Search results for: computer- supported collaborative learning
7923 Applications of Evolutionary Optimization Methods in Reinforcement Learning
Authors: Rahul Paul, Kedar Nath Das
Abstract:
The paradigm of Reinforcement Learning (RL) has become prominent in training intelligent agents to make decisions in environments that are both dynamic and uncertain. The primary objective of RL is to optimize the policy of an agent in order to maximize the cumulative reward it receives throughout a given period. Nevertheless, the process of optimization presents notable difficulties as a result of the inherent trade-off between exploration and exploitation, the presence of extensive state-action spaces, and the intricate nature of the dynamics involved. Evolutionary Optimization Methods (EOMs) have garnered considerable attention as a supplementary approach to tackle these challenges, providing distinct capabilities for optimizing RL policies and value functions. The ongoing advancement of research in both RL and EOMs presents an opportunity for significant advancements in autonomous decision-making systems. The convergence of these two fields has the potential to have a transformative impact on various domains of artificial intelligence (AI) applications. This article highlights the considerable influence of EOMs in enhancing the capabilities of RL. Taking advantage of evolutionary principles enables RL algorithms to effectively traverse extensive action spaces and discover optimal solutions within intricate environments. Moreover, this paper emphasizes the practical implementations of EOMs in the field of RL, specifically in areas such as robotic control, autonomous systems, inventory problems, and multi-agent scenarios. The article highlights the utilization of EOMs in facilitating RL agents to effectively adapt, evolve, and uncover proficient strategies for complex tasks that may pose challenges for conventional RL approaches.Keywords: machine learning, reinforcement learning, loss function, optimization techniques, evolutionary optimization methods
Procedia PDF Downloads 847922 Serious Game as a Performance Assessment Tool that Reduces Examination Anxiety
Authors: R. Ajith, Kamal Bijlani
Abstract:
Over the past few years, tremendous evolutions have happened in the educational discipline. Serious game, which is regarded as one of the most important inventions is being widely for learning purposes. Serious games can be used to negate the various drawbacks that the current evaluation and assessment methods have, like examination anxiety and the lack of proper feedback given to the learners. This paper proposes serious game as a tool for conducting evaluations and assessments. The examination anxiety faced by learners can be reduced, as they are provided with a game as an examination. The serious game also tracks learner’s actions, records them and provide feedback based on the predefined set of actions according to the course objectives. The appropriate feedback given to the learner will help in developmental activities in the learning process.Keywords: serious games, evaluation, performance assessment, examination anxiety, performance feedback
Procedia PDF Downloads 5967921 Predictive Analysis of the Stock Price Market Trends with Deep Learning
Authors: Suraj Mehrotra
Abstract:
The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.Keywords: machine learning, testing set, artificial intelligence, stock analysis
Procedia PDF Downloads 1017920 Fine-Tuned Transformers for Translating Multi-Dialect Texts to Modern Standard Arabic
Authors: Tahar Alimi, Rahma Boujebane, Wiem Derouich, Lamia Hadrich Belguith
Abstract:
Machine translation task of low-resourced languages such as Arabic is a challenging task. Despite the appearance of sophisticated models based on the latest deep learning techniques, namely the transfer learning and transformers, all models prove incapable of carrying out an acceptable translation, which includes Arabic Dialects (AD), because they do not have official status. In this paper, we present a machine translation model designed to translate Arabic multidialectal content into Modern Standard Arabic (MSA), leveraging both new and existing parallel resources. The latter achieved the best results for both Levantine and Maghrebi dialects with a BLEU score of 64.99.Keywords: Arabic translation, dialect translation, fine-tune, MSA translation, transformer, translation
Procedia PDF Downloads 697919 Dilemma between the Education-Area and the Working-Area in Socialization of Teaching Profession: Scrutiny on the Beginning Teachers through the Relationality of the Regulations and Institutions in Turkey Case
Authors: Dilek Dede
Abstract:
This study aims at scrutinized the dilemma between education place and working place with professional socialization dimension over the beginning teachers in Turkey is to be found the solution for the dilemma in Turkey. The research question is that how can be explained the gap between education place and working place for beginning teachers in Turkey. That expected to contribute to literature with the solutions for shorting the gap between working area and education area of the teaching profession in Turkey case. The study is constructed in two section. Firstly, socialization of the teaching profession and teaching modules have been discussed through the profession, education, working place indicators. In the second section, Secondly, two educational specialists from Turkey has been interviewed about their observation on trainee teachers compelling to participate the class for candidate teachers after university grade. Then, the dilemma between education area and working area of the teaching profession has been detected by of semi-structured and in-depth interviews, the literature on the relationality of institutions and regulation is discussed. The following outcomes have been accessed in accordance with the data set and literature linkage axis: Firstly, teachers coming from the distinctive programmes as an educational background. Hence, teachers who pertain to distinctive cultures work in the same environment. That cause cultural conflicts and complication of socialization of profession. Secondly, the insufficient partnership between schools and universities besides, the education classes lead to a struggle of culture among these two institutions. Thirdly, the education classes are designed as bureaucratic form instead of coalescence between head teachers and trainee teachers around a common culture. That become deep the dilemma. In conclusion, on condition that applied-oriented education that advocates in-service learning is promoted and this programme is supported with well-structured the in-service training through the partnership of universities and schools, the gap between the working-area and education-area might be shortened.Keywords: beginning teachers, construction of a common, social mobilization in the teaching profession, teacher training institution, the relationality of the regulations and institutions
Procedia PDF Downloads 1677918 Integrating Technology into Foreign Language Teaching: A Closer Look at Arabic Language Instruction at the Australian National University
Authors: Kinda Alsamara
Abstract:
Foreign language education is a complex endeavor that often presents educators with a range of challenges and difficulties. This study shed light on the specific challenges encountered in the context of teaching Arabic as a foreign language at the Australian National University (ANU). Drawing from real-world experiences and insights, we explore the multifaceted nature of these challenges and discuss strategies that educators have employed to address them. The challenges in teaching the Arabic language encompass various dimensions, including linguistic intricacies, cultural nuances, and diverse learner backgrounds. The complex Arabic script, grammatical structures, and pronunciation patterns pose unique obstacles for learners. Moreover, the cultural context embedded within the language demands a nuanced understanding of cultural norms and practices. The diverse backgrounds of learners further contribute to the challenge of tailoring instruction to meet individual needs and proficiency levels. This study also underscores the importance of technology in tackling these challenges. Technological tools and platforms offer innovative solutions to enhance language acquisition and engagement. Online resources, interactive applications, and multimedia content can provide learners with immersive experiences, aiding in overcoming barriers posed by traditional teaching methods. Furthermore, this study addresses the role of instructors in mitigating challenges. Educators often find themselves adapting teaching approaches to accommodate different learning styles, abilities, and motivations. Establishing a supportive learning environment and fostering a sense of community can contribute significantly to overcoming challenges related to learner diversity. In conclusion, this study provides a comprehensive overview of the challenges faced in teaching Arabic as a foreign language at ANU. By recognizing these challenges and embracing technological and pedagogical advancements, educators can create more effective and engaging learning experiences for students pursuing Arabic language proficiency.Keywords: Arabic, Arabic online, blended learning, teaching and learning, Arabic language, educational aids, technology
Procedia PDF Downloads 667917 Analysis and Prediction of COVID-19 by Using Recurrent LSTM Neural Network Model in Machine Learning
Authors: Grienggrai Rajchakit
Abstract:
As we all know that coronavirus is announced as a pandemic in the world by WHO. It is speeded all over the world with few days of time. To control this spreading, every citizen maintains social distance and self-preventive measures are the best strategies. As of now, many researchers and scientists are continuing their research in finding out the exact vaccine. The machine learning model finds that the coronavirus disease behaves in an exponential manner. To abolish the consequence of this pandemic, an efficient step should be taken to analyze this disease. In this paper, a recurrent neural network model is chosen to predict the number of active cases in a particular state. To make this prediction of active cases, we need a database. The database of COVID-19 is downloaded from the KAGGLE website and is analyzed by applying a recurrent LSTM neural network with univariant features to predict the number of active cases of patients suffering from the corona virus. The downloaded database is divided into training and testing the chosen neural network model. The model is trained with the training data set and tested with a testing dataset to predict the number of active cases in a particular state; here, we have concentrated on Andhra Pradesh state.Keywords: COVID-19, coronavirus, KAGGLE, LSTM neural network, machine learning
Procedia PDF Downloads 1667916 Child-Friendly Digital Storytelling to Promote Young Learners' Critical Thinking in English Learning
Authors: Setyarini Sri, Nursalim Agus
Abstract:
Integrating critical thinking and digital based learning is one of demands in teaching English in 21st century. Child-friendly digital storytelling (CFDS) is an innovative learning model to promote young learners’ critical thinking. Therefore, this study aims to (1) investigate how child-friendly digital storytelling is implemented to promote young learners’ critical thinking in speaking English; (2) find out the benefits gained by the students in their learning based on CFDS. Classroom Action Research (CAR) took place in two cycles in which each of the cycle covered four phases namely: Planning, Acting, Observing, and Evaluating. Three classes of seventh graders were selected as the subjects of this study. Data were collected through observation, interview with some selected students as respondents, and document analysis in the form individual recorded storytelling. Sentences, phrases, words found in the transcribed data were identified and categorized based on Bloom taxonomy. The findings from the first cycle showed that the students seemed to speak critically that can be seen from the way they understood the story and related the story to their real life. Meanwhile, the result investigated from the second cycle likely indicated their higher level of critical thinking since the students spoke in English critically through comparing, questioning, analyzing, and evaluating the story by giving arguments, opinions, and comments. Such higher levels of critical thinking were also found in the students’ final project of individual recorded digital story. It is elaborated from the students’ statements in the interview who claimed CFDS offered opportunity to the students to promote their critical thinking because they comprehended the story deeply as they experienced in their real life. This learning model created good learning atmosphere and engaged the students directly so that they looked confident to retell the story in various perspectives. In term of the benefits of child-friendly digital storytelling, the students found it beneficial for some enjoyable classroom activities through watching beautiful and colorful pictures, listening to clear and good sounds, appealing moving motion and emotionally they were involved in that story. In the interview, the students also stated that child-friendly digital storytelling eased them to understand the meaning of the story as they were motivated and enthusiastic to speak in English critically.Keywords: critical thinking, child-friendly digital storytelling, English speaking, promoting, young learners
Procedia PDF Downloads 2847915 The Impact of Low-Systematization Level in Physical Education in Primary School
Authors: Wu Hong, Pan Cuilian, Wu Panzifan
Abstract:
The student’s attention during the class is one of the most important indicators for the learning evaluation; the level of attention is directly related to the results of primary education. In recent years, extensive research has been conducted across China on improving primary school students’ attention during class. During the specific teaching activities in primary school, students have the characteristics of short concentration periods, high probability of distraction, and difficulty in long-term immersive learning. In physical education teaching, where there are mostly outdoor activities, this characteristic is particularly prominent due to the large changes in the environment and the strong sense of freshness among students. It is imperative to overcome this characteristic in a targeted manner, improve the student’s experience in the course, and raise the degree of systematization. There are many ways to improve the systematization of teaching and learning, but most of them lack quantitative indicators, which makes it difficult to evaluate the improvements before and after changing the teaching methods. Based on the situation above, we use the case analysis method, combined with a literature review, to study the negative impact of low systematization levels in primary school physical education teaching, put forward targeted improvement suggestions, and make a quantitative evaluation of the method change.Keywords: attention, adolescent, evaluation, systematism, training-method
Procedia PDF Downloads 517914 Machine Learning-Based Techniques for Detecting and Mitigating Cyber-attacks on Automatic Generation Control in Smart Grids
Authors: Sami M. Alshareef
Abstract:
The rapid growth of smart grid technology has brought significant advancements to the power industry. However, with the increasing interconnectivity and reliance on information and communication technologies, smart grids have become vulnerable to cyber-attacks, posing significant threats to the reliable operation of power systems. Among the critical components of smart grids, the Automatic Generation Control (AGC) system plays a vital role in maintaining the balance between generation and load demand. Therefore, protecting the AGC system from cyber threats is of paramount importance to maintain grid stability and prevent disruptions. Traditional security measures often fall short in addressing sophisticated and evolving cyber threats, necessitating the exploration of innovative approaches. Machine learning, with its ability to analyze vast amounts of data and learn patterns, has emerged as a promising solution to enhance AGC system security. Therefore, this research proposal aims to address the challenges associated with detecting and mitigating cyber-attacks on AGC in smart grids by leveraging machine learning techniques on automatic generation control of two-area power systems. By utilizing historical data, the proposed system will learn the normal behavior patterns of AGC and identify deviations caused by cyber-attacks. Once an attack is detected, appropriate mitigation strategies will be employed to safeguard the AGC system. The outcomes of this research will provide power system operators and administrators with valuable insights into the vulnerabilities of AGC systems in smart grids and offer practical solutions to enhance their cyber resilience.Keywords: machine learning, cyber-attacks, automatic generation control, smart grid
Procedia PDF Downloads 887913 Investigating Software Engineering Challenges in Game Development
Authors: Fawad Zaidi
Abstract:
This paper discusses a variety of challenges and solutions involved with creating computer games and the issues faced by the software engineers working in this field. This review further investigates the articles coverage of project scope and the problem of feature creep that appears to be inherent with game development. The paper tries to answer the following question: Is this a problem caused by a shortage, or bad software engineering practices, or is this outside the control of the software engineering component of the game production process?Keywords: software engineering, computer games, software applications, development
Procedia PDF Downloads 4807912 Bridging the Gap between Teaching and Learning: A 3-S (Strength, Stamina, Speed) Model for Medical Education
Authors: Mangala. Sadasivan, Mary Hughes, Bryan Kelly
Abstract:
Medical Education must focus on bridging the gap between teaching and learning when training pre-clinical year students in skills needed to keep up with medical knowledge and to meet the demands of health care in the future. The authors were interested in showing that a 3-S Model (building strength, developing stamina, and increasing speed) using a bridged curriculum design helps connect teaching and learning and improves students’ retention of basic science and clinical knowledge. The authors designed three learning modules using the 3-S Model within a systems course in a pre-clerkship medical curriculum. Each module focused on a bridge (concept map) designed by the instructor for specific content delivered to students in the course. This with-in-subjects design study included 304 registered MSU osteopathic medical students (3 campuses) ranked by quintile based on previous coursework. The instructors used the bridge to create self-directed learning exercises (building strength) to help students master basic science content. Students were video coached on how to complete assignments, and given pre-tests and post-tests designed to give them control to assess and identify gaps in learning and strengthen connections. The instructor who designed the modules also used video lectures to help students master clinical concepts and link them (building stamina) to previously learned material connected to the bridge. Boardstyle practice questions relevant to the modules were used to help students improve access (increasing speed) to stored content. Unit Examinations covering the content within modules and materials covered by other instructors teaching within the units served as outcome measures in this study. This data was then compared to each student’s performance on a final comprehensive exam and their COMLEX medical board examinations taken some time after the course. The authors used mean comparisons to evaluate students’ performances on module items (using 3-S Model) to non-module items on unit exams, final course exam and COMLEX medical board examination. The data shows that on average, students performed significantly better on module items compared to non-module items on exams 1 and 2. The module 3 exam was canceled due to a university shut down. The difference in mean scores (module verses non-module) items disappeared on the final comprehensive exam which was rescheduled once the university resumed session. Based on Quintile designation, the mean scores were higher for module items than non-module items and the difference in scores between items for Quintiles 1 and 2 were significantly better on exam 1 and the gap widened for all Quintile groups on exam 2 and disappeared in exam 3. Based on COMLEX performance, all students on average as a group, whether they Passed or Failed, performed better on Module items than non-module items in all three exams. The gap between scores of module items for students who passed COMLEX to those who failed was greater on Exam 1 (14.3) than on Exam 2 (7.5) and Exam 3 (10.2). Data shows the 3-S Model using a bridge effectively connects teaching and learningKeywords: bridging gap, medical education, teaching and learning, model of learning
Procedia PDF Downloads 667911 Decision-Making, Student Empathy, and Cold War Historical Events: A Case Study of Abstract Thinking through Content-Centered Learning
Authors: Jeffrey M. Byford
Abstract:
The conceptualized theory of decision making on historical events often does not conform to uniform beliefs among students. When presented the opportunity, many students have differing opinions and rationales associated with historical events and outcomes. The intent of this paper was to provide students with the economic, social and political dilemmas associated with the autonomy of East Berlin. Students ranked seven possible actions from the most to least acceptable. In addition, students were required to provide both positive and negative factors for each decision and relative ranking. Results from this activity suggested that while most students chose a financial action towards West Berlin, some students had trouble justifying their actions.Keywords: content-centered learning, cold war, Berlin, decision-making
Procedia PDF Downloads 4607910 Preliminary Results on a Maximum Mean Discrepancy Approach for Seizure Detection
Authors: Boumediene Hamzi, Turky N. AlOtaiby, Saleh AlShebeili, Arwa AlAnqary
Abstract:
We introduce a data-driven method for seizure detection drawing on recent progress in Machine Learning. The method is based on embedding probability measures in a high (or infinite) dimensional reproducing kernel Hilbert space (RKHS) where the Maximum Mean Discrepancy (MMD) is computed. The MMD is metric between probability measures that are computed as the difference between the means of probability measures after being embedded in an RKHS. Working in RKHS provides a convenient, general functional-analytical framework for theoretical understanding of data. We apply this approach to the problem of seizure detection.Keywords: kernel methods, maximum mean discrepancy, seizure detection, machine learning
Procedia PDF Downloads 2437909 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection
Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy
Abstract:
Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks
Procedia PDF Downloads 787908 A Service-Learning Experience in the Subject of Adult Nursing
Authors: Eva de Mingo-Fernández, Lourdes Rubio Rico, Carmen Ortega-Segura, Montserrat Querol-García, Raúl González-Jauregui
Abstract:
Today, one of the great challenges that the university faces is to get closer to society and transfer knowledge. The competency-based training approach favours a continuous interaction between practice and theory, which is why it is essential to establish real experiences with reflection and debate and to contrast them with personal and professional knowledge. Service-learning (SL) consists of an integration of academic learning with service in the community, which enables teachers to transfer knowledge with social value and students to be trained on the basis of experience of real needs and problems with the aim of solving them. SLE combines research, teaching, and social value knowledge transfer with the real social needs and problems of a community. Goal: The objective of this study was to design, implement, and evaluate a service-learning program in the subject of adult nursing for second-year nursing students. Methodology: After establishing collaboration with eight associations of people with different pathologies, the students were divided into eight groups, and each group was assigned an association. The groups were made up of 10-12 students. The associations willing to participate were for the following conditions: diabetes, multiple sclerosis, cancer, inflammatory bowel disease, fibromyalgia, heart, lung, and kidney diseases. The methodological design consisting of 5 activities was then applied. Three activities address personal and individual reflections, where the student initially describes what they think it is like to live with a certain disease. They then express their reflections resulting from an interview conducted by peers, in person or online, with a person living with this particular condition, and after sharing the results of their reflections with the rest of the group, they make an oral presentation in which they present their findings to the other students. This is followed by a service task in which the students collaborate in different activities of the association, and finally, a third individual reflection is carried out in which the students express their experience of collaboration. The evaluation of this activity is carried out by means of a rubric for both the reflections and the presentation. It should be noted that the oral presentation is evaluated both by the rest of the classmates and by the teachers. Results: The evaluation of the activity, given by the students, is 7.80/10, commenting that the experience is positive and brings them closer to the reality of the people and the area.Keywords: academic learning integration, knowledge transfer, service-learning, teaching methodology
Procedia PDF Downloads 767907 Neural Network-based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children
Authors: Budhvin T. Withana, Sulochana Rupasinghe
Abstract:
The problem of Dyslexia and Dysgraphia, two learning disabilities that affect reading and writing abilities, respectively, is a major concern for the educational system. Due to the complexity and uniqueness of the Sinhala language, these conditions are especially difficult for children who speak it. The traditional risk detection methods for Dyslexia and Dysgraphia frequently rely on subjective assessments, making it difficult to cover a wide range of risk detection and time-consuming. As a result, diagnoses may be delayed and opportunities for early intervention may be lost. The project was approached by developing a hybrid model that utilized various deep learning techniques for detecting risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16 and YOLOv8 were integrated to detect the handwriting issues, and their outputs were fed into an MLP model along with several other input data. The hyperparameters of the MLP model were fine-tuned using Grid Search CV, which allowed for the optimal values to be identified for the model. This approach proved to be effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention of these conditions. The Resnet50 model achieved an accuracy of 0.9804 on the training data and 0.9653 on the validation data. The VGG16 model achieved an accuracy of 0.9991 on the training data and 0.9891 on the validation data. The MLP model achieved an impressive training accuracy of 0.99918 and a testing accuracy of 0.99223, with a loss of 0.01371. These results demonstrate that the proposed hybrid model achieved a high level of accuracy in predicting the risk of Dyslexia and Dysgraphia.Keywords: neural networks, risk detection system, Dyslexia, Dysgraphia, deep learning, learning disabilities, data science
Procedia PDF Downloads 1267906 Managing Cognitive Load in Accounting: An Analysis of Three Instructional Designs in Financial Accounting
Authors: Seedwell Sithole
Abstract:
One of the persistent problems in accounting education is how to effectively support students’ learning. A promising technique to this issue is to investigate the extent that learning is determined by the design of instructional material. This study examines the academic performance of students using three instructional designs in financial accounting. Student’s performance scores and reported mental effort ratings were used to determine the instructional effectiveness. The findings of this study show that accounting students prefer graph and text designs that are integrated. The results suggest that spatially separated graph and text presentations in accounting should be reorganized to align with the requirements of human cognitive architecture.Keywords: accounting, cognitive load, education, instructional preferences, students
Procedia PDF Downloads 1607905 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue
Authors: Rachel Y. Zhang, Christopher K. Anderson
Abstract:
A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine
Procedia PDF Downloads 1377904 Using Indigenous Games to Demystify Probability Theorem in Ghanaian Classrooms: Mathematical Analysis of Ampe
Authors: Peter Akayuure, Michael Johnson Nabie
Abstract:
Similar to many colonized nations in the world, one indelible mark left by colonial masters after Ghana’s independence in 1957 has been the fact that many contexts used to teach statistics and probability concepts are often alien and do not resonate with the social domain of our indigenous Ghanaian child. This has seriously limited the understanding, discoveries, and applications of mathematics for national developments. With the recent curriculum demands of making the Ghanaian child mathematically literate, this qualitative study involved video recordings and mathematical analysis of play sessions of an indigenous girl game called Ampe with the aim to demystify the concepts in probability theorem, which is applied in mathematics related fields of study. The mathematical analysis shows that the game of Ampe, which is widely played by school girls in Ghana, is suitable for learning concepts of the probability theorems. It was also revealed that as a girl game, the use of Ampe provides good lessons to educators, textbook writers, and teachers to rethink about the selection of mathematics tasks and learning contexts that are sensitive to gender. As we undertake to transform teacher education and student learning, the use of indigenous games should be critically revisited.Keywords: Ampe, mathematical analysis, probability theorem, Ghanaian girl game
Procedia PDF Downloads 3757903 Computational Model of Human Cardiopulmonary System
Authors: Julian Thrash, Douglas Folk, Michael Ciracy, Audrey C. Tseng, Kristen M. Stromsodt, Amber Younggren, Christopher Maciolek
Abstract:
The cardiopulmonary system is comprised of the heart, lungs, and many dynamic feedback mechanisms that control its function based on a multitude of variables. The next generation of cardiopulmonary medical devices will involve adaptive control and smart pacing techniques. However, testing these smart devices on living systems may be unethical and exceedingly expensive. As a solution, a comprehensive computational model of the cardiopulmonary system was implemented in Simulink. The model contains over 240 state variables and over 100 equations previously described in a series of published articles. Simulink was chosen because of its ease of introducing machine learning elements. Initial results indicate that physiologically correct waveforms of pressures and volumes were obtained in the simulation. With the development of a comprehensive computational model, we hope to pioneer the future of predictive medicine by applying our research towards the initial stages of smart devices. After validation, we will introduce and train reinforcement learning agents using the cardiopulmonary model to assist in adaptive control system design. With our cardiopulmonary model, we will accelerate the design and testing of smart and adaptive medical devices to better serve those with cardiovascular disease.Keywords: adaptive control, cardiopulmonary, computational model, machine learning, predictive medicine
Procedia PDF Downloads 1867902 An Improved Convolution Deep Learning Model for Predicting Trip Mode Scheduling
Authors: Amin Nezarat, Naeime Seifadini
Abstract:
Trip mode selection is a behavioral characteristic of passengers with immense importance for travel demand analysis, transportation planning, and traffic management. Identification of trip mode distribution will allow transportation authorities to adopt appropriate strategies to reduce travel time, traffic and air pollution. The majority of existing trip mode inference models operate based on human selected features and traditional machine learning algorithms. However, human selected features are sensitive to changes in traffic and environmental conditions and susceptible to personal biases, which can make them inefficient. One way to overcome these problems is to use neural networks capable of extracting high-level features from raw input. In this study, the convolutional neural network (CNN) architecture is used to predict the trip mode distribution based on raw GPS trajectory data. The key innovation of this paper is the design of the layout of the input layer of CNN as well as normalization operation, in a way that is not only compatible with the CNN architecture but can also represent the fundamental features of motion including speed, acceleration, jerk, and Bearing rate. The highest prediction accuracy achieved with the proposed configuration for the convolutional neural network with batch normalization is 85.26%.Keywords: predicting, deep learning, neural network, urban trip
Procedia PDF Downloads 1427901 Reinforcement-Learning Based Handover Optimization for Cellular Unmanned Aerial Vehicles Connectivity
Authors: Mahmoud Almasri, Xavier Marjou, Fanny Parzysz
Abstract:
The demand for services provided by Unmanned Aerial Vehicles (UAVs) is increasing pervasively across several sectors including potential public safety, economic, and delivery services. As the number of applications using UAVs grows rapidly, more and more powerful, quality of service, and power efficient computing units are necessary. Recently, cellular technology draws more attention to connectivity that can ensure reliable and flexible communications services for UAVs. In cellular technology, flying with a high speed and altitude is subject to several key challenges, such as frequent handovers (HOs), high interference levels, connectivity coverage holes, etc. Additional HOs may lead to “ping-pong” between the UAVs and the serving cells resulting in a decrease of the quality of service and energy consumption. In order to optimize the number of HOs, we develop in this paper a Q-learning-based algorithm. While existing works focus on adjusting the number of HOs in a static network topology, we take into account the impact of cells deployment for three different simulation scenarios (Rural, Semi-rural and Urban areas). We also consider the impact of the decision distance, where the drone has the choice to make a switching decision on the number of HOs. Our results show that a Q-learning-based algorithm allows to significantly reduce the average number of HOs compared to a baseline case where the drone always selects the cell with the highest received signal. Moreover, we also propose which hyper-parameters have the largest impact on the number of HOs in the three tested environments, i.e. Rural, Semi-rural, or Urban.Keywords: drones connectivity, reinforcement learning, handovers optimization, decision distance
Procedia PDF Downloads 1167900 ICT Education: Digital History Learners
Authors: Lee Bih Ni, Elvis Fung
Abstract:
This article is to review and understand the new generation of students to understand their expectations and attitudes. There are a group of students on school projects, creative work, educational software and digital signal source, the use of social networking tools to communicate with friends and a part in the competition. Today's students have been described as the new millennium students. They use information and communication technology in a more creative and innovative at home than at school, because the information and communication technologies for different purposes, in the home, usually occur in school. They collaborate and communicate more effectively when they are at home. Most children enter school, they will bring about how to use information and communication technologies, some basic skills and some tips on how to use information and communication technology will provide a more advanced than most of the school's expectations. Many teachers can help students, however, still a lot of work, "tradition", without a computer, and did not see the "new social computing networks describe young people to learn and new ways of working life in the future", in the education system of the benefits of using a computer.Keywords: ICT education, digital history, new generation of students, benefits of using a computer
Procedia PDF Downloads 4097899 Effectively Improving Cognition, Behavior, and Attitude of Diabetes Inpatients through Nutritional Education
Authors: Han Chih Feng, Yi-Cheng Hou, Jing-Huei Wu
Abstract:
Diabetes is a chronic disease. Nutrition knowledge and skills enable individuals with type 2 diabetes to optimize metabolic self-management and quality of life. This research studies the effect of nutritional education on diabetes inpatients in terms of their cognition, behavior, and attitude. The participants are inpatients diagnosed with diabetes at Taipei Tzu Chi Hospital. A total of 103 participants, 58 male, and 45 females, enrolled in the research between January 2018 and July 2018. The research evaluates cognition, behavior, and attitude level before and after nutritional education conducted by dietitians. The result shows significant improvement in actual consumption (2.5 ± 1.4 vs 3.8 ± 0.7; p<.001), diet control motivation (2.7 ± 0.8 vs 3.4 ± 0.6; p<.001), correct nutrition concept (1.2± 0.4 vs 2.4 ± 0.5; p<.001), learning willingness (2.7± 0.9 vs 3.4 ± 0.6; p<.001), cognitive behaviors (1.4 ± 0.5 vs 2.9 ± 0.7; p<.001). AC sugar (278.5 ± 321.5 vs 152.2 ± 49.1; p<.001) and HbA1C (10.3 ± 2.6 vs 8.6 ± 1.9; p<.001) are significant improvement after nutritional education. After nutritional education, participants oral hypoglycemic agents increased from 16 (9.2%) to 33 (19.0%), insulin decreased from 75 (43.1%) to 68 (39.1%), and hypoglycemic drugs combined with insulin decreased from 83 (47.7%) to 73 (42.0%).Further analysis shows that female inpatients have significant improvement in diet control motivation (3.91 ± 0.85 vs 4.44 ± 0.59; p<0.000), correct nutrition concept (3.24± 0.48 vs 4.47± 0.51; p<0.000), learning willingness (3.89 ± 0.86 vs 4.44 ± 0.59; p<0.000) and cognitive behaviors (2.42 ± 0.58 vs 4.02 ± 0.69; p<0.000); male inpatients have significant improvement in actual food intake (4.41± 0.92 vs 3.97 ± 0.42; p<0.000), diet control motivation (3.62 ± 0.86 vs 4.29 ± 0.62; p<0.000), correct nutrition concept (3.26 ± 0.44 vs 4.36 ± 0.49; p<0.000), learning willingness (3.72± 0.93 vs 4.33± 0.63; p<0.000) and cognitive behaviors (2.45± 0.54 vs 4.03± 0.77; p<0.000). In conclusion, nutritional education proves effective, regardless of gender, in improving an inpatient’s cognition, behavior, and attitude toward diabetes self-management.Keywords: diabetes, nutrition education, actual consumption, diet control motivation, nutrition concept, learning willingness, cognitive behaviors
Procedia PDF Downloads 897898 The Next Generation’s Learning Ability, Memory, as Well as Cognitive Skills Is under the Influence of Paternal Physical Activity (An Intergenerational and Trans-Generational Effect): A Systematic Review and Meta-Analysis
Authors: Parvin Goli, Amirhosein Kefayat, Rezvan Goli
Abstract:
Background: It is well established that parents can influence their offspring's neurodevelopment. It is shown that paternal environment and lifestyle is beneficial for the progeny's fitness and might affect their metabolic mechanisms; however, the effects of paternal exercise on the brain in the offspring have not been explored in detail. Objective: This study aims to review the impact of paternal physical exercise on memory and learning, neuroplasticity, as well as DNA methylation levels in the off-spring's hippocampus. Study design: In this systematic review and meta-analysis, an electronic literature search was conducted in databases including PubMed, Scopus, and Web of Science. Eligible studies were those with an experimental design, including an exercise intervention arm, with the assessment of any type of memory function, learning ability, or any type of brain plasticity as the outcome measures. Standardized mean difference (SMD) and 95% confidence intervals (CI) were computed as effect size. Results: The systematic review revealed the important role of environmental enrichment in the behavioral development of the next generation. Also, offspring of exercised fathers displayed higher levels of memory ability and lower level of brain-derived neurotrophic factor. A significant effect of paternal exercise on the hippocampal volume was also reported in the few available studies. Conclusion: These results suggest an intergenerational effect of paternal physical activity on cognitive benefit, which may be associated with hippocampal epigenetic programming in offspring. However, the biological mechanisms of this modulation remain to be determined.Keywords: hippocampal plasticity, learning ability, memory, parental exercise
Procedia PDF Downloads 2147897 Cardiokey: A Binary and Multi-Class Machine Learning Approach to Identify Individuals Using Electrocardiographic Signals on Wearable Devices
Authors: S. Chami, J. Chauvin, T. Demarest, Stan Ng, M. Straus, W. Jahner
Abstract:
Biometrics tools such as fingerprint and iris are widely used in industry to protect critical assets. However, their vulnerability and lack of robustness raise several worries about the protection of highly critical assets. Biometrics based on Electrocardiographic (ECG) signals is a robust identification tool. However, most of the state-of-the-art techniques have worked on clinical signals, which are of high quality and less noisy, extracted from wearable devices like a smartwatch. In this paper, we are presenting a complete machine learning pipeline that identifies people using ECG extracted from an off-person device. An off-person device is a wearable device that is not used in a medical context such as a smartwatch. In addition, one of the main challenges of ECG biometrics is the variability of the ECG of different persons and different situations. To solve this issue, we proposed two different approaches: per person classifier, and one-for-all classifier. The first approach suggests making binary classifier to distinguish one person from others. The second approach suggests a multi-classifier that distinguishes the selected set of individuals from non-selected individuals (others). The preliminary results, the binary classifier obtained a performance 90% in terms of accuracy within a balanced data. The second approach has reported a log loss of 0.05 as a multi-class score.Keywords: biometrics, electrocardiographic, machine learning, signals processing
Procedia PDF Downloads 1457896 End-to-End Spanish-English Sequence Learning Translation Model
Authors: Vidhu Mitha Goutham, Ruma Mukherjee
Abstract:
The low availability of well-trained, unlimited, dynamic-access models for specific languages makes it hard for corporate users to adopt quick translation techniques and incorporate them into product solutions. As translation tasks increasingly require a dynamic sequence learning curve; stable, cost-free opensource models are scarce. We survey and compare current translation techniques and propose a modified sequence to sequence model repurposed with attention techniques. Sequence learning using an encoder-decoder model is now paving the path for higher precision levels in translation. Using a Convolutional Neural Network (CNN) encoder and a Recurrent Neural Network (RNN) decoder background, we use Fairseq tools to produce an end-to-end bilingually trained Spanish-English machine translation model including source language detection. We acquire competitive results using a duo-lingo-corpus trained model to provide for prospective, ready-made plug-in use for compound sentences and document translations. Our model serves a decent system for large, organizational data translation needs. While acknowledging its shortcomings and future scope, it also identifies itself as a well-optimized deep neural network model and solution.Keywords: attention, encoder-decoder, Fairseq, Seq2Seq, Spanish, translation
Procedia PDF Downloads 1807895 Effects of Repetitive Strain/Stress Injury on the Human Body
Authors: Mohd Abdullah
Abstract:
This review describes some of the effects of repetitive strain/stress injury (RSI) on the human body especially among computer professionals today that spend extended hours of prolonged sitting in front of a computer day in and day out. The review briefly introduces the main factors that contribute to an increase of RSI among such computer professionals. The review briefly discusses how the human spinal column and knees are mainly affected by the onset of RSI resulting in poor posture. The root and secondary causes and effects of RSI are reviewed. The importance and value of the various breathing techniques are reviewed in an attempt to alleviate some of the effects of RSI. The review concludes with a small sample of suggested office stretches and poses geared towards at reducing RSI follows in this review. Readers will learn about the effects of RSI, as well as ways to cope with it. A better understanding of coping strategies may lead to well-being and a healthier overall lifestyle. Ultimately, the investment of time to connect with oneself with the poses and the power of the breath would promote a well-being that is overall healthier thus resulting in a better ability to cope/manage life stresses.Keywords: health, wellness, repetitive, chairs
Procedia PDF Downloads 1087894 CyberSteer: Cyber-Human Approach for Safely Shaping Autonomous Robotic Behavior to Comply with Human Intention
Authors: Vinicius G. Goecks, Gregory M. Gremillion, William D. Nothwang
Abstract:
Modern approaches to train intelligent agents rely on prolonged training sessions, high amounts of input data, and multiple interactions with the environment. This restricts the application of these learning algorithms in robotics and real-world applications, in which there is low tolerance to inadequate actions, interactions are expensive, and real-time processing and action are required. This paper addresses this issue introducing CyberSteer, a novel approach to efficiently design intrinsic reward functions based on human intention to guide deep reinforcement learning agents with no environment-dependent rewards. CyberSteer uses non-expert human operators for initial demonstration of a given task or desired behavior. The trajectories collected are used to train a behavior cloning deep neural network that asynchronously runs in the background and suggests actions to the deep reinforcement learning module. An intrinsic reward is computed based on the similarity between actions suggested and taken by the deep reinforcement learning algorithm commanding the agent. This intrinsic reward can also be reshaped through additional human demonstration or critique. This approach removes the need for environment-dependent or hand-engineered rewards while still being able to safely shape the behavior of autonomous robotic agents, in this case, based on human intention. CyberSteer is tested in a high-fidelity unmanned aerial vehicle simulation environment, the Microsoft AirSim. The simulated aerial robot performs collision avoidance through a clustered forest environment using forward-looking depth sensing and roll, pitch, and yaw references angle commands to the flight controller. This approach shows that the behavior of robotic systems can be shaped in a reduced amount of time when guided by a non-expert human, who is only aware of the high-level goals of the task. Decreasing the amount of training time required and increasing safety during training maneuvers will allow for faster deployment of intelligent robotic agents in dynamic real-world applications.Keywords: human-robot interaction, intelligent robots, robot learning, semisupervised learning, unmanned aerial vehicles
Procedia PDF Downloads 264