Search results for: pre-service teacher training program
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8072

Search results for: pre-service teacher training program

4682 Using Convolutional Neural Networks to Distinguish Different Sign Language Alphanumerics

Authors: Stephen L. Green, Alexander N. Gorban, Ivan Y. Tyukin

Abstract:

Within the past decade, using Convolutional Neural Networks (CNN)’s to create Deep Learning systems capable of translating Sign Language into text has been a breakthrough in breaking the communication barrier for deaf-mute people. Conventional research on this subject has been concerned with training the network to recognize the fingerspelling gestures of a given language and produce their corresponding alphanumerics. One of the problems with the current developing technology is that images are scarce, with little variations in the gestures being presented to the recognition program, often skewed towards single skin tones and hand sizes that makes a percentage of the population’s fingerspelling harder to detect. Along with this, current gesture detection programs are only trained on one finger spelling language despite there being one hundred and forty-two known variants so far. All of this presents a limitation for traditional exploitation for the state of current technologies such as CNN’s, due to their large number of required parameters. This work aims to present a technology that aims to resolve this issue by combining a pretrained legacy AI system for a generic object recognition task with a corrector method to uptrain the legacy network. This is a computationally efficient procedure that does not require large volumes of data even when covering a broad range of sign languages such as American Sign Language, British Sign Language and Chinese Sign Language (Pinyin). Implementing recent results on method concentration, namely the stochastic separation theorem, an AI system is supposed as an operate mapping an input present in the set of images u ∈ U to an output that exists in a set of predicted class labels q ∈ Q of the alphanumeric that q represents and the language it comes from. These inputs and outputs, along with the interval variables z ∈ Z represent the system’s current state which implies a mapping that assigns an element x ∈ ℝⁿ to the triple (u, z, q). As all xi are i.i.d vectors drawn from a product mean distribution, over a period of time the AI generates a large set of measurements xi called S that are grouped into two categories: the correct predictions M and the incorrect predictions Y. Once the network has made its predictions, a corrector can then be applied through centering S and Y by subtracting their means. The data is then regularized by applying the Kaiser rule to the resulting eigenmatrix and then whitened before being split into pairwise, positively correlated clusters. Each of these clusters produces a unique hyperplane and if any element x falls outside the region bounded by these lines then it is reported as an error. As a result of this methodology, a self-correcting recognition process is created that can identify fingerspelling from a variety of sign language and successfully identify the corresponding alphanumeric and what language the gesture originates from which no other neural network has been able to replicate.

Keywords: convolutional neural networks, deep learning, shallow correctors, sign language

Procedia PDF Downloads 100
4681 Academic Staff Identity and Emotional Labour: Exploring Pride, Motivation, and Relationships in Universities

Authors: Keith Schofield, Garry R. Prentice

Abstract:

The perceptions of the work an academic does, and the environment in which they do it, contributes to the professional identity of that academic. In turn, this has implications for the level of involvement they have in their job, their satisfaction, and their work product. This research explores academic identities in British and Irish institutions and considers the complex interplay between identity, practice, and participation. Theoretical assumptions made in this paper assert that meaningful work has positive effects on work pride, organisational commitment, organisational citizenship, and motivation; when employees participate enthusiastically they are likely to be more engaged, more successful, and more satisfied. Further examination is given to the context in which this participation happens; the nature of institutional process, management, and relationships with colleagues, team members, and students is considered. The present study follows a mixed-methods approach to explore work satisfaction constructs in a number of academic contexts in the UK and Ireland. The quantitative component of this research (Convenience Sample: 155 academics, and support/ administrative staff; 36.1% male, 63.9% female; 60.8% academic staff, 39.2% support/ administration staff; across a number of universities in the UK and Ireland) was based on an established emotional labour model and was tested across gender groups, job roles, and years of service. This was complimented by qualitative semi-structured interviews (Purposive Sample: 10 academics, and 5 support/ administrative staff across the same universities in the UK and Ireland) to examine various themes including values within academia, work conditions, professional development, and transmission of knowledge to students. Experiences from both academic and support perspectives were sought in order to gain a holistic view of academia and to provide an opportunity to explore the dynamic of the academic/administrator relationship within the broader institutional context. The quantitative emotional labour model, tested via a path analysis, provided a robust description of the relationships within the data. The significant relationships found within the quantitative emotional labour model included a link between non-expression of true feelings resulting in emotional labourious work and lower levels of intrinsic motivation and higher levels of extrinsic motivation. Higher levels of intrinsic motivation also linked positively to work pride. These findings were further explored in the qualitative elements of the research where themes emerged including the disconnection between faculty management and staff, personal fulfilment and the friction between the identities of teacher, researcher/ practitioner and administrator. The implications of the research findings from this study are combined and discussed in relation to possible identity-related and emotional labour management-related interventions. Further, suggestions are made to institutions concerning the application of these findings including the development of academic practices, with specific reference to the duality of identity required to service the combined teacher/ researcher role. Broader considerations of the paper include how individuals and institutions may engage with the changing nature of students-as-consumers as well as a recommendation to centralise personal fulfillment through the development of professional academic identities.

Keywords: academic work, emotional labour, identity friction, mixed methods

Procedia PDF Downloads 276
4680 The Effect of Modified Posterior Shoulder Stretching Exercises on Posterior Shoulder Tightness, Shoulder Pain, and Dysfunction in Patients with Subacromial Impingement

Authors: Ozge Tahran, Sevgi Sevi Yesilyaprak

Abstract:

Objective: The aim of the study was to investigate the effect of the Wilk’s modified two different stretching exercises on posterior shoulder tightness, pain, and dysfunction in patients with subacromial impingement syndrome (SIS). Method: This study was carried out on 67 patients who have more than 15° difference in shoulder internal rotation range of motion between two sides and had been diagnosed as SIS. Before treatment, all patients were randomly assigned into three groups. Standard physiotherapy programme was applied to the Group 3 (n=23), standard physiotherapy program with Wilk’s modified cross-body stretching exercises were applied to Group 1 (n=22), and standard physiotherapy program with Wilk’s modified sleeper stretching exercises were applied to Group 2 (n= 23). All the patients received 20 sessions of physiotherapy during 4 weeks, 5 days in a week by a physiotherapist. The patients continued their exercises at home at the weekends. Pain severity, shoulder rotation range of motion, posterior shoulder tightness, upper extremity functionality with Constant and Murley Score (CMS) and disability level with The Disabilities of the Arm, Shoulder and Hand Score (QuickDASH) were evaluated before and after physiotherapy programme. Results: Before treatment, demographic and anthropometric characteristics were similar in groups and there was no statistical difference (p > 0.05). It was determined that pain severity decreased, shoulder rotation range of motion, posterior shoulder tightness, upper extremity functionality, and disability were improved after physiotherapy in both groups (p < 0.05). Group 1 and 2 had better results in terms of reduction of pain severity during activity, increase in shoulder rotation range of motion, posterior shoulder mobility and upper extremity functionality and improvement in upper extremity disability, compared to Group 3 (p < 0.05). Conclusion: Modified posterior shoulder stretching exercises in addition to standard physiotherapy programme is more effective for reduction of pain during activity, to improve shoulder rotation range of motion, posterior shoulder mobility, and upper extremity functionality in patients with SIS compared to standard physiotherapy programme alone.

Keywords: modified posterior shoulder stretching exercises, posterior shoulder tightness, shoulder complex, subacromial impingement syndrome

Procedia PDF Downloads 178
4679 First Order Filter Based Current-Mode Sinusoidal Oscillators Using Current Differencing Transconductance Amplifiers (CDTAs)

Authors: S. Summart, C. Saetiaw, T. Thosdeekoraphat, C. Thongsopa

Abstract:

This article presents new current-mode oscillator circuits using CDTAs which is designed from block diagram. The proposed circuits consist of two CDTAs and two grounded capacitors. The condition of oscillation and the frequency of oscillation can be adjusted by electronic method. The circuits have high output impedance and use only grounded capacitors without any external resistor which is very appropriate to future development into an integrated circuit. The results of PSPICE simulation program are corresponding to the theoretical analysis.

Keywords: current-mode, quadrature oscillator, block diagram, CDTA

Procedia PDF Downloads 453
4678 A Review of Strategies for Enhancing the Quality of Engineering Education in Zimbabwean Universities

Authors: Bhekisisa Nyoni, Nomakhosi Ndiweni, Annatoria Chinyama

Abstract:

The aim of this paper was to explore ways to enhance the quality of higher education with a bias towards engineering education in Zimbabwe universities. A search through relevant literature was conducted looking at both international and local scholars. It also involved reviewing the Dakar Framework for Action and Incheon Declaration and Framework for Action plans for education for sustainable development. Goals were set for 2030 as a standard for quality to be adopted by all countries in improving access as well as the quality of education from early childhood and through to adult learning. Despite the definition of quality being difficult to express due to diverse expectations from different stakeholders, the view of quality adopted is based on the World Education Forum’s propositions on quality education going beyond the classroom experience. It considers factors such as learning environment, governance and management, and teacher caliber. The study concludes by illustrating that the quality of engineering education in Zimbabwe has come a long way. It has made strides in increasing access and variety to education though at the expense of quality in its totality. To improve the quality of engineering education, programs have been introduced to promote the professionalism of lecturers, such as industrial secondment and professional development courses.

Keywords: engineering education, quality of education, professional development, industrial secondment

Procedia PDF Downloads 181
4677 Implementation of Problem-Based Learning (PBL) in the Classroom

Authors: Jarmon Sirigunna

Abstract:

The objective of this study were to investigate the success of the implementation of problem-based learning in classroom and to evaluate the level of satisfaction of Suan Sunandra Rajabhat University’s students who participated in the study. This paper aimed to study and focus on a university students survey conducted in Suan Sunandha Rajabhat University during January to March of 2014. The quota sampling was utilized to obtain the sample which included 60 students, 50 percent male and 50 percent female students. The pretest and posttest method was utilized. The findings revealed that the majority of respondents had gained higher knowledge after the posttest significantly. The respondents’ knowledge increased about 40 percent after the experiment. Also, the findings revealed the top three highest level of satisfaction as follows: 1) the proper roles of teacher and students, 2) the knowledge gained from the method of the problem-based learning, 3) the activities of the problem-based learning, 4) the interaction of students from the problem-based learning, and 5) the problem-based learning model. Also, the mean score of all categories was 4.22 with a standard deviation of 0.7435 which indicated that the level of satisfaction was high.

Keywords: implement, problem-based learning, satisfaction, university students

Procedia PDF Downloads 370
4676 Expression of PGC-1 Alpha Isoforms in Response to Eccentric and Concentric Resistance Training in Healthy Subjects

Authors: Pejman Taghibeikzadehbadr

Abstract:

Background and Aim: PGC-1 alpha is a transcription factor that was first detected in brown adipose tissue. Since its discovery, PGC-1 alpha has been known to facilitate beneficial adaptations such as mitochondrial biogenesis and increased angiogenesis in skeletal muscle following aerobic exercise. Therefore, the purpose of this study was to investigate the expression of PGC-1 alpha isoforms in response to eccentric and concentric resistance training in healthy subjects. Materials and Methods: Ten healthy men were randomly divided into two groups (5 patients in eccentric group - 5 in eccentric group). Isokinetic contraction protocols included eccentric and concentric knee extension with maximum power and angular velocity of 60 degrees per second. The torques assigned to each subject were considered to match the workload in both protocols, with a rotational speed of 60 degrees per second. Contractions consisted of a maximum of 12 sets of 10 repetitions for the right leg, a rest time of 30 seconds between each set. At the beginning and end of the study, biopsy of the lateral broad muscle tissue was performed. Biopsies were performed in both distal and proximal directions of the lateral flank. To evaluate the expression of PGC1α-1 and PGC1α-4 genes, tissue analysis was performed in each group using Real-Time PCR technique. Data were analyzed using dependent t-test and covariance test. SPSS21 software and Exell 2013 software were used for data analysis. Results: The results showed that intra-group changes of PGC1α-1 after one session of activity were not significant in eccentric (p = 0.168) and concentric (p = 0.959) groups. Also, inter-group changes showed no difference between the two groups (p = 0.681). Also, intra-group changes of PGC1α-4 after one session of activity were significant in an eccentric group (p = 0.012) and concentric group (p = 0.02). Also, inter-group changes showed no difference between the two groups (p = 0.362). Conclusion: It seems that the lack of significant changes in the desired variables due to the lack of exercise pressure is sufficient to stimulate the increase of PGC1α-1 and PGC1α-4. And with regard to reviewing the answer, it seems that the compatibility debate has different results that need to be addressed.

Keywords: eccentric contraction, concentric contraction, PGC1α-1 و PGC1α-4, human subject

Procedia PDF Downloads 78
4675 The Relationship Between Artificial Intelligence, Data Science, and Privacy

Authors: M. Naidoo

Abstract:

Artificial intelligence often requires large amounts of good quality data. Within important fields, such as healthcare, the training of AI systems predominately relies on health and personal data; however, the usage of this data is complicated by various layers of law and ethics that seek to protect individuals’ privacy rights. This research seeks to establish the challenges AI and data sciences pose to (i) informational rights, (ii) privacy rights, and (iii) data protection. To solve some of the issues presented, various methods are suggested, such as embedding values in technological development, proper balancing of rights and interests, and others.

Keywords: artificial intelligence, data science, law, policy

Procedia PDF Downloads 106
4674 Hansen Solubility Parameters, Quality by Design Tool for Developing Green Nanoemulsion to Eliminate Sulfamethoxazole from Contaminated Water

Authors: Afzal Hussain, Mohammad A. Altamimi, Syed Sarim Imam, Mudassar Shahid, Osamah Abdulrahman Alnemer

Abstract:

Exhaustive application of sulfamethoxazole (SUX) became as a global threat for human health due to water contamination through diverse sources. The addressed combined application of Hansen solubility (HSPiP software) parameters and Quality by Design tool for developing various green nanoemulsions. HSPiP program assisted to screen suitable excipients based on Hansen solubility parameters and experimental solubility data. Various green nanoemulsions were prepared and characterized for globular size, size distribution, zeta potential, and removal efficiency. Design Expert (DoE) software further helped to identify critical factors responsible to have direct impact on percent removal efficiency, size, and viscosity. Morphological investigation was visualized under transmission electron microscopy (TEM). Finally, the treated was studied to negate the presence of the tested drug employing ICP-OES (inductively coupled plasma optical emission microscopy) technique and HPLC (high performance liquid chromatography). Results showed that HSPiP predicted biocompatible lipid, safe surfactant (lecithin), and propylene glycol (PG). Experimental solubility of the drug in the predicted excipients were quite convincing and vindicated. Various green nanoemulsions were fabricated, and these were evaluated for in vitro findings. Globular size (100-300 nm), PDI (0.1-0.5), zeta potential (~ 25 mV), and removal efficiency (%RE = 70-98%) were found to be in acceptable range for deciding input factors with level in DoE. Experimental design tool assisted to identify the most critical variables controlling %RE and optimized content of nanoemulsion under set constraints. Dispersion time was varied from 5-30 min. Finally, ICP-OES and HPLC techniques corroborated the absence of SUX in the treated water. Thus, the strategy is simple, economic, selective, and efficient.

Keywords: quality by design, sulfamethoxazole, green nanoemulsion, water treatment, icp-oes, hansen program (hspip software

Procedia PDF Downloads 82
4673 The Impact of Cloud Accounting on Boards of Directors in the Middle East and North African (MENA) Countries

Authors: Ahmad Alqatan

Abstract:

Purpose: The purpose of this study is to analyze how the adoption of cloud accounting systems influences the governance practices and performance of boards of directors in MENA countries. The research aims to identify the benefits and challenges associated with cloud accounting and its role in improving board efficiency and oversight. Methodology: This research employs a mixed-method approach, combining quantitative surveys and qualitative interviews with board members and financial officers from a diverse range of companies in the MENA region. The quantitative data is analyzed to determine patterns and correlations, while qualitative insights provide a deeper understanding of the contextual factors influencing cloud accounting adoption and its impacts. Findings: The findings indicate that cloud accounting significantly enhances the decision-making capabilities of boards by providing real-time financial information and facilitating better communication among board members. Companies using cloud accounting reports improved financial oversight and more timely and accurate financial reporting. However, the research also identifies challenges such as cybersecurity concerns, resistance to change, and the need for ongoing training and support. Practical Implications: The study suggests that MENA companies can benefit from investing in cloud accounting technologies to improve board governance and strategic decision-making. It highlights the importance of addressing cybersecurity issues and providing adequate training for board members to maximize the advantages of cloud accounting. Originality: This research contributes to the limited literature on cloud accounting in the MENA region, offering valuable insights for policymakers, business leaders, and academics. It underscores the transformative potential of cloud accounting for enhancing board performance and corporate governance in emerging markets.

Keywords: cloud accounting, board of directors, MENA region, corporate governance, financial transparency, real-time data, decision-making, cybersecurity, technology adoption

Procedia PDF Downloads 30
4672 Using Structural Equation Modeling to Measure the Impact of Young Adult-Dog Personality Characteristics on Dog Walking Behaviours during the COVID-19 Pandemic

Authors: Renata Roma, Christine Tardif-Williams

Abstract:

Engaging in daily walks with a dog (f.e. Canis lupus familiaris) during the COVID-19 pandemic may be linked to feelings of greater social-connectedness and global self-worth, and lower stress after controlling for mental health issues, lack of physical contact with others, and other stressors associated with the current pandemic. Therefore, maintaining a routine of dog walking might mitigate the effects of stressors experienced during the pandemic and promote well-being. However, many dog owners do not walk their dogs for many reasons, which are related to the owner’s and the dog’s personalities. Note that the consistency of certain personality characteristics among dogs demonstrates that it is possible to accurately measure different dimensions of personality in both dogs and their human counterparts. In addition, behavioural ratings (e.g., the dog personality questionnaire - DPQ) are reliable tools to assess the dog’s personality. Clarifying the relevance of personality factors in the context of young adult-dog relationships can shed light on interactional aspects that can potentially foster protective behaviours and promote well-being among young adults during the pandemic. This study examines if and how nine combinations of dog- and young adult-related personality characteristics (e.g., neuroticism-fearfulness) can amplify the influence of personality factors in the context of dog walking during the COVID-19 pandemic. Responses to an online large-scale survey among 440 (389 females; 47 males; 4 nonbinaries, Mage=20.7, SD= 2.13 range=17-25) young adults living with a dog in Canada were analyzed using structural equation modeling (SEM). As extraversion, conscientiousness, and neuroticism, measured through the five-factor model (FFM) inventory, are related to maintaining a routine of physical activities, these dimensions were selected for this analysis. Following an approach successfully adopted in the field of dog-human interactions, the FFM was used as the organizing framework to measure and compare the human’s and the dog’s personality in the context of dog walking. The dog-related personality dimensions activity/excitability, responsiveness to training, and fearful were correlated dimensions captured through DPQ and were added to the analysis. Two questions were used to assess dog walking. The actor-partner interdependence model (APIM) was used to check if the young adult’s responses about the dog were biased; no significant bias was observed. Activity/excitability and responsiveness to training in dogs were greatly associated with dog walking. For young adults, high scores in conscientiousness and extraversion predicted more walks with the dog. Conversely, higher scores in neuroticism predicted less engagement in dog walking. For participants high in conscientiousness, the dog’s responsiveness to training (standardized=0.14, p=0.02) and the dog’s activity/excitability (standardized=0.15, p=0.00) levels moderated dog walking behaviours by promoting more daily walks. These results suggest that some combinations in young adult and dog personality characteristics are associated with greater synergy in the young adult-dog dyad that might amplify the impact of personality factors on young adults’ dog-walking routines. These results can inform programs designed to promote the mental and physical health of young adults during the Covid-19 pandemic by highlighting the impact of synergy and reciprocity in personality characteristics between young adults and dogs.

Keywords: Covid-19 pandemic, dog walking, personality, structural equation modeling, well-being

Procedia PDF Downloads 115
4671 Problem Solving: Process or Product? A Mathematics Approach to Problem Solving in Knowledge Management

Authors: A. Giannakopoulos, S. B. Buckley

Abstract:

Problem solving in any field is recognised as a prerequisite for any advancement in knowledge. For example in South Africa it is one of the seven critical outcomes of education together with critical thinking. As a systematic way to problem solving was initiated in mathematics by the great mathematician George Polya (the father of problem solving), more detailed and comprehensive ways in problem solving have been developed. This paper is based on the findings by the author and subsequent recommendations for further research in problem solving and critical thinking. Although the study was done in mathematics, there is no doubt by now in almost anyone’s mind that mathematics is involved to a greater or a lesser extent in all fields, from symbols, to variables, to equations, to logic, to critical thinking. Therefore it stands to reason that mathematical principles and learning cannot be divorced from any field. In management of knowledge situations, the types of problems are similar to mathematics problems varying from simple to analogical to complex; from well-structured to ill-structured problems. While simple problems could be solved by employees by adhering to prescribed sequential steps (the process), analogical and complex problems cannot be proceduralised and that diminishes the capacity of the organisation of knowledge creation and innovation. The low efficiency in some organisations and the low pass rates in mathematics prompted the author to view problem solving as a product. The authors argue that using mathematical approaches to knowledge management problem solving and treating problem solving as a product will empower the employee through further training to tackle analogical and complex problems. The question the authors asked was: If it is true that problem solving and critical thinking are indeed basic skills necessary for advancement of knowledge why is there so little literature of knowledge management (KM) about them and how they are connected and advance KM?This paper concludes with a conceptual model which is based on general accepted principles of knowledge acquisition (developing a learning organisation), knowledge creation, sharing, disseminating and storing thereof, the five pillars of knowledge management (KM). This model, also expands on Gray’s framework on KM practices and problem solving and opens the doors to a new approach to training employees in general and domain specific areas problems which can be adapted in any type of organisation.

Keywords: critical thinking, knowledge management, mathematics, problem solving

Procedia PDF Downloads 596
4670 Assessment, Diagnosis and Treatment, Simulation for the Nurse Practitioner Student

Authors: Helen Coronel, Will Brewer, Peggy Bergeron, Clarissa Hall, Victoria Casson

Abstract:

Simulation-based training provides the nurse practitioner (NP) student with a safe and controlled environment in which they can practice a real-life scenario. This type of learning fosters critical thinking skills essential to practice. The expectation of this study was that students would have an increase in their competency and confidence after performing the simulation. Approximately 8.4% of Americans suffer from depression. The state of Alabama is ranked 47th out of 50 for access to mental health care. As a result of this significant shortage of mental health providers, primary care providers are frequently put in the position of screening for and treating mental health conditions, such as depression. Family nurse practitioners are often utilized as primary care providers, making their ability to assess, diagnose and treat these disorders a necessary skill. The expected outcome of this simulation is an increase in confidence, competency and the empowerment of the nurse practitioner student’s ability to assess, diagnose and treat a common mood disorder they may encounter in practice. The Kirkpatrick Module was applied for this study. A non-experimental design using descriptive statistical analysis was utilized. The simulation was based on a common psychiatric mood disorder frequently observed in primary care and mental health clinics. Students were asked to watch a voiceover power point presentation prior to their on-campus simulation. The presentation included training on the assessment, diagnosis, and treatment of a patient with depression. Prior to the simulation, the students completed a pre-test, then participated in the simulation, and completed a post-test when done. Apple iPads were utilized to access a simulated health record. Major findings of the study support an increase in students’ competency and confidence when assessing, diagnosing, and treating an adult patient with depression.

Keywords: advanced practice, nurse practitioner, simulation, primary care, depression

Procedia PDF Downloads 96
4669 Readiness of Iran’s Insurance Industry Salesforce to Accept Changing to Become Islamic Personal Financial Planners

Authors: Pedram Saadati, Zahra Nazari

Abstract:

Today, the role and importance of financial technology businesses in Iran have increased significantly. Although, in Iran, there is no Islamic or non-Islamic personal financial planning field of study in the universities or educational centers, the profession of personal financial planning is not defined, and there is no software introduced in this regard for advisors or consumers. The largest sales network of financial services in Iran belongs to the insurance industry, and there is an untapped market for international companies in Iran that can contribute to 130 thousand representatives in the insurance industry and 28 million families by providing training and personal financial advisory software. To the best of the author's knowledge, despite the lack of previous internal studies in this field, the present study investigates the level of readiness of the salesforce of the insurance industry to accept this career and its technology. The statistical population of the research is made up of managers, insurance sales representatives, assistants and heads of sales departments of insurance companies. An 18-minute video was prepared that introduced and taught the job of Islamic personal financial planning and explained its difference from its non-Islamic model. This video was provided to the respondents. The data collection tool was a research-made questionnaire. To investigate the factors affecting technology acceptance and job change, independent T descriptive statistics and Pearson correlation were used, and Friedman's test was used to rank the effective factors. The results indicate the mental perception and very positive attitude of the insurance industry activists towards the usefulness of this job and its technology, and the studied sample confirmed the intention of training in this knowledge. Based on research results, the change in the customer's attitude towards the insurance advisor and the possibility of increasing income are considered as the reasons for accepting. However, Restrictions on using investment opportunities due to Islamic financial services laws and the uncertainty of the position of the central insurance in this regard are considered as the most important obstacles.

Keywords: fintech, insurance, personal financial planning, wealth management

Procedia PDF Downloads 49
4668 The English Classroom: Scope and Space for Motivation

Authors: Madhavi Godavarthy

Abstract:

The globalized world has been witnessing the ubiquity of the English language and has made it mandatory that students be equipped with the required Communication and soft skills. For students and especially for students studying in technical streams, gaining command over the English language is only a part of the bigger challenges they will face in the future. Linguistic capabilities if blended with the right attitude and a positive personality would deliver better results in the present environment of the digitalized world. An English classroom has that ‘space’; a space if utilized well by the teacher can pay rich dividends. The prescribed syllabus for English in the process of adapting itself to the challenges of a more and more technical world has meted out an indifferent treatment in including ‘literary’ material in their curriculum. A debate has always existed regarding the same and diversified opinions have been given. When the student is motivated to reach Literature through intrinsic motivation, it may contribute to his/her personality-development. In the present paper, the element of focus is on the scope and space to motivate students by creating a specific space for herself/himself amidst the schedules of the teaching-learning processes by taking into consideration a few literary excerpts for the purpose.

Keywords: English language, teaching and learning process, reader response theory, intrinsic motivation, literary texts

Procedia PDF Downloads 614
4667 Everyone Can Sing: A Feasibility Study of Class Choir as a Mental Health Promoting Intervention Among 0-3rd Grade Students in Denmark

Authors: Anne Tetens, Susan Andersen, Lars Ole Bonde, Pia Jeppesen, Katrine Rich Madsen

Abstract:

Background: The World Health Organization (WHO) has emphasized the critical need for feasible and effective school-based mental health promotion interventions. High-quality music education in school has been suggested to promote well-being, inclusion, and positive relations, which are essential for children’s mental health. This study explores the potential of choir singing as a distinct approach to enhance children’s mental health within the school setting. ‘Everyone Can Sing’ is a class-based mental health promotion intervention for children in grades 0-3 (ages 5-10) in Danish primary school, which integrates choir singing into the students’ normal school schedule twice a week to promote mental health through the increase of school well-being, class coherence and social inclusion. The intervention uses trained choir leaders to lead the lessons in close collaboration with the class teacher, placing a distinct emphasis on well-being and the inclusive aspect of musical expression through body and voice. Aim: The aim of the study is to evaluate the feasibility of the Everyone Can Sing intervention with the specific objective to assess implementation and changes in mental health parameters, including school well-being, class coherence and social inclusion. Methodologies: The study is a feasibility study of a one-year intervention, which started in January 2024 and is being implemented in grades 0-3 (ages 5-10) across three different Danish primary schools. It is designed according to a mixed methods approach, including both quantitative and qualitative methods. Baseline questionnaires were obtained from students, parents and teachers, and follow-up is planned at 12 months. Participant observations of class choir and individual and group interviews with students, teachers, choir leaders, and school management are collected during the intervention period. The study uses the validated ‘Strengths and Difficulties Questionnaire’ for parent- and teacher-reports. The student questionnaire, which assesses school well-being, class coherence, social inclusion and indicators of mental health, was developed and validated for this study. Participant observations and interviews provide in-depth insights into the implementation process and participants’ experiences of the mental health-promoting potential of the intervention. Findings: The study included 41 classes across three schools (N=904) and questionnaire data from students (n=845, = 93%), teachers (n=890, = 98%), and parents (n=608, = 67%) at baseline. Follow-up data will be obtained in January 2025. While collection and analyses of data are still ongoing, preliminary implementation findings based on interviews and observations indicate high levels of engagement and acceptability. At 6 months into the intervention period, the study protocol is on track and suggests that the intervention is well-received. Further findings and analyses will be presented. The final results of the study will be used to decide whether the AKS intervention should proceed to a future, full-size effectiveness trial, return to refinement of the intervention or the evaluation design, or stop. Contributions: This study will provide valuable insights into new approaches to school-based mental health promotion initiatives. If feasible, the vision is to implement the intervention or elements of it in primary schools across all five Danish regions, potentially lowering the mental health burden.

Keywords: child mental health, early childhood, mental health promotion, mixed methods research, school-based intervention.

Procedia PDF Downloads 35
4666 Product Development in Company

Authors: Giorgi Methodishvili, Iuliia Methodishvili

Abstract:

In this paper product development algorithm is used to determine the optimal management of financial resources in company. Aspects of financial management considered include put initial investment, examine all possible ways to solve the problem and the optimal rotation length of profit. The software of given problems is based using greedy algorithm. The obtained model and program maintenance enable us to define the optimal version of management of proper financial flows by using visual diagram on each level of investment.

Keywords: management, software, optimal, greedy algorithm, graph-diagram

Procedia PDF Downloads 56
4665 Computational Linguistic Implications of Gender Bias: Machines Reflect Misogyny in Society

Authors: Irene Yi

Abstract:

Machine learning, natural language processing, and neural network models of language are becoming more and more prevalent in the fields of technology and linguistics today. Training data for machines are at best, large corpora of human literature and at worst, a reflection of the ugliness in society. Computational linguistics is a growing field dealing with such issues of data collection for technological development. Machines have been trained on millions of human books, only to find that in the course of human history, derogatory and sexist adjectives are used significantly more frequently when describing females in history and literature than when describing males. This is extremely problematic, both as training data, and as the outcome of natural language processing. As machines start to handle more responsibilities, it is crucial to ensure that they do not take with them historical sexist and misogynistic notions. This paper gathers data and algorithms from neural network models of language having to deal with syntax, semantics, sociolinguistics, and text classification. Computational analysis on such linguistic data is used to find patterns of misogyny. Results are significant in showing the existing intentional and unintentional misogynistic notions used to train machines, as well as in developing better technologies that take into account the semantics and syntax of text to be more mindful and reflect gender equality. Further, this paper deals with the idea of non-binary gender pronouns and how machines can process these pronouns correctly, given its semantic and syntactic context. This paper also delves into the implications of gendered grammar and its effect, cross-linguistically, on natural language processing. Languages such as French or Spanish not only have rigid gendered grammar rules, but also historically patriarchal societies. The progression of society comes hand in hand with not only its language, but how machines process those natural languages. These ideas are all extremely vital to the development of natural language models in technology, and they must be taken into account immediately.

Keywords: computational analysis, gendered grammar, misogynistic language, neural networks

Procedia PDF Downloads 119
4664 Modeling Biomass and Biodiversity across Environmental and Management Gradients in Temperate Grasslands with Deep Learning and Sentinel-1 and -2

Authors: Javier Muro, Anja Linstadter, Florian Manner, Lisa Schwarz, Stephan Wollauer, Paul Magdon, Gohar Ghazaryan, Olena Dubovyk

Abstract:

Monitoring the trade-off between biomass production and biodiversity in grasslands is critical to evaluate the effects of management practices across environmental gradients. New generations of remote sensing sensors and machine learning approaches can model grasslands’ characteristics with varying accuracies. However, studies often fail to cover a sufficiently broad range of environmental conditions, and evidence suggests that prediction models might be case specific. In this study, biomass production and biodiversity indices (species richness and Fishers’ α) are modeled in 150 grassland plots for three sites across Germany. These sites represent a North-South gradient and are characterized by distinct soil types, topographic properties, climatic conditions, and management intensities. Predictors used are derived from Sentinel-1 & 2 and a set of topoedaphic variables. The transferability of the models is tested by training and validating at different sites. The performance of feed-forward deep neural networks (DNN) is compared to a random forest algorithm. While biomass predictions across gradients and sites were acceptable (r2 0.5), predictions of biodiversity indices were poor (r2 0.14). DNN showed higher generalization capacity than random forest when predicting biomass across gradients and sites (relative root mean squared error of 0.5 for DNN vs. 0.85 for random forest). DNN also achieved high performance when using the Sentinel-2 surface reflectance data rather than different combinations of spectral indices, Sentinel-1 data, or topoedaphic variables, simplifying dimensionality. This study demonstrates the necessity of training biomass and biodiversity models using a broad range of environmental conditions and ensuring spatial independence to have realistic and transferable models where plot level information can be upscaled to landscape scale.

Keywords: ecosystem services, grassland management, machine learning, remote sensing

Procedia PDF Downloads 218
4663 Concept-Based Assessment in Curriculum

Authors: Nandu C. Nair, Kamal Bijlani

Abstract:

This paper proposes a concept-based assessment to track the performance of the students. The idea behind this approach is to map the exam questions with the concepts learned in the course. So at the end of the course, each student will know how well he learned each concept. This system will give a self assessment for the students as well as instructor. By analyzing the score of all students, instructor can decide some concepts need to be teaching again or not. The system’s efficiency is proved using three courses from M-tech program in E-Learning technologies and results show that the concept-wise assessment improved the score in final exam of majority students on various courses.

Keywords: assessment, concept, examination, question, score

Procedia PDF Downloads 469
4662 Biological Hazards and Laboratory inflicted Infections in Sub-Saharan Africa

Authors: Godfrey Muiya Mukala

Abstract:

This research looks at an array of fields in Sub-Saharan Africa comprising agriculture, food enterprises, medicine, organisms genetically modified, microbiology, and nanotechnology that can be gained from biotechnological research and development. Findings into dangerous organisms, mainly bacterial germs, rickettsia, fungi, parasites, or organisms that are genetically engineered, have immensely posed questions attributed to the biological danger they bring forth to human beings and the environment because of their uncertainties. In addition, the recurrence of previously managed diseases or the inception of new diseases are connected to biosafety challenges, especially in rural set-ups in low and middle-income countries. Notably, biotechnology laboratories are required to adopt biosafety measures to protect their workforce, community, environment, and ecosystem from unforeseen materials and organisms. Sensitization and inclusion of educational frameworks for laboratory workers are essential to acquiring a solid knowledge of harmful biological agents. This is in addition to human pathogenicity, susceptibility, and epidemiology to the biological data used in research and development. This article reviews and analyzes research intending to identify the proper implementation of universally accepted practices in laboratory safety and biological hazards. This research identifies ideal microbiological methods, adequate containment equipment, sufficient resources, safety barriers, specific training, and education of the laboratory workforce to decrease and contain biological hazards. Subsequently, knowledge of standardized microbiological techniques and processes, in addition to the employment of containment facilities, protective barriers, and equipment, is far-reaching in preventing occupational infections. Similarly, reduction of risks and prevention may be attained by training, education, and research on biohazards, pathogenicity, and epidemiology of the relevant microorganisms. In this technique, medical professionals in rural setups may adopt the knowledge acquired from the past to project possible concerns in the future.

Keywords: sub-saharan africa, biotechnology, laboratory, infections, health

Procedia PDF Downloads 77
4661 High-Fidelity Materials Screening with a Multi-Fidelity Graph Neural Network and Semi-Supervised Learning

Authors: Akeel A. Shah, Tong Zhang

Abstract:

Computational approaches to learning the properties of materials are commonplace, motivated by the need to screen or design materials for a given application, e.g., semiconductors and energy storage. Experimental approaches can be both time consuming and costly. Unfortunately, computational approaches such as ab-initio electronic structure calculations and classical or ab-initio molecular dynamics are themselves can be too slow for the rapid evaluation of materials, often involving thousands to hundreds of thousands of candidates. Machine learning assisted approaches have been developed to overcome the time limitations of purely physics-based approaches. These approaches, on the other hand, require large volumes of data for training (hundreds of thousands on many standard data sets such as QM7b). This means that they are limited by how quickly such a large data set of physics-based simulations can be established. At high fidelity, such as configuration interaction, composite methods such as G4, and coupled cluster theory, gathering such a large data set can become infeasible, which can compromise the accuracy of the predictions - many applications require high accuracy, for example band structures and energy levels in semiconductor materials and the energetics of charge transfer in energy storage materials. In order to circumvent this problem, multi-fidelity approaches can be adopted, for example the Δ-ML method, which learns a high-fidelity output from a low-fidelity result such as Hartree-Fock or density functional theory (DFT). The general strategy is to learn a map between the low and high fidelity outputs, so that the high-fidelity output is obtained a simple sum of the physics-based low-fidelity and correction, Although this requires a low-fidelity calculation, it typically requires far fewer high-fidelity results to learn the correction map, and furthermore, the low-fidelity result, such as Hartree-Fock or semi-empirical ZINDO, is typically quick to obtain, For high-fidelity outputs the result can be an order of magnitude or more in speed up. In this work, a new multi-fidelity approach is developed, based on a graph convolutional network (GCN) combined with semi-supervised learning. The GCN allows for the material or molecule to be represented as a graph, which is known to improve accuracy, for example SchNet and MEGNET. The graph incorporates information regarding the numbers of, types and properties of atoms; the types of bonds; and bond angles. They key to the accuracy in multi-fidelity methods, however, is the incorporation of low-fidelity output to learn the high-fidelity equivalent, in this case by learning their difference. Semi-supervised learning is employed to allow for different numbers of low and high-fidelity training points, by using an additional GCN-based low-fidelity map to predict high fidelity outputs. It is shown on 4 different data sets that a significant (at least one order of magnitude) increase in accuracy is obtained, using one to two orders of magnitude fewer low and high fidelity training points. One of the data sets is developed in this work, pertaining to 1000 simulations of quinone molecules (up to 24 atoms) at 5 different levels of fidelity, furnishing the energy, dipole moment and HOMO/LUMO.

Keywords: .materials screening, computational materials, machine learning, multi-fidelity, graph convolutional network, semi-supervised learning

Procedia PDF Downloads 41
4660 Constructing a Semi-Supervised Model for Network Intrusion Detection

Authors: Tigabu Dagne Akal

Abstract:

While advances in computer and communications technology have made the network ubiquitous, they have also rendered networked systems vulnerable to malicious attacks devised from a distance. These attacks or intrusions start with attackers infiltrating a network through a vulnerable host and then launching further attacks on the local network or Intranet. Nowadays, system administrators and network professionals can attempt to prevent such attacks by developing intrusion detection tools and systems using data mining technology. In this study, the experiments were conducted following the Knowledge Discovery in Database Process Model. The Knowledge Discovery in Database Process Model starts from selection of the datasets. The dataset used in this study has been taken from Massachusetts Institute of Technology Lincoln Laboratory. After taking the data, it has been pre-processed. The major pre-processing activities include fill in missed values, remove outliers; resolve inconsistencies, integration of data that contains both labelled and unlabelled datasets, dimensionality reduction, size reduction and data transformation activity like discretization tasks were done for this study. A total of 21,533 intrusion records are used for training the models. For validating the performance of the selected model a separate 3,397 records are used as a testing set. For building a predictive model for intrusion detection J48 decision tree and the Naïve Bayes algorithms have been tested as a classification approach for both with and without feature selection approaches. The model that was created using 10-fold cross validation using the J48 decision tree algorithm with the default parameter values showed the best classification accuracy. The model has a prediction accuracy of 96.11% on the training datasets and 93.2% on the test dataset to classify the new instances as normal, DOS, U2R, R2L and probe classes. The findings of this study have shown that the data mining methods generates interesting rules that are crucial for intrusion detection and prevention in the networking industry. Future research directions are forwarded to come up an applicable system in the area of the study.

Keywords: intrusion detection, data mining, computer science, data mining

Procedia PDF Downloads 296
4659 The Comparative Effect of Neuro-Linguistic Programming (NLP), Critical Thinking and a Combination of Both On EFL Learners' Reading Comprehension

Authors: Mona Khabiri, Fahimeh Farahani

Abstract:

The present study was an attempt to investigate the comparative effect of teaching NLP, critical thinking, and a combination of NLP and critical thinking on EFL learners' reading comprehension. To fulfill the purpose of this study, a group of 82 female and male intermediate EFL learners at a Language School in Iran took a piloted sample PET as a proficiency test and 63 of them were selected as homogenous learners and were randomly assigned to three experimental groups. Within a treatment process of 10 sessions the teacher/researcher provided the participants of each group with handouts, explanations, practices, homework, and questionnaires on techniques of NLP, critical thinking, and a combination of both. During these 10 sessions, 10 same reading comprehension texts extracted from the multi-skill course book suggested by the language school where thought to the participants of each experimental group using skills and strategies of NLP, critical thinking, and a combination of both. On the eleventh session, the participants sat for a reading posttest. The results of one-way ANOVA showed no significant difference among the three groups in terms of reading comprehension. Justifications and implications for the findings of the study and suggestions for further research are presented.

Keywords: neuro-linguistic programming (NLP), critical thinking, reading comprehension

Procedia PDF Downloads 412
4658 Methodology for Developing an Intelligent Tutoring System Based on Marzano’s Taxonomy

Authors: Joaquin Navarro Perales, Ana Lidia Franzoni Velázquez, Francisco Cervantes Pérez

Abstract:

The Mexican educational system faces diverse challenges related with the quality and coverage of education. The development of Intelligent Tutoring Systems (ITS) may help to solve some of them by helping teachers to customize their classes according to the performance of the students in online courses. In this work, we propose the adaptation of a functional ITS based on Bloom’s taxonomy called Sistema de Apoyo Generalizado para la Enseñanza Individualizada (SAGE), to measure student’s metacognition and their emotional response based on Marzano’s taxonomy. The students and the system will share the control over the advance in the course, so they can improve their metacognitive skills. The system will not allow students to get access to subjects not mastered yet. The interaction between the system and the student will be implemented through Natural Language Processing techniques, thus avoiding the use of sensors to evaluate student’s response. The teacher will evaluate student’s knowledge utilization, which is equivalent to the last cognitive level in Marzano’s taxonomy.

Keywords: intelligent tutoring systems, student modelling, metacognition, affective computing, natural language processing

Procedia PDF Downloads 197
4657 MEAL Project–Modifying Eating Attitudes and Actions through Learning

Authors: E. Oliver, A. Cebolla, A. Dominguez, A. Gonzalez-Segura, E. de la Cruz, S. Albertini, L. Ferrini, K. Kronika, T. Nilsen, R. Baños

Abstract:

The main objective of MEAL is to develop a pedagogical tool aimed to help teachers and nutritionists (students and professionals) to acquire, train, promote and deliver to children basic nutritional education and healthy eating behaviours competencies. MEAL is focused on eating behaviours and not only in nutritional literacy, and will use new technologies like Information and Communication Technologies (ICTs) and serious games (SG) platforms to consolidate the nutritional competences and habits.

Keywords: nutritional education, pedagogical ICT platform, serious games, training course

Procedia PDF Downloads 526
4656 Identifying Understanding Expectations of School Administrators Regarding School Assessment

Authors: Eftah Bte. Moh Hj Abdullah, Izazol Binti Idris, Abd Aziz Bin Abd Shukor

Abstract:

This study aims to identify the understanding expectations of school administrators concerning school assessment. The researcher utilized a qualitative descriptive study on 19 administrators from three secondary schools in the North Kinta district. The respondents had been interviewed on their understanding expectations of school assessment using the focus group discussion method. Overall findings showed that the administrators’ understanding expectations of school assessment was weak; especially in terms of content focus, articulation across age and grade, transparency and fairness, as well as the pedagogical implications. Findings from interviews indicated that administrators explained their understanding expectations of school assessment from the aspect of school management, and not from the aspect of instructional leadership or specifically as assessment leaders. The study implications from the administrators’ understanding expectations may hint at the difficulty of the administrators to function as assessment leaders, in order to reduce their focus as manager, and move towards their primary role in the process of teaching and learning. The administrator, as assessment leaders, would be able to reach assessment goals via collaboration in identifying and listing teacher assessment competencies, how to construct assessment capacity, how to interpret assessment correctly, the use of assessment and how to use assessment information to communicate confidently and effectively to the public.

Keywords: assessment leaders, assessment goals, instructional leadership, understanding expectation of assessment

Procedia PDF Downloads 458
4655 Culturally Responsive Teaching for Learner Diversity in Czech Schools: A Literature Review

Authors: Ntite Orji Kalu, Martina Kurowski

Abstract:

Until recently, the Czech Republic had an educational system dominated by indigenous people, who accounted for 95% of the school population. With the increasing influx of migrants and foreign students, especially from outside European Union, came a great disparity among the quality of learners and their learning needs and consideration for the challenges associated with being a minority and living within a foreign culture. This has prompted the research into ways of tailoring the educational system to meet the rising demand of learning styles and needs for the diverse learners in the Czech classrooms. Literature is reviewed regarding the various ways to accommodate the international students considering racial differences, focusing on theoretical approach and pedagogical principles. This study examines the compulsory educational system of the Czech Republic and the position and responsibility of the teacher in fostering a culturally sensitive and inclusive learning environment. Descriptive and content analysis is relied upon for this study. Recommendations are made for stakeholders to imbibe a more responsive environment that enhances the cultural and social integration of all learners.

Keywords: culturally responsive teaching, cultural competence, diversity, learners, inclusive education, Czech schools

Procedia PDF Downloads 146
4654 From a Top Sport Event to a Sporting Activity

Authors: Helge Rupprich, Elke Knisel

Abstract:

In a time of mediazation and reduced physical movement, it is important to change passivity (akinesa) into physical activity to improve health. The approach is to encourage children, junior athletes, recreational athletes, and semi-professional athletes to do sports while attending a top sport event. The concept has the slogan: get out off your seat and move! A top sport event of a series of professional beach volleyball tournaments with 330.000 life viewers, 13,70 million cumulative reach viewers and 215,13 million advertising contacts is used as framework for different sports didactic approaches, social integrative approaches and migration valuations. An important aim is to use the big radiant power of the top sport event to extract active participants from the viewers of the top sport event. Even if it is the goal to improve physical activity, it is necessary to differentiate between the didactic approaches. The first approach contains psycho motoric exercises with children (N=158) between two and five years which was used in the project ‘largest sandbox of the city’. The second approach is social integration and promotion of activity of students (N=54) in the form of a student beach volleyball tournament. The third approach is activity in companies. It is based on the idea of health motivation of employees (N=62) in a big beach volleyball tournament. Fourth approach is to improve the sports leisure time activities of recreational athletes (N=292) in different beach volleyball tournaments. Fifthly approach is to build a foreign friendly measure which is implemented in junior athlete training with the French and German junior national team (N=16). Sixthly approach is to give semi professional athletes a tournament to develop their relation to active life. Seventh approach is social integration for disadvantaged people (N=123) in form of training with professional athletes. The top sport beach volleyball tournament had 80 athletes (N=80) and 34.000 viewers. In sum 785 athletes (N=785) did sports in 13 days. Over 34.000 viewers where counted in the first three days of top sport event. The project was evaluated positively by the City of Dresden, Politics of Saxony and the participants and will be continued in Dresden and expanded for the season 2015 in Jena.

Keywords: beach volleyball, event, sports didactic, sports project

Procedia PDF Downloads 495
4653 Climate-Smart Agriculture Technologies and Determinants of Farmers’ Adoption Decisions in the Great Rift Valley of Ethiopia

Authors: Theodrose Sisay, Kindie Tesfaye, Mengistu Ketema, Nigussie Dechassa, Mezegebu Getnet

Abstract:

Agriculture is a sector that is very vulnerable to the effects of climate change and contributes to anthropogenic greenhouse gas (GHG) emissions in the atmosphere. By lowering emissions and adjusting to the change, it can also help to reduce climate change. Utilizing Climate-Smart Agriculture (CSA) technology that can sustainably boost productivity, improve resilience, and lower GHG emissions is crucial. This study sought to identify the CSA technologies used by farmers and assess adoption levels and factors that influence them. In order to gather information from 384 smallholder farmers in the Great Rift Valley (GRV) of Ethiopia, a cross-sectional survey was carried out. Data were analysed using percentage, chi-square test, t-test, and multivariate probit model. Results showed that crop diversification, agroforestry, and integrated soil fertility management were the most widely practiced technologies. The results of the Chi-square and t-tests showed that there are differences and significant and positive connections between adopters and non-adopters based on various attributes. The chi-square and t-test results confirmed that households who were older had higher incomes, greater credit access, knowledge of the climate, better training, better education, larger farms, higher incomes, and more frequent interactions with extension specialists had a positive and significant association with CSA technology adopters. The model result showed that age, sex, and education of the head, farmland size, livestock ownership, income, access to credit, climate information, training, and extension contact influenced the selection of CSA technologies. Therefore, effective action must be taken to remove barriers to the adoption of CSA technologies, and taking these adoption factors into account in policy and practice is anticipated to support smallholder farmers in adapting to climate change while lowering emissions.

Keywords: climate change, climate-smart agriculture, smallholder farmers, multivariate probit model

Procedia PDF Downloads 127