Search results for: experimental modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8672

Search results for: experimental modelling

5282 Hemodynamics of a Cerebral Aneurysm under Rest and Exercise Conditions

Authors: Shivam Patel, Abdullah Y. Usmani

Abstract:

Physiological flow under rest and exercise conditions in patient-specific cerebral aneurysm models is numerically investigated. A finite-volume based code with BiCGStab as the linear equation solver is used to simulate unsteady three-dimensional flow field through the incompressible Navier-Stokes equations. Flow characteristics are first established in a healthy cerebral artery for both physiological conditions. The effect of saccular aneurysm on cerebral hemodynamics is then explored through a comparative analysis of the velocity distribution, nature of flow patterns, wall pressure and wall shear stress (WSS) against the reference configuration. The efficacy of coil embolization as a potential strategy of surgical intervention is also examined by modelling coil as a homogeneous and isotropic porous medium where the extended Darcy’s law, including Forchheimer and Brinkman terms, is applicable. The Carreau-Yasuda non-Newtonian blood model is incorporated to capture the shear thinning behavior of blood. Rest and exercise conditions correspond to normotensive and hypertensive blood pressures respectively. The results indicate that the fluid impingement on the outer wall of the arterial bend leads to abnormality in the distribution of wall pressure and WSS, which is expected to be the primary cause of the localized aneurysm. Exercise correlates with elevated flow velocity, vortex strength, wall pressure and WSS inside the aneurysm sac. With the insertion of coils in the aneurysm cavity, the flow bypasses the dilatation, leading to a decline in flow velocities and WSS. Particle residence time is observed to be lower under exercise conditions, a factor favorable for arresting plaque deposition and combating atherosclerosis.

Keywords: 3D FVM, Cerebral aneurysm, hypertension, coil embolization, non-Newtonian fluid

Procedia PDF Downloads 223
5281 Empirical Superpave Mix-Design of Rubber-Modified Hot-Mix Asphalt in Railway Sub-Ballast

Authors: Fernando M. Soto, Gaetano Di Mino

Abstract:

The design of an unmodified bituminous mixture and three rubber-aggregate mixtures containing rubber-aggregate by a dry process (RUMAC) was evaluated, using an empirical-analytical approach based on experimental findings obtained in the laboratory with the volumetric mix design by gyratory compaction. A reference dense-graded bituminous sub-ballast mixture (3% of air voids and a bitumen 4% over the total weight of the mix), and three rubberized mixtures by dry process (1,5 to 3% of rubber by total weight and 5-7% of binder) were used applying the Superpave mix-design for a level 3 (high-traffic) design rail lines. The railway trackbed section analyzed was a granular layer of 19 cm compacted, while for the sub-ballast a thickness of 12 cm has been used. In order to evaluate the effect of increasing the specimen density (as a percent of its theoretical maximum specific gravity), in this article, are illustrated the results obtained after different comparative analysis into the influence of varying the binder-rubber percentages under the sub-ballast layer mix-design. This work demonstrates that rubberized blends containing crumb and ground rubber in bituminous asphalt mixtures behave at least similar or better than conventional asphalt materials. By using the same methodology of volumetric compaction, the densification curves resulting from each mixture have been studied. The purpose is to obtain an optimum empirical parameter multiplier of the number of gyrations necessary to reach the same compaction energy as in conventional mixtures. It has provided some experimental parameters adopting an empirical-analytical method, evaluating the results obtained from the gyratory-compaction of bituminous mixtures with an HMA and rubber-aggregate blends. An extensive integrated research has been carried out to assess the suitability of rubber-modified hot mix asphalt mixtures as a sub-ballast layer in railway underlayment trackbed. Design optimization of the mixture was conducted for each mixture and the volumetric properties analyzed. Also, an improved and complete manufacturing process, compaction and curing of these blends are provided. By adopting this increase-parameters of compaction, called 'beta' factor, mixtures modified with rubber with uniform densification and workability are obtained that in the conventional mixtures. It is found that considering the usual bearing capacity requirements in rail track, the optimal rubber content is 2% (by weight) or 3.95% (by volumetric substitution) and a binder content of 6%.

Keywords: empirical approach, rubber-asphalt, sub-ballast, superpave mix-design

Procedia PDF Downloads 358
5280 Effects of Group Cognitive Restructuring and Rational Emotive Behavioral Therapy on Psychological Distress of Awaiting-Trial Inmates in Correctional Centers in North- West, Nigeria

Authors: Muhammad Shafi'u Adamu

Abstract:

This study examined the effects of two Group Cognitive Behavioural Therapies (Cognitive Restructuring and Rational Emotive Behavioural Therapy) on Psychological Distress of awaiting-trial Inmates in Correctional Centres in North-West, Nigeria. The study had four specific objectives, four research questions, and four null hypotheses. The study used a quasi-experimental design that involved pre-test and post-test. The population comprised of all 7,962 awaiting-trial inmates in correctional centres in North-west, Nigeria. 131 awaiting trial inmates from three intact Correctional Centres were randomly selected using the census technique. The respondents were sampled and randomly put into 3 groups (CR, REBT and Control). Kessler Psychological Distress Scale (K10) was adapted for data collection in the study. The instrument was validated by experts and subjected to pilot study using Cronbach's Alpha with reliability co-efficient of 0.772. Each group received treatment for 8 consecutive weeks (60 minutes/week). Data collected from the field were subjected to descriptive statistics of mean, standard deviation and mean difference to answer the research questions. Inferential statistics of ANOVA and independent sample t-test were used to test the null hypotheses at P≤ 0.05 level of significance. Results in the study revealed that there was no significant difference among the pre-treatment mean scores of experimental and control groups. Statistical evidence also showed a significant difference among the mean sores of the three groups, and thus, results of the Post Hoc multiple-comparison test indicating the posttreatment reduction of psychological distress on the awaiting-trial inmates. Documented output also showed a significant difference between the post-treatment psychologically distressed mean scores of male and female awaiting-trial inmates, but there was no difference on those exposed to REBT. The research recommends that a standardized structured CBT counselling technique treatment should be designed for correctional centres across Nigeria, and CBT counselling techniques could be used in the treatment of PD in both correctional and clinical settings.

Keywords: awaiting-trial inmates, cognitive restructuring, correctional centres, group cognitive behavioural therapies, rational emotive behavioural therapy

Procedia PDF Downloads 76
5279 An Improvement of ComiR Algorithm for MicroRNA Target Prediction by Exploiting Coding Region Sequences of mRNAs

Authors: Giorgio Bertolazzi, Panayiotis Benos, Michele Tumminello, Claudia Coronnello

Abstract:

MicroRNAs are small non-coding RNAs that post-transcriptionally regulate the expression levels of messenger RNAs. MicroRNA regulation activity depends on the recognition of binding sites located on mRNA molecules. ComiR (Combinatorial miRNA targeting) is a user friendly web tool realized to predict the targets of a set of microRNAs, starting from their expression profile. ComiR incorporates miRNA expression in a thermodynamic binding model, and it associates each gene with the probability of being a target of a set of miRNAs. ComiR algorithms were trained with the information regarding binding sites in the 3’UTR region, by using a reliable dataset containing the targets of endogenously expressed microRNA in D. melanogaster S2 cells. This dataset was obtained by comparing the results from two different experimental approaches, i.e., inhibition, and immunoprecipitation of the AGO1 protein; this protein is a component of the microRNA induced silencing complex. In this work, we tested whether including coding region binding sites in the ComiR algorithm improves the performance of the tool in predicting microRNA targets. We focused the analysis on the D. melanogaster species and updated the ComiR underlying database with the currently available releases of mRNA and microRNA sequences. As a result, we find that the ComiR algorithm trained with the information related to the coding regions is more efficient in predicting the microRNA targets, with respect to the algorithm trained with 3’utr information. On the other hand, we show that 3’utr based predictions can be seen as complementary to the coding region based predictions, which suggests that both predictions, from 3'UTR and coding regions, should be considered in a comprehensive analysis. Furthermore, we observed that the lists of targets obtained by analyzing data from one experimental approach only, that is, inhibition or immunoprecipitation of AGO1, are not reliable enough to test the performance of our microRNA target prediction algorithm. Further analysis will be conducted to investigate the effectiveness of the tool with data from other species, provided that validated datasets, as obtained from the comparison of RISC proteins inhibition and immunoprecipitation experiments, will be available for the same samples. Finally, we propose to upgrade the existing ComiR web-tool by including the coding region based trained model, available together with the 3’UTR based one.

Keywords: AGO1, coding region, Drosophila melanogaster, microRNA target prediction

Procedia PDF Downloads 438
5278 Holistic Approach to Teaching Mathematics in Secondary School as a Means of Improving Students’ Comprehension of Study Material

Authors: Natalia Podkhodova, Olga Sheremeteva, Mariia Soldaeva

Abstract:

Creating favorable conditions for students’ comprehension of mathematical content is one of the primary problems in teaching mathematics in secondary school. Psychology research has demonstrated that positive comprehension becomes possible when new information becomes part of student’s subjective experience and when linkages between the attributes of notions and various ways of their presentations can be established. The fact of comprehension includes the ability to build a working situational model and thus becomes an important means of solving mathematical problems. The article describes the implementation of a holistic approach to teaching mathematics designed to address the primary challenges of such teaching, specifically, the challenge of students’ comprehension. This approach consists of (1) establishing links between the attributes of a notion: the sense, the meaning, and the term; (2) taking into account the components of student’s subjective experience -emotional and value, contextual, procedural, communicative- during the educational process; (3) links between different ways to present mathematical information; (4) identifying and leveraging the relationships between real, perceptual and conceptual (scientific) mathematical spaces by applying real-life situational modeling. The article describes approaches to the practical use of these foundational concepts. Identifying how proposed methods and technology influence understanding of material used in teaching mathematics was the research’s primary goal. The research included an experiment in which 256 secondary school students took part: 142 in the experimental group and 114 in the control group. All students in these groups had similar levels of achievement in math and studied math under the same curriculum. In the course of the experiment, comprehension of two topics -'Derivative' and 'Trigonometric functions'- was evaluated. Control group participants were taught using traditional methods. Students in the experimental group were taught using the holistic method: under the teacher’s guidance, they carried out problems designed to establish linkages between notion’s characteristics, to convert information from one mode of presentation to another, as well as problems that required the ability to operate with all modes of presentation. The use of the technology that forms inter-subject notions based on linkages between perceptional, real, and conceptual mathematical spaces proved to be of special interest to the students. Results of the experiment were analyzed by presenting students in each of the groups with a final test in each of the studied topics. The test included problems that required building real situational models. Statistical analysis was used to aggregate test results. Pierson criterion was used to reveal the statistical significance of results (pass-fail the modeling test). A significant difference in results was revealed (p < 0.001), which allowed the authors to conclude that students in the study group showed better comprehension of mathematical information than those in the control group. Also, it was revealed (used Student’s t-test) that the students of the experimental group performed reliably (p = 0.0001) more problems in comparison with those in the control group. The results obtained allow us to conclude that increasing comprehension and assimilation of study material took place as a result of applying implemented methods and techniques.

Keywords: comprehension of mathematical content, holistic approach to teaching mathematics in secondary school, subjective experience, technology of the formation of inter-subject notions

Procedia PDF Downloads 169
5277 A Digital Twin Approach to Support Real-time Situational Awareness and Intelligent Cyber-physical Control in Energy Smart Buildings

Authors: Haowen Xu, Xiaobing Liu, Jin Dong, Jianming Lian

Abstract:

Emerging smart buildings often employ cyberinfrastructure, cyber-physical systems, and Internet of Things (IoT) technologies to increase the automation and responsiveness of building operations for better energy efficiency and lower carbon emission. These operations include the control of Heating, Ventilation, and Air Conditioning (HVAC) and lighting systems, which are often considered a major source of energy consumption in both commercial and residential buildings. Developing energy-saving control models for optimizing HVAC operations usually requires the collection of high-quality instrumental data from iterations of in-situ building experiments, which can be time-consuming and labor-intensive. This abstract describes a digital twin approach to automate building energy experiments for optimizing HVAC operations through the design and development of an adaptive web-based platform. The platform is created to enable (a) automated data acquisition from a variety of IoT-connected HVAC instruments, (b) real-time situational awareness through domain-based visualizations, (c) adaption of HVAC optimization algorithms based on experimental data, (d) sharing of experimental data and model predictive controls through web services, and (e) cyber-physical control of individual instruments in the HVAC system using outputs from different optimization algorithms. Through the digital twin approach, we aim to replicate a real-world building and its HVAC systems in an online computing environment to automate the development of building-specific model predictive controls and collaborative experiments in buildings located in different climate zones in the United States. We present two case studies to demonstrate our platform’s capability for real-time situational awareness and cyber-physical control of the HVAC in the flexible research platforms within the Oak Ridge National Laboratory (ORNL) main campus. Our platform is developed using adaptive and flexible architecture design, rendering the platform generalizable and extendable to support HVAC optimization experiments in different types of buildings across the nation.

Keywords: energy-saving buildings, digital twins, HVAC, cyber-physical system, BIM

Procedia PDF Downloads 92
5276 Structural Performance of Mechanically Connected Stone Panels under Cyclic Loading: Application to Aesthetic and Environmental Building Skin Design

Authors: Michel Soto Chalhoub

Abstract:

Building designers in the Mediterranean region and other parts of the world utilize natural stone panels on the exterior façades as skin cover. This type of finishing is not only intended for aesthetic reasons but also environmental. The stone, since the earliest ages of civilization, has been used in construction and to-date some of the most appealing buildings owe their beauty to stone finishing. The stone also provides warmth in winter and freshness in summer as it moderates heat transfer and absorbs radiation. However, as structural codes became increasingly stringent about the dynamic performance of buildings, it became essential to study the performance of stone panels under cyclic loading – a condition that arises under the building is subjected to wind or earthquakes. The present paper studies the performance of stone panels using mechanical connectors when subjected to load reversal. In this paper, we present a theoretical model that addresses modes of failure in the steel connectors, by yield, and modes of failure in the stone, by fracture. Then we provide an experimental set-up and test results for rectangular stone panels of varying thickness. When the building is subjected to an earthquake, its rectangular panels within the structural system are subjected to shear deformations, which in turn impart stress into the stone cover. Rectangular stone panels, which typically range from 40cmx80cm to 60cmx120cm, need to be designed to withstand transverse loading from the direct application of lateral loads, and to withstand simultaneously in-plane loading (membrane stress) caused by inter-story drift and overall building lateral deflection. Results show correlation between the theoretical model which we derive from solid mechanics fundamentals and the experimental results, and lead to practical design recommendations. We find that for panel thickness below a certain threshold, it is more advantageous to utilize structural adhesive materials to connect stone panels to the main structural system of the building. For larger panel thicknesses, it is recommended to utilize mechanical connectors with special detailing to ensure a minimum level of ductility and energy dissipation.

Keywords: solid mechanics, cyclic loading, mechanical connectors, natural stone, seismic, wind, building skin

Procedia PDF Downloads 251
5275 Analytical Modelling of the Moment-Rotation Behavior of Top and Seat Angle Connection with Stiffeners

Authors: Merve Sagiroglu

Abstract:

The earthquake-resistant steel structure design is required taking into account the behavior of beam-column connections besides the basic properties of the structure such as material and geometry. Beam-column connections play an important role in the behavior of frame systems. Taking into account the behaviour of connection in analysis and design of steel frames is important due to presenting the actual behavior of frames. So, the behavior of the connections should be well known. The most important force which transmitted by connections in the structural system is the moment. The rotational deformation is customarily expressed as a function of the moment in the connection. So, the moment-rotation curves are the best expression of behaviour of the beam-to-column connections. The designed connections form various moment-rotation curves according to the elements of connection and the shape of placement. The only way to achieve this curve is with real-scale experiments. The experiments of some connections have been carried out partially and are formed in the databank. It has been formed the models using this databank to express the behavior of connection. In this study, theoretical studies have been carried out to model a real behavior of the top and seat angles connections with angles. Two stiffeners in the top and seat angle to increase the stiffness of the connection, and two stiffeners in the beam web to prevent local buckling are used in this beam-to-column connection. Mathematical models have been performed using the database of the beam-to-column connection experiments previously by authors. Using the data of the tests, it has been aimed that analytical expressions have been developed to obtain the moment-rotation curve for the connection details whose test data are not available. The connection has been dimensioned in various shapes and the effect of the dimensions of the connection elements on the behavior has been examined.

Keywords: top and seat angle connection, stiffener, moment-rotation curves, analytical study

Procedia PDF Downloads 168
5274 Effect of Cutting Tools and Working Conditions on the Machinability of Ti-6Al-4V Using Vegetable Oil-Based Cutting Fluids

Authors: S. Gariani, I. Shyha

Abstract:

Cutting titanium alloys are usually accompanied with low productivity, poor surface quality, short tool life and high machining costs. This is due to the excessive generation of heat at the cutting zone and difficulties in heat dissipation due to relatively low heat conductivity of this metal. The cooling applications in machining processes are crucial as many operations cannot be performed efficiently without cooling. Improving machinability, increasing productivity, enhancing surface integrity and part accuracy are the main advantages of cutting fluids. Conventional fluids such as mineral oil-based, synthetic and semi-synthetic are the most common cutting fluids in the machining industry. Although, these cutting fluids are beneficial in the industries, they pose a great threat to human health and ecosystem. Vegetable oils (VOs) are being investigated as a potential source of environmentally favourable lubricants, due to a combination of biodegradability, good lubricous properties, low toxicity, high flash points, low volatility, high viscosity indices and thermal stability. Fatty acids of vegetable oils are known to provide thick, strong, and durable lubricant films. These strong lubricating films give the vegetable oil base stock a greater capability to absorb pressure and high load carrying capacity. This paper details preliminary experimental results when turning Ti-6Al-4V. The impact of various VO-based cutting fluids, cutting tool materials, working conditions was investigated. The full factorial experimental design was employed involving 24 tests to evaluate the influence of process variables on average surface roughness (Ra), tool wear and chip formation. In general, Ra varied between 0.5 and 1.56 µm and Vasco1000 cutting fluid presented comparable performance with other fluids in terms of surface roughness while uncoated coarse grain WC carbide tool achieved lower flank wear at all cutting speeds. On the other hand, all tools tips were subjected to uniform flank wear during whole cutting trails. Additionally, formed chip thickness ranged between 0.1 and 0.14 mm with a noticeable decrease in chip size when higher cutting speed was used.

Keywords: cutting fluids, turning, Ti-6Al-4V, vegetable oils, working conditions

Procedia PDF Downloads 264
5273 Development of Advanced Virtual Radiation Detection and Measurement Laboratory (AVR-DML) for Nuclear Science and Engineering Students

Authors: Lily Ranjbar, Haori Yang

Abstract:

Online education has been around for several decades, but the importance of online education became evident after the COVID-19 pandemic. Eventhough the online delivery approach works well for knowledge building through delivering content and oversight processes, it has limitations in developing hands-on laboratory skills, especially in the STEM field. During the pandemic, many education institutions faced numerous challenges in delivering lab-based courses, especially in the STEM field. Also, many students worldwide were unable to practice working with lab equipment due to social distancing or the significant cost of highly specialized equipment. The laboratory plays a crucial role in nuclear science and engineering education. It can engage students and improve their learning outcomes. In addition, online education and virtual labs have gained substantial popularity in engineering and science education. Therefore, developing virtual labs is vital for institutions to deliver high-class education to their students, including their online students. The School of Nuclear Science and Engineering (NSE) at Oregon State University, in partnership with SpectralLabs company, has developed an Advanced Virtual Radiation Detection and Measurement Lab (AVR-DML) to offer a fully online Master of Health Physics program. It was essential for us to use a system that could simulate nuclear modules that accurately replicate the underlying physics, the nature of radiation and radiation transport, and the mechanics of the instrumentations used in the real radiation detection lab. It was all accomplished using a Realistic, Adaptive, Interactive Learning System (RAILS). RAILS is a comprehensive software simulation-based learning system for use in training. It is comprised of a web-based learning management system that is located on a central server, as well as a 3D-simulation package that is downloaded locally to user machines. Users will find that the graphics, animations, and sounds in RAILS create a realistic, immersive environment to practice detecting different radiation sources. These features allow students to coexist, interact and engage with a real STEM lab in all its dimensions. It enables them to feel like they are in a real lab environment and to see the same system they would in a lab. Unique interactive interfaces were designed and developed by integrating all the tools and equipment needed to run each lab. These interfaces provide students full functionality for data collection, changing the experimental setup, and live data collection with real-time updates for each experiment. Students can manually do all experimental setups and parameter changes in this lab. Experimental results can then be tracked and analyzed in an oscilloscope, a multi-channel analyzer, or a single-channel analyzer (SCA). The advanced virtual radiation detection and measurement laboratory developed in this study enabled the NSE school to offer a fully online MHP program. This flexibility of course modality helped us to attract more non-traditional students, including international students. It is a valuable educational tool as students can walk around the virtual lab, make mistakes, and learn from them. They have an unlimited amount of time to repeat and engage in experiments. This lab will also help us speed up training in nuclear science and engineering.

Keywords: advanced radiation detection and measurement, virtual laboratory, realistic adaptive interactive learning system (rails), online education in stem fields, student engagement, stem online education, stem laboratory, online engineering education

Procedia PDF Downloads 82
5272 Numerical investigation of Hydrodynamic and Parietal Heat Transfer to Bingham Fluid Agitated in a Vessel by Helical Ribbon Impeller

Authors: Mounir Baccar, Amel Gammoudi, Abdelhak Ayadi

Abstract:

The efficient mixing of highly viscous fluids is required for many industries such as food, polymers or paints production. The homogeneity is a challenging operation for this fluids type since they operate at low Reynolds number to reduce the required power of the used impellers. Particularly, close-clearance impellers, mainly helical ribbons, are chosen for highly viscous fluids agitated in laminar regime which is currently heated through vessel wall. Indeed, they are characterized by high shear strains closer to the vessel wall, which causes a disturbing thermal boundary layer and ensures the homogenization of the bulk volume by axial and radial vortices. The hydrodynamic and thermal behaviors of Newtonian fluids in vessels agitated by helical ribbon impellers, has been mostly studied by many researchers. However, rarely researchers investigated numerically the agitation of yield stress fluid by means of helical ribbon impellers. This paper aims to study the effect of the Double Helical Ribbon (DHR) stirrers on both the hydrodynamic and the thermal behaviors of yield stress fluids treated in a cylindrical vessel by means of numerical simulation approach. For this purpose, continuity, momentum, and thermal equations were solved by means of 3D finite volume technique. The effect of Oldroyd (Od) and Reynolds (Re) numbers on the power (Po) and Nusselt (Nu) numbers for the mentioned stirrer type have been studied. Also, the velocity and thermal fields, the dissipation function and the apparent viscosity have been presented in different (r-z) and (r-θ) planes.

Keywords: Bingham fluid, Hydrodynamic and thermal behavior, helical ribbon, mixing, numerical modelling

Procedia PDF Downloads 291
5271 Global Analysis of HIV Virus Models with Cell-to-Cell

Authors: Hossein Pourbashash

Abstract:

Recent experimental studies have shown that HIV can be transmitted directly from cell to cell when structures called virological synapses form during interactions between T cells. In this article, we describe a new within-host model of HIV infection that incorporates two mechanisms: infection by free virions and the direct cell-to-cell transmission. We conduct the local and global stability analysis of the model. We show that if the basic reproduction number R0 1, the virus is cleared and the disease dies out; if R0 > 1, the virus persists in the host. We also prove that the unique positive equilibrium attracts all positive solutions under additional assumptions on the parameters.

Keywords: HIV virus model, cell-to-cell transmission, global stability, Lyapunov function, second compound matrices

Procedia PDF Downloads 505
5270 Numerical Study of a 6080HP Open Drip Proof (ODP) Motor

Authors: Feng-Hisang Lai

Abstract:

CFD(Computational Fluid Dynamics) is conducted to numerically study the flow and heat transfer features of a two-pole, 6,080HP, 60Hz, 3,150V open drip-proof (ODP) motor. The stator and rotor cores in this high voltage induction motor are segmented with the use of spacers for cooling purposes, which leads to difficulties in meshing when the entire system is to be simulated. The system is divided into 4 parts, meshed separately and then combined using interfaces. The deviation between the CFD and experimental results in temperature and flow rate is less than 10%. The internal flow is further examined and a final design is proposed to reduce the winding temperature by 10 degrees.

Keywords: CFD, open drip proof, induction motor, cooling

Procedia PDF Downloads 187
5269 A609 Modeling of AC Servomotor Using Genetic Algorithm and Tests for Control of a Robotic Joint

Authors: J. G. Batista, T. S. Santiago, E. A. Ribeiro, G. A. P. Thé

Abstract:

This work deals with parameter identification of permanent magnet motors, a class of ac motor which is particularly important in industrial automation due to characteristics like applications high performance, are very attractive for applications with limited space and reducing the need to eliminate because they have reduced size and volume and can operate in a wide speed range, without independent ventilation. By using experimental data and genetic algorithm we have been able to extract values for both the motor inductance and the electromechanical coupling constant, which are then compared to measure and/or expected values.

Keywords: modeling, AC servomotor, permanent magnet synchronous motor-PMSM, genetic algorithm, vector control, robotic manipulator, control

Procedia PDF Downloads 510
5268 Understanding Cyber Kill Chains: Optimal Allocation of Monitoring Resources Using Cooperative Game Theory

Authors: Roy. H. A. Lindelauf

Abstract:

Cyberattacks are complex processes consisting of multiple interwoven tasks conducted by a set of agents. Interdictions and defenses against such attacks often rely on cyber kill chain (CKC) models. A CKC is a framework that tries to capture the actions taken by a cyber attacker. There exists a growing body of literature on CKCs. Most of this work either a) describes the CKC with respect to one or more specific cyberattacks or b) discusses the tools and technologies used by the attacker at each stage of the CKC. Defenders, facing scarce resources, have to decide where to allocate their resources given the CKC and partial knowledge on the tools and techniques attackers use. In this presentation CKCs are analyzed through the lens of covert projects, i.e., interrelated tasks that have to be conducted by agents (human and/or computer) with the aim of going undetected. Various aspects of covert project models have been studied abundantly in the operations research and game theory domain, think of resource-limited interdiction actions that maximally delay completion times of a weapons project for instance. This presentation has investigated both cooperative and non-cooperative game theoretic covert project models and elucidated their relation to CKC modelling. To view a CKC as a covert project each step in the CKC is broken down into tasks and there are players of which each one is capable of executing a subset of the tasks. Additionally, task inter-dependencies are represented by a schedule. Using multi-glove cooperative games it is shown how a defender can optimize the allocation of his scarce resources (what, where and how to monitor) against an attacker scheduling a CKC. This study presents and compares several cooperative game theoretic solution concepts as metrics for assigning resources to the monitoring of agents.

Keywords: cyber defense, cyber kill chain, game theory, information warfare techniques

Procedia PDF Downloads 131
5267 Unmanned Aerial Vehicle Use for Emergency Purpose

Authors: Shah S. M. A., Aftab U.

Abstract:

It is imperative in today’s world to get a real time information about different emergency situation occurred in the environment. Helicopters are mostly used to access places which are hard to access in emergencies like earthquake, floods, bridge failure or in any other disasters conditions. Use of helicopters are considered more costly to properly collect the data. Therefore a new technique has been introduced in this research to promptly collect data using drones. The drone designed in this research is based on trial and error experimental work with objective to construct an economical drone. Locally available material have been used for this purpose. And a mobile camera were also attached to prepare video during the flight. It was found that within very limited resources the result were quite successful.

Keywords: UAV, real time, camera, disasters

Procedia PDF Downloads 225
5266 Mass Transfer Studies of Carbon Dioxide Absorption in Sodium Hydroxide in Millichannels

Authors: A. Durgadevi, S. Pushpavanam

Abstract:

In this work, absorption studies are done by conducting experiments of 99.9 (v/v%) pure CO₂ with various concentrations of sodium hydroxide solutions in a T-junction glass circular milli-channel. The gas gets absorbed in the aqueous phase resulting in the shrinking of slugs. This phenomenon is used to develop a lumped parameter model. Using this model, the chemical dissolution dynamics and the mass transfer characteristics of the CO₂-NaOH system is analysed. The liquid side mass transfer coefficient is determined with the help of the experimental data.

Keywords: absorption, dissolution dynamics, lumped parameter model, milli-channel, mass transfer coefficient

Procedia PDF Downloads 275
5265 Analysis of Enhanced Built-up and Bare Land Index in the Urban Area of Yangon, Myanmar

Authors: Su Nandar Tin, Wutjanun Muttitanon

Abstract:

The availability of free global and historical satellite imagery provides a valuable opportunity for mapping and monitoring the year by year for the built-up area, constantly and effectively. Land distribution guidelines and identification of changes are important in preparing and reviewing changes in the ground overview data. This study utilizes Landsat images for thirty years of information to acquire significant, and land spread data that are extremely valuable for urban arranging. This paper is mainly introducing to focus the basic of extracting built-up area for the city development area from the satellite images of LANDSAT 5,7,8 and Sentinel 2A from USGS in every five years. The purpose analyses the changing of the urban built-up area according to the year by year and to get the accuracy of mapping built-up and bare land areas in studying the trend of urban built-up changes the periods from 1990 to 2020. The GIS tools such as raster calculator and built-up area modelling are using in this study and then calculating the indices, which include enhanced built-up and bareness index (EBBI), Normalized difference Built-up index (NDBI), Urban index (UI), Built-up index (BUI) and Normalized difference bareness index (NDBAI) are used to get the high accuracy urban built-up area. Therefore, this study will point out a variable approach to automatically mapping typical enhanced built-up and bare land changes (EBBI) with simple indices and according to the outputs of indexes. Therefore, the percentage of the outputs of enhanced built-up and bareness index (EBBI) of the sentinel-2A can be realized with 48.4% of accuracy than the other index of Landsat images which are 15.6% in 1990 where there is increasing urban expansion area from 43.6% in 1990 to 92.5% in 2020 on the study area for last thirty years.

Keywords: built-up area, EBBI, NDBI, NDBAI, urban index

Procedia PDF Downloads 150
5264 Prediction of Anticancer Potential of Curcumin Nanoparticles by Means of Quasi-Qsar Analysis Using Monte Carlo Method

Authors: Ruchika Goyal, Ashwani Kumar, Sandeep Jain

Abstract:

The experimental data for anticancer potential of curcumin nanoparticles was calculated by means of eclectic data. The optimal descriptors were examined using Monte Carlo method based CORAL SEA software. The statistical quality of the model is following: n = 14, R² = 0.6809, Q² = 0.5943, s = 0.175, MAE = 0.114, F = 26 (sub-training set), n =5, R²= 0.9529, Q² = 0.7982, s = 0.086, MAE = 0.068, F = 61, Av Rm² = 0.7601, ∆R²m = 0.0840, k = 0.9856 and kk = 1.0146 (test set) and n = 5, R² = 0.6075 (validation set). This data can be used to build predictive QSAR models for anticancer activity.

Keywords: anticancer potential, curcumin, model, nanoparticles, optimal descriptors, QSAR

Procedia PDF Downloads 310
5263 Performance Comparison of a Low Cost Air Quality Sensor with a Commercial Electronic Nose

Authors: Ünal Kızıl, Levent Genç, Sefa Aksu, Ahmet Tapınç

Abstract:

The Figaro AM-1 sensor module which employs TGS 2600 model gas sensor in air quality assessment was used. The system was coupled with a microprocessor that enables sensor module to create warning message via telephone. This low cot sensor system’s performance was compared with a Diagnose II commercial electronic nose system. Both air quality sensor and electronic nose system employ metal oxide chemical gas sensors. In the study experimental setup, data acquisition methods for electronic nose system, and performance of the low cost air quality system were evaluated and explained.

Keywords: air quality, electronic nose, environmental quality, gas sensor

Procedia PDF Downloads 436
5262 The Prospect of Income Contingent Loan in Malaysia Higher Education Financing Using Deterministic and Stochastic Methods in Modelling Income

Authors: Syaza Isma, Timothy Higgins

Abstract:

In Malaysia, increased take-up rates of tertiary student borrowing, and reliance on retirement savings to fund children's education show the importance of public higher education financing schemes (PTPTN). PTPTN has been operating for 2 decades now; however, there are some critical issues and challenges that include low loan recovery and loan default that suggest a detailed consideration of student loan/financing scheme alternatives is crucial. In addition, the decline in funding level per student following introduction of the new PTPTN full and partial loan scheme has raised ongoing concerns over the sustainability of the scheme to provide continuous financial assistance to students in tertiary education. This research seeks to assess these issues that put greater efficiency in an effort to ensure equitable access to student funding for current and future generations. We explore the extent of repayment hardship under the current loan arrangements that presumably led to low recovery from the borrowers, particularly low-income graduates. The concept of manageable debt exists in the design of income-contingent repayment schemes, as practiced in Australia, New Zealand, UK, Hungary, USA (in limited form), the Netherlands, and South Korea. Can Income Contingent Loans (ICL) offer the best practice for an education financing scheme, and address the issue of repayment hardship and concurrently, can a properly designed ICL scheme provide a solution to the current issues and challenges facing Malaysia student financing? We examine the different potential ICL models using deterministic and stochastic approach to simulate income of graduates.

Keywords: deterministic, income contingent loan, repayment burden, simulation, stochastic

Procedia PDF Downloads 220
5261 Detailed Observations on Numerically Invariant Signatures

Authors: Reza Aghayan

Abstract:

Numerically invariant signatures were introduced as a new paradigm of the invariant recognition for visual objects modulo a certain group of transformations. This paper shows that the current formulation suffers from noise and indeterminacy in the resulting joint group-signatures and applies the n-difference technique and the m-mean signature method to minimize their effects. In our experimental results of applying the proposed numerical scheme to generate joint group-invariant signatures, the sensitivity of some parameters such as regularity and mesh resolution used in the algorithm will also be examined. Finally, several interesting observations are made.

Keywords: Euclidean and affine geometry, differential invariant G-signature curves, numerically invariant joint G-signatures, object recognition, noise, indeterminacy

Procedia PDF Downloads 386
5260 Effect of Deposition Time on Structural, Electrical, and Optical Properties of Tin Sulfide Thin Films Deposited by Spray Ultrasonic

Authors: I. Bouhaf Kharkhachi, A. Attaf

Abstract:

Tin sulfide thin films on glass substrate were prepared by spray ultrasonic technique, at different experimental conditions. The influence of deposition time (2, 4, 6, 8 and 10 min) on different properties of thin films, such us, (XRD) and (UV) spectroscopy visible spectrum was investigated. X-ray diffraction showing that thin films crystallized in SnS, SnS2, and Sn2S3 phases. The results of (UV) spectroscopy visible spectrum show that films deposited at 4 min are large transmittance 60% in the visible region.

Keywords: SnS, thin films, ultrasonic spray, X-ray diffraction, UV spectroscopy visible

Procedia PDF Downloads 511
5259 Experimental Study on Temperature Splitting of a Counter-Flow Ranque-Hilsch Vortex Tube

Authors: Hany. A. Mohamed, M. Attalla, M. Salem, Hussein M. Mghrabie, E. Specht

Abstract:

An experiment al investigation is made to determine the effects of the nozzle dimensions and the inlet pressure on the heating and cooling performance of the counter flow Ranque–Hilsch vortex tube when air used as a working fluid. The all results were taking under inlet pressures were adjusted from 200 kPa to 600 kPa with 100 kPa increments. The conventional tangential generator with number of nuzzle of 6 was used and inner diameter of 7.5 mm. During the experiments, a vortex tube is used with an L/D ratio varied from 10 to 30. Finally, it is observed that the effect of the nuzzle aspect ratio on the energy separation changes according to the value of L/D.

Keywords: Ranque-Hilsch, vortex tube, aspect ratio, energy separation

Procedia PDF Downloads 517
5258 Experimental Research of High Pressure Jet Interaction with Supersonic Crossflow

Authors: Bartosz Olszanski, Zbigniew Nosal, Jacek Rokicki

Abstract:

An experimental study of cold-jet (nitrogen) reaction control jet system has been carried out to investigate the flow control efficiency for low to moderate jet pressure ratios (total jet pressure p0jet over free stream static pressure in the wind tunnel p∞) and different angles of attack for infinite Mach number equal to 2. An investigation of jet influence was conducted on a flat plate geometry placed in the test section of intermittent supersonic wind tunnel of Department of Aerodynamics, WUT. Various convergent jet nozzle geometries to obtain different jet momentum ratios were tested on the same test model geometry. Surface static pressure measurements, Schlieren flow visualizations (using continuous and photoflash light source), load cell measurements gave insight into the supersonic crossflow interaction for different jet pressure and jet momentum ratios and their influence on the efficiency of side jet control as described by the amplification factor (actual to theoretical net force generated by the control nozzle). Moreover, the quasi-steady numerical simulations of flow through the same wind tunnel geometry (convergent-divergent nozzle plus test section) were performed using ANSYS Fluent basing on Reynolds-Averaged Navier-Stokes (RANS) solver incorporated with k-ω Shear Stress Transport (SST) turbulence model to assess the possible spurious influence of test section walls over the jet exit near field area of interest. The strong bow shock, barrel shock, and Mach disk as well as lambda separation region in front of nozzle were observed as images taken by high-speed camera examine the interaction of the jet and the free stream. In addition, the development of large-scale vortex structures (counter-rotating vortex pair) was detected. The history of complex static pressure pattern on the plate was recorded and compared to the force measurement data as well as numerical simulation data. The analysis of the obtained results, especially in the wake of the jet showed important features of the interaction mechanisms between the lateral jet and the flow field.

Keywords: flow visualization techniques, pressure measurements, reaction control jet, supersonic cross flow

Procedia PDF Downloads 284
5257 Simulation of Uniaxial Ratcheting Behaviors of SA508-3 Steel at Elevated Temperature

Authors: Jun Tian, Yu Yang, Liping Zhang, Qianhua Kan

Abstract:

Experimental results show that SA 508-3 steel exhibits temperature dependent cyclic softening characteristic and obvious ratcheting behaviors, and dynamic strain age was observed at temperature range of 200 ºC to 350 ºC. Based on these observations, a temperature dependent cyclic plastic constitutive model was proposed by introducing the nonlinear cyclic softening and kinematic hardening rules, and the dynamic strain age was also considered into the constitutive model. Comparisons between experiments and simulations were carried out to validate the proposed model at elevated temperature.

Keywords: constitutive model, elevated temperature, ratcheting, SA 508-3

Procedia PDF Downloads 290
5256 The Microwave and Far Infrared Spectra of Acetaldehyde-d1 in vt=2

Authors: A. Larrousi, M. Elkeurti, K. Amara, M. Zemouli, L. H. Coudert, I. R. Medvedev, F. C. De Lucia, Atsuko Maeda, R. W. C. McKellar, D. Appadoo

Abstract:

Experimental and theoretical investigations of the microwave and far infrared spectra of CH3COD are reported. Two hundred twelve lines were identified in the far infrared spectrum recorded using the Canadian synchrotron radiation light source. Two thousand one hundred and sixty-eight lines in vt=0,1 and 216 in vt=2 have been measured in the microwave spectrum obtained using the fast scan submillimeter spectroscopic technique. A global analysis of the new data and of already available microwave lines has been carried out and yielded values for rotation–torsion parameters. The unitless weighted standard deviation of the fit is 1.6. 46 parameters and 216 lines were identified.

Keywords: CH3COD, torsion, the microwave spectra, far infrared spectra high resolution

Procedia PDF Downloads 348
5255 Evaluation of Model-Based Code Generation for Embedded Systems–Mature Approach for Development in Evolution

Authors: Nikolay P. Brayanov, Anna V. Stoynova

Abstract:

Model-based development approach is gaining more support and acceptance. Its higher abstraction level brings simplification of systems’ description that allows domain experts to do their best without particular knowledge in programming. The different levels of simulation support the rapid prototyping, verifying and validating the product even before it exists physically. Nowadays model-based approach is beneficial for modelling of complex embedded systems as well as a generation of code for many different hardware platforms. Moreover, it is possible to be applied in safety-relevant industries like automotive, which brings extra automation of the expensive device certification process and especially in the software qualification. Using it, some companies report about cost savings and quality improvements, but there are others claiming no major changes or even about cost increases. This publication demonstrates the level of maturity and autonomy of model-based approach for code generation. It is based on a real live automotive seat heater (ASH) module, developed using The Mathworks, Inc. tools. The model, created with Simulink, Stateflow and Matlab is used for automatic generation of C code with Embedded Coder. To prove the maturity of the process, Code generation advisor is used for automatic configuration. All additional configuration parameters are set to auto, when applicable, leaving the generation process to function autonomously. As a result of the investigation, the publication compares the quality of generated embedded code and a manually developed one. The measurements show that generally, the code generated by automatic approach is not worse than the manual one. A deeper analysis of the technical parameters enumerates the disadvantages, part of them identified as topics for our future work.

Keywords: embedded code generation, embedded C code quality, embedded systems, model-based development

Procedia PDF Downloads 233
5254 Modelling of a Biomechanical Vertebral System for Seat Ejection in Aircrafts Using Lumped Mass Approach

Authors: R. Unnikrishnan, K. Shankar

Abstract:

In the case of high-speed fighter aircrafts, seat ejection is designed mainly for the safety of the pilot in case of an emergency. Strong windblast due to the high velocity of flight is one main difficulty in clearing the tail of the aircraft. Excessive G-forces generated, immobilizes the pilot from escape. In most of the cases, seats are ejected out of the aircrafts by explosives or by rocket motors attached to the bottom of the seat. Ejection forces are primarily in the vertical direction with the objective of attaining the maximum possible velocity in a specified period of time. The safe ejection parameters are studied to estimate the critical time of ejection for various geometries and velocities of flight. An equivalent analytical 2-dimensional biomechanical model of the human spine has been modelled consisting of vertebrae and intervertebral discs with a lumped mass approach. The 24 vertebrae, which consists of the cervical, thoracic and lumbar regions, in addition to the head mass and the pelvis has been designed as 26 rigid structures and the intervertebral discs are assumed as 25 flexible joint structures. The rigid structures are modelled as mass elements and the flexible joints as spring and damper elements. Here, the motions are restricted only in the mid-sagittal plane to form a 26 degree of freedom system. The equations of motions are derived for translational movement of the spinal column. An ejection force with a linearly increasing acceleration profile is applied as vertical base excitation on to the pelvis. The dynamic vibrational response of each vertebra in time-domain is estimated.

Keywords: biomechanical model, lumped mass, seat ejection, vibrational response

Procedia PDF Downloads 220
5253 Investigation on Behaviour of Reinforced Concrete Beam-Column Joints Retrofitted with CFRP

Authors: Ehsan Mohseni

Abstract:

The aim of this thesis is to provide numerical analyses of reinforced concrete beams-column joints with/without CFRP (Carbon Fiber Reinforced Polymer) in order to achieve a better understanding of the behaviour of strengthened beamcolumn joints. A comprehensive literature survey prior to this study revealed that published studies are limited to a handful only; the results are inconclusive and some are even contradictory. Therefore in order to improve on this situation, following that review, a numerical study was designed and performed as presented in this thesis. For the numerical study, dimensions, end supports, and characteristics of the beam and column models were the same as those chosen in an experimental investigation performed previously where ten beamcolumn joint were tested tofailure. Finite element analysis is a useful tool in cases where analytical methods are not capable of solving the problem due to the complexities associated with the problem. The cyclic behaviour of FRP strengthened reinforced concrete beam-columns joints is such a case. Interaction of steel (longitudinal and stirrups), concrete and FRP, yielding of steel bars and stirrups, cracking of concrete, the redistribution of stresses as some elements unload due to crushing or yielding and the confinement of concrete due to the presence of FRP are some of the issues that introduce the complexities into the problem.Numerical solutions, however, can provide further in formation about the behaviour in lieu of the costly experiments or complex closed form solutions. This thesis presents the results of a numerical study on beam-column joints subjected to cyclic loads that are strengthened with CFRP wraps or strrips in a variety of configurations. The analyses are performed by Abaqus finite element program and are calibrated with the experiments. A range of issues in beam-column joints including the cracking load, the ultimate load, lateral load-displacement curves of joints, are investigated.The numerical results for different configurations of strengthening are compared. Finally, the computed numerical results are compared with those obtained from experiments. the cracking load, the ultimate load, lateral load-displacement curves obtained from numerical analysis for all joints were in very good agreement with the corresponding experimental ones.The results obtained from the numerical analysis in most cases implies that this method is conservative and therefore can be used in design applications with confidence.

Keywords: numerical analysis, strengthening, CFRP, reinforced concrete joints

Procedia PDF Downloads 337