Search results for: oxygen reduction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6109

Search results for: oxygen reduction

2719 The Search of Possibility of Running Six Sigma Process in It Education Center

Authors: Mohammad Amini, Aliakbar Alijarahi

Abstract:

This research that is collected and title as ‘ the search of possibility of running six sigma process in IT education center ‘ goals to test possibility of running the six sigma process and using in IT education center system. This process is a good method that is used for reducing process, errors. To evaluate running off six sigma in the IT education center, some variables relevant to this process is selected. These variables are: - The amount of support from organization master boss to process. - The current specialty. - The ability of training system for compensating reduction. - The amount of match between current culture whit six sigma culture . - The amount of current quality by comparing whit quality gain from running six sigma. For evaluation these variables we select four question and to gain the answers, we set a questionnaire from with 28 question and distribute it in our typical society. Since, our working environment is a very competition, and organization needs to decree the errors to minimum, otherwise it lasts their customers. The questionnaire from is given to 55 persons, they were filled and returned by 50 persons, after analyzing the forms these results is gained: - IT education center needs to use and run this system (six sigma) for improving their process qualities. - The most factors need to run the six sigma exist in the IT education center, but there is a need to support.

Keywords: education, customer, self-action, quality, continuous improvement process

Procedia PDF Downloads 340
2718 Daylightophil Approach towards High-Performance Architecture for Hybrid-Optimization of Visual Comfort and Daylight Factor in BSk

Authors: Mohammadjavad Mahdavinejad, Hadi Yazdi

Abstract:

The greatest influence we have from the world is shaped through the visual form, thus light is an inseparable element in human life. The use of daylight in visual perception and environment readability is an important issue for users. With regard to the hazards of greenhouse gas emissions from fossil fuels, and in line with the attitudes on the reduction of energy consumption, the correct use of daylight results in lower levels of energy consumed by artificial lighting, heating and cooling systems. Windows are usually the starting points for analysis and simulations to achieve visual comfort and energy optimization; therefore, attention should be paid to the orientation of buildings to minimize electrical energy and maximize the use of daylight. In this paper, by using the Design Builder Software, the effect of the orientation of an 18m2(3m*6m) room with 3m height in city of Tehran has been investigated considering the design constraint limitations. In these simulations, the dimensions of the building have been changed with one degree and the window is located on the smaller face (3m*3m) of the building with 80% ratio. The results indicate that the orientation of building has a lot to do with energy efficiency to meet high-performance architecture and planning goals and objectives.

Keywords: daylight, window, orientation, energy consumption, design builder

Procedia PDF Downloads 233
2717 Mechanism of Performance of Soil-Cement Columns under Shallow Foundations in Liquefiable Soil

Authors: Zaheer Ahmed Almani, Agha Faisal Habib Pathan, Aneel Kumar Hindu

Abstract:

In this study, the effects of ground reinforcement with stiff soil-cement columns on liquefiable ground and on the shallow foundation of structure were investigated. The modelling and analysis of shallow foundation of the structure founded on the composite reinforced ground were carried out with finite difference FLAC commercial software. The results showed that stiff columns were not effective to the redistribute the shear stresses in the composite ground, thus, were not effective to reduce shear stress and shear strain on the soil between the columns. The excessive pore pressure increase which is dependent on volumetric strain (contractive) tendency of loose sand upon shearing, was not reduced to a significant level that liquefaction potential could be remediated. Thus, mechanism of performance with reduction of pore pressure and consequent liquefaction was not predicted in numerical analysis. Nonetheless, the columns were effective to resist the load of structure in compression and reduced the liquefaction-induced large settlements of structure to tolerable limits when provided adjacent and beneath the pad of shallow foundation.

Keywords: earthquake, liquefaction, mechanism, soil-cement columns

Procedia PDF Downloads 151
2716 Creating Trauma-Sensitive Yoga Programs for University Students With Stress and Anxiety: Lessons From a Program in the United States

Authors: Jessica Gladden

Abstract:

Anxiety remains one of the most common mental health disorders in the United States. Many university students report having a high level of anxiety, with additional life stressors that might include being away from home for the first time, being around unfamiliar people, having new expectations placed on them, and often have financial struggles. Universities have the ability and opportunity to form programs that can involve students with activities that reduce stress and teach coping skills. This research includes one example of using a somatic based group format of yoga to teach these skills and assist students in applying these strategies to their daily lives. This study compared a group of 17 students participating in weekly yoga classes to 34 students who did not attend the program. The students who attended the program reported a larger reduction of anxiety on both the BAI and GAD-7 than the control group, and verbally reported additional benefits in relaxation and coping skills. This presentation will review the results of the program as well as detailing the steps taken in creating a yoga program for university students with stress and anxiety. This will include a discussion on the components of trauma-sensitive yoga and the concerns and strategies to consider when developing a program for students.

Keywords: yoga, trauma-sensitive yoga, anxiety, students

Procedia PDF Downloads 115
2715 A Review: Global Crisis Effects on Agriculture and Animal Production in Turkey

Authors: Muhittin Fatih Demirhan, Sibel Alapala Demirhan

Abstract:

Agriculture, is also regarded as the primary activity area in all economies. When international comparisons are made Turkey has comparative advantages in agricultural potential. However, it is diffi cult to say that Turkey's agricultural productivity and use of technology is well developed in terms of sufficieny. Turkey, in terms of agricultural production, is one of the rare self-sufficient countries, but for supplying excessive demand of its domesticproduction to foreign markets to obtain the necessary income it is rather insufficient. On the basis of wrong policies implemented during the crisis and found that bottlenecks in agriculture and animal husbandry or agriculture policies of the IMF and World Bank are imposed on countries like Turkey. The IMF and the World Bank, the reduction of support in the agricultural and livestock Turkey, is known to put pressure for the abolition. Under these circumstances, our farmers, livestock producers and breeders of, not a chance to compete in the same market with EU producers. Animal products that capture the productivity levels of developed countries, seems to be our chance to compete with the quality and hygiene criteria. Thus, the discussion of the issue must be raised as for the sector's contribution to the economy in terms of further increasing production of the existing potential in mobilization.

Keywords: agricultural development, animal production, competition, economic crisis, food supply

Procedia PDF Downloads 237
2714 Calibrating Risk Factors for Road Safety in Low Income Countries

Authors: Atheer Al-Nuaimi, Harry Evdorides

Abstract:

Daily, many individuals die or get harmed on streets around the globe, which requires more particular solutions for transport safety issues. International road assessment program (iRAP) is one of the models that are considering many variables which influence road user’s safety. In iRAP, roads have been partitioned into five-star ratings from 1 star (the most reduced level) to 5 star (the most noteworthy level). These levels are calculated from risk factors which represent the effect of the geometric and traffic conditions on rod safety. The result of iRAP philosophy are the countermeasures that can be utilized to enhance safety levels and lessen fatalities numbers. These countermeasures can be utilized independently as a single treatment or in combination with other countermeasures for a section or an entire road. There is a general understanding that the efficiency of a countermeasure is liable to reduction when it is used in combination with various countermeasures. That is, crash diminishment estimations of single countermeasures cannot be summed easily. In the iRAP model, the fatalities estimations are calculated using a specific methodology. However, this methodology suffers overestimations. Therefore, this study has developed a calibration method to estimate fatalities numbers more accurately.

Keywords: crash risk factors, international road assessment program, low-income countries, road safety

Procedia PDF Downloads 146
2713 Room Temperature Electron Spin Resonance and Raman Study of Nanocrystalline Zn(1-x)Cu(x)O (0.005 < x < 0.05) Synthesized by Pyrophoric Method

Authors: Jayashree Das, V. V. Srinivasu , D. K. Mishra, A. Maity

Abstract:

Owing to the important potential applications over decades, transition metal (TM: Mn, Fe, Ni, Cu, Cr, V etc.) doped ZnO-based diluted magnetic semiconductors (DMS) always attract research attention for more and newer investigations. One of the interesting aspects of these materials is to study and understand the magnetic property at room temperature properly, which is very crucial to select a material for any related application. In this regard, Electron spin resonance (ESR) study has been proven to be a powerful technique to investigate the spin dynamics of electrons inside the system, which are responsible for the magnetic behaviour of any system. ESR as well as the Raman and Photoluminescence spectroscopy studies are also helpful to study the defects present or created inside the system in the form of oxygen vacancy or cluster instrumental in determining the room temperature ferromagnetic property of transition metal doped ZnO system, which can be controlled through varying dopant concentration, appropriate synthesis technique and sintering of the samples. For our investigation, we synthesised Cu-doped ZnO nanocrystalline samples with composition Zn1-xCux ( 0.005< x < 0.05) by pyrophoric method and sintered at a low temperature of 650 0C. The microwave absorption is studied by the Electron Spin Resonance (ESR) of X-band (9.46 GHz) at room temperature. Systematic analysis of the obtained ESR spectra reveals that all the compositions of Cu-doped ZnO samples exhibit resonance signals of appreciable line widths and g value ~ 2.2, typical characteristic of ferromagnetism in the sample. Raman scattering and the photoluminescence study performed on the samples clearly indicated the presence of pronounced defect related peaks in the respective spectra. Cu doping in ZnO with varying concentration also observed to affect the optical band gap and the respective absorption edges in the UV-Vis spectra. FTIR spectroscopy reveals the Cu doping effect on the stretching bonds of ZnO. To probe into the structural and morphological changes incurred by Cu doping, we have performed XRD, SEM and EDX study, which confirms adequate Cu substitution without any significant impurity phase formation or lattice disorder. With proper explanation, we attempt to correlate the results observed for the structural optical and magnetic behaviour of the Cu-doped ZnO samples. We also claim that our result can be instrumental for appropriate applications of transition metal doped ZnO based DMS in the field of optoelectronics and Spintronics.

Keywords: diluted magnetic semiconductors, electron spin resonance, raman scattering, spintronics.

Procedia PDF Downloads 313
2712 Effect of Yttrium Doping on Properties of Bi2Sr1.9Ca0.1-xYxCu2O7+δ (Bi-2202) Cuprate Ceramics

Authors: Y. Boudjadja, A. Amira, A. Saoudel, A. Varilci, S. P. Altintas, C. Terzioglu

Abstract:

In this work, we report the effect of Y3+ doping on structural, mechanical and electrical properties of Bi-2202 phase. Samples of Bi2Sr1.9Ca0.1-xYxCu2O7+δ with x = 0, 0.025, 0.05, 0.075 and 0.1 are elaborated in air by conventional solid state reaction and characterized by X-Ray Diffraction (XRD), Scanning Electronic Microscopy (SEM) combined with EDS spectroscopy, density, Vickers micro-hardness and resistivity measurements. A good correlation between the variations of the bulk density and the Vickers micro-hardness with doping is obtained. The SEM photograph shows that the samples are composed of grains with a flat shape that characterizes the Bi-based cuprates. Quantitative EDS analysis confirms the reduction of Ca content and the increase of Y content when x is increased. The variation of resistivity with temperature shows that only samples with x = 0, 0.025 and 0.05 present an onset transition to the superconducting state. The higher onset transition temperature is obtained for x = 0.025 and is about 93.62 K. The transition is wide and is realized in two steps confirming then the presence of the low Tc Bi-2201 phase in the samples. For x = 0.075 and 0.1, a transition to a semiconducting state is seen at low temperatures. Some physical parameters are extracted from these curves and discussed.

Keywords: Bi-2202 phase, doping, structure, mechanical and electrical properties

Procedia PDF Downloads 323
2711 Simulation with Uncertainties of Active Controlled Vibration Isolation System for Astronaut’s Exercise Platform

Authors: Shield B. Lin, Ziraguen O. Williams

Abstract:

In a task to assist NASA in analyzing the dynamic forces caused by operational countermeasures of an astronaut’s exercise platform impacting the spacecraft, an active proportional-integral-derivative controller commanding a linear actuator is proposed in a vibration isolation system to regulate the movement of the exercise platform. Computer simulation shows promising results that most exciter forces can be reduced or even eliminated. This paper emphasizes on parameter uncertainties, variations and exciter force variations. Drift and variations of system parameters in the vibration isolation system for astronaut’s exercise platform are analyzed. An active controlled scheme is applied with the goals to reduce the platform displacement and to minimize the force being transmitted to the spacecraft structure. The controller must be robust enough to accommodate the wide variations of system parameters and exciter forces. Computer simulation for the vibration isolation system was performed via MATLAB/Simulink and Trick. The simulation results demonstrate the achievement of force reduction with small platform displacement under wide ranges of variations in system parameters.

Keywords: control, counterweight, isolation, vibration

Procedia PDF Downloads 146
2710 Quasi-Photon Monte Carlo on Radiative Heat Transfer: An Importance Sampling and Learning Approach

Authors: Utkarsh A. Mishra, Ankit Bansal

Abstract:

At high temperature, radiative heat transfer is the dominant mode of heat transfer. It is governed by various phenomena such as photon emission, absorption, and scattering. The solution of the governing integrodifferential equation of radiative transfer is a complex process, more when the effect of participating medium and wavelength properties are taken into consideration. Although a generic formulation of such radiative transport problem can be modeled for a wide variety of problems with non-gray, non-diffusive surfaces, there is always a trade-off between simplicity and accuracy of the problem. Recently, solutions of complicated mathematical problems with statistical methods based on randomization of naturally occurring phenomena have gained significant importance. Photon bundles with discrete energy can be replicated with random numbers describing the emission, absorption, and scattering processes. Photon Monte Carlo (PMC) is a simple, yet powerful technique, to solve radiative transfer problems in complicated geometries with arbitrary participating medium. The method, on the one hand, increases the accuracy of estimation, and on the other hand, increases the computational cost. The participating media -generally a gas, such as CO₂, CO, and H₂O- present complex emission and absorption spectra. To model the emission/absorption accurately with random numbers requires a weighted sampling as different sections of the spectrum carries different importance. Importance sampling (IS) was implemented to sample random photon of arbitrary wavelength, and the sampled data provided unbiased training of MC estimators for better results. A better replacement to uniform random numbers is using deterministic, quasi-random sequences. Halton, Sobol, and Faure Low-Discrepancy Sequences are used in this study. They possess better space-filling performance than the uniform random number generator and gives rise to a low variance, stable Quasi-Monte Carlo (QMC) estimators with faster convergence. An optimal supervised learning scheme was further considered to reduce the computation costs of the PMC simulation. A one-dimensional plane-parallel slab problem with participating media was formulated. The history of some randomly sampled photon bundles is recorded to train an Artificial Neural Network (ANN), back-propagation model. The flux was calculated using the standard quasi PMC and was considered to be the training target. Results obtained with the proposed model for the one-dimensional problem are compared with the exact analytical and PMC model with the Line by Line (LBL) spectral model. The approximate variance obtained was around 3.14%. Results were analyzed with respect to time and the total flux in both cases. A significant reduction in variance as well a faster rate of convergence was observed in the case of the QMC method over the standard PMC method. However, the results obtained with the ANN method resulted in greater variance (around 25-28%) as compared to the other cases. There is a great scope of machine learning models to help in further reduction of computation cost once trained successfully. Multiple ways of selecting the input data as well as various architectures will be tried such that the concerned environment can be fully addressed to the ANN model. Better results can be achieved in this unexplored domain.

Keywords: radiative heat transfer, Monte Carlo Method, pseudo-random numbers, low discrepancy sequences, artificial neural networks

Procedia PDF Downloads 223
2709 Incorporation of Coarse Rubber Aggregates in the Formulation of Self-Compacting Concrete: Optimization and Characterization

Authors: Zaoiai Said, Makani Abdelkadir, Tafraoui Ahmed

Abstract:

Concrete material suffers from a relatively low tensile strength and deformation capacity is limited. Such defects of the concrete are very fragile and sensitive to shrinkage cracking materials. The Self- Compacting Concrete (SCC) are highly fluid concretes whose implementation without vibration. This material replaces traditional vibrated concrete mainly seen techno-economic interest it presents. The SCC has several advantages which are at the origin of their development crunching. The research is therefore to conduct a comparison in terms of rheological and mechanical performance between different formulations to find the optimal dosage for rubber granulates. Through this research, we demonstrated that it is possible to make different settings SCC composition having good rheological and mechanical properties. This study also showed that the substitution of natural coarse aggregates (NA) by coarse rubber aggregates (RA) in the composition of the SCC, contributes to a slight variation of workability in the fresh state parameters still remaining in the field of SCC required by the AFGC recommendations. The experimental results show that the compressive strengths of SCC decreased slightly by substituting NA by RA. Finally, the decrease in free shrinkage is proportional to the percentage of RA incorporated into the composition of concrete. This reduction is mainly due to the improvement of the deformability of these materials.

Keywords: self-compacting concrete, coarse rubber aggregate, rheological characterization, mechanical performance, shrinkage

Procedia PDF Downloads 287
2708 Effect of Rice Husk Ash on Properties of Cold Bituminous Emulsion Mix

Authors: Sampada Katekar, Namdeo Hedaoo

Abstract:

Cold Bituminous Emulsion Mixtures (CBEMs) are generally produced by mixing unheated aggregate, binder and filler at ambient temperature. Cold bituminous emulsion mixtures have several environmental and cost-effective benefits. But CBEMs offer poor early life properties too and they require long curing time to achieve maximum strength. The main focus of this study is to overcome inferiority of CBEMs by incorporating Rice Husk Ash (RHA) and Ordinary Portland Cement (OPC). In this study, RHA and OPC are substituted for conventional mineral filler in an increased percentage from 0 to 3% with an increment of 1%. Marshall stability, retained stability and tensile strength tests were conducted to evaluate the enhancement in performance of CBEMs. The experimental results have shown that Marshall stability and tensile strength of CBEMs increased significantly by replacing the conventional mineral filler with RHA and OPC. The addition of RHA and OPC in CBEMs result in a reduction in moisture induced damages. However, stability and tensile strength values of RHA modified CBEMs are higher than that of OPC modified CBEMs.

Keywords: cold bituminous emulsion mixtures, Marshall stability test, ordinary Portland cement, rice husk ash

Procedia PDF Downloads 168
2707 Modeling the Saltatory Conduction in Myelinated Axons by Order Reduction

Authors: Ruxandra Barbulescu, Daniel Ioan, Gabriela Ciuprina

Abstract:

The saltatory conduction is the way the action potential is transmitted along a myelinated axon. The potential diffuses along the myelinated compartments and it is regenerated in the Ranvier nodes due to the ion channels allowing the flow across the membrane. For an efficient simulation of populations of neurons, it is important to use reduced order models both for myelinated compartments and for Ranvier nodes and to have control over their accuracy and inner parameters. The paper presents a reduced order model of this neural system which allows an efficient simulation method for the saltatory conduction in myelinated axons. This model is obtained by concatenating reduced order linear models of 1D myelinated compartments and nonlinear 0D models of Ranvier nodes. The models for the myelinated compartments are selected from a series of spatially distributed models developed and hierarchized according to their modeling errors. The extracted model described by a nonlinear PDE of hyperbolic type is able to reproduce the saltatory conduction with acceptable accuracy and takes into account the finite propagation speed of potential. Finally, this model is again reduced in order to make it suitable for the inclusion in large-scale neural circuits.

Keywords: action potential, myelinated segments, nonlinear models, Ranvier nodes, reduced order models, saltatory conduction

Procedia PDF Downloads 161
2706 Protective Role of Autophagy Challenging the Stresses of Type 2 Diabetes and Dyslipidemia

Authors: Tanima Chatterjee, Maitree Bhattacharyya

Abstract:

The global challenge of type 2 diabetes mellitus is a major health concern in this millennium, and researchers are continuously exploring new targets to develop a novel therapeutic strategy. Type 2 diabetes mellitus (T2DM) is often coupled with dyslipidemia increasing the risks for cardiovascular (CVD) complications. Enhanced oxidative and nitrosative stresses appear to be the major risk factors underlying insulin resistance, dyslipidemia, β-cell dysfunction, and T2DM pathogenesis. Autophagy emerges to be a promising defense mechanism against stress-mediated cell damage regulating tissue homeostasis, cellular quality control, and energy production, promoting cell survival. In this study, we have attempted to explore the pivotal role of autophagy in T2DM subjects with or without dyslipidemia in peripheral blood mononuclear cells and insulin-resistant HepG2 cells utilizing flow cytometric platform, confocal microscopy, and molecular biology techniques like western blotting, immunofluorescence, and real-time polymerase chain reaction. In the case of T2DM with dyslipidemia higher population of autophagy, positive cells were detected compared to patients with the only T2DM, which might have resulted due to higher stress. Autophagy was observed to be triggered both by oxidative and nitrosative stress revealing a novel finding of our research. LC3 puncta was observed in peripheral blood mononuclear cells and periphery of HepG2 cells in the case of the diabetic and diabetic-dyslipidemic conditions. Increased expression of ATG5, LC3B, and Beclin supports the autophagic pathway in both PBMC and insulin-resistant Hep G2 cells. Upon blocking autophagy by 3-methyl adenine (3MA), the apoptotic cell population increased significantly, as observed by caspase‐3 cleavage and reduced expression of Bcl2. Autophagy has also been evidenced to control oxidative stress-mediated up-regulation of inflammatory markers like IL-6 and TNF-α. To conclude, this study elucidates autophagy to play a protective role in the case of diabetes mellitus with dyslipidemia. In the present scenario, this study demands to have a significant impact on developing a new therapeutic strategy for diabetic dyslipidemic subjects by enhancing autophagic activity.

Keywords: autophagy, apoptosis, dyslipidemia, reactive oxygen species, reactive nitrogen species, Type 2 diabetes

Procedia PDF Downloads 129
2705 Development of Corn (Zea mays L.) Stalk Geotextile Net for Soil Erosion Mitigation

Authors: Cristina S. Decano, Vitaliana U. Malamug, Melissa E. Agulto, Helen F. Gavino

Abstract:

This study aimed to introduce new natural fiber to be used in the production of geotextile net for mitigation of soil erosion. Fiber extraction from the stalks was the main challenge faced during the processing of stalks to ropes. Thus, an investigation on the extraction procedures of corn (Zea mays L.) stalk under biological and chemical retting was undertaken. Results indicated significant differences among percent fiber yield as affected by the retting methods used with values of 15.07%, 12.97%, 11.60%, and 9.01%, for dew, water, chemical (1 day after harvest and15 days after harvest), respectively, with the corresponding average extracting duration of 70, 82, 89, and 94 minutes. Physical characterization of the developed corn stalk geotextile net resulted to average mass per unit area of 806.25 g/m2 and 241% water absorbing capacity. The effect of corn stalk geotextile net in mitigating soil erosion was evaluated in a laboratory experiment for 30o and 60o inclinations with three treatments: bare soil (A1), corn stalk geotextile net (A2) and combined cornstalk geotextile net and vegetation cover (A3). Results revealed that treatment A2 and A3 significantly decreased sediment yield and an increase in terms of soil loss reduction efficiency. The cost of corn stalk geotextile net is Php 62.41 per square meter.

Keywords: corn stalk, natural geotextile, retting, soil erosion

Procedia PDF Downloads 299
2704 Toxicity Depletion Rates of Water Lettuce (Pistia stratoites) in an Aquaculture Effluent Hydroponic System

Authors: E. A. Kiridi, A. O. Ogunlela

Abstract:

The control of ammonia build-up and its by-product is a limiting factor for a successful commercial aquaculture in a developing country like Nigeria. The technology for an advanced treatment of fish tank effluent is uneconomical to local fish farmers which have led to indiscriminate disposal of aquaculture wastewater, thereby increasing the concentrations of these nitrogenous compound and other contaminants in surface and groundwater above the permissible level. Phytoremediation using water lettuce could offer cheaper and sustainable alternative. On the first day of experimentation, approximately 100 g of water lettuce were replicated in four hydroponic units containing aquaculture effluents. The water quality parameters measured were concentration of ammonium–nitrogen (NH4+-N), nitrite-nitrogen (NO2--N), nitrate-nitrogen (NO3--N), and phosphate–phosphorus (PO43--P). Others were total suspended solids (TSS), pH, electrical conductivity (EC), and biomass value. At phytoremediation intervals of 7, 14, 21 and 28 days, the biomass recorded were 361.2 g, 498.7 g, 561.2 g, and 623.7 g. Water lettuce was able to reduce the pollutant concentration of all the selected parameter. The percentage reduction of pH ranged from 3.9% to 14.4%, EC from 49.8% to 96.2%, TDS from 50.4% to 96.2%, TSS from 38.3% to 81.7%, NH4+-N from 38.9% to 90.7%, NO2--N from 0% to 74.9%, NO3--N from 63.2% to 95.9% and PO43--P from 0% to 76.3%. At 95% confidence level, the analysis of variance shows that F(critical) is less than F(cal) and p < 0.05; therefore, it can be concluded statistically that the inequality between the pre-treatment and post-treatment values are significant. This suggests the potency of water lettuce for remediation of aquaculture effluent.

Keywords: aquaculture effluent, nitrification, phytoremediation, water lettuce

Procedia PDF Downloads 211
2703 Physicochemical Attributes of Pectin Hydrogel and Its Wound Healing Activity

Authors: Nor Khaizan Anuar, Nur Karimah Aziz, Tin Wui Wong, Ahmad Sazali Hamzah, Wan Rozita Wan Engah

Abstract:

The physicochemical attributes and wound healing activity of pectin hydrogel in rat models, following partial thickness thermal injury were investigated. The pectin hydrogel was prepared by solvent evaporation method with the aid of glutaraldehyde as crosslinking agent and glycerol as plasticizer. The physicochemical properties were mainly evaluated using differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy, while the wound healing activity was examined by the macroscopic images, wound size reduction and histological evaluation using haematoxylin and eosin (H&E) stain for 14 days. The DSC and FTIR analysis suggested that pectin hydrogel exhibited higher extent of polymer-polymer interaction at O-H functional group in comparison to the unprocessed pectin. This was indicated by the increase of endothermic enthalpy values from 139.35 ± 13.06 J/g of unprocessed pectin to 156.23 ± 2.86 J/g of pectin hydrogel, as well as the decrease of FTIR wavenumber corresponding to O-H at 3432.07 ± 0.49 cm-1 of unprocessed pectin to 3412.62 ± 13.06 cm-1 of pectin hydrogel. Rats treated with pectin hydrogel had significantly smaller wound size (Student’s t-test, p<0.05) when compared to the untreated group starting from day 7 until day 14. H&E staining indicated that wounds received pectin hydrogel had more fibroblasts, blood vessels and collagen bundles on day 14 in comparison to the untreated rats.

Keywords: pectin, physicochemical, rats, wound

Procedia PDF Downloads 360
2702 Functional Neurocognitive Imaging (fNCI): A Diagnostic Tool for Assessing Concussion Neuromarker Abnormalities and Treating Post-Concussion Syndrome in Mild Traumatic Brain Injury Patients

Authors: Parker Murray, Marci Johnson, Tyson S. Burnham, Alina K. Fong, Mark D. Allen, Bruce McIff

Abstract:

Purpose: Pathological dysregulation of Neurovascular Coupling (NVC) caused by mild traumatic brain injury (mTBI) is the predominant source of chronic post-concussion syndrome (PCS) symptomology. fNCI has the ability to localize dysregulation in NVC by measuring blood-oxygen-level-dependent (BOLD) signaling during the performance of fMRI-adapted neuropsychological evaluations. With fNCI, 57 brain areas consistently affected by concussion were identified as PCS neural markers, which were validated on large samples of concussion patients and healthy controls. These neuromarkers provide the basis for a computation of PCS severity which is referred to as the Severity Index Score (SIS). The SIS has proven valuable in making pre-treatment decisions, monitoring treatment efficiency, and assessing long-term stability of outcomes. Methods and Materials: After being scanned while performing various cognitive tasks, 476 concussed patients received an SIS score based on the neural dysregulation of the 57 previously identified brain regions. These scans provide an objective measurement of attentional, subcortical, visual processing, language processing, and executive functioning abilities, which were used as biomarkers for post-concussive neural dysregulation. Initial SIS scores were used to develop individualized therapy incorporating cognitive, occupational, and neuromuscular modalities. These scores were also used to establish pre-treatment benchmarks and measure post-treatment improvement. Results: Changes in SIS were calculated in percent change from pre- to post-treatment. Patients showed a mean improvement of 76.5 percent (σ= 23.3), and 75.7 percent of patients showed at least 60 percent improvement. Longitudinal reassessment of 24 of the patients, measured an average of 7.6 months post-treatment, shows that SIS improvement is maintained and improved, with an average of 90.6 percent improvement from their original scan. Conclusions: fNCI provides a reliable measurement of NVC allowing for identification of concussion pathology. Additionally, fNCI derived SIS scores direct tailored therapy to restore NVC, subsequently resolving chronic PCS resulting from mTBI.

Keywords: concussion, functional magnetic resonance imaging (fMRI), neurovascular coupling (NVC), post-concussion syndrome (PCS)

Procedia PDF Downloads 357
2701 Small Businesses as Vehicles for Job Creation in North-West Nigeria

Authors: Mustapha Shitu Suleiman, Francis Neshamba, Nestor Valero-Silva

Abstract:

Small businesses are considered as engine of economic growth, contributing to employment generation, wealth creation, and poverty alleviation and food security in both developed and developing countries. Nigeria is facing many socio-economic problems and it is believed that by supporting small business development, as propellers of new ideas and more effective users of resources, often driven by individual creativity and innovation, Nigeria would be able to address some of its economic and social challenges, such as unemployment and economic diversification. Using secondary literature, this paper examines the role small businesses can play in the creation of jobs in North-West Nigeria to overcome issues of unemployment, which is the most devastating economic challenge facing the region. Most studies in this area have focused on Nigeria as a whole and only a few studies provide a regional focus, hence, this study will contribute to knowledge by filling this gap by concentrating on North-West Nigeria. It is hoped that with the present administration’s determination to improve the economy, small businesses would be used as vehicles for diversification of the economy away from crude oil to create jobs that would lead to a reduction in the country’s high unemployment level.

Keywords: job creation, north-west, Nigeria, small business, unemployment

Procedia PDF Downloads 307
2700 Concomitant Exposure of Bacoside A and Bromelain Relieves Dichlorvos Toxicity in Mice Serum

Authors: Sonam Agarwal, Renu Bist

Abstract:

Current study emphasizes the toxic effects of dichlorvos on serum in terms of oxidative stress. Meanwhile, a protective action of bacoside A and bromelain was investigated against the biochemical alterations in serum. The experimental design included six groups of mice: saline was given as a vehicle to the control mice (group I). Mice belonging to groups II, III and IV, were administered with dichlorvos (40 mg/kg b.w.), bromelain and bacoside A, respectively. The fifth group received a combination of bromelain and bacoside A. In group VI, Bacoside A, and bromelain were administered 20 minutes prior to exposure of dichlorvos. Thiobarbituric acid reactive substances (TBARS), protein carbonyl content (PCC), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and reduced glutathione (GSH) level were used as biochemical test of toxic action for dichlorvos intoxication. Significantly increased TBARS and PCC level in second group suggests that dichlorvos enhances the production of free radicals in serum of mice (p< 0.05). Antioxidants treatment significantly decreased the levels of TBARS and PCC (p< 0.05). Dichlorvos administration causes a significant reduction in the level of CAT, SOD, GPx and GSH (p< 0.05) which was restored significantly by co-administration of bromelain and Bacoside A in dichlorvos exposed mice (p< 0.05). Treatment of bromelain and Bacoside A in combination served as better scavengers of toxicity induced by dichlorvos.

Keywords: bacoside A, bromelain, dichlorvos, serum

Procedia PDF Downloads 350
2699 Warm Mix and Reclaimed Asphalt Pavement: A Greener Road Approach

Authors: Lillian Gungat, Meor Othman Hamzah, Mohd Rosli Mohd Hasan, Jan Valentin

Abstract:

Utilization of a high percentage of reclaimed asphalt pavement (RAP) requires higher production temperatures and consumes more energy. High production temperature expedites the aging of bitumen in RAP, which could affect the mixture performance. Warm mix asphalt (WMA) additive enables reduced production temperatures as a result of viscosity reduction. This paper evaluates the integration of a high percentage of RAP with a WMA additive known as RH-WMA. The optimum dosage of RH-WMA was determined from basic properties tests. A total of 0%, 30% and 50% RAP contents from two roads sources were modified with RH-WMA. The modified RAP bitumen were examined for viscosity, stiffness, rutting resistance and greenhouse gas emissions. The addition of RH-WMA improved the flow of bitumen by reducing the viscosity, and thus, decreased the construction temperature. The stiffness of the RAP modified bitumen reduced with the incorporation of RH-WMA. The positive improvement in rutting resistance was observed on bitumen with the addition of RAP and RH-WMA in comparison with control. It was estimated that the addition of RH-WMA could potentially reduce fuel usage and GHG emissions by 22 %. Hence, the synergy of RAP and WMA technology can be an alternative in green road construction.

Keywords: reclaimed asphalt pavement, WMA additive, viscosity, stiffness, emissions

Procedia PDF Downloads 355
2698 Understanding the Scope of Architects in Disaster Risk Reduction: The Case of Bhuj

Authors: Sweta Kandari

Abstract:

Predominantly, the conventional role of an architect is to design and construct. However, in a post-disaster scenario, the prevalent role expands and includes many other responsibilities. Agencies collaborating in post-disaster reconstruction face the challenge of building back quickly while requiring them to listen, reflect, develop and deliver as per the needs and requirements of the people. The question of the role of an architect has been extensively discussed in the reconstruction field. Discourses about the role of an architect in post-disaster scenario revolve around the ignorance by the profession, their professional abilities and inabilities. Within this domain, this paper aims at analyzing and recognizing the roles, responsibilities, scope, limitations, skillsets applied and required by an architect while working in a post-disaster situation. Four projects rebuilt after the 2001 Bhuj earthquake in Gujarat, India were examined for this research. Based on the analysis of the case study, areas of intervention of an architect in the various stages of rebuilding were identified. It was reinforced that within the areas of intervention identified, there is a vast gap between the prescribed, the prevalent notion and the performed responsibilities of an architect. This paper brings forth the specific gaps in the rebuilding process while exploring and understanding the relationship between various stakeholders that influence the role of an architect.

Keywords: rebuilding, role of an architect, Bhuj, post-disaster

Procedia PDF Downloads 132
2697 Soft Ground Improved by Prefabricated Vertical Drains with Vacuum and Thermal Preloading

Authors: Gia Lam Le, Dennis T. Bergado, Thi Ngoc Truc Nguyen

Abstract:

This study focuses on behaviors of improved soft clay using prefabricated vertical drain (PVD) combined with vacuum and electro-osmotic preloading. Large-scale consolidations of reconstituted soft Bangkok clay were conducted for PVD improvement with vacuum (vacuum-PVD), and vacuum combined with heat (vacuum-thermo-PVD). The research revealed that vacuum-thermo-PVD gives high efficiency of the consolidation rate compared to the vacuum-PVD. In addition, the magnitude of settlement of the specimen improved by the vacuum-thermo-PVD is higher than the vacuum-PVD because the assistance of heat causes the collapse of the clay structure. Particularly, to reach 90% degree of consolidation, the thermal-vacuum-PVD reduced about 58% consolidation time compared to the vacuum-PVD. The increase in consolidation rate is resulted from the increase in horizontal coefficient of consolidation, Ch, the reduction of the smear effect expressed by the ratio of the horizontal hydraulic conductivity in the undisturbed zone, kh, and the horizontal hydraulic conductivity in the smeared zone, ks. Furthermore, the shear strength, Su, increased about 100% when compared using the vacuum-thermal-PVD to the vacuum PVD. In addition, numerical simulations gave reasonable results compared to the laboratory data.

Keywords: PVD improvement, vacuum preloading, prefabricated vertical drain, thermal PVD

Procedia PDF Downloads 465
2696 Epigenetic Reprogramming of Aging: Reversing the Clock for Regenerative Medicine

Authors: Mohammad Ahmad Ahmad Odah

Abstract:

Aging is a complex biological process characterized by the progressive decline of physiological functions and increased vulnerability to age-related diseases. Epigenetic changes, particularly DNA methylation alterations, play a critical role in the aging process by influencing gene expression and genomic stability. This study explores the potential of epigenetic reprogramming as a strategy to reverse aging phenotypes in human fibroblasts. Using CRISPR-Cas9 gene editing and small molecule inhibitors targeting DNA methylation and histone acetylation, we successfully induced significant changes in DNA methylation and gene expression profiles. Our results demonstrate a global reduction in DNA methylation levels and the identification of differentially methylated regions (DMRs) associated with cellular senescence and DNA repair. Additionally, treated fibroblasts exhibited enhanced proliferative capacity, reduced cellular senescence, and improved differentiation potential. These findings suggest that epigenetic reprogramming could be a promising approach for regenerative medicine, offering potential therapeutic strategies to counteract age-related decline and extend healthy lifespan.

Keywords: epigenetic reprogramming, aging, regenerative medicine, DNA methylation, cellular rejuvenation, CRISPR-Cas9, senescence

Procedia PDF Downloads 36
2695 Optimal Retrofit Design of Reinforced Concrete Frame with Infill Wall Using Fiber Reinforced Plastic Materials

Authors: Sang Wook Park, Se Woon Choi, Yousok Kim, Byung Kwan Oh, Hyo Seon Park

Abstract:

Various retrofit techniques for reinforced concrete frame with infill wall have been steadily developed. Among those techniques, strengthening methodology based on diagonal FRP strips (FRP bracings) has numerous advantages such as feasibility of implementing without interrupting the building under operation, reduction of cost and time, and easy application. Considering the safety of structure and retrofit cost, the most appropriate retrofit solution is needed. Thus, the objective of this study is to suggest pareto-optimal solution for existing building using FRP bracings. To find pareto-optimal solution analysis, NSGA-II is applied. Moreover, the seismic performance of retrofit building is evaluated. The example building is 5-storey, 3-bay RC frames with infill wall. Nonlinear static pushover analyses are performed with FEMA 356. The criterion of performance evaluation is inter-story drift ratio at the performance level IO, LS, CP. Optimal retrofit solutions is obtained for 32 individuals and 200 generations. Through the proposed optimal solutions, we confirm the improvement of seismic performance of the example building.

Keywords: retrofit, FRP bracings, reinforced concrete frame with infill wall, seismic performance evaluation, NSGA-II

Procedia PDF Downloads 437
2694 Impact of Calcium Carbide Waste Dumpsites on Soil Chemical and Microbial Characteristics

Authors: C. E. Ihejirika, M. I. Nwachukwu, R. F. Njoku-Tony, O. C. Ihejirika, U. O. Enwereuzoh, E. O. Imo, D. C. Ashiegbu

Abstract:

Disposal of industrial solid wastes in the environment is a major environmental challenge. This study investigated the effects of calcium carbide waste dumpsites on soil quality. Soil samples were collected with hand auger from three different dumpsites at varying depths and made into composite samples. Samples were subjected to standard analytical procedures. pH varied from 10.38 to 8.28, nitrate from 5.6mg/kg to 9.3mg/kg, phosphate from 8.8mg/kg to 12.3mg/kg, calcium carbide reduced from 10% to to 3%. Calcium carbide was absent in control soil samples. Bacterial counts from dumpsites ranged from 1.8 x 105cfu/g - 2.5 x 105cfu/g while fungal ranged from 0.8 x 103cfu/g - 1.4 x 103cfu/g. Bacterial isolates included Pseudomonas spp, Flavobacterium spp, and Achromobacter spp, while fungal isolates include Penicillium notatum, Aspergillus niger, and Rhizopus stolonifer. No organism was isolated from the dumpsites at soil depth of 0-15 cm, while there were isolates from other soil depths. Toxicity might be due to alkaline condition of the dumpsite. Calcium carbide might be bactericidal and fungicidal leading to cellular physiology, growth retardation, death, general loss of biodiversity and reduction of ecosystem processes. Detoxification of calcium carbide waste before disposal on soil might be the best option in management.

Keywords: biodiversity, calcium-carbide, denitrification, toxicity

Procedia PDF Downloads 547
2693 Finite Element Simulation of an Offshore Monopile Subjected to Cyclic Loading Using Hypoplasticity with Intergranular Strain Anisotropy (ISA) for the Soil

Authors: William Fuentes, Melany Gil

Abstract:

Numerical simulations of offshore wind turbines (OWTs) in shallow waters demand sophisticated models considering the cyclic nature of the environmental loads. For the case of an OWT founded on sands, rapid loading may cause a reduction of the effective stress of the soil surrounding the structure. This eventually leads to its settlement, tilting, or other issues affecting its serviceability. In this work, a 3D FE model of an OWT founded on sand is constructed and analyzed. Cyclic loading with different histories is applied at certain points of the tower to simulate some environmental forces. The mechanical behavior of the soil is simulated through the recently proposed ISA-hypoplastic model for sands. The Intergranular Strain Anisotropy ISA can be interpreted as an enhancement of the intergranular strain theory, often used to extend hypoplastic formulations for the simulation of cyclic loading. In contrast to previous formulations, the proposed constitutive model introduces an elastic range for small strain amplitudes, includes the cyclic mobility effect and is able to capture the cyclic behavior of sands under a larger number of cycles. The model performance is carefully evaluated on the FE dynamic analysis of the OWT.

Keywords: offshore wind turbine, monopile, ISA, hypoplasticity

Procedia PDF Downloads 246
2692 Simulation for Squat Exercise of an Active Controlled Vibration Isolation and Stabilization System for Astronaut’s Exercise Platform

Authors: Ziraguen O. Williams, Shield B. Lin, Fouad N. Matari, Leslie J. Quiocho

Abstract:

In a task to assist NASA in analyzing the dynamic forces caused by operational countermeasures of an astronaut’s exercise platform impacting the spacecraft, feedback delay, and signal noise were added to a simulation model of an active-controlled vibration isolation system to regulate the movement of the exercise platform. Previous simulation work was conducted primarily via MATLAB/Simulink. Two additional simulation tools used in this study were Trick and MBDyn, NASA co-developed software simulation environments. Simulation results obtained from these three tools were very similar. All simulation results support the hypothesis that an active-controlled vibration isolation system outperforms a passive-controlled system even with the addition of feedback delay and signal noise to the active-controlled system. In this paper, squat exercise was used in creating excited force to the simulation model. The exciter force from a squat exercise was calculated from the motion capture of an exerciser. The simulation results demonstrate much greater transmitted force reduction in the active-controlled system than the passive-controlled system.

Keywords: control, counterweight, isolation, vibration

Procedia PDF Downloads 113
2691 Identifying Metabolic Pathways Associated with Neuroprotection Mediated by Tibolone in Human Astrocytes under an Induced Inflammatory Model

Authors: Daniel Osorio, Janneth Gonzalez, Andres Pinzon

Abstract:

In this work, proteins and metabolic pathways associated with the neuroprotective response mediated by the synthetic neurosteroid tibolone under a palmitate-induced inflammatory model were identified by flux balance analysis (FBA). Three different metabolic scenarios (‘healthy’, ‘inflamed’ and ‘medicated’) were modeled over a gene expression data-driven constructed tissue-specific metabolic reconstruction of mature astrocytes. Astrocyte reconstruction was built, validated and constrained using three open source software packages (‘minval’, ‘g2f’ and ‘exp2flux’) released through the Comprehensive R Archive Network repositories during the development of this work. From our analysis, we predict that tibolone executes their neuroprotective effects through a reduction of neurotoxicity mediated by L-glutamate in astrocytes, inducing the activation several metabolic pathways with neuroprotective actions associated such as taurine metabolism, gluconeogenesis, calcium and the Peroxisome Proliferator Activated Receptor signaling pathways. Also, we found a tibolone associated increase in growth rate probably in concordance with previously reported side effects of steroid compounds in other human cell types.

Keywords: astrocytes, flux balance analysis, genome scale metabolic reconstruction, inflammation, neuroprotection, tibolone

Procedia PDF Downloads 224
2690 Groundwater Utilization and Sustainability: A Case Study of Pydibheemavaram Industrial Area, India

Authors: G. Venkata Rao, R. Srinivasa Rao, B. Neelima Sri Priya

Abstract:

The over extraction of groundwater from the coastal aquifers, result in reduction of groundwater resource and lowering of water level. In general, the depletion of groundwater level enhances the landward migration of saltwater wedge. Now a days the ground water extraction increases by year to year because increased population and industrialization. The ground water is the only source of irrigation, domestic and Industrial purposes at Pydibhimavaram industrial area, which is located in the coastal belt of Srikakulam district, India of Latitudes 18.145N 83.627E and Longitudes 18.099N 83.674E. The present study has been attempted to calculate amount of water getting recharged into this aquifer, status of rainfall pattern for the past two decades and the runoff is calculated by using Khosla’s formula with available rainfall and temperature in the study area. A decision support model has been developed on the basis of Monthly Extractions of the water from the ground through bore wells and the Net Recharge of the aquifer. It is concluded that the amount of extractions is exceeding the amount of recharge from May to October in a given year which will in turn damage the water balance in the subsurface layers.

Keywords: aquifer, decision support model, groundwater extraction, run off estimation and rainfall

Procedia PDF Downloads 299