Search results for: data mining techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29877

Search results for: data mining techniques

26487 A t-SNE and UMAP Based Neural Network Image Classification Algorithm

Authors: Shelby Simpson, William Stanley, Namir Naba, Xiaodi Wang

Abstract:

Both t-SNE and UMAP are brand new state of art tools to predominantly preserve the local structure that is to group neighboring data points together, which indeed provides a very informative visualization of heterogeneity in our data. In this research, we develop a t-SNE and UMAP base neural network image classification algorithm to embed the original dataset to a corresponding low dimensional dataset as a preprocessing step, then use this embedded database as input to our specially designed neural network classifier for image classification. We use the fashion MNIST data set, which is a labeled data set of images of clothing objects in our experiments. t-SNE and UMAP are used for dimensionality reduction of the data set and thus produce low dimensional embeddings. Furthermore, we use the embeddings from t-SNE and UMAP to feed into two neural networks. The accuracy of the models from the two neural networks is then compared to a dense neural network that does not use embedding as an input to show which model can classify the images of clothing objects more accurately.

Keywords: t-SNE, UMAP, fashion MNIST, neural networks

Procedia PDF Downloads 198
26486 Surface Characterization of Zincblende and Wurtzite Semiconductors Using Nonlinear Optics

Authors: Hendradi Hardhienata, Tony Sumaryada, Sri Setyaningsih

Abstract:

Current progress in the field of nonlinear optics has enabled precise surface characterization in semiconductor materials. Nonlinear optical techniques are favorable due to their nondestructive measurement and ability to work in nonvacuum and ambient conditions. The advance of the bond hyperpolarizability models opens a wide range of nanoscale surface investigation including the possibility to detect molecular orientation at the surface of silicon and zincblende semiconductors, investigation of electric field induced second harmonic fields at the semiconductor interface, detection of surface impurities, and very recently, study surface defects such as twin boundary in wurtzite semiconductors. In this work, we show using nonlinear optical techniques, e.g. nonlinear bond models how arbitrary polarization of the incoming electric field in Rotational Anisotropy Spectroscopy experiments can provide more information regarding the origin of the nonlinear sources in zincblende and wurtzite semiconductor structure. In addition, using hyperpolarizability consideration, we describe how the nonlinear susceptibility tensor describing SHG can be well modelled using only few parameter because of the symmetry of the bonds. We also show how the third harmonic intensity feature shows considerable changes when the incoming field polarization angle is changed from s-polarized to p-polarized. We also propose a method how to investigate surface reconstruction and defects in wurtzite and zincblende structure at the nanoscale level.

Keywords: surface characterization, bond model, rotational anisotropy spectroscopy, effective hyperpolarizability

Procedia PDF Downloads 158
26485 A Qualitative Look at Mental Health Stressors in Response to COVID-19

Authors: Gabriel G. Gaft, Xayvinay Xiong, Amanda Sunday

Abstract:

The emergent pandemic from COVID-19 virus has forced people to adjust to major changes. These changes include all elements of family and work life and required people to engage in novel behaviors. For many people, the social norms to which they have been accustomed no longer prevail. Not surprisingly, such enormous changes in daily life have been associated with greater problems in mental health; and research regarding ways in which mental health professionals can support people is more necessary than ever before. It is often useful to assess people’s reactions through surveys and utilize quantitative data to answer questions about coping strategies etc. It is also likely, however, that a host of individual factors are going to contribute to what might be considered 'good' or 'bad' coping mechanisms to a worldwide pandemic. To this end, qualitative studies—where the individual’s subjective experience is highlighted—are likely to provide more vital information for mental health professionals interested in supporting the particular person in front of them. This study reports on qualitative data, where X participants were asked questions about social distancing, coping strategies, and general attitudes towards social changes resulting from the COVID-19 pandemic. Informal interviews were conducted during the months of June-July 2020. Data were analyzed using Interpretative Phenomenological Analyses. Themes were identified first for each participant and then compared across different individual participants. Several findings emerged. First, all participants understood major health messages being imparted by governing bodies such as the CDC and WHO. The researchers feel this finding is important as it suggests health messages are at least being effectively communicated. Second, there was a clear trend for themes which highlighted the conflicting emotions participants felt about the changes they were expected to endure: positive and negative elements were identified, although a participant who had pre-existing conditions placed greater emphasis on the negative elements. One participant who was particularly interested in impression management also exclusively emphasized negative emotions. Third, participants who were able to reevaluate priorities—what Lazarus might call secondary appraisals—experienced social distancing as a positive rather than negative phenomenon. Finally, participants who were able to develop specific strategies—such as boundaries for work and self-care—reported themes of adjustment and contentment. Taken together, these findings suggest mental health practitioners can assist people to adjust more positively through specific techniques focusing on re-evaluation of life priorities and strategic coping skills.

Keywords: COVID-19, pandemic, phenomenology, virus

Procedia PDF Downloads 120
26484 An Online Adaptive Thresholding Method to Classify Google Trends Data Anomalies for Investor Sentiment Analysis

Authors: Duygu Dere, Mert Ergeneci, Kaan Gokcesu

Abstract:

Google Trends data has gained increasing popularity in the applications of behavioral finance, decision science and risk management. Because of Google’s wide range of use, the Trends statistics provide significant information about the investor sentiment and intention, which can be used as decisive factors for corporate and risk management fields. However, an anomaly, a significant increase or decrease, in a certain query cannot be detected by the state of the art applications of computation due to the random baseline noise of the Trends data, which is modelled as an Additive white Gaussian noise (AWGN). Since through time, the baseline noise power shows a gradual change an adaptive thresholding method is required to track and learn the baseline noise for a correct classification. To this end, we introduce an online method to classify meaningful deviations in Google Trends data. Through extensive experiments, we demonstrate that our method can successfully classify various anomalies for plenty of different data.

Keywords: adaptive data processing, behavioral finance , convex optimization, online learning, soft minimum thresholding

Procedia PDF Downloads 167
26483 Assessment of Rangeland Condition in a Dryland System Using UAV-Based Multispectral Imagery

Authors: Vistorina Amputu, Katja Tielboerger, Nichola Knox

Abstract:

Primary productivity in dry savannahs is constraint by moisture availability and under increasing anthropogenic pressure. Thus, considering climate change and the unprecedented pace and scale of rangeland deterioration, methods for assessing the status of such rangelands should be easy to apply, yield reliable and repeatable results that can be applied over large spatial scales. Global and local scale monitoring of rangelands through satellite data and labor-intensive field measurements respectively, are limited in accurately assessing the spatiotemporal heterogeneity of vegetation dynamics to provide crucial information that detects degradation in its early stages. Fortunately, newly emerging techniques such as unmanned aerial vehicles (UAVs), associated miniaturized sensors and improving digital photogrammetric software provide an opportunity to transcend these limitations. Yet, they have not been extensively calibrated in natural systems to encompass their complexities if they are to be integrated for long-term monitoring. Limited research using drone technology has been conducted in arid savannas, for example to assess the health status of this dynamic two-layer vegetation ecosystem. In our study, we fill this gap by testing the relationship between UAV-estimated cover of rangeland functional attributes and field data collected in discrete sample plots in a Namibian dryland savannah along a degradation gradient. The first results are based on a supervised classification performed on the ultra-high resolution multispectral imagery to distinguish between rangeland functional attributes (bare, non-woody, and woody), with a relatively good match to the field observations. Integrating UAV-based observations to improve rangeland monitoring could greatly assist in climate-adapted rangeland management.

Keywords: arid savannah, degradation gradient, field observations, narrow-band sensor, supervised classification

Procedia PDF Downloads 134
26482 Comparative Study on Sensory Profiles of Liquor from Different Dried Cocoa Beans

Authors: Khairul Bariah Sulaiman, Tajul Aris Yang

Abstract:

Malaysian dried cocoa beans have been reported to have low quality flavour and are often sold at discounted prices. Various efforts have been made to improve the Malaysian beans quality. Among these efforts is introduction of the shallow box fermentation technique and pulp preconditioned through pods storage. However, after nearly four decades of the effort was done, Malaysian cocoa farmers still received lower prices for their beans. So, this study was carried out in order to assess the flavour quality of dried cocoa beans produced by shallow box fermentation techniques, combination of shallow box fermentation with pods storage and compared to dried cocoa beans obtained from Ghana. A total of eight samples of dried cocoa was used in this study, which one of the samples was Ghanaian beans (coded with no.8), while the rest were Malaysian cocoa beans with different post-harvest processing (coded with no. 1, 2, 3, 4, 5, 6 and 7). Cocoa liquor was prepared from all samples in the prescribed techniques and sensory evaluation was carried out using Quantitative Descriptive Analysis (QDA) Method with 0-10 scale by Malaysian Cocoa Board trained panelist. Sensory evaluation showed that cocoa attributes for all cocoa liquors ranging from 3.5 to 5.3, whereas bitterness was ranging from 3.4 to 4.6 and astringent attribute ranging from 3.9 to 5.5, respectively. Meanwhile, all cocoa liquors were having acid or sourness attribute ranging from 1.6 to 3.6, respectively. In general cocoa liquor prepared from sample coded no 4 has almost similar flavour profile and no significantly different at p < 0.05 with Ghana, in term of most flavour attributes as compared to the other six samples.

Keywords: cocoa beans, flavour, fermentation, shallow box, pods storage

Procedia PDF Downloads 394
26481 EQMamba - Method Suggestion for Earthquake Detection and Phase Picking

Authors: Noga Bregman

Abstract:

Accurate and efficient earthquake detection and phase picking are crucial for seismic hazard assessment and emergency response. This study introduces EQMamba, a deep-learning method that combines the strengths of the Earthquake Transformer and the Mamba model for simultaneous earthquake detection and phase picking. EQMamba leverages the computational efficiency of Mamba layers to process longer seismic sequences while maintaining a manageable model size. The proposed architecture integrates convolutional neural networks (CNNs), bidirectional long short-term memory (BiLSTM) networks, and Mamba blocks. The model employs an encoder composed of convolutional layers and max pooling operations, followed by residual CNN blocks for feature extraction. Mamba blocks are applied to the outputs of BiLSTM blocks, efficiently capturing long-range dependencies in seismic data. Separate decoders are used for earthquake detection, P-wave picking, and S-wave picking. We trained and evaluated EQMamba using a subset of the STEAD dataset, a comprehensive collection of labeled seismic waveforms. The model was trained using a weighted combination of binary cross-entropy loss functions for each task, with the Adam optimizer and a scheduled learning rate. Data augmentation techniques were employed to enhance the model's robustness. Performance comparisons were conducted between EQMamba and the EQTransformer over 20 epochs on this modest-sized STEAD subset. Results demonstrate that EQMamba achieves superior performance, with higher F1 scores and faster convergence compared to EQTransformer. EQMamba reached F1 scores of 0.8 by epoch 5 and maintained higher scores throughout training. The model also exhibited more stable validation performance, indicating good generalization capabilities. While both models showed lower accuracy in phase-picking tasks compared to detection, EQMamba's overall performance suggests significant potential for improving seismic data analysis. The rapid convergence and superior F1 scores of EQMamba, even on a modest-sized dataset, indicate promising scalability for larger datasets. This study contributes to the field of earthquake engineering by presenting a computationally efficient and accurate method for simultaneous earthquake detection and phase picking. Future work will focus on incorporating Mamba layers into the P and S pickers and further optimizing the architecture for seismic data specifics. The EQMamba method holds the potential for enhancing real-time earthquake monitoring systems and improving our understanding of seismic events.

Keywords: earthquake, detection, phase picking, s waves, p waves, transformer, deep learning, seismic waves

Procedia PDF Downloads 53
26480 Efficient Microspore Isolation Methods for High Yield Embryoids and Regeneration in Rice (Oryza sativa L.)

Authors: S. M. Shahinul Islam, Israt Ara, Narendra Tuteja, Sreeramanan Subramaniam

Abstract:

Through anther and microspore culture methods, complete homozygous plants can be produced within a year as compared to the long inbreeding method. Isolated microspore culture is one of the most important techniques for rapid development of haploid plants. The efficiency of this method is influenced by several factors such as cultural conditions, growth regulators, plant media, pretreatments, physical and growth conditions of the donor plants, pollen isolation procedure, etc. The main purpose of this study was to improve the isolated microspore culture protocol in order to increase the efficiency of embryoids, its regeneration and reducing albinisms. Under this study we have tested mainly three different microspore isolation procedures by glass rod, homozeniger and by blending and found the efficiency on gametic embryogenesis. There are three types of media viz. washing, pre-culture and induction was used. The induction medium as AMC (modified MS) supplemented by 2, 4-D (2.5 mg/l), kinetin (0.5 mg/l) and higher amount of D-Manitol (90 g/l) instead of sucrose and two types of amino acids (L-glutamine and L-serine) were used. Out of three main microspore isolation procedure by homogenizer isolation (P4) showed best performance on ELS induction (177%) and green plantlets (104%) compared with other techniques. For all cases albinisims occurred but microspore isolation from excised anthers by glass rod and homogenizer showed lesser numbers of albino plants that was also one of the important findings in this study.

Keywords: androgenesis, pretreatment, microspore culture, regeneration, albino plants, Oryza sativa

Procedia PDF Downloads 362
26479 Local and Systemic Complications after Resection of Rectal Cancer in the Department of General and Abdominal Surgery University Clinical Center Maribor between 2004 and 2014

Authors: Nuhi Arslani, Stojan Potrc, Timotej Mikuljan

Abstract:

Background: In Department of Abdominal and General Surgery of University Medical Centre Maribor, we treated 578 patients for rectal cancer between 2004 and 2014. During and after treatment we especially concentrated on monitoring local and systemic complications. Methods: For analysis, we used data gathered from preoperative diagnostic tests, reports gathered during operation, reports from the pathohistologic review, and reports on complications after surgery and follow up. Results: In the case of 573 (out of 578) patients (99.1%) we performed resection. R0 was achieved in 551 patients (96,1%). R1 was achieved in 8 patients (1,4%). R2 was achieved in 14 patients (2,4%). Local complications were reported in 78 (13.5%) patients and systemic complications were reported in 68 (11.7%). We would like to point out the low number of local and systemic complications. Conclusions: With advances in surgical techniques, with a multimodal-multidisciplinary approach and with the use of total mesorectal excision we experienced a significant improvement in reducing the number of local and systemic complications in patients with rectal cancer. However, there still remains the question for truly optimal care for each patient with rectal cancer and his quality of life after surgical treatment.

Keywords: local complications, rectal cancer, resection, systemic complications

Procedia PDF Downloads 167
26478 Ant Lion Optimization in a Fuzzy System for Benchmark Control Problem

Authors: Leticia Cervantes, Edith Garcia, Oscar Castillo

Abstract:

At today, there are several control problems where the main objective is to obtain the best control in the study to decrease the error in the application. Many techniques can use to control these problems such as Neural Networks, PID control, Fuzzy Logic, Optimization techniques and many more. In this case, fuzzy logic with fuzzy system and an optimization technique are used to control the case of study. In this case, Ant Lion Optimization is used to optimize a fuzzy system to control the velocity of a simple treadmill. The main objective is to achieve the control of the velocity in the control problem using the ALO optimization. First, a simple fuzzy system was used to control the velocity of the treadmill it has two inputs (error and error change) and one output (desired speed), then results were obtained but to decrease the error the ALO optimization was developed to optimize the fuzzy system of the treadmill. Having the optimization, the simulation was performed, and results can prove that using the ALO optimization the control of the velocity was better than a conventional fuzzy system. This paper describes some basic concepts to help to understand the idea in this work, the methodology of the investigation (control problem, fuzzy system design, optimization), the results are presented and the optimization is used for the fuzzy system. A comparison between the simple fuzzy system and the optimized fuzzy systems are presented where it can be proving the optimization improved the control with good results the major findings of the study is that ALO optimization is a good alternative to improve the control because it helped to decrease the error in control applications even using any control technique to optimized, As a final statement is important to mentioned that the selected methodology was good because the control of the treadmill was improve using the optimization technique.

Keywords: ant lion optimization, control problem, fuzzy control, fuzzy system

Procedia PDF Downloads 399
26477 Energy Efficient Assessment of Energy Internet Based on Data-Driven Fuzzy Integrated Cloud Evaluation Algorithm

Authors: Chuanbo Xu, Xinying Li, Gejirifu De, Yunna Wu

Abstract:

Energy Internet (EI) is a new form that deeply integrates the Internet and the entire energy process from production to consumption. The assessment of energy efficient performance is of vital importance for the long-term sustainable development of EI project. Although the newly proposed fuzzy integrated cloud evaluation algorithm considers the randomness of uncertainty, it relies too much on the experience and knowledge of experts. Fortunately, the enrichment of EI data has enabled the utilization of data-driven methods. Therefore, the main purpose of this work is to assess the energy efficient of park-level EI by using a combination of a data-driven method with the fuzzy integrated cloud evaluation algorithm. Firstly, the indicators for the energy efficient are identified through literature review. Secondly, the artificial neural network (ANN)-based data-driven method is employed to cluster the values of indicators. Thirdly, the energy efficient of EI project is calculated through the fuzzy integrated cloud evaluation algorithm. Finally, the applicability of the proposed method is demonstrated by a case study.

Keywords: energy efficient, energy internet, data-driven, fuzzy integrated evaluation, cloud model

Procedia PDF Downloads 202
26476 The Examination of Prospective ICT Teachers’ Attitudes towards Application of Computer Assisted Instruction

Authors: Agâh Tuğrul Korucu, Ismail Fatih Yavuzaslan, Lale Toraman

Abstract:

Nowadays, thanks to development of technology, integration of technology into teaching and learning activities is spreading. Increasing technological literacy which is one of the expected competencies for individuals of 21st century is associated with the effective use of technology in education. The most important factor in effective use of technology in education institutions is ICT teachers. The concept of computer assisted instruction (CAI) refers to the utilization of information and communication technology as a tool aided teachers in order to make education more efficient and improve its quality in the process of educational. Teachers can use computers in different places and times according to owned hardware and software facilities and characteristics of the subject and student in CAI. Analyzing teachers’ use of computers in education is significant because teachers are the ones who manage the course and they are the most important element in comprehending the topic by students. To accomplish computer-assisted instruction efficiently is possible through having positive attitude of teachers. Determination the level of knowledge, attitude and behavior of teachers who get the professional knowledge from educational faculties and elimination of deficiencies if any are crucial when teachers are at the faculty. Therefore, the aim of this paper is to identify ICT teachers' attitudes toward computer-assisted instruction in terms of different variables. Research group consists of 200 prospective ICT teachers studying at Necmettin Erbakan University Ahmet Keleşoğlu Faculty of Education CEIT department. As data collection tool of the study; “personal information form” developed by the researchers and used to collect demographic data and "the attitude scale related to computer-assisted instruction" are used. The scale consists of 20 items. 10 of these items show positive feature, while 10 of them show negative feature. The Kaiser-Meyer-Olkin (KMO) coefficient of the scale is found 0.88 and Barlett test significance value is found 0.000. The Cronbach’s alpha reliability coefficient of the scale is found 0.93. In order to analyze the data collected by data collection tools computer-based statistical software package used; statistical techniques such as descriptive statistics, t-test, and analysis of variance are utilized. It is determined that the attitudes of prospective instructors towards computers do not differ according to their educational branches. On the other hand, the attitudes of prospective instructors who own computers towards computer-supported education are determined higher than those of the prospective instructors who do not own computers. It is established that the departments of students who previously received computer lessons do not affect this situation so much. The result is that; the computer experience affects the attitude point regarding the computer-supported education positively.

Keywords: computer based instruction, teacher candidate, attitude, technology based instruction, information and communication technologies

Procedia PDF Downloads 295
26475 Evaluating the Radiation Dose Involved in Interventional Radiology Procedures

Authors: Kholood Baron

Abstract:

Radiologic interventional studies use fluoroscopy imaging guidance to perform both diagnostic and therapeutic procedures. These could result in high radiation doses being delivered to the patients and also to the radiology team. This is due to the prolonged fluoroscopy time and the large number of images taken, even when dose-minimizing techniques and modern fluoroscopic tools are applied. Hence, these procedures are part of the everyday routine of interventional radiology doctors, assistant nurses, and radiographers. Thus, it is important to estimate the radiation exposure dose they received in order to give objective advice and reduce both patient and radiology team radiation exposure dose. The aim of this study was to find out the total radiation dose reaching the radiologist and the patient during an interventional procedure and to determine the impact of certain parameters on the patient dose. Method: The radiation dose was measured by TLD devices (thermoluminescent dosimeter; radiation dosimeter device). Physicians, patients, nurses, and radiographers wore TLDs during 12 interventional radiology procedures performed in two hospitals, Mubarak and Chest Hospital. This study highlights the need for interventional radiologists to be mindful of the radiation doses received by both patients and medical staff during interventional radiology procedures. The findings emphasize the impact of factors such as fluoroscopy duration and the number of images taken on the patient dose. By raising awareness and providing insights into optimizing techniques and protective measures, this research contributes to the overall goal of reducing radiation doses and ensuring the safety of patients and medical staff.

Keywords: dosimetry, radiation dose, interventional radiology procedures, patient radiation dose

Procedia PDF Downloads 113
26474 A Study on Golden Ratio (ф) and Its Implications on Seismic Design Using ETABS

Authors: Vishal A. S. Salelkar, Sumitra S. Kandolkar

Abstract:

Golden ratio (ф) or Golden mean or Golden section, as it is often referred to, is a proportion or a mean, which is often used by architects while conceiving the aesthetics of a structure. Golden Ratio (ф) is an irrational number that can be roughly rounded to 1.618 and is derived out of quadratic equation x2-x-1=0. The use of Golden Ratio (ф) can be observed throughout history, as far as ancient Egyptians, which later peaked during the Greek golden age. The use of this design technique is very much prevalent. At present, architects around the world prefer this as one of the primary techniques to decide aesthetics. In this study, an analysis has been performed to investigate whether the use of the golden ratio while planning a structure has any effects on the seismic behavior of the structure. The structure is modeled and analyzed on ETABS (by Computers and Structures, Inc.) for Seismic requirements equivalent to Zone III (Region: Goa-India) as per Indian Standard Code IS-1893. The results were compared to that of an identical structure modeled along the lines of normal design philosophy, not using the Golden Ratio tools. The results were then compared for Story Shear, Story Drift, and Story Displacement Readings. Improvement in performance, although slight, but was observed. Similar improvements were also observed in subsequent iterations, performed using time-acceleration data of previous major earthquakes matched to Zone III as per IS-1893.

Keywords: ETABS, golden ratio, seismic design, structural behavior

Procedia PDF Downloads 182
26473 Impact of Process Parameters on Tensile Strength of Fused Deposition Modeling Printed Crisscross Poylactic Acid

Authors: Shilpesh R. Rajpurohit, Harshit K. Dave

Abstract:

Additive manufacturing gains the popularity in recent times, due to its capability to create prototype as well functional as end use product directly from CAD data without any specific requirement of tooling. Fused deposition modeling (FDM) is one of the widely used additive manufacturing techniques that are used to create functional end use part of polymer that is comparable with the injection-molded parts. FDM printed part has an application in various fields such as automobile, aerospace, medical, electronic, etc. However, application of FDM part is greatly affected by poor mechanical properties. Proper selection of the process parameter could enhance the mechanical performance of the printed part. In the present study, experimental investigation has been carried out to study the behavior of the mechanical performance of the printed part with respect to process variables. Three process variables viz. raster angle, raster width and layer height have been varied to understand its effect on tensile strength. Further, effect of process variables on fractured surface has been also investigated.

Keywords: 3D Printing, fused deposition modeling, layer height, raster angle, raster width, tensile strength

Procedia PDF Downloads 197
26472 Graph Based Traffic Analysis and Delay Prediction Using a Custom Built Dataset

Authors: Gabriele Borg, Alexei Debono, Charlie Abela

Abstract:

There on a constant rise in the availability of high volumes of data gathered from multiple sources, resulting in an abundance of unprocessed information that can be used to monitor patterns and trends in user behaviour. Similarly, year after year, Malta is also constantly experiencing ongoing population growth and an increase in mobilization demand. This research takes advantage of data which is continuously being sourced and converting it into useful information related to the traffic problem on the Maltese roads. The scope of this paper is to provide a methodology to create a custom dataset (MalTra - Malta Traffic) compiled from multiple participants from various locations across the island to identify the most common routes taken to expose the main areas of activity. This use of big data is seen being used in various technologies and is referred to as ITSs (Intelligent Transportation Systems), which has been concluded that there is significant potential in utilising such sources of data on a nationwide scale. Furthermore, a series of traffic prediction graph neural network models are conducted to compare MalTra to large-scale traffic datasets.

Keywords: graph neural networks, traffic management, big data, mobile data patterns

Procedia PDF Downloads 131
26471 The Effectiveness of Environmental Policy Instruments for Promoting Renewable Energy Consumption: Command-and-Control Policies versus Market-Based Policies

Authors: Mahmoud Hassan

Abstract:

Understanding the impact of market- and non-market-based environmental policy instruments on renewable energy consumption (REC) is crucial for the design and choice of policy packages. This study aims to empirically investigate the effect of environmental policy stringency index (EPS) and its components on REC in 27 OECD countries over the period from 1990 to 2015, and then use the results to identify what the appropriate environmental policy mix should look like. By relying on the two-step system GMM estimator, we provide evidence that increasing environmental policy stringency as a whole promotes renewable energy consumption in these 27 developed economies. Moreover, policymakers are able, through the market- and non-market-based environmental policy instruments, to increase the use of renewable energy. However, not all of these instruments are effective for achieving this goal. The results indicate that R&D subsidies and trading schemes have a positive and significant impact on REC, while taxes, feed-in tariff and emission standards have not a significant effect. Furthermore, R&D subsidies are more effective than trading schemes for stimulating the use of clean energy. These findings proved to be robust across the three alternative panel techniques used.

Keywords: environmental policy stringency, renewable energy consumption, two-step system-GMM estimation, linear dynamic panel data model

Procedia PDF Downloads 181
26470 LCA/CFD Studies of Artisanal Brick Manufacture in Mexico

Authors: H. A. Lopez-Aguilar, E. A. Huerta-Reynoso, J. A. Gomez, J. A. Duarte-Moller, A. Perez-Hernandez

Abstract:

Environmental performance of artisanal brick manufacture was studied by Lifecycle Assessment (LCA) methodology and Computational Fluid Dynamics (CFD) analysis in Mexico. The main objective of this paper is to evaluate the environmental impact during artisanal brick manufacture. LCA cradle-to-gate approach was complemented with CFD analysis to carry out an Environmental Impact Assessment (EIA). The lifecycle includes the stages of extraction, baking and transportation to the gate. The functional unit of this study was the production of a single brick in Chihuahua, Mexico and the impact categories studied were carcinogens, respiratory organics and inorganics, climate change radiation, ozone layer depletion, ecotoxicity, acidification/ eutrophication, land use, mineral use and fossil fuels. Laboratory techniques for fuel characterization, gas measurements in situ, and AP42 emission factors were employed in order to calculate gas emissions for inventory data. The results revealed that the categories with greater impacts are ecotoxicity and carcinogens. The CFD analysis is helpful in predicting the thermal diffusion and contaminants from a defined source. LCA-CFD synergy complemented the EIA and allowed us to identify the problem of thermal efficiency within the system.

Keywords: LCA, CFD, brick, artisanal

Procedia PDF Downloads 393
26469 Cut-Out Animation as an Technic and Development inside History Process

Authors: Armagan Gokcearslan

Abstract:

The art of animation has developed very rapidly from the aspects of script, sound and music, motion, character design, techniques being used and technological tools being developed since the first years until today. Technical variety attracts a particular attention in the art of animation. Being perceived as a kind of illusion in the beginning; animations commonly used the Flash Sketch technique. Animations artists using the Flash Sketch technique created scenes by drawing them on a blackboard with chalk. The Flash Sketch technique was used by primary animation artists like Emile Cohl, Winsor McCay ande Blackton. And then tools like Magical Lantern, Thaumatrope, Phenakisticope, and Zeotrap were developed and started to be used intensely in the first years of the art of animation. Today, on the other hand, the art of animation is affected by developments in the computer technology. It is possible to create three-dimensional and two-dimensional animations with the help of various computer software. Cut-out technique is among the important techniques being used in the art of animation. Cut-out animation technique is based on the art of paper cutting. Examining cut-out animations; it is observed that they technically resemble the art of paper cutting. The art of paper cutting has a rooted history. It is possible to see the oldest samples of paper cutting in the People’s Republic of China in the period after the 2. century B.C. when the Chinese invented paper. The most popular artist using the cut-out animation technique is the German artist Lotte Reiniger. This study titled “Cut-out Animation as a Technic and Development Inside History Process” will embrace the art of paper cutting, the relationship between the art of paper cutting and cut-out animation, its development within the historical process, animation artists producing artworks in this field, important cut-out animations, and their technical properties.

Keywords: cut-out, paper art, animation, technic

Procedia PDF Downloads 276
26468 Investigation of Delivery of Triple Play Services

Authors: Paramjit Mahey, Monica Sharma, Jasbinder Singh

Abstract:

Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.

Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT

Procedia PDF Downloads 541
26467 Development of DNA Fingerprints in Selected Medicinal Plants of India

Authors: V. Verma, Hazi Raja

Abstract:

Conventionally, morphological descriptors are routinely used for establishing the identity of varieties. But these morphological descriptors suffer from many drawbacks such as influence of environment on trait expression, epistatic interactions, pleiotrophic effects etc. Furthermore, the paucity of a sufficient number of these descriptors for unequivocal identification of increasing number of reference collection varieties enforces to look for alternatives. Therefore, DNA based finger-print based techniques were selected to define the systematic position of the selected medicinal plants like Plumbago zeylanica, Desmodium gangeticum, Uraria picta. DNA fingerprinting of herbal plants can be useful in authenticating the various claims of medical uses related to the plants, in germplasm characterization and conservation. In plants it has not only helped in identifying species but also in defining a new realm in plant genomics, plant breeding and in conserving the biodiversity. With world paving way for developments in biotechnology, DNA fingerprinting promises a very powerful tool in our future endeavors. Data will be presented on the development of microsatellite markers (SSR) used to fingerprint, characterize, and assess genetic diversity among 12 accessions of both Plumbago zeylanica, 4 accessions of Desmodium gengaticum, 4 accessions of Uraria Picta.

Keywords: Plumbago zeylanica, Desmodium gangeticum, Uraria picta, microsaetllite markers

Procedia PDF Downloads 216
26466 Markowitz and Implementation of a Multi-Objective Evolutionary Technique Applied to the Colombia Stock Exchange (2009-2015)

Authors: Feijoo E. Colomine Duran, Carlos E. Peñaloza Corredor

Abstract:

There modeling component selection financial investment (Portfolio) a variety of problems that can be addressed with optimization techniques under evolutionary schemes. For his feature, the problem of selection of investment components of a dichotomous relationship between two elements that are opposed: The Portfolio Performance and Risk presented by choosing it. This relationship was modeled by Markowitz through a media problem (Performance) - variance (risk), ie must Maximize Performance and Minimize Risk. This research included the study and implementation of multi-objective evolutionary techniques to solve these problems, taking as experimental framework financial market equities Colombia Stock Exchange between 2009-2015. Comparisons three multiobjective evolutionary algorithms, namely the Nondominated Sorting Genetic Algorithm II (NSGA-II), the Strength Pareto Evolutionary Algorithm 2 (SPEA2) and Indicator-Based Selection in Multiobjective Search (IBEA) were performed using two measures well known performance: The Hypervolume indicator and R_2 indicator, also it became a nonparametric statistical analysis and the Wilcoxon rank-sum test. The comparative analysis also includes an evaluation of the financial efficiency of the investment portfolio chosen by the implementation of various algorithms through the Sharpe ratio. It is shown that the portfolio provided by the implementation of the algorithms mentioned above is very well located between the different stock indices provided by the Colombia Stock Exchange.

Keywords: finance, optimization, portfolio, Markowitz, evolutionary algorithms

Procedia PDF Downloads 302
26465 Nazca: A Context-Based Matching Method for Searching Heterogeneous Structures

Authors: Karine B. de Oliveira, Carina F. Dorneles

Abstract:

The structure level matching is the problem of combining elements of a structure, which can be represented as entities, classes, XML elements, web forms, and so on. This is a challenge due to large number of distinct representations of semantically similar structures. This paper describes a structure-based matching method applied to search for different representations in data sources, considering the similarity between elements of two structures and the data source context. Using real data sources, we have conducted an experimental study comparing our approach with our baseline implementation and with another important schema matching approach. We demonstrate that our proposal reaches higher precision than the baseline.

Keywords: context, data source, index, matching, search, similarity, structure

Procedia PDF Downloads 364
26464 Smart Laboratory for Clean Rivers in India - An Indo-Danish Collaboration

Authors: Nikhilesh Singh, Shishir Gaur, Anitha K. Sharma

Abstract:

Climate change and anthropogenic stress have severely affected ecosystems all over the globe. Indian rivers are under immense pressure, facing challenges like pollution, encroachment, extreme fluctuation in the flow regime, local ignorance and lack of coordination between stakeholders. To counter all these issues a holistic river rejuvenation plan is needed that tests, innovates and implements sustainable solutions in the river space for sustainable river management. Smart Laboratory for Clean Rivers (SLCR) an Indo-Danish collaboration project, provides a living lab setup that brings all the stakeholders (government agencies, academic and industrial partners and locals) together to engage, learn, co-creating and experiment for a clean and sustainable river that last for ages. Just like every mega project requires piloting, SLCR has opted for a small catchment of the Varuna River, located in the Middle Ganga Basin in India. Considering the integrated approach of river rejuvenation, SLCR embraces various techniques and upgrades for rejuvenation. Likely, maintaining flow in the channel in the lean period, Managed Aquifer Recharge (MAR) is a proven technology. In SLCR, Floa-TEM high-resolution lithological data is used in MAR models to have better decision-making for MAR structures nearby of the river to enhance the river aquifer exchanges. Furthermore, the concerns of quality in the river are a big issue. A city like Varanasi which is located in the last stretch of the river, generates almost 260 MLD of domestic waste in the catchment. The existing STP system is working at full efficiency. Instead of installing a new STP for the future, SLCR is upgrading those STPs with an IoT-based system that optimizes according to the nutrient load and energy consumption. SLCR also advocate nature-based solutions like a reed bed for the drains having less flow. In search of micropollutants, SLCR uses fingerprint analysis involves employing advanced techniques like chromatography and mass spectrometry to create unique chemical profiles. However, rejuvenation attempts cannot be possible without involving the entire catchment. A holistic water management plan that includes storm management, water harvesting structure to efficiently manage the flow of water in the catchment and installation of several buffer zones to restrict pollutants entering into the river. Similarly, carbon (emission and sequestration) is also an important parameter for the catchment. By adopting eco-friendly practices, a ripple effect positively influences the catchment's water dynamics and aids in the revival of river systems. SLCR has adopted 4 villages to make them carbon-neutral and water-positive. Moreover, for the 24×7 monitoring of the river and the catchment, robust IoT devices are going to be installed to observe, river and groundwater quality, groundwater level, river discharge and carbon emission in the catchment and ultimately provide fuel for the data analytics. In its completion, SLCR will provide a river restoration manual, which will strategise the detailed plan and way of implementation for stakeholders. Lastly, the entire process is planned in such a way that will be managed by local administrations and stakeholders equipped with capacity-building activity. This holistic approach makes SLCR unique in the field of river rejuvenation.

Keywords: sustainable management, holistic approach, living lab, integrated river management

Procedia PDF Downloads 60
26463 Spatially Random Sampling for Retail Food Risk Factors Study

Authors: Guilan Huang

Abstract:

In 2013 and 2014, the U.S. Food and Drug Administration (FDA) collected data from selected fast food restaurants and full service restaurants for tracking changes in the occurrence of foodborne illness risk factors. This paper discussed how we customized spatial random sampling method by considering financial position and availability of FDA resources, and how we enriched restaurants data with location. Location information of restaurants provides opportunity for quantitatively determining random sampling within non-government units (e.g.: 240 kilometers around each data-collector). Spatial analysis also could optimize data-collectors’ work plans and resource allocation. Spatial analytic and processing platform helped us handling the spatial random sampling challenges. Our method fits in FDA’s ability to pinpoint features of foodservice establishments, and reduced both time and expense on data collection.

Keywords: geospatial technology, restaurant, retail food risk factor study, spatially random sampling

Procedia PDF Downloads 350
26462 Automatic MC/DC Test Data Generation from Software Module Description

Authors: Sekou Kangoye, Alexis Todoskoff, Mihaela Barreau

Abstract:

Modified Condition/Decision Coverage (MC/DC) is a structural coverage criterion that is highly recommended or required for safety-critical software coverage. Therefore, many testing standards include this criterion and require it to be satisfied at a particular level of testing (e.g. validation and unit levels). However, an important amount of time is needed to meet those requirements. In this paper we propose to automate MC/DC test data generation. Thus, we present an approach to automatically generate MC/DC test data, from software module description written over a dedicated language. We introduce a new merging approach that provides high MC/DC coverage for the description, with only a little number of test cases.

Keywords: domain-specific language, MC/DC, test data generation, safety-critical software coverage

Procedia PDF Downloads 441
26461 Blockchain-Based Approach on Security Enhancement of Distributed System in Healthcare Sector

Authors: Loong Qing Zhe, Foo Jing Heng

Abstract:

A variety of data files are now available on the internet due to the advancement of technology across the globe today. As more and more data are being uploaded on the internet, people are becoming more concerned that their private data, particularly medical health records, are being compromised and sold to others for money. Hence, the accessibility and confidentiality of patients' medical records have to be protected through electronic means. Blockchain technology is introduced to offer patients security against adversaries or unauthorised parties. In the blockchain network, only authorised personnel or organisations that have been validated as nodes may share information and data. For any change within the network, including adding a new block or modifying existing information about the block, a majority of two-thirds of the vote is required to confirm its legitimacy. Additionally, a consortium permission blockchain will connect all the entities within the same community. Consequently, all medical data in the network can be safely shared with all authorised entities. Also, synchronization can be performed within the cloud since the data is real-time. This paper discusses an efficient method for storing and sharing electronic health records (EHRs). It also examines the framework of roles within the blockchain and proposes a new approach to maintain EHRs with keyword indexes to search for patients' medical records while ensuring data privacy.

Keywords: healthcare sectors, distributed system, blockchain, electronic health records (EHR)

Procedia PDF Downloads 191
26460 XAI Implemented Prognostic Framework: Condition Monitoring and Alert System Based on RUL and Sensory Data

Authors: Faruk Ozdemir, Roy Kalawsky, Peter Hubbard

Abstract:

Accurate estimation of RUL provides a basis for effective predictive maintenance, reducing unexpected downtime for industrial equipment. However, while models such as the Random Forest have effective predictive capabilities, they are the so-called ‘black box’ models, where interpretability is at a threshold to make critical diagnostic decisions involved in industries related to aviation. The purpose of this work is to present a prognostic framework that embeds Explainable Artificial Intelligence (XAI) techniques in order to provide essential transparency in Machine Learning methods' decision-making mechanisms based on sensor data, with the objective of procuring actionable insights for the aviation industry. Sensor readings have been gathered from critical equipment such as turbofan jet engine and landing gear, and the prediction of the RUL is done by a Random Forest model. It involves steps such as data gathering, feature engineering, model training, and evaluation. These critical components’ datasets are independently trained and evaluated by the models. While suitable predictions are served, their performance metrics are reasonably good; such complex models, however obscure reasoning for the predictions made by them and may even undermine the confidence of the decision-maker or the maintenance teams. This is followed by global explanations using SHAP and local explanations using LIME in the second phase to bridge the gap in reliability within industrial contexts. These tools analyze model decisions, highlighting feature importance and explaining how each input variable affects the output. This dual approach offers a general comprehension of the overall model behavior and detailed insight into specific predictions. The proposed framework, in its third component, incorporates the techniques of causal analysis in the form of Granger causality tests in order to move beyond correlation toward causation. This will not only allow the model to predict failures but also present reasons, from the key sensor features linked to possible failure mechanisms to relevant personnel. The causality between sensor behaviors and equipment failures creates much value for maintenance teams due to better root cause identification and effective preventive measures. This step contributes to the system being more explainable. Surrogate Several simple models, including Decision Trees and Linear Models, can be used in yet another stage to approximately represent the complex Random Forest model. These simpler models act as backups, replicating important jobs of the original model's behavior. If the feature explanations obtained from the surrogate model are cross-validated with the primary model, the insights derived would be more reliable and provide an intuitive sense of how the input variables affect the predictions. We then create an iterative explainable feedback loop, where the knowledge learned from the explainability methods feeds back into the training of the models. This feeds into a cycle of continuous improvement both in model accuracy and interpretability over time. By systematically integrating new findings, the model is expected to adapt to changed conditions and further develop its prognosis capability. These components are then presented to the decision-makers through the development of a fully transparent condition monitoring and alert system. The system provides a holistic tool for maintenance operations by leveraging RUL predictions, feature importance scores, persistent sensor threshold values, and autonomous alert mechanisms. Since the system will provide explanations for the predictions given, along with active alerts, the maintenance personnel can make informed decisions on their end regarding correct interventions to extend the life of the critical machinery.

Keywords: predictive maintenance, explainable artificial intelligence, prognostic, RUL, machine learning, turbofan engines, C-MAPSS dataset

Procedia PDF Downloads 7
26459 Demographic Factors Influencing Employees’ Salary Expectations and Labor Turnover

Authors: M. Osipova

Abstract:

Thanks to informational technologies development every sphere of economics is becoming more and more data-centralized as people are generating huge datasets containing information on any aspect of their life. Applying research of such data to human resources management allows getting scarce statistics on labor market state including salary expectations and potential employees’ typical career behavior, and this information can become a reliable basis for management decisions. The following article presents results of career behavior research based on freely accessible resume data. Information used for study is much wider than one usually uses in human resources surveys. That is why there is enough data for statistically significant results even for subgroups analysis.

Keywords: human resources management, salary expectations, statistics, turnover

Procedia PDF Downloads 349
26458 Beer Brand Commercials and Gender Representation in Nigeria: Contextualization's of Selected Television and YouTube Visuals of the 2010s and 2020s

Authors: Theresa Belema Chris-Biriowu

Abstract:

The change in trends in relation to gender representation in beer brand commercials was the thrust of the study. The study investigated how beer brand commercials reflect societal realities in their portrayals of gender roles within the span of a decade. The major objective of the study was to find out how gender was contextualized in selected beer brand commercials that both air on Nigerian television and stream on YouTube. The study was anchored on the muted group theory. The population of the study was in two streams: the total number of beer beverages that are produced by the eleven breweries in Nigeria and the registered advertising agencies in Lagos, Nigeria. The sample size was also two-pronged: the purposive selection of beer brands that have their commercials on television and YouTube and the purposive selection of an ad agency that has produced running commercials for beer brands within the period between 2010s and 2020s. They adopted visual framing analysis and narrative analysis research techniques. The study qualitatively analyzed the contents of beer brand commercials and conducted an interview with the management of the ad agency for data collection. The data was presented in images and words. The findings showed that females are underrepresented and misrepresented in the beer brand commercials and that the beer brands are not producing commercials that adequately reflect the realities of present times. It was also found that very little has changed in the ad industry between the periods studied, and commercial screenplays are not written with a specific aim to either target the female demographics or give them equal opportunities to thrive in the beer economy. The study concluded that the gender gap in beer commercials subsists and translates to gender discrimination, especially since it is established that females are also stakeholders in the beer economy. The study recommends that beer brands should produce commercials that appeal to their audience irrespective of gender, reflect contemporary realities, and give all genders equal opportunities to thrive in the increasingly competitive industry.

Keywords: beer brands, commercials, gender representation, visuals, television, YouTube

Procedia PDF Downloads 37