Search results for: heterogeneous combat network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5773

Search results for: heterogeneous combat network

2383 Self-Assembled ZnFeAl Layered Double Hydroxides as Highly Efficient Fenton-Like Catalysts

Authors: Marius Sebastian Secula, Mihaela Darie, Gabriela Carja

Abstract:

Ibuprofen is a non-steroidal anti-inflammatory drug (NSAIDs) and is among the most frequently detected pharmaceuticals in environmental samples and among the most widespread drug in the world. Its concentration in the environment is reported to be between 10 and 160 ng L-1. In order to improve the abatement efficiency of this compound for water source prevention and reclamation, the development of innovative technologies is mandatory. AOPs (advanced oxidation processes) are known as highly efficient towards the oxidation of organic pollutants. Among the promising combined treatments, photo-Fenton processes using layered double hydroxides (LDHs) attracted significant consideration especially due to their composition flexibility, high surface area and tailored redox features. This work presents the self-supported Fe, Mn or Ti on ZnFeAl LDHs obtained by co-precipitation followed by reconstruction method as novel efficient photo-catalysts for Fenton-like catalysis. Fe, Mn or Ti/ZnFeAl LDHs nano-hybrids were tested for the degradation of a model pharmaceutical agent, the anti-inflammatory agent ibuprofen, by photocatalysis and photo-Fenton catalysis, respectively, by means of a lab-scale system consisting of a batch reactor equipped with an UV lamp (17 W). The present study presents comparatively the degradation of Ibuprofen in aqueous solution UV light irradiation using four different types of LDHs. The newly prepared Ti/ZnFeAl 4:1 catalyst results in the best degradation performance. After 60 minutes of light irradiation, the Ibuprofen removal efficiency reaches 95%. The slowest degradation of Ibuprofen solution occurs in case of Fe/ZnFeAl 4:1 LDH, (67% removal efficiency after 60 minutes of process). Evolution of Ibuprofen degradation during the photo Fenton process is also studied using Ti/ZnFeAl 2:1 and 4:1 LDHs in the presence and absence of H2O2. It is found that after 60 min the use of Ti/ZnFeAl 4:1 LDH in presence of 100 mg/L H2O2 leads to the fastest degradation of Ibuprofen molecule. After 120 min, both catalysts Ti/ZnFeAl 4:1 and 2:1 result in the same value of removal efficiency (98%). In the absence of H2O2, Ibuprofen degradation reaches only 73% removal efficiency after 120 min of degradation process. Acknowledgements: This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-II-RU-TE-2014-4-0405.

Keywords: layered double hydroxide, advanced oxidation process, micropollutant, heterogeneous Fenton

Procedia PDF Downloads 230
2382 The Influence of the Soil in the Vegetation of the Luki Biosphere Reserve in the Democratic Republic of Congo

Authors: Sarah Okende

Abstract:

It is universally recognized that the forests of the Congo Basin remain a common good and a complex ecosystem, and insufficiently known. Historically and throughout the world, forests have been valued for the multiple products and benefits they provide. In addition to their major role in the conservation of global biodiversity and in the fight against climate change, these forests also have an essential role in the regional and global ecology. This is particularly the case of the Luki Biosphere Reserve, a highly diversified evergreen Guinean-Congolese rainforest. Despite the efforts of sustainable management of the said reserve, the understanding of the place occupied by the soil under the influence of the latter does not seem to be an interesting subject for the general public or even scientists. The Luki biosphere reserve is located in the west of the DRC, more precisely in the south-east of Mayombe Congolais, in the province of Bas-Congo. The vegetation of the Luki Biosphere Reserve is very heterogeneous and diversified. It ranges from grassy formations to semi-evergreen dense humid forests, passing through edaphic formations on hydromorphic soils (aquatic and semi-aquatic vegetation; messicole and segetal vegetation; gascaricole vegetation; young secondary forests with Musanga cercropioides, Xylopia aethiopica, Corynanthe paniculata; mature secondary forests with Terminalia superba and Hymenostegia floribunda; primary forest with Prioria balsamifera; climax forests with Gilbertiodendron dewevrei, and Gilletiodendron kisantuense). Field observations and reading of previous and up-to-date work carried out in the Luki biosphere reserve are the methodological approaches for this study, the aim of which is to show the impact of soil types in determining the varieties of vegetation. The results obtained prove that the four different types of soil present (purplish red soils, developing on amphibolites; red soils, developed on gneisses; yellow soils occurring on gneisses and quartzites; and alluvial soils, developed on recent alluvium) have a major influence apart from other environmental factors on the determination of different facies of the vegetation of the Luki Biosphere Reserve. In conclusion, the Luki Biosphere Reserve is characterized by a wide variety of biotopes determined by the nature of the soil, the relief, the microclimates, the action of man, or the hydrography. Overall management (soil, biodiversity) in the Luki Biosphere Reserve is important for maintaining the ecological balance.

Keywords: soil, biodiversity, forest, Luki, rainforest

Procedia PDF Downloads 84
2381 Modelling Vehicle Fuel Consumption Utilising Artificial Neural Networks

Authors: Aydin Azizi, Aburrahman Tanira

Abstract:

The main source of energy used in this modern age is fossil fuels. There is a myriad of problems that come with the use of fossil fuels, out of which the issues with the greatest impact are its scarcity and the cost it imposes on the planet. Fossil fuels are the only plausible option for many vital functions and processes; the most important of these is transportation. Thus, using this source of energy wisely and as efficiently as possible is a must. The aim of this work was to explore utilising mathematical modelling and artificial intelligence techniques to enhance fuel consumption in passenger cars by focusing on the speed at which cars are driven. An artificial neural network with an error less than 0.05 was developed to be applied practically as to predict the rate of fuel consumption in vehicles.

Keywords: mathematical modeling, neural networks, fuel consumption, fossil fuel

Procedia PDF Downloads 406
2380 Promoting Innovation Pedagogy in a Capacity Building Project in Indonesia

Authors: Juha Kettunen

Abstract:

This study presents a project that tests and adjusts active European learning and teaching methods in Indonesian universities to increase their external impact on enterprises and other organizations; it also assesses the implementation of the Erasmus+ projects funded by the European Union. The project is based on the approach of innovation pedagogy that responds to regional development needs and integrates applied research and development projects into education to create capabilities for students to participate in development work after graduation. The assessment of the Erasmus+ project resulted in many improvements that can be made to achieve higher quality and innovativeness. The results of this study are useful for those who want to improve the applied research and development projects of higher education institutions.

Keywords: higher education, innovations, social network, project management

Procedia PDF Downloads 286
2379 The Role of Group Size, Public Employees’ Wages and Control Corruption Institutions in a Game-Theoretical Model of Public Corruption

Authors: Pablo J. Valverde, Jaime E. Fernandez

Abstract:

This paper shows under which conditions public corruption can emerge. The theoretical model includes variables such as the public employee wage (w), a control corruption parameter (c), and the group size of interactions (GS) between clusters of public officers and contractors. The system behavior is analyzed using phase diagrams based on combinations of such parameters (c, w, GS). Numerical simulations are implemented in order to contrast analytic results based on Nash equilibria of the theoretical model. Major findings include the functional relationship between wages and network topology, which attempts to reduce the emergence of corrupt behavior.

Keywords: public corruption, game theory, complex systems, Nash equilibrium.

Procedia PDF Downloads 243
2378 Proposal for a Web System for the Control of Fungal Diseases in Grapes in Fruits Markets

Authors: Carlos Tarmeño Noriega, Igor Aguilar Alonso

Abstract:

Fungal diseases are common in vineyards; they cause a decrease in the quality of the products that can be sold, generating distrust of the customer towards the seller when buying fruit. Currently, technology allows the classification of fruits according to their characteristics thanks to artificial intelligence. This study proposes the implementation of a control system that allows the identification of the main fungal diseases present in the Italia grape, making use of a convolutional neural network (CNN), OpenCV, and TensorFlow. The methodology used was based on a collection of 20 articles referring to the proposed research on quality control, classification, and recognition of fruits through artificial vision techniques.

Keywords: computer vision, convolutional neural networks, quality control, fruit market, OpenCV, TensorFlow

Procedia PDF Downloads 84
2377 Structuring Highly Iterative Product Development Projects by Using Agile-Indicators

Authors: Guenther Schuh, Michael Riesener, Frederic Diels

Abstract:

Nowadays, manufacturing companies are faced with the challenge of meeting heterogeneous customer requirements in short product life cycles with a variety of product functions. So far, some of the functional requirements remain unknown until late stages of the product development. A way to handle these uncertainties is the highly iterative product development (HIP) approach. By structuring the development project as a highly iterative process, this method provides customer oriented and marketable products. There are first approaches for combined, hybrid models comprising deterministic-normative methods like the Stage-Gate process and empirical-adaptive development methods like SCRUM on a project management level. However, almost unconsidered is the question, which development scopes can preferably be realized with either empirical-adaptive or deterministic-normative approaches. In this context, a development scope constitutes a self-contained section of the overall development objective. Therefore, this paper focuses on a methodology that deals with the uncertainty of requirements within the early development stages and the corresponding selection of the most appropriate development approach. For this purpose, internal influencing factors like a company’s technology ability, the prototype manufacturability and the potential solution space as well as external factors like the market accuracy, relevance and volatility will be analyzed and combined into an Agile-Indicator. The Agile-Indicator is derived in three steps. First of all, it is necessary to rate each internal and external factor in terms of the importance for the overall development task. Secondly, each requirement has to be evaluated for every single internal and external factor appropriate to their suitability for empirical-adaptive development. Finally, the total sums of internal and external side are composed in the Agile-Indicator. Thus, the Agile-Indicator constitutes a company-specific and application-related criterion, on which the allocation of empirical-adaptive and deterministic-normative development scopes can be made. In a last step, this indicator will be used for a specific clustering of development scopes by application of the fuzzy c-means (FCM) clustering algorithm. The FCM-method determines sub-clusters within functional clusters based on the empirical-adaptive environmental impact of the Agile-Indicator. By means of the methodology presented in this paper, it is possible to classify requirements, which are uncertainly carried out by the market, into empirical-adaptive or deterministic-normative development scopes.

Keywords: agile, highly iterative development, agile-indicator, product development

Procedia PDF Downloads 247
2376 Emerging Technology for 6G Networks

Authors: Yaseein S. Hussein, Victor P. Gil Jiménez, Abdulmajeed Al-Jumaily

Abstract:

Due to the rapid advancement of technology, there is an increasing demand for wireless connections that are both fast and reliable, with minimal latency. New wireless communication standards are developed every decade, and the year 2030 is expected to see the introduction of 6G. The primary objectives of 6G network and terminal designs are focused on sustainability and environmental friendliness. The International Telecommunication Union-Recommendation division (ITU-R) has established the minimum requirements for 6G, with peak and user data rates of 1 Tbps and 10-100 Gbps, respectively. In this context, Light Fidelity (Li-Fi) technology is the most promising candidate to meet these requirements. This article will explore the various advantages, features, and potential applications of Li-Fi technology, and compare it with 5G networking, to showcase its potential impact among other emerging technologies that aim to enable 6G networks.

Keywords: 6G networks, artificial intelligence (AI), Li-Fi technology, Terahertz (THz) communication, visible light communication (VLC)

Procedia PDF Downloads 95
2375 Prototyping a Portable, Affordable Sign Language Glove

Authors: Vidhi Jain

Abstract:

Communication between speakers and non-speakers of American Sign Language (ASL) can be problematic, inconvenient, and expensive. This project attempts to bridge the communication gap by designing a portable glove that captures the user’s ASL gestures and outputs the translated text on a smartphone. The glove is equipped with flex sensors, contact sensors, and a gyroscope to measure the flexion of the fingers, the contact between fingers, and the rotation of the hand. The glove’s Arduino UNO microcontroller analyzes the sensor readings to identify the gesture from a library of learned gestures. The Bluetooth module transmits the gesture to a smartphone. Using this device, one day speakers of ASL may be able to communicate with others in an affordable and convenient way.

Keywords: sign language, morse code, convolutional neural network, American sign language, gesture recognition

Procedia PDF Downloads 63
2374 Optimizing Inanda Dam Using Water Resources Models

Authors: O. I. Nkwonta, B. Dzwairo, J. Adeyemo, A. Jaiyola, N. Sawyerr, F. Otieno

Abstract:

The effective management of water resources is of great importance to ensure the supply of water resources to support changing water requirements over a selected planning horizon and in a sustainable and cost-effective way. Essentially, the purpose of the water resources planning process is to balance the available water resources in a system with the water requirements and losses to which the system is subjected. In such situations, Water resources yield and planning model can be used to solve those difficulties. It has an advantage over other models by managing model runs, developing a representative system network, modelling incremental sub-catchments, creating a variety of standard system features, special modelling features, and run result output options.

Keywords: complex, water resources, planning, cost effective and management

Procedia PDF Downloads 573
2373 Deepfake Detection for Compressed Media

Authors: Sushil Kumar Gupta, Atharva Joshi, Ayush Sonawale, Sachin Naik, Rajshree Khande

Abstract:

The usage of artificially created videos and audio by deep learning is a major problem of the current media landscape, as it pursues the goal of misinformation and distrust. In conclusion, the objective of this work targets generating a reliable deepfake detection model using deep learning that will help detect forged videos accurately. In this work, CelebDF v1, one of the largest deepfake benchmark datasets in the literature, is adopted to train and test the proposed models. The data includes authentic and synthetic videos of high quality, therefore allowing an assessment of the model’s performance against realistic distortions.

Keywords: deepfake detection, CelebDF v1, convolutional neural network (CNN), xception model, data augmentation, media manipulation

Procedia PDF Downloads 13
2372 Detect QOS Attacks Using Machine Learning Algorithm

Authors: Christodoulou Christos, Politis Anastasios

Abstract:

A large majority of users favoured to wireless LAN connection since it was so simple to use. A wireless network can be the target of numerous attacks. Class hijacking is a well-known attack that is fairly simple to execute and has significant repercussions on users. The statistical flow analysis based on machine learning (ML) techniques is a promising categorization methodology. In a given dataset, which in the context of this paper is a collection of components representing frames belonging to various flows, machine learning (ML) can offer a technique for identifying and characterizing structural patterns. It is possible to classify individual packets using these patterns. It is possible to identify fraudulent conduct, such as class hijacking, and take necessary action as a result. In this study, we explore a way to use machine learning approaches to thwart this attack.

Keywords: wireless lan, quality of service, machine learning, class hijacking, EDCA remapping

Procedia PDF Downloads 61
2371 Radar-Based Classification of Pedestrian and Dog Using High-Resolution Raw Range-Doppler Signatures

Authors: C. Mayr, J. Periya, A. Kariminezhad

Abstract:

In this paper, we developed a learning framework for the classification of vulnerable road users (VRU) by their range-Doppler signatures. The frequency-modulated continuous-wave (FMCW) radar raw data is first pre-processed to obtain robust object range-Doppler maps per coherent time interval. The complex-valued range-Doppler maps captured from our outdoor measurements are further fed into a convolutional neural network (CNN) to learn the classification. This CNN has gone through a hyperparameter optimization process for improved learning. By learning VRU range-Doppler signatures, the three classes 'pedestrian', 'dog', and 'noise' are classified with an average accuracy of almost 95%. Interestingly, this classification accuracy holds for a combined longitudinal and lateral object trajectories.

Keywords: machine learning, radar, signal processing, autonomous driving

Procedia PDF Downloads 246
2370 QCARNet: Networks for Quality-Adaptive Compression Artifact

Authors: Seung Ho Park, Young Su Moon, Nam Ik Cho

Abstract:

We propose a convolution neural network (CNN) for quality adaptive compression artifact reduction named QCARNet. The proposed method is different from the existing discriminative models that learn a specific model at a certain quality level. The method is composed of a quality estimation CNN (QECNN) and a compression artifact reduction CNN (CARCNN), which are two functionally separate CNNs. By connecting the QECNN and CARCNN, each CARCNN layer is able to adaptively reduce compression artifacts and preserve details depending on the estimated quality level map generated by the QECNN. We experimentally demonstrate that the proposed method achieves better performance compared to other state-of-the-art blind compression artifact reduction methods.

Keywords: compression artifact reduction, deblocking, image denoising, image restoration

Procedia PDF Downloads 142
2369 Differentially Expressed Genes in Atopic Dermatitis: Bioinformatics Analysis Of Pooled Microarray Gene Expression Datasets In Gene Expression Omnibus

Authors: Danna Jia, Bin Li

Abstract:

Background: Atopic dermatitis (AD) is a chronic and refractory inflammatory skin disease characterized by relapsing eczematous and pruritic skin lesions. The global prevalence of AD ranges from 1~ 20%, and its incidence rates are increasing. It affects individuals from infancy to adulthood, significantly impacting their daily lives and social activities. Despite its major health burden, the precise mechanisms underlying AD remain unknown. Understanding the genetic differences associated with AD is crucial for advancing diagnosis and targeted treatment development. This study aims to identify candidate genes of AD by using bioinformatics analysis. Methods: We conducted a comprehensive analysis of four pooled transcriptomic datasets (GSE16161, GSE32924, GSE130588, and GSE120721) obtained from the Gene Expression Omnibus (GEO) database. Differential gene expression analysis was performed using the R statistical language. The differentially expressed genes (DEGs) between AD patients and normal individuals were functionally analyzed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Furthermore, a protein-protein interaction (PPI) network was constructed to identify candidate genes. Results: Among the patient-level gene expression datasets, we identified 114 shared DEGs, consisting of 53 upregulated genes and 61 downregulated genes. Functional analysis using GO and KEGG revealed that the DEGs were mainly associated with the negative regulation of transcription from RNA polymerase II promoter, membrane-related functions, protein binding, and the Human papillomavirus infection pathway. Through the PPI network analysis, we identified eight core genes: CD44, STAT1, HMMR, AURKA, MKI67, and SMARCA4. Conclusion: This study elucidates key genes associated with AD, providing potential targets for diagnosis and treatment. The identified genes have the potential to contribute to the understanding and management of AD. The bioinformatics analysis conducted in this study offers new insights and directions for further research on AD. Future studies can focus on validating the functional roles of these genes and exploring their therapeutic potential in AD. While these findings will require further verification as achieved with experiments involving in vivo and in vitro models, these results provided some initial insights into dysfunctional inflammatory and immune responses associated with AD. Such information offers the potential to develop novel therapeutic targets for use in preventing and treating AD.

Keywords: atopic dermatitis, bioinformatics, biomarkers, genes

Procedia PDF Downloads 84
2368 AI-Enabled Smart Contracts for Reliable Traceability in the Industry 4.0

Authors: Harris Niavis, Dimitra Politaki

Abstract:

The manufacturing industry was collecting vast amounts of data for monitoring product quality thanks to the advances in the ICT sector and dedicated IoT infrastructure is deployed to track and trace the production line. However, industries have not yet managed to unleash the full potential of these data due to defective data collection methods and untrusted data storage and sharing. Blockchain is gaining increasing ground as a key technology enabler for Industry 4.0 and the smart manufacturing domain, as it enables the secure storage and exchange of data between stakeholders. On the other hand, AI techniques are more and more used to detect anomalies in batch and time-series data that enable the identification of unusual behaviors. The proposed scheme is based on smart contracts to enable automation and transparency in the data exchange, coupled with anomaly detection algorithms to enable reliable data ingestion in the system. Before sensor measurements are fed to the blockchain component and the smart contracts, the anomaly detection mechanism uniquely combines artificial intelligence models to effectively detect unusual values such as outliers and extreme deviations in data coming from them. Specifically, Autoregressive integrated moving average, Long short-term memory (LSTM) and Dense-based autoencoders, as well as Generative adversarial networks (GAN) models, are used to detect both point and collective anomalies. Towards the goal of preserving the privacy of industries' information, the smart contracts employ techniques to ensure that only anonymized pointers to the actual data are stored on the ledger while sensitive information remains off-chain. In the same spirit, blockchain technology guarantees the security of the data storage through strong cryptography as well as the integrity of the data through the decentralization of the network and the execution of the smart contracts by the majority of the blockchain network actors. The blockchain component of the Data Traceability Software is based on the Hyperledger Fabric framework, which lays the ground for the deployment of smart contracts and APIs to expose the functionality to the end-users. The results of this work demonstrate that such a system can increase the quality of the end-products and the trustworthiness of the monitoring process in the smart manufacturing domain. The proposed AI-enabled data traceability software can be employed by industries to accurately trace and verify records about quality through the entire production chain and take advantage of the multitude of monitoring records in their databases.

Keywords: blockchain, data quality, industry4.0, product quality

Procedia PDF Downloads 191
2367 Fabrication of Al/Al2O3 Functionally Graded Composites via Centrifugal Method by Using a Polymeric Suspension

Authors: Majid Eslami

Abstract:

Functionally graded materials (FGMs) exhibit heterogeneous microstructures in which the composition and properties gently change in specified directions. The common type of FGMs consist of a metal in which ceramic particles are distributed with a graded concentration. There are many processing routes for FGMs. An important group of these methods is casting techniques (gravity or centrifugal). However, the main problem of casting molten metal slurry with dispersed ceramic particles is a destructive chemical reaction between these two phases which deteriorates the properties of the materials. In order to overcome this problem, in the present investigation a suspension of 6061 aluminum and alumina powders in a liquid polymer was used as the starting material and subjected to centrifugal force for making FGMs. The size rang of these powders was 45-63 and 106-125 μm. The volume percent of alumina in the Al/Al2O3 powder mixture was in the range of 5 to 20%. PMMA (Plexiglas) in different concentrations (20-50 g/lit) was dissolved in toluene and used as the suspension liquid. The glass mold contaning the suspension of Al/Al2O3 powders in the mentioned liquid was rotated at 1700 rpm for different times (4-40 min) while the arm length was kept constant (10 cm) for all the experiments. After curing the polymer, burning out the binder, cold pressing and sintering , cylindrical samples (φ=22 mm h=20 mm) were produced. The density of samples before and after sintering was quantified by Archimedes method. The results indicated that by using the same sized alumina and aluminum powders particles, FGM sample can be produced by rotation times exceeding 7 min. However, by using coarse alumina and fine alumina powders the sample exhibits step concentration. On the other hand, using fine alumina and coarse alumina results in a relatively uniform concentration of Al2O3 along the sample height. These results are attributed to the effects of size and density of different powders on the centrifugal force induced on the powders during rotation. The PMMA concentration and the vol.% of alumina in the suspension did not have any considerable effect on the distribution of alumina particles in the samples. The hardness profiles along the height of samples were affected by both the alumina vol.% and porosity content. The presence of alumina particles increased the hardness while increased porosity reduced the hardness. Therefore, the hardness values did not show the expected gradient in same sample. The sintering resulted in decreased porosity for all the samples investigated.

Keywords: FGM, powder metallurgy, centrifugal method, polymeric suspension

Procedia PDF Downloads 211
2366 Strengthening Adult Literacy Programs in Order to End Female Genital Mutilation to Achieve Sustainable Development Goals

Authors: Odenigbo Veronica Ngozi, Lorreta Chika Ukwuaba

Abstract:

This study focuses on how the strengthening adult literacy program can help accelerate transformative strategies to end female genital mutilation (FGM) in Nigeria, specifically in Nsukka Local Government Area. The research delves into the definition of FGM, adult literacy programs, and how to achieve ending FGM to attain Sustainable Development Goals (SDGs) in 2030. It further discusses the practice of FGM in Nigeria and emphasizes the statement of the problem. The main aim of the study is to investigate how strengthening adult literacy programs can help accelerate transformative strategies to end FGM in Nigeria and achieve SDGs in 2030. The researchers utilized a survey research design to conduct the study in Nsukka L.G.A. The population was composed of 26 facilitators and adult learners in five adult learning centers in the area. The entire population was used as a sample, and structured questionnaires were employed to elicit information. The items on the questionnaire were face-validated by three experts, and the reliability of the instrument was verified using Cronbach Alpha Reliability Technique. The research questions were analyzed using means and standard deviation while the hypothesis was tested at 0.05 level of degree of significance using a t-test. The findings show that through adult literacy program acceleration of transformative strategies, the practices of FGM can be ended. Strengthening adult literacy programs is a good channel to end or stop FGM through the knowledge and skill acquired from the learning centers. The theoretical importance of the study lies in the fact that it highlights the role of adult literacy programs in accelerating transformative strategies to combat harmful cultural practices such as FGM. It further supports the importance of education and knowledge in achieving sustainable development goals by 2030. Structured questionnaires were distributed to an entire population of 26 facilitators and adult learners in five adult learning centers in Nsukka L.G.A. The questionnaire items were face–validated by three experts, and the reliability of the instrument was verified using Cronbach Alpha Reliability Technique. The research questions were analyzed using means and standard deviation, while the hypothesis was tested using a t-test at 0.05 level of degree of significance. The study addressed the question of how strengthening adult literacy programs can help accelerate transformative strategies to end FGM in Nigeria and achieve SDGs by 2030. In conclusion, the study found that adult literacy is a good tool to end FGM in Nigeria. The recommendations were that government, non-governmental organizations (NGOs), Community-based organizations (CBOs), and individuals should support the funding and establishment of adult literacy centers in communities so as to reach every illiterate parent or individual and acquire the knowledge and skill needed to understand the negative effect of FGM in the life of a girl child.

Keywords: adult literacy, female genital mutilation, learning centers, SDGs, strengthening

Procedia PDF Downloads 69
2365 Biogas Production from Kitchen Waste for a Household Sustainability

Authors: Vuiswa Lucia Sethunya, Tonderayi Matambo, Diane Hildebrandt

Abstract:

South African’s informal settlements produce tonnes of kitchen waste (KW) per year which is dumped into the landfill. These landfill sites are normally located in close proximity to the household of the poor communities; this is a problem in which the young children from those communities end up playing in these landfill sites which may result in some health hazards because of methane, carbon dioxide and sulphur gases which are produced. To reduce this large amount of organic materials being deposited into landfills and to provide a cleaner place for those within the community especially the children, an energy conversion process such as anaerobic digestion of the organic waste to produce biogas was implemented. In this study, the digestion of various kitchen waste was investigated in order to understand and develop a system that is suitable for household use to produce biogas for cooking. Three sets of waste of different nutritional compositions were digested as per acquired in the waste streams of a household at mesophilic temperature (35ᵒC). These sets of KW were co-digested with cow dung (CW) at different ratios to observe the microbial behaviour and the system’s stability in a laboratory scale system. The gas chromatography-flame ionization detector analyses have been performed to identify and quantify the presence of organic compounds in the liquid samples from co-digested and mono-digested food waste. Acetic acid, propionic acid, butyric acid and valeric acid are the fatty acids which were studied. Acetic acid (1.98 g/L), propionic acid (0.75 g/L) and butyric acid (2.16g/L) were the most prevailing fatty acids. The results obtained from organic acids analysis suggest that the KW can be an innovative substituent to animal manure for biogas production. The faster degradation period in which the microbes break down the organic compound to produce the fatty acids during the anaerobic process of KW also makes it a better feedstock during high energy demand periods. The C/N ratio analysis showed that from the three waste streams the first stream containing vegetables (55%), fruits (16%), meat (25%) and pap (4%) yielded more methane-based biogas of 317mL/g of volatile solids (VS) at C/N of 21.06. Generally, this shows that a household will require a heterogeneous composition of nutrient-based waste to be fed into the digester to acquire the best biogas yield to sustain a households cooking needs.

Keywords: anaerobic digestion, biogas, kitchen waste, household

Procedia PDF Downloads 201
2364 The Use of Social Networking Sites in eLearning

Authors: Clifford De Raffaele, Luana Bugeja, Serengul Smith

Abstract:

The adaptation of social networking sites within higher education has garnered significant interest in the recent years with numerous researches considering it as a possible shift from the traditional classroom based learning paradigm. Notwithstanding this increase in research and conducted studies however, the adaption of SNS based modules have failed to proliferate within Universities. This paper, commences its contribution by analyzing the various models and theories proposed in literature and amalgamates together various effective aspects for the inclusion of social technology within e-Learning. A three phased framework is further proposed which details the necessary considerations for the successful adaptation of SNS in enhancing the students learning experience. This proposal outlines the theoretical foundations which will be analyzed in practical implementation across international university campuses.

Keywords: eLearning, higher education, social network sites, student learning

Procedia PDF Downloads 340
2363 Implementing Fault Tolerance with Proxy Signature on the Improvement of RSA System

Authors: H. El-Kamchouchi, Heba Gaber, Fatma Ahmed, Dalia H. El-Kamchouchi

Abstract:

Fault tolerance and data security are two important issues in modern communication systems. During the transmission of data between the sender and receiver, errors may occur frequently. Therefore, the sender must re-transmit the data to the receiver in order to correct these errors, which makes the system very feeble. To improve the scalability of the scheme, we present a proxy signature scheme with fault tolerance over an efficient and secure authenticated key agreement protocol based on the improved RSA system. Authenticated key agreement protocols have an important role in building a secure communications network between the two parties.

Keywords: fault tolerance, improved RSA, key agreement, proxy signature

Procedia PDF Downloads 427
2362 Review of the Model-Based Supply Chain Management Research in the Construction Industry

Authors: Aspasia Koutsokosta, Stefanos Katsavounis

Abstract:

This paper reviews the model-based qualitative and quantitative Operations Management research in the context of Construction Supply Chain Management (CSCM). Construction industry has been traditionally blamed for low productivity, cost and time overruns, waste, high fragmentation and adversarial relationships. The construction industry has been slower than other industries to employ the Supply Chain Management (SCM) concept and develop models that support the decision-making and planning. However the last decade there is a distinct shift from a project-based to a supply-based approach of construction management. CSCM comes up as a new promising management tool of construction operations and improves the performance of construction projects in terms of cost, time and quality. Modeling the Construction Supply Chain (CSC) offers the means to reap the benefits of SCM, make informed decisions and gain competitive advantage. Different modeling approaches and methodologies have been applied in the multi-disciplinary and heterogeneous research field of CSCM. The literature review reveals that a considerable percentage of CSC modeling accommodates conceptual or process models which discuss general management frameworks and do not relate to acknowledged soft OR methods. We particularly focus on the model-based quantitative research and categorize the CSCM models depending on their scope, mathematical formulation, structure, objectives, solution approach, software used and decision level. Although over the last few years there has been clearly an increase of research papers on quantitative CSC models, we identify that the relevant literature is very fragmented with limited applications of simulation, mathematical programming and simulation-based optimization. Most applications are project-specific or study only parts of the supply system. Thus, some complex interdependencies within construction are neglected and the implementation of the integrated supply chain management is hindered. We conclude this paper by giving future research directions and emphasizing the need to develop robust mathematical optimization models for the CSC. We stress that CSC modeling needs a multi-dimensional, system-wide and long-term perspective. Finally, prior applications of SCM to other industries have to be taken into account in order to model CSCs, but not without the consequential reform of generic concepts to match the unique characteristics of the construction industry.

Keywords: construction supply chain management, modeling, operations research, optimization, simulation

Procedia PDF Downloads 503
2361 Preparedness and Control of Mosquito-Borne Diseases: Experiences from Northwestern Italy

Authors: Federica Verna, Alessandra Pautasso, Maria Caramelli, Cristiana Maurella, Walter Mignone, Cristina Casalone

Abstract:

Mosquito-Borne Diseases (MBDs) are dangerously increasing in prevalence, geographical distribution and severity, representing an emerging threat for both humans and animals. Interaction between multiple disciplines is needed for an effective early warning, surveillance and control of MBDs, according to the One Health concept. This work reports the integrated surveillance system enforced by IZSPLV in Piedmont, Liguria and Valle d’Aosta regions (Northwestern Italy) in order to control MDBs spread. Veterinary services and local human health authority are involved in an information network, to connect the surveillance of human clinical cases with entomological surveillance and veterinary monitoring in order to implement control measures in case of outbreak. A systematic entomological surveillance is carried out during the vector season using mosquitoes traps located in sites selected according to risk factors. Collected mosquitoes are counted, identified to species level by morphological standard classification keys and pooled by collection site, date and species with a maximum of 100 individuals. Pools are analyzed, after RNA extraction, by Real Time RT-PCR distinctive for West Nile Virus (WNV) Lineage 1 and Lineage 2, Real Time RT-PCR USUTU virus (USUV) and a traditional flavivirus End-point RT-PCR. Positive pools are sequenced and the related sequences employed to perform a basic local alignment search tool (BLAST) in the GenBank library. Positive samples are sent to the National Reference Centre for Animal Exotic Diseases (CESME, Teramo) for confirmation. With particular reference to WNV, after the confirmation, as provided by national legislation, control measures involving both local veterinary and human health services are activated: equine sera are randomly sampled within a 4 km radius from the positive collection sites and tested with ELISA kit and WNV NAT screening of blood donors is introduced. This surveillance network allowed to detect since 2011 USUV circulation in this area of Italy. WNV was detected in Piedmont and Liguria for the first time in 2014 in mosquitoes. During the 2015 vector season, we observed the expansion of its activity in Piedmont. The virus was detected in almost all Provinces both in mosquitoes (6 pools) and animals (19 equine sera, 4 birds). No blood bag tested resulted infected. The first neuroinvasive human case occurred too. Competent authorities should be aware of a potentially increased risk of MBDs activity during the 2016 vector season. This work shows that this surveillance network allowed to early detect the presence of MBDs in humans and animals, and provided useful information to public authorities, in order to apply control measures. Finally, an additional value of our diagnostic protocol is the ability to detect all viruses belonging to the Flaviviridae family, considering the emergence caused by other Flaviviruses in humans such as the recent Zika virus infection in South America. Italy has climatic and environmental features conducive to Zika virus transmission, the competent vector and many travellers from Brazil reported every year.

Keywords: integrated surveillance, mosquito borne disease, West Nile virus, Zika virus

Procedia PDF Downloads 363
2360 Power Line Communication Integrated in a Wireless Power Transfer System: Feasibility of Surveillance Movement

Authors: M. Hemnath, S. Kannan, R. Kiran, K. Thanigaivelu

Abstract:

This paper is based on exploring the possible opportunities and applications using Power Line Communication (PLC) for security and surveillance operations. Various research works are done for introducing PLC into onboard vehicle communication and networking (CAN, LIN etc.) and various international standards have been developed. Wireless power transfer (WPT) is also an emerging technology which is studied and tested for recharging purposes. In this work we present a system which embeds the detection and the response into one which eliminates the need for dedicated network for data transmission. Also we check the feasibility for integrating wireless power transfer system into this proposed security system for transmission of power to detection unit wirelessly from the response unit.

Keywords: power line communication, wireless power transfer, surveillance

Procedia PDF Downloads 535
2359 Educational Plan and Program of the Subject: Maintenance of Electric Power Equipment

Authors: Rade M. Ciric, Sasa Mandic

Abstract:

Students of Higher Education Technical School of Professional Studies, in Novi Sad follow the subject Maintenance of electric power equipment at the Electrotechnical Department. This paper presents educational plan and program of the subject Maintenance of electric power equipment. The course deals with the problems of preventive and investing maintenance of transformer stations (TS), performing and maintenance of grounding of TS and pillars, as well as tracing and detection the location of the cables failure. There is a special elaborated subject concerning the safe work conditions for the electrician during network maintenance, as well as the basics of making and keeping technical documentation of the equipment.

Keywords: educational plan and program, electric power equipment, maintenance, technical documentation, safe work

Procedia PDF Downloads 467
2358 Multi-Criteria Evolutionary Algorithm to Develop Efficient Schedules for Complex Maintenance Problems

Authors: Sven Tackenberg, Sönke Duckwitz, Andreas Petz, Christopher M. Schlick

Abstract:

This paper introduces an extension to the well-established Resource-Constrained Project Scheduling Problem (RCPSP) to apply it to complex maintenance problems. The problem is to assign technicians to a team which has to process several tasks with multi-level skill requirements during a work shift. Here, several alternative activities for a task allow both, the temporal shift of activities or the reallocation of technicians and tools. As a result, switches from one valid work process variant to another can be considered and may be selected by the developed evolutionary algorithm based on the present skill level of technicians or the available tools. An additional complication of the observed scheduling problem is that the locations of the construction sites are only temporarily accessible during a day. Due to intensive rail traffic, the available time slots for maintenance and repair works are extremely short and are often distributed throughout the day. To identify efficient working periods, a first concept of a Bayesian network is introduced and is integrated into the extended RCPSP with pre-emptive and non-pre-emptive tasks. Thereby, the Bayesian network is used to calculate the probability of a maintenance task to be processed during a specific period of the shift. Focusing on the domain of maintenance of the railway infrastructure in metropolitan areas as the most unproductive implementation process at construction site, the paper illustrates how the extended RCPSP can be applied for maintenance planning support. A multi-criteria evolutionary algorithm with a problem representation is introduced which is capable of revising technician-task allocations, whereas the duration of the task may be stochastic. The approach uses a novel activity list representation to ensure easily describable and modifiable elements which can be converted into detailed shift schedules. Thereby, the main objective is to develop a shift plan which maximizes the utilization of each technician due to a minimization of the waiting times caused by rail traffic. The results of the already implemented core algorithm illustrate a fast convergence towards an optimal team composition for a shift, an efficient sequence of tasks and a high probability of the subsequent implementation due to the stochastic durations of the tasks. In the paper, the algorithm for the extended RCPSP is analyzed in experimental evaluation using real-world example problems with various size, resource complexity, tightness and so forth.

Keywords: maintenance management, scheduling, resource constrained project scheduling problem, genetic algorithms

Procedia PDF Downloads 232
2357 Reverse Logistics, Green Supply Chain, and Carbon Trading

Authors: Neha Asthana, Vishal Krishna Prasad

Abstract:

Reverse logistics and green supply chain form an interconnected and interwoven network of parameters that contribute to enhancement and incremental exchange in the triple bottom line in the consistently changing and fragmenting markets of the globalizing markets of today. Reverse logistics not only contributes to completing the supply chain in a comprehensive and synchronized manner but also contributes to a significant degree in optimizing green supply chains through procedures such as recycling, refurbishing etc. contributing to waste reduction. Carbon trading, owing to its limitations in the global context and being in a nascent stage seeks plethora of research to determine its full application in synergy with reverse logistics and green supply chain.

Keywords: reverse logistics, carbon trading, carbon emissions, green supply chain

Procedia PDF Downloads 416
2356 Abatement of NO by CO on Pd Catalysts: Influence of the Support in Oxyfuel Combustion Conditions

Authors: Joudia Akil, Stephane Siffert, Laurence Pirault-Roy, Renaud Cousin, Christophe Poupin

Abstract:

The CO2 emitted from anthropic activities is perceived as a constraint in industrial activity due to taxes, stringent environmental regulations, impact on global warming… To limit these CO2 emissions, reuse of CO2 represents a promising alternative, with important applications in chemical industry and for power generation. However, CO2 valorization process requires a gas as pure as possible Oxyfuel-combustion that enables obtaining a CO2 rich stream, with water vapor (10%) is then interesting. Nevertheless to decrease the amount of the by-products found with the CO2 (especially CO and NOx which are harmful to the environment) a catalytic treatment must be applied. Nowadays three-way catalysts are well-developed material for simultaneous conversion of unburned hydrocarbons, carbon monoxide (CO) and nitrogen oxides (NOx). The use of Pd attracted considerable attention on the basis of economic factors (the high cost and scarcity of Pt and Rh). This explains the large number of studies concerning the CO-NO reaction on Pd in the recent years. In the present study, we will compare a series of Pd materials supported on different oxides for CO2 purification from the oxyfuel combustion system, by reducing NO with CO in an oxidizing environment containing CO2 rich stream and presence of 8.2% of water. Al2O3, CeO2, MgO, SiO2 and TiO2 were used as support materials of the catalysts. 1wt% Pd/Support catalysts were obtained by wet impregnation on supports with a precursor of palladium [Pd(acac)2]. The obtained samples were subsequently characterized by H2 chemisorption, BET surface area and TEM. Finally, their catalytic performances were evaluated in CO2 purification which is carried out in a fixed-bed flow reactor containing 150 mg of catalyst at atmospheric pressure. The flow of the reactant gases is composed of: 20% CO2, 10% O2, 0.5% CO, 0.02% NO and 8.2% H2O (He as eluent gas) with a total flow of 200mL.min−1, in the same GHSV. The catalytic performance of the Pd catalysts for CO2 purification revealed that: -The support material has a strong influence on the catalytic activity of 1wt.% Pd supported catalysts. depending of the nature of support, the Pd-based catalysts activity changes. -The highest reduction of NO with CO is obtained in the following ranking: TiO2>CeO2>Al2O3. -The supports SiO2 and MgO should be avoided for this reaction, -Total oxidation of CO occurred over different materials, -CO2 purification can reach 97%, -The presence of H2O has a positive effect on the NO reduction due to the production of the reductant H2 from WGS reaction H2O+CO → H2+CO2

Keywords: carbon dioxide, environmental chemistry, heterogeneous catalysis, oxyfuel combustion

Procedia PDF Downloads 256
2355 Measuring Science and Technology Innovation Capacity in Developing Countries: From a National Innovation System

Authors: Haeng A. Seo, Changseok Oh, Seung Jun Yoo

Abstract:

This study attempts to examine the disparities in S&T innovation capacity from 14 developing countries to discuss how to support specific features in national innovation systems. It includes East-Asian, Middle-Asian, Central American and African countries. Here, we particularly focus on five dimensions- resources, activities, network, environment and performance- with 37 indicators. They were derived as structuring components of the relevant diagnostic model, which encompasses the whole process of S&T innovation from the input of resources to the output of economically valuable results. For many developing nations, economic industries remain weaker than actual S&T capabilities, and relevant regulatory authorities may not exist. This paper will be helpful to provide basic evidence and to set directions for better national S&T Innovation capacities and toward national competitiveness.

Keywords: developing countries, measurement, NIS, S&T innovation capacity

Procedia PDF Downloads 286
2354 Understanding the Conflict Between Ecological Environment and Human Activities in the Process of Urbanization

Authors: Yazhou Zhou, Yong Huang, Guoqin Ge

Abstract:

In the process of human social development, the coupling and coordinated development among the ecological environment(E), production(P), and living functions(L) is of great significance for sustainable development. This study uses an improved coupling coordination degree model (CCDM) to discover the coordination conflict between E and human settlement environment. The main work of this study is as follows: (1) It is found that in the process of urbanization development of Ya 'an city from 2014 to 2018, the degree of coupling (DOC) value between E, P, and L is high, but the coupling coordination degree (CCD) of the three is low, especially the DOC value of E and the other two has the biggest decline. (2) A more objective weight value is obtained, which can avoid the analysis error caused by subjective judgment weight value.

Keywords: ecological environment, coupling coordination degree, neural network, sustainable development

Procedia PDF Downloads 83