the vegetation layer and the layer of soil surface. Therefore, the key issue of the numerical estimation of soil moisture is to separate the two contributions and calculate both scattering behaviors of the two layers by defining the scattering of the vegetation and the soil blow. This paper presents a synergistic methodology, and it is for estimating roughness and soil moisture from C-band radar measurements. The methodology adequately represents a microwave/optical model which has been used to calculate the scattering behavior of the aerodynamic vegetation-covered area by defining the scattering of the vegetation and the soil below.

Keywords: aerodynamic, bi-dimensional, vegetation, synergistic

Procedia PDF Downloads 257
248 Screening of Osteoporosis in Aging Populations

Authors: Massimiliano Panella, Sara Bortoluzzi, Sophia Russotto, Daniele Nicolini, Carmela Rinaldi

Abstract:

Osteoporosis affects more than 200 million people worldwide. About 75% of osteoporosis cases are undiagnosed or diagnosed only when a bone fracture occurs. Since osteoporosis related fractures are significant determinants of the burden of disease and health and social costs of aging populations, we believe that this is the early identification and treatment of high-risk patients should be a priority in actual healthcare systems. Screening for osteoporosis by dual energy x-ray absorptiometry (DEXA) is not cost-effective for general population. An alternative is pulse-echo ultrasound (PEUS) because of the minor costs. To this end, we developed an early detection program for osteoporosis with PEUS, and we evaluated is possible impact and sustainability. We conducted a cross-sectional study including 1,050 people in Italy. Subjects with >1 major or >2 minor risk factors for osteoporosis were invited to PEUS bone mass density (BMD) measurement at the proximal tibia. Based on BMD values, subjects were classified as healthy subjects (BMD>0.783 g/cm²) and pathological including subjects with suspected osteopenia (0.783≤BMD>0.719 g/cm²) or osteoporosis (BMD ≤ 0.719 g/cm²). The responder rate was 60.4% (634/1050). According to the risk, PEUS scan was recommended to 436 people, of whom 300 (mean age 45.2, 81% women) accepted to participate. We identified 240 (80%) healthy and 60 (20%) pathological subjects (47 osteopenic and 13 osteoporotic). We observed a significant association between high risk people and reduced bone density (p=0.043) with increased risks for female gender, older ages, and menopause (p<0.01). The yearly cost of the screening program was 8,242 euros. With actual Italian fracture incidence rates in osteoporotic patients, we can reasonably expect in 20 years that at least 6 fractures will occur in our sample. If we consider that the mean costs per fracture in Italy is today 16,785 euros, we can estimate a theoretical cost of 100,710 euros. According to literature, we can assume that the early treatment of osteoporosis could avoid 24,170 euros of such costs. If we add the actual yearly cost of the treatments to the cost of our program and we compare this final amount of 11,682 euros to the avoidable costs of fractures (24,170 euros) we can measure a possible positive benefits/costs ratio of 2.07. As a major outcome, our study let us to early identify 60 people with a significant bone loss that were not aware of their condition. This diagnostic anticipation constitutes an important element of value for the project, both for the patients, for the preventable negative outcomes caused by the fractures, and for the society in general, because of the related avoidable costs. Therefore, based on our finding, we believe that the PEUS based screening performed could be a cost-effective approach to early identify osteoporosis. However, our study has some major limitations. In fact, in our study the economic analysis is based on theoretical scenarios, thus specific studies are needed for a better estimation of the possible benefits and costs of our program.

Keywords: osteoporosis, prevention, public health, screening

Procedia PDF Downloads 106
247 Investigating the Neural Heterogeneity of Developmental Dyscalculia

Authors: Fengjuan Wang, Azilawati Jamaludin

Abstract:

Developmental Dyscalculia (DD) is defined as a particular learning difficulty with continuous challenges in learning requisite math skills that cannot be explained by intellectual disability or educational deprivation. Recent studies have increasingly recognized that DD is a heterogeneous, instead of monolithic, learning disorder with not only cognitive and behavioral deficits but so too neural dysfunction. In recent years, neuroimaging studies employed group comparison to explore the neural underpinnings of DD, which contradicted the heterogenous nature of DD and may obfuscate critical individual differences. This research aimed to investigate the neural heterogeneity of DD using case studies with functional near-infrared spectroscopy (fNIRS). A total of 54 aged 6-7 years old of children participated in this study, comprising two comprehensive cognitive assessments, an 8-minute resting state, and an 8-minute one-digit addition task. Nine children met the criteria of DD and scored at or below 85 (i.e., the 16th percentile) on the Mathematics or Math Fluency subtest of the Wechsler Individual Achievement Test, Third Edition (WIAT-III) (both subtest scores were 90 and below). The remaining 45 children formed the typically developing (TD) group. Resting-state data and brain activation in the inferior frontal gyrus (IFG), superior frontal gyrus (SFG), and intraparietal sulcus (IPS) were collected for comparison between each case and the TD group. Graph theory was used to analyze the brain network under the resting state. This theory represents the brain network as a set of nodes--brain regions—and edges—pairwise interactions across areas to reveal the architectural organizations of the nervous network. Next, a single-case methodology developed by Crawford et al. in 2010 was used to compare each case’s brain network indicators and brain activation against 45 TD children’s average data. Results showed that three out of the nine DD children displayed significant deviation from TD children’s brain indicators. Case 1 had inefficient nodal network properties. Case 2 showed inefficient brain network properties and weaker activation in the IFG and IPS areas. Case 3 displayed inefficient brain network properties with no differences in activation patterns. As a rise above, the present study was able to distill differences in architectural organizations and brain activation of DD vis-à-vis TD children using fNIRS and single-case methodology. Although DD is regarded as a heterogeneous learning difficulty, it is noted that all three cases showed lower nodal efficiency in the brain network, which may be one of the neural sources of DD. Importantly, although the current “brain norm” established for the 45 children is tentative, the results from this study provide insights not only for future work in “developmental brain norm” with reliable brain indicators but so too the viability of single-case methodology, which could be used to detect differential brain indicators of DD children for early detection and interventions.

Keywords: brain activation, brain network, case study, developmental dyscalculia, functional near-infrared spectroscopy, graph theory, neural heterogeneity

Procedia PDF Downloads 41
246 Improving Fingerprinting-Based Localization System Using Generative AI

Authors: Getaneh Berie Tarekegn, Li-Chia Tai

Abstract:

With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarms, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 27
245 Microgrid Design Under Optimal Control With Batch Reinforcement Learning

Authors: Valentin Père, Mathieu Milhé, Fabien Baillon, Jean-Louis Dirion

Abstract:

Microgrids offer potential solutions to meet the need for local grid stability and increase isolated networks autonomy with the integration of intermittent renewable energy production and storage facilities. In such a context, sizing production and storage for a given network is a complex task, highly depending on input data such as power load profile and renewable resource availability. This work aims at developing an operating cost computation methodology for different microgrid designs based on the use of deep reinforcement learning (RL) algorithms to tackle the optimal operation problem in stochastic environments. RL is a data-based sequential decision control method based on Markov decision processes that enable the consideration of random variables for control at a chosen time scale. Agents trained via RL constitute a promising class of Energy Management Systems (EMS) for the operation of microgrids with energy storage. Microgrid sizing (or design) is generally performed by minimizing investment costs and operational costs arising from the EMS behavior. The latter might include economic aspects (power purchase, facilities aging), social aspects (load curtailment), and ecological aspects (carbon emissions). Sizing variables are related to major constraints on the optimal operation of the network by the EMS. In this work, an islanded mode microgrid is considered. Renewable generation is done with photovoltaic panels; an electrochemical battery ensures short-term electricity storage. The controllable unit is a hydrogen tank that is used as a long-term storage unit. The proposed approach focus on the transfer of agent learning for the near-optimal operating cost approximation with deep RL for each microgrid size. Like most data-based algorithms, the training step in RL leads to important computer time. The objective of this work is thus to study the potential of Batch-Constrained Q-learning (BCQ) for the optimal sizing of microgrids and especially to reduce the computation time of operating cost estimation in several microgrid configurations. BCQ is an off-line RL algorithm that is known to be data efficient and can learn better policies than on-line RL algorithms on the same buffer. The general idea is to use the learned policy of agents trained in similar environments to constitute a buffer. The latter is used to train BCQ, and thus the agent learning can be performed without update during interaction sampling. A comparison between online RL and the presented method is performed based on the score by environment and on the computation time.

Keywords: batch-constrained reinforcement learning, control, design, optimal

Procedia PDF Downloads 108
244 Impact Analysis of a School-Based Oral Health Program in Brazil

Authors: Fabio L. Vieira, Micaelle F. C. Lemos, Luciano C. Lemos, Rafaela S. Oliveira, Ian A. Cunha

Abstract:

Brazil has some challenges ahead related to population oral health, most of them associated with the need of expanding into the local level its promotion and prevention activities, offer equal access to services and promote changes in the lifestyle of the population. The program implemented an oral health initiative in public schools in the city of Salvador, Bahia. The mission was to improve oral health among students on primary and secondary education, from 2 to 15 years old, using the school as a pathway to increase access to healthcare. The main actions consisted of a team's visit to the schools with educational sessions for dental cavity prevention and individual assessment. The program incorporated a clinical surveillance component through a dental evaluation of every student searching for dental disease and caries, standardization of the dentists’ team to reach uniform classification on the assessments, and the use of an online platform to register data directly from the schools. Sequentially, the students with caries were referred for free clinical treatment on the program’s Health Centre. The primary purpose of this study was to analyze the effects and outcomes of this school-based oral health program. The study sample was composed by data of a period of 3 years - 2015 to 2017 - from 13 public schools on the suburb of the city of Salvador with a total number of assessments of 9,278 on this period. From the data collected the prevalence of children with decay on permanent teeth was chosen as the most reliable indicator. The prevalence was calculated for each one of the 13 schools using the number of children with 1 or more dental caries on permanent teeth divided by the total number of students assessed for school each year. Then the percentage change per year was calculated for each school. Some schools presented a higher variation on the total number of assessments in one of the three years, so for these, the percentage change calculation was done using the two years with less variation. The results show that 10 of the 13 schools presented significative improvements for the indicator of caries in permanent teeth. The mean for the number of students with caries percentage reduction on the 13 schools was 26.8%, and the median was 32.2% caries in permanent teeth institution. The highest percentage of improvement reached a decrease of 65.6% on the indicator. Three schools presented a rise in caries prevalence (8.9, 18.9 and 37.2% increase) that, on an initial analysis, seems to be explained with the students’ cohort rotation among other schools, as well as absenteeism on the treatment. In conclusion, the program shows a relevant impact on the reduction of caries in permanent teeth among students and the need for the continuity and expansion of this integrated healthcare approach. It has also been evident the significative of the articulation between health and educational systems representing a fundamental approach to improve healthcare access for children especially in scenarios such as presented in Brazil.

Keywords: primary care, public health, oral health, school-based oral health, data management

Procedia PDF Downloads 119
243 The Effect of the Precursor Powder Size on the Electrical and Sensor Characteristics of Fully Stabilized Zirconia-Based Solid Electrolytes

Authors: Olga Yu Kurapova, Alexander V. Shorokhov, Vladimir G. Konakov

Abstract:

Nowadays, due to their exceptional anion conductivity at high temperatures cubic zirconia solid solutions, stabilized by rare-earth and alkaline-earth metal oxides, are widely used as a solid electrolyte (SE) materials in different electrochemical devices such as gas sensors, oxygen pumps, solid oxide fuel cells (SOFC), etc. Nowadays the intensive studies are carried out in a field of novel fully stabilized zirconia based SE development. The use of precursor powders for SE manufacturing allows predetermining the microstructure, electrical and sensor characteristics of zirconia based ceramics used as SE. Thus the goal of the present work was the investigation of the effect of precursor powder size on the electrical and sensor characteristics of fully stabilized zirconia-based solid electrolytes with compositions of 0,08Y2O3∙0,92ZrO2 (YSZ), 0,06Ce2O3∙ 0,06Y2O3∙0,88ZrO2 and 0,09Ce2O3∙0,06Y2O3-0,85ZrO2. The synthesis of precursors powders with different mean particle size was performed by sol-gel synthesis in the form of reversed co-precipitation from aqueous solutions. The cakes were washed until the neutral pH and pan-dried at 110 °С. Also, YSZ ceramics was obtained by conventional solid state synthesis including milling into a planetary mill. Then the powder was cold pressed into the pellets with a diameter of 7.2 and ~4 mm thickness at P ~16 kg/cm2 and then hydrostatically pressed. The pellets were annealed at 1600 °С for 2 hours. The phase composition of as-synthesized SE was investigated by X-Ray photoelectron spectroscopy ESCA (spectrometer ESCA-5400, PHI) X-ray diffraction analysis - XRD (Shimadzu XRD-6000). Following galvanic cell О2 (РО2(1)), Pt | SE | Pt, (РО2(2) = 0.21 atm) was used for SE sensor properties investigation. The value of РО2(1) was set by mixing of O2 and N2 in the defined proportions with the accuracy of  5%. The temperature was measured by Pt/Pt-10% Rh thermocouple, The cell electromotive force (EMF) measurement was carried out with ± 0.1 mV accuracy. During the operation at the constant temperature, reproducibility was better than 5 mV. Asymmetric potential measured for all SE appeared to be negligible. It was shown that the resistivity of YSZ ceramics decreases in about two times upon the mean agglomerates decrease from 200-250 to 40 nm. It is likely due to the both surface and bulk resistivity decrease in grains. So the overall decrease of grain size in ceramic SE results in the significant decrease of the total ceramics resistivity allowing sensor operation at lower temperatures. For the SE manufactured the estimation of oxygen ion transfer number tion was carried out in the range 600-800 °С. YSZ ceramics manufactured from powders with the mean particle size 40-140 nm, shows the highest values i.e. 0.97-0.98. SE manufactured from precursors with the mean particle size 40-140 nm shows higher sensor characteristic i.e. temperature and oxygen concentration EMF dependencies, EMF (ENernst - Ereal), tion, response time, then ceramics, manufactured by conventional solid state synthesis.

Keywords: oxygen sensors, precursor powders, sol-gel synthesis, stabilized zirconia ceramics

Procedia PDF Downloads 271
242 Introducing an Innovative Structural Fuse for Creation of Repairable Buildings with See-Saw Motion during Earthquake and Investigating It by Nonlinear Finite Element Modeling

Authors: M. Hosseini, N. Ghorbani Amirabad, M. Zhian

Abstract:

Seismic design codes accept structural and nonstructural damages after the sever earthquakes (provided that the building is prevented from collapse), so that in many cases demolishing and reconstruction of the building is inevitable, and this is usually very difficult, costly and time consuming. Therefore, designing and constructing of buildings in such a way that they can be easily repaired after earthquakes, even major ones, is quite desired. For this purpose giving the possibility of rocking or see-saw motion to the building structure, partially or as a whole, has been used by some researchers in recent decade .the central support which has a main role in creating the possibility of see-saw motion in the building’s structural system. In this paper, paying more attention to the key role of the central fuse and support, an innovative energy dissipater which can act as the central fuse and support of the building with seesaw motion is introduced, and the process of reaching an optimal geometry for that by using finite element analysis is presented. Several geometric shapes were considered for the proposed central fuse and support. In each case the hysteresis moment rotation behavior of the considered fuse were obtained under simultaneous effect of vertical and horizontal loads, by nonlinear finite element analyses. To find the optimal geometric shape, the maximum plastic strain value in the fuse body was considered as the main parameter. The rotational stiffness of the fuse under the effect of acting moments is another important parameter for finding the optimum shape. The proposed fuse and support can be called Yielding Curved Bars and Clipped Hemisphere Core (YCB&CHC or more briefly YCB) energy dissipater. Based on extensive nonlinear finite element analyses it was found out the using rectangular section for the curved bars gives more reliable results. Then, the YCB energy dissipater with the optimal shape was used in a structural model of a 12 story regular building as its central fuse and support to give it the possibility of seesaw motion, and its seismic responses were compared to those of a the building in the fixed based conditions, subjected to three-components acceleration of several selected earthquakes including Loma Prieta, Northridge, and Park Field. In building with see-saw motion some simple yielding-plate energy dissipaters were also used under circumferential columns.The results indicated that equipping the buildings with central and circumferential fuses result in remarkable reduction of seismic responses of the building, including the base shear, inter story drift, and roof acceleration. In fact by using the proposed technique the plastic deformations are concentrated in the fuses in the lowest story of the building, so that the main body of the building structure remains basically elastic, and therefore, the building can be easily repaired after earthquake.

Keywords: rocking mechanism, see-saw motion, finite element analysis, hysteretic behavior

Procedia PDF Downloads 398
241 A System for Preventing Inadvertent Exposition of Staff Present outside the Operating Theater: Description and Clinical Test

Authors: Aya Al Masri, Kamel Guerchouche, Youssef Laynaoui, Safoin Aktaou, Malorie Martin, Fouad Maaloul

Abstract:

Introduction: Mobile C-arms move throughout operating rooms of the operating theater. Being designed to move between rooms, they are not equipped with relays to retrieve the exposition information and export it outside the room. Therefore, no light signaling is available outside the room to warn the X-ray emission for staff. Inadvertent exposition of staff outside the operating theater is a real problem for radiation protection. The French standard NFC 15-160 require that: (1) access to any room containing an X-ray emitting device must be controlled by a light signage so that it cannot be inadvertently crossed, and (2) setting up an emergency button to stop the X-ray emission. This study presents a system that we developed to meet these requirements and the results of its clinical test. Materials and methods: The system is composed of two communicating boxes: o The "DetectBox" is to be installed inside the operating theater. It identifies the various operation states of the C-arm by analyzing its power supply signal. The DetectBox communicates (in wireless mode) with the second box (AlertBox). o The "AlertBox" can operate in socket or battery mode and is to be installed outside the operating theater. It detects and reports the state of the C-arm by emitting a real time light signal. This latter can have three different colors: red when the C-arm is emitting X-rays, orange when it is powered on but does not emit X-rays, and green when it is powered off. The two boxes communicate on a radiofrequency link exclusively carried out in the ‘Industrial, Scientific and Medical (ISM)’ frequency bands and allows the coexistence of several on-site warning systems without communication conflicts (interference). Taking into account the complexity of performing electrical works in the operating theater (for reasons of hygiene and continuity of medical care), this system (having a size <10 cm²) works in complete safety without any intrusion in the mobile C-arm and does not require specific electrical installation work. The system is equipped with emergency button that stops X-ray emission. The system has been clinically tested. Results: The clinical test of the system shows that: it detects X-rays having both high and low energy (50 – 150 kVp), high and low photon flow (0.5 – 200 mA: even when emitted for a very short time (<1 ms)), Probability of false detection < 10-5, it operates under all acquisition modes (continuous, pulsed, fluoroscopy mode, image mode, subtraction and movie mode), it is compatible with all C-arm models and brands. We have also tested the communication between the two boxes (DetectBox and AlertBox) in several conditions: (1) Unleaded room, (2) leaded room, and (3) rooms with particular configuration (sas, great distances, concrete walls, 3 mm of lead). The result of these last tests was positive. Conclusion: This system is a reliable tool to alert the staff present outside the operating room for X-ray emission and insure their radiation protection.

Keywords: Clinical test, Inadvertent staff exposition, Light signage, Operating theater

Procedia PDF Downloads 114
240 A Qualitative Study to Analyze Clinical Coders’ Decision Making Process of Adverse Drug Event Admissions

Authors: Nisa Mohan

Abstract:

Clinical coding is a feasible method for estimating the national prevalence of adverse drug event (ADE) admissions. However, under-coding of ADE admissions is a limitation of this method. Whilst the under-coding will impact the accurate estimation of the actual burden of ADEs, the feasibility of the coded data in estimating the adverse drug event admissions goes much further compared to the other methods. Therefore, it is necessary to know the reasons for the under-coding in order to improve the clinical coding of ADE admissions. The ability to identify the reasons for the under-coding of ADE admissions rests on understanding the decision-making process of coding ADE admissions. Hence, the current study aimed to explore the decision-making process of clinical coders when coding cases of ADE admissions. Clinical coders from different levels of coding job such as trainee, intermediate and advanced level coders were purposefully selected for the interviews. Thirteen clinical coders were recruited from two Auckland region District Health Board hospitals for the interview study. Semi-structured, one-on-one, face-to-face interviews using open-ended questions were conducted with the selected clinical coders. Interviews were about 20 to 30 minutes long and were audio-recorded with the approval of the participants. The interview data were analysed using a general inductive approach. The interviews with the clinical coders revealed that the coders have targets to meet, and they sometimes hesitate to adhere to the coding standards. Coders deviate from the standard coding processes to make a decision. Coders avoid contacting the doctors for clarifying small doubts such as ADEs and the name of the medications because of the delay in getting a reply from the doctors. They prefer to do some research themselves or take help from their seniors and colleagues for making a decision because they can avoid a long wait to get a reply from the doctors. Coders think of ADE as a small thing. Lack of time for searching for information to confirm an ADE admission, inadequate communication with clinicians, along with coders’ belief that an ADE is a small thing may contribute to the under-coding of the ADE admissions. These findings suggest that further work is needed on interventions to improve the clinical coding of ADE admissions. Providing education to coders about the importance of ADEs, educating clinicians about the importance of clear and confirmed medical records entries, availing pharmacists’ services to improve the detection and clear documentation of ADE admissions, and including a mandatory field in the discharge summary about external causes of diseases may be useful for improving the clinical coding of ADE admissions. The findings of the research will help the policymakers to make informed decisions about the improvements. This study urges the coding policymakers, auditors, and trainers to engage with the unconscious cognitive biases and short-cuts of the clinical coders. This country-specific research conducted in New Zealand may also benefit other countries by providing insight into the clinical coding of ADE admissions and will offer guidance about where to focus changes and improvement initiatives.

Keywords: adverse drug events, clinical coders, decision making, hospital admissions

Procedia PDF Downloads 109
239 Fathers and Daughters: Their Relationship and Its Impact on Body Image and Mental Health

Authors: John Toussaint

Abstract:

Objective: Our society is suffering from an epidemic of body image dissatisfaction, and related disorders appear to be increasing globally for children. There is much to indicate that children's body image and eating attitudes are being affected negatively by socio-cultural factors such as parents, peers and media. Most studies and theories, however, have focused extensively on the daughter-mother relationship. Very few studies have investigated the role of attachment to the father as an important factor in the development of girls’ and women’s attitudes towards themselves and their bodies. Recently, data have shown that the father’s parenting style, as well as the quality of the relationship with him is crucial for the understanding of the development and persistence of body image disorders. This presentation is based on samples of participants with self-defined body image dissatisfaction, and the self-reported measures of their fathers’ parental behaviours, emotional warmth, support, or protection. Attachment theory does offer support in exploring these relationships and it is used in this presentation to assist in understanding the relationship between the father and his daughter in relation to body image and mental health. Clinical implications are also offered in respect to work with body image, eating disorders and relational therapy. Methods: As awareness of the increasing frequency of body image concerns in children grows, so too does the need for a simple, valid and reliable measure of body image. The Children's Body Image Scale (CBIS) designed in Australia, depicts seven male and females figures from which children are to choose their perceived body type and ideal body type. This was compared with a range of international body mass index (BMI) reference standards. These measures together with individual one-on-one interviews were completed by 158 children aged 7-12 years. Results: A high frequency of body image dissatisfaction was indicated in the children's responses. 55% of girls and 41% of boys said they would like to be thinner, and wished for an ideal BMI figure below the 10th percentile. This is an unhealthy and unattainable level of body fatness for the majority of children when considered in relation to the reported secular trend of their increasing average body size. Thin children were generally ranked as best and perceived as kind, happy, academically skilled, and socially successful. Fat children were perceived as unintelligent, lazy, greedy, unpopular, and unable to play physical games. Conclusions: Body image ideals and fat stereotypes are well entrenched among children. There is much to indicate that children's body image and eating attitudes are being affected negatively by sociocultural factors such as parents, peers and media. Teachers and health professionals could promote intervention programs for children involving knowledge and acceptance of genetic influences on body type; the dangerous effects of weight loss dieting; the importance of physical activity and eating healthy; and scepticism and critical analysis of mass media messages.

Keywords: body image, father attachment, mental health, eating disorders

Procedia PDF Downloads 248
238 Cost Based Analysis of Risk Stratification Tool for Prediction and Management of High Risk Choledocholithiasis Patients

Authors: Shreya Saxena

Abstract:

Background: Choledocholithiasis is a common complication of gallstone disease. Risk scoring systems exist to guide the need for further imaging or endoscopy in managing choledocholithiasis. We completed an audit to review the American Society for Gastrointestinal Endoscopy (ASGE) scoring system for prediction and management of choledocholithiasis against the current practice at a tertiary hospital to assess its utility in resource optimisation. We have now conducted a cost focused sub-analysis on patients categorized high-risk for choledocholithiasis according to the guidelines to determine any associated cost benefits. Method: Data collection from our prior audit was used to retrospectively identify thirteen patients considered high-risk for choledocholithiasis. Their ongoing management was mapped against the guidelines. Individual costs for the key investigations were obtained from our hospital financial data. Total cost for the different management pathways identified in clinical practice were calculated and compared against predicted costs associated with recommendations in the guidelines. We excluded the cost of laparoscopic cholecystectomy and considered a set figure for per day hospital admission related expenses. Results: Based on our previous audit data, we identified a77% positive predictive value for the ASGE risk stratification tool to determine patients at high-risk of choledocholithiasis. 47% (6/13) had an magnetic resonance cholangiopancreatography (MRCP) prior to endoscopic retrograde cholangiopancreatography (ERCP), whilst 53% (7/13) went straight for ERCP. The average length of stay in the hospital was 7 days, with an additional day and cost of £328.00 (£117 for ERCP) for patients awaiting an MRCP prior to ERCP. Per day hospital admission was valued at £838.69. When calculating total cost, we assumed all patients had admission bloods and ultrasound done as the gold standard. In doing an MRCP prior to ERCP, there was a 130% increase in cost incurred (£580.04 vs £252.04) per patient. When also considering hospital admission and the average length of stay, it was an additional £1166.69 per patient. We then calculated the exact costs incurred by the department, over a three-month period, for all patients, for key investigations or procedures done in the management of choledocholithiasis. This was compared to an estimate cost derived from the recommended pathways in the ASGE guidelines. Overall, 81% (£2048.45) saving was associated with following the guidelines compared to clinical practice. Conclusion: MRCP is the most expensive test associated with the diagnosis and management of choledocholithiasis. The ASGE guidelines recommend endoscopy without an MRCP in patients stratified as high-risk for choledocholithiasis. Our audit that focused on assessing the utility of the ASGE risk scoring system showed it to be relatively reliable for identifying high-risk patients. Our cost analysis has shown significant cost savings per patient and when considering the average length of stay associated with direct endoscopy rather than an additional MRCP. Part of this is also because of an increased average length of stay associated with waiting for an MRCP. The above data supports the ASGE guidelines for the management of high-risk for choledocholithiasis patients from a cost perspective. The only caveat is our small data set that may impact the validity of our average length of hospital stay figures and hence total cost calculations.

Keywords: cost-analysis, choledocholithiasis, risk stratification tool, general surgery

Procedia PDF Downloads 86
237 Mathematical Modelling of Bacterial Growth in Products of Animal Origin in Storage and Transport: Effects of Temperature, Use of Bacteriocins and pH Level

Authors: Benjamin Castillo, Luis Pastenes, Fernando Cordova

Abstract:

The pathogen growth in animal source foods is a common problem in the food industry, causing monetary losses due to the spoiling of products or food intoxication outbreaks in the community. In this sense, the quality of the product is reflected by the population of deteriorating agents present in it, which are mainly bacteria. The factors which are likely associated with freshness in animal source foods are temperature and processing, storage, and transport times. However, the level of deterioration of products depends, in turn, on the characteristics of the bacterial population, causing the decomposition or spoiling, such as pH level and toxins. Knowing the growth dynamics of the agents that are involved in product contamination allows the monitoring for more efficient processing. This means better quality and reasonable costs, along with a better estimation of necessary time and temperature intervals for transport and storage in order to preserve product quality. The objective of this project is to design a secondary model that allows measuring the impact on temperature bacterial growth and the competition for pH adequacy and release of bacteriocins in order to describe such phenomenon and, thus, estimate food product half-life with the least possible risk of deterioration or spoiling. In order to achieve this objective, the authors propose an analysis of a three-dimensional ordinary differential which includes; logistic bacterial growth extended by the inhibitory action of bacteriocins including the effect of the medium pH; change in the medium pH levels through an adaptation of the Luedeking-Piret kinetic model; Bacteriocin concentration modeled similarly to pH levels. These three dimensions are being influenced by the temperature at all times. Then, this differential system is expanded, taking into consideration the variable temperature and the concentration of pulsed bacteriocins, which represent characteristics inherent of the modeling, such as transport and storage, as well as the incorporation of substances that inhibit bacterial growth. The main results lead to the fact that temperature changes in an early stage of transport increased the bacterial population significantly more than if it had increased during the final stage. On the other hand, the incorporation of bacteriocins, as in other investigations, proved to be efficient in the short and medium-term since, although the population of bacteria decreased, once the bacteriocins were depleted or degraded over time, the bacteria eventually returned to their regular growth rate. The efficacy of the bacteriocins at low temperatures decreased slightly, which equates with the fact that their natural degradation rate also decreased. In summary, the implementation of the mathematical model allowed the simulation of a set of possible bacteria present in animal based products, along with their properties, in various transport and storage situations, which led us to state that for inhibiting bacterial growth, the optimum is complementary low constant temperatures and the initial use of bacteriocins.

Keywords: bacterial growth, bacteriocins, mathematical modelling, temperature

Procedia PDF Downloads 120
236 Nephroprotective Effect of Aqueous Extract of Plectranthus amboinicus (Roxb.) Leaves in Adriamycin Induced Acute Renal Failure in Wistar Rats: A Biochemical and Histopathological Assessment

Authors: Ampe Mohottige Sachinthi Sandaruwani Amarasiri, Anoja Priyadarshani Attanayake, Kamani Ayoma Perera Wijewardana Jayatilaka, Lakmini Kumari Boralugoda Mudduwa

Abstract:

The search for alternative pharmacological therapies based on natural extracts for renal failure has become an urgent need, due to paucity of effective pharmacotherapy. The current study was undertaken to evaluate the acute nephroprotective effect of aqueous leaf extract of Plectranthus amboinicus (Roxb.) (Family: Lamiaceae), a medicinal plant used in traditional Ayurvedic medicine for the management of renal diseases in Sri Lanka. The study was performed in adriamycin (ADR) induced nephrotoxic in Wistar rats. Wistar rats were randomly divided into four groups each with six rats. A single dose of ADR (20 mg/kg body wt., ip) was used for the induction of nephrotoxicity in all groups of rats except group one. The treatments were started 24 hours after induction of nephrotoxicity and continued for three days. Group one and two served as healthy and nephrotoxic control rats and were administered equivalent volumes of normal saline (0.9% NaCl) orally. Group three and four nephrotoxic rats were administered the lyophilized powder of the aqueous extract of P. amboinicus (400 mg/ kg body wt.; equivalent human therapeutic dose) and the standard drug, fosinopril sodium (0.09 mg/ kg body wt.) respectively. Urine and blood samples were collected from rats in each group at the end of the period of intervention for the estimation of selected renal parameters. H and E stained sections of the kidney tissues were examined for histopathological changes. Rats treated with the plant extract showed significant improvement in biochemical parameters and histopathological changes compared to ADR induced nephrotoxic group. The elevation of serum concentrations of creatinine and β2-microglobulin were decreased by 38%, and 66% in plant extract treated nephrotoxic rats respectively (p < 0.05). In addition, serum concentrations of total protein and albumin were significantly increased by 25% and 14% in rats treated with P. amboinicus respectively (p < 0.05). The results of β2 –microglobulin and serum total protein demonstrated a significant reduction in the elevated values in rats administered with the plant extract (400 mg/kg) compared to that of fosinopril (0.09 mg/kg). Urinary protein loss in 24hr urine samples was significantly decreased in rats treated with both fosinopril (86%) and P. ambonicus (56%) at the end of the intervention (p < 0.01). Accordingly, an attenuation of morphological destruction was observed in the H and E stained sections of the kidney with the treatments of plant extract and fosinopril. The results of the present study revealed that the aqueous leaf extract of P. amboinicus possesses significant nephroprotective activity at the equivalent therapeutic dose of 400 mg/ kg against adriamycin induced acute nephrotoxicity.

Keywords: biochemical assessment, histopathological assessment, nephroprotective activity, Plectranthus amboinicus

Procedia PDF Downloads 131
235 Motives for Reshoring from China to Europe: A Hierarchical Classification of Companies

Authors: Fabienne Fel, Eric Griette

Abstract:

Reshoring, whether concerning back-reshoring or near-reshoring, is a quite recent phenomenon. Despite the economic and political interest of this topic, academic research questioning determinants of reshoring remains rare. Our paper aims at contributing to fill this gap. In order to better understand the reasons for reshoring, we conducted a study among 280 French firms during spring 2016, three-quarters of which sourced, or source, in China. 105 firms in the sample have reshored all or part of their Chinese production or supply in recent years, and we aimed to establish a typology of the motives that drove them to this decision. We asked our respondents about the history of their Chinese supplies, their current reshoring strategies, and their motivations. Statistical analysis was performed with SPSS 22 and SPAD 8. Our results show that change in commercial and financial terms with China is the first motive explaining the current reshoring movement from this country (it applies to 54% of our respondents). A change in corporate strategy is the second motive (30% of our respondents); the reshoring decision follows a change in companies’ strategies (upgrading, implementation of a CSR policy, or a 'lean management' strategy). The third motive (14% of our sample) is a mere correction of the initial offshoring decision, considered as a mistake (under-estimation of hidden costs, non-quality and non-responsiveness problems). Some authors emphasize that developing a short supply chain, involving geographic proximity between design and production, gives a competitive advantage to companies wishing to offer innovative products. Admittedly 40% of our respondents indicate that this motive could have played a part in their decision to reshore, but this reason was not enough for any of them and is not an intrinsic motive leading to leaving Chinese suppliers. Having questioned our respondents about the importance given to various problems leading them to reshore, we then performed a Principal Components Analysis (PCA), associated with an Ascending Hierarchical Classification (AHC), based on Ward criterion, so as to point out more specific motivations. Three main classes of companies should be distinguished: -The 'Cost Killers' (23% of the sample), which reshore their supplies from China only because of higher procurement costs and so as to find lower costs elsewhere. -The 'Realists' (50% of the sample), giving equal weight or importance to increasing procurement costs in China and to the quality of their supplies (to a large extend). Companies being part of this class tend to take advantage of this changing environment to change their procurement strategy, seeking suppliers offering better quality and responsiveness. - The 'Voluntarists' (26% of the sample), which choose to reshore their Chinese supplies regardless of higher Chinese costs, to obtain better quality and greater responsiveness. We emphasize that if the main driver for reshoring from China is indeed higher local costs, it is should not be regarded as an exclusive motivation; 77% of the companies in the sample, are also seeking, sometimes exclusively, more reactive suppliers, liable to quality, respect for the environment and intellectual property.

Keywords: China, procurement, reshoring, strategy, supplies

Procedia PDF Downloads 310
234 The Relevance of Personality Traits and Networking in New Ventures’ Success

Authors: Caterina Muzzi, Sergio Albertini, Davide Giacomini

Abstract:

The research is aimed to investigate the role of young entrepreneurs’ personality traits and their contextual background on the success of entrepreneurial initiatives. In the literature, the debate is still open about the main drivers in predicting entrepreneurial success. Classical theories are focused on looking at specific personality traits that could lead to successful start-ups initiatives, while emerging approaches are more interested in young entrepreneurs’ contextual background (such as the family of origin, the previous experience and their professional network). An online survey was submitted to the participants of an entrepreneurial training initiative organised by the Italian Young Entrepreneurs Association (Confindustria) in Brescia headquarter (AIB). At the time the authors started data collection for this research, the third edition of the initiative was just concluded and involved a total amount of 37 young future entrepreneurs. In the literature General self-efficacy (GSE) and, more specifically, entrepreneurial self-efficacy (ESE) have often been associated to positive performances, as they allow future entrepreneurs to effectively cope with entrepreneurial activities, both at an early stage and in new venture management. In a counter-intuitive manner, optimism is not always associated with entrepreneurial positive results. Too optimistic people risk taking hazardous risks and some authors suggest that moderately optimistic entrepreneurs achieve more positive results than over-optimistic ones. Indeed highly optimistic individuals often hold unrealistic expectations, discount negative information, and mentally reconstruct experiences so as to avoid contradictions The importance of context has been increasingly considered in entrepreneurship literature and its role strongly emerges starting from the earliest entrepreneurial stage and it is crucial to transform the “intention of entrepreneurship” into the actual start-up. Furthermore, coherently with the “network approach to entrepreneurship”, context embeddedness allow future entrepreneurs to leverage relationships built through previous experiences and/or thanks to the fact of belonging to families of entrepreneurs. For the purpose of this research, entrepreneurial success was measured by the fact of having or not founded a new venture after the training initiative. In this research, the authors measured GSE, ESE and optimism using already tested items that showed to be reliable also in this case. They collected 36 completed questionnaires. The t-test for independent samples run to measure significant differences in means between those that already funded the new venture and those that did not. No significant differences emerged with respect to all the tested personality traits, but a logistic regression analysis, run with contextual variables as independent ones, showed that personal and professional networking, made both before and during the master, is the most relevant variable in determining new venture success. These findings shed more light on the process of new venture foundation and could encourage national and local policy makers to invest on networking as one of the main drivers that could support the creation of new ventures.

Keywords: entrepreneurship, networking, new ventures, personality traits

Procedia PDF Downloads 129
233 Estimation of Particle Number and Mass Doses Inhaled in a Busy Street in Lublin, Poland

Authors: Bernard Polednik, Adam Piotrowicz, Lukasz Guz, Marzenna Dudzinska

Abstract:

Transportation is considered to be responsible for increased exposure of road users – i.e., drivers, car passengers, and pedestrians as well as inhabitants of houses located near roads - to pollutants emitted from vehicles. Accurate estimates are, however, difficult as exposure depends on many factors such as traffic intensity or type of fuel as well as the topography and the built-up area around the individual routes. The season and weather conditions are also of importance. In the case of inhabitants of houses located near roads, their exposure depends on the distance from the road, window tightness and other factors that decrease pollutant infiltration. This work reports the variations of particle concentrations along a selected road in Lublin, Poland. Their impact on the exposure for road users as well as for inhabitants of houses located near the road is also presented. Mobile and fixed-site measurements were carried out in peak (around 8 a.m. and 4 p.m.) and off-peak (12 a.m., 4 a.m., and 12 p.m.) traffic times in all 4 seasons. Fixed-site measurements were performed in 12 measurement points along the route. The number and mass concentration of particles was determined with the use of P-Trak model 8525, OPS 3330, DustTrak DRX model 8533 (TSI Inc. USA) and Grimm Aerosol Spectrometer 1.109 with Nano Sizer 1.321 (Grimm Aerosol Germany). The obtained results indicated that the highest concentrations of traffic-related pollution were measured near 4-way traffic intersections during peak hours in the autumn and winter. The highest average number concentration of ultrafine particles (PN0.1), and mass concentration of fine particles (PM2.5) in fixed-site measurements were obtained in the autumn and amounted to 23.6 ± 9.2×10³ pt/cm³ and 135.1 ± 11.3 µg/m³, respectively. The highest average number concentration of submicrometer particles (PN1) was measured in the winter and amounted to 68 ± 26.8×10³ pt/cm³. The estimated doses of particles deposited in the commuters’ and pedestrians’ lungs within an hour near 4-way TIs in peak hours in the summer amounted to 4.3 ± 3.3×10⁹ pt/h (PN0.1) and 2.9 ± 1.4 µg/h (PM2.5) and 3.9 ± 1.1×10⁹ pt/h (PN0.1) or 2.5 ± 0.4 µg/h (PM2.5), respectively. While estimating the doses inhaled by the inhabitants of premises located near the road one should take into account different fractional penetration of particles from outdoors to indoors. Such doses assessed for the autumn and winter are up to twice as high as the doses inhaled by commuters and pedestrians in the summer. In the winter traffic-related ultrafine particles account for over 70% of all ultrafine particles deposited in the pedestrians’ lungs. The share of traffic-related PM10 particles was estimated at approximately 33.5%. Concluding, the results of the particle concentration measurements along a road in Lublin indicated that the concentration is mainly affected by the traffic intensity and weather conditions. Further detailed research should focus on how the season and the metrological conditions affect concentration levels of traffic-related pollutants and the exposure of commuters and pedestrians as well as the inhabitants of houses located near traffic routes.

Keywords: air quality, deposition dose, health effects, vehicle emissions

Procedia PDF Downloads 85
232 Improving Fingerprinting-Based Localization (FPL) System Using Generative Artificial Intelligence (GAI)

Authors: Getaneh Berie Tarekegn, Li-Chia Tai

Abstract:

With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 29