Search results for: types of cooperatives
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5496

Search results for: types of cooperatives

2136 Fatty Acids and Inflammatory Protein Biomarkers in Freshly Frozen Plasma Samples from Patients with and without COVID-19

Authors: Alaa Hamed Habib

Abstract:

The Coronavirus disease 2019 (COVID-19) is a viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and associated with systemic inflammation. Inflammation is an important process that follows infection and facilitates the repair of damaged tissue. Polyunsaturated fatty acids play an important role in the inflammatory process. These lipids can target transcription factors to modulate gene expression and protein function. Here, we evaluated whether differences in basal levels of different types of biomarkers can be detected in freshly frozen plasma samples from patients with and without COVID19. Fatty acid methyl ester (FAME) analysis showed a decrease in arachidic acid and myristic acid, but an increase in caprylic acid, palmitic acid, and eicosenoic acid in the plasma of COVID-19 patients compared to non-COVID19 patients. Multiple chemokines, including IP-10, MCP-1, and MIP-1 beta, were increased in the COVID-19 group compared to the non-COVID-19 group. Similarly, cytokines including IL-1 alpha and IL-8, and cell adhesion and inflammatory response markers including ICAM-1 and E-selectin were greater in the plasma of COVID-19 patients compared to non-COVID-19 patients. A baseline signature of specific polyunsaturated fatty acids, cytokines, and chemokines present in the plasma after COVID-19 viral infection may serve as biomarkers that can be useful in various applications, including determination of the severity of infection, an indication of disease prognosis and consideration for therapeutic options.

Keywords: MARKS, COVID 19, UEVS NON COVIDS, kidneys, nanoparticles

Procedia PDF Downloads 7
2135 Mechanical Properties and Crack Extension Mechanism of Rock Contained Blocks Under Uniaxial Compression

Authors: Ruiyang Bi

Abstract:

Natural rock masses are cut into rock blocks of different shapes and sizes by intersecting joints. These rock blocks often determine the mechanical properties of the rock mass. In this study, fine sandstone cube specimens were produced, and three intersecting joint cracks were cut inside the specimen. Uniaxial compression tests were conducted using mechanical tests and numerical simulation methods to study the mechanical properties and crack propagation mechanism of triangular blocks within the rock. During the test, the mechanical strength, acoustic emission characteristics and strain field evolution of the specimen were analyzed. Discrete element software was used to study the expansion of microcracks during the specimen failure process, and the crack types were divided. The simulation results show that as the inclination angles of the three joints increase simultaneously, the mechanical strength of the specimen first decreases and then increases, and the crack type is mainly shear. As the inclination angle of a single joint increases, the strength of the specimen gradually decreases. When the inclination angles of the two joints increase at the same time, the strength of the specimen gradually decreases. The research results show that the stability of the rock mass is affected by the joint inclination angle and the size of the cut blocks. The greater the joint dip and block size, the more significant the development of micro-cracks in the rock mass, and the worse the stability.

Keywords: rock joints, uniaxial compression, crack extension, discrete element simulation

Procedia PDF Downloads 65
2134 Optimal Sequential Scheduling of Imperfect Maintenance Last Policy for a System Subject to Shocks

Authors: Yen-Luan Chen

Abstract:

Maintenance has a great impact on the capacity of production and on the quality of the products, and therefore, it deserves continuous improvement. Maintenance procedure done before a failure is called preventive maintenance (PM). Sequential PM, which specifies that a system should be maintained at a sequence of intervals with unequal lengths, is one of the commonly used PM policies. This article proposes a generalized sequential PM policy for a system subject to shocks with imperfect maintenance and random working time. The shocks arrive according to a non-homogeneous Poisson process (NHPP) with varied intensity function in each maintenance interval. As a shock occurs, the system suffers two types of failures with number-dependent probabilities: type-I (minor) failure, which is rectified by a minimal repair, and type-II (catastrophic) failure, which is removed by a corrective maintenance (CM). The imperfect maintenance is carried out to improve the system failure characteristic due to the altered shock process. The sequential preventive maintenance-last (PML) policy is defined as that the system is maintained before any CM occurs at a planned time Ti or at the completion of a working time in the i-th maintenance interval, whichever occurs last. At the N-th maintenance, the system is replaced rather than maintained. This article first takes up the sequential PML policy with random working time and imperfect maintenance in reliability engineering. The optimal preventive maintenance schedule that minimizes the mean cost rate of a replacement cycle is derived analytically and determined in terms of its existence and uniqueness. The proposed models provide a general framework for analyzing the maintenance policies in reliability theory.

Keywords: optimization, preventive maintenance, random working time, minimal repair, replacement, reliability

Procedia PDF Downloads 275
2133 A Comprehensive Study of Spread Models of Wildland Fires

Authors: Manavjit Singh Dhindsa, Ursula Das, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran

Abstract:

These days, wildland fires, also known as forest fires, are more prevalent than ever. Wildfires have major repercussions that affect ecosystems, communities, and the environment in several ways. Wildfires lead to habitat destruction and biodiversity loss, affecting ecosystems and causing soil erosion. They also contribute to poor air quality by releasing smoke and pollutants that pose health risks, especially for individuals with respiratory conditions. Wildfires can damage infrastructure, disrupt communities, and cause economic losses. The economic impact of firefighting efforts, combined with their direct effects on forestry and agriculture, causes significant financial difficulties for the areas impacted. This research explores different forest fire spread models and presents a comprehensive review of various techniques and methodologies used in the field. A forest fire spread model is a computational or mathematical representation that is used to simulate and predict the behavior of a forest fire. By applying scientific concepts and data from empirical studies, these models attempt to capture the intricate dynamics of how a fire spreads, taking into consideration a variety of factors like weather patterns, topography, fuel types, and environmental conditions. These models assist authorities in understanding and forecasting the potential trajectory and intensity of a wildfire. Emphasizing the need for a comprehensive understanding of wildfire dynamics, this research explores the approaches, assumptions, and findings derived from various models. By using a comparison approach, a critical analysis is provided by identifying patterns, strengths, and weaknesses among these models. The purpose of the survey is to further wildfire research and management techniques. Decision-makers, researchers, and practitioners can benefit from the useful insights that are provided by synthesizing established information. Fire spread models provide insights into potential fire behavior, facilitating authorities to make informed decisions about evacuation activities, allocating resources for fire-fighting efforts, and planning for preventive actions. Wildfire spread models are also useful in post-wildfire mitigation strategies as they help in assessing the fire's severity, determining high-risk regions for post-fire dangers, and forecasting soil erosion trends. The analysis highlights the importance of customized modeling approaches for various circumstances and promotes our understanding of the way forest fires spread. Some of the known models in this field are Rothermel’s wildland fuel model, FARSITE, WRF-SFIRE, FIRETEC, FlamMap, FSPro, cellular automata model, and others. The key characteristics that these models consider include weather (includes factors such as wind speed and direction), topography (includes factors like landscape elevation), and fuel availability (includes factors like types of vegetation) among other factors. The models discussed are physics-based, data-driven, or hybrid models, also utilizing ML techniques like attention-based neural networks to enhance the performance of the model. In order to lessen the destructive effects of forest fires, this initiative aims to promote the development of more precise prediction tools and effective management techniques. The survey expands its scope to address the practical needs of numerous stakeholders. Access to enhanced early warning systems enables decision-makers to take prompt action. Emergency responders benefit from improved resource allocation strategies, strengthening the efficacy of firefighting efforts.

Keywords: artificial intelligence, deep learning, forest fire management, fire risk assessment, fire simulation, machine learning, remote sensing, wildfire modeling

Procedia PDF Downloads 81
2132 Floristic Diversity, Composition and Environmental Correlates on the Arid, Coralline Islands of the Farasan Archipelago, Red SEA, Saudi Arabia

Authors: Khalid Al Mutairi, Mashhor Mansor, Magdy El-Bana, Asyraf Mansor, Saud AL-Rowaily

Abstract:

Urban expansion and the associated increase in anthropogenic pressures have led to a great loss of the Red Sea’s biodiversity. Floristic composition, diversity, and environmental controls were investigated for 210 relive's on twenty coral islands of Farasan in the Red Sea, Saudi Arabia. Multivariate statistical analyses for classification (Cluster Analysis), ordination (Detrended Correspondence Analysis (DCA), and Redundancy Analysis (RDA) were employed to identify vegetation types and their relevance to the underlying environmental gradients. A total of 191 flowering plants belonging to 53 families and 129 genera were recorded. Geophytes and chamaephytes were the main life forms in the saline habitats, whereas therophytes and hemicryptophytes dominated the sandy formations and coral rocks. The cluster analysis and DCA ordination identified twelve vegetation groups that linked to five main habitats with definite floristic composition and environmental characteristics. The constrained RDA with Monte Carlo permutation tests revealed that elevation and soil salinity were the main environmental factors explaining the vegetation distributions. These results indicate that the flora of the study archipelago represents a phytogeographical linkage between Africa and Saharo-Arabian landscape functional elements. These findings should guide conservation and management efforts to maintain species diversity, which is threatened by anthropogenic activities and invasion by the exotic invasive tree Prosopis juliflora (Sw.) DC.

Keywords: biodiversity, classification, conservation, ordination, Red Sea

Procedia PDF Downloads 343
2131 An Investigation of the Fracture Behavior of Model MgO-C Refractories Using the Discrete Element Method

Authors: Júlia Cristina Bonaldo, Christophe L. Martin, Martiniano Piccico, Keith Beale, Roop Kishore, Severine Romero-Baivier

Abstract:

Refractory composite materials employed in steel casting applications are prone to cracking and material damage because of the very high operating temperature (thermal shock) and mismatched properties of the constituent phases. The fracture behavior of a model MgO-C composite refractory is investigated to quantify and characterize its thermal shock resistance, employing a cold crushing test and Brazilian test with fractographic analysis. The discrete element method (DEM) is used to generate numerical refractory composites. The composite in DEM is represented by an assembly of bonded particle clusters forming perfectly spherical aggregates and single spherical particles. For the stresses to converge with a low standard deviation and a minimum number of particles to allow reasonable CPU calculation time, representative volume element (RVE) numerical packings are created with various numbers of particles. Key microscopic properties are calibrated sequentially by comparing stress-strain curves from crushing experimental data. Comparing simulations with experiments also allows for the evaluation of crack propagation, fracture energy, and strength. The crack propagation during Brazilian experimental tests is monitored with digital image correlation (DIC). Simulations and experiments reveal three distinct types of fracture. The crack may spread throughout the aggregate, at the aggregate-matrix interface, or throughout the matrix.

Keywords: refractory composite, fracture mechanics, crack propagation, DEM

Procedia PDF Downloads 81
2130 Response of Briquettes Application with Different Coating Materials on Yield and Quality of Cucumber [Cucumis sativus (L.)]

Authors: H. B. Torane, M. C. Kasture, S. S. Prabhudesai, P. B. Sanap, V. N. Palsande, J. J. Palkar

Abstract:

The present investigation entitled “Response of briquettes application with different coating materials on yield and quality of Cucumber [Cucumis sativus (L.)]” was conducted at Central Experiment Center, Wakawali during kharif season 2013. The field experiment was laid out in Factorial Randomized Block Design with three replicate. The four coating materials viz., Co – Non coating, C1 – Wax coating, C2 – Jaggary coating, and C3 – Tar coating was applied to Konkan Annapurna Briquette along with three sub treatments of application time i.e B1 – ½ at sowing, B2 - ½ at sowing and ½ at 30 days after sowing and B3 - 1/3 at sowing, 1/3 at 30 days after sowing and 1/3 at 60 days after sowing. It was observed that the application of tar coated Konkan Annapurna Briquettes (KAB) in three times @1/3 quantity of briquettes at sowing time, 1/3 quantity of briquettes at 30 days after sowing and 1/3 quantity of briquettes at 60 days after sowing was found promising to enhancing the cucumber fruit yield, higher vine length, number of fruits vine-1, girth of fruit, length of fruit. It was also observed that the quality of the cucumber fruit increased in terms of ascorbic acid. UB-Godavari forms of briquettes .i.e. are promising source of N, P2O5 and K2O fertilizers as compared to straight fertilizers for enhancing green cucumber fruit yield of Sheetal variety of cucumber in lateritic soil. Amongst the three types of coated briquettes, the tar coated briquettes application was found to be superior for increasing cucumber fruit yield applied in three times @1/3 quantity of briquettes at sowing time, 1/3 quantity of briquettes at 30 days after sowing and 1/3 quantity of briquettes at 60 days after sowing @ 5 briquettes per plant at an interval of 30 days after sowing.

Keywords: briquettes, coating, yield, tar, wax and quality

Procedia PDF Downloads 516
2129 Quality Approaches for Mass-Produced Fashion: A Study in Malaysian Garment Manufacturing

Authors: N. J. M. Yusof, T. Sabir, J. McLoughlin

Abstract:

Garment manufacturing industry involves sequential processes that are subjected to uncontrollable variations. The industry depends on the skill of labour in handling the varieties of fabrics and accessories, machines, and also a complicated sewing operation. Due to these reasons, garment manufacturers created systems to monitor and control the product’s quality regularly by conducting quality approaches to minimize variation. The aims of this research were to ascertain the quality approaches deployed by Malaysian garment manufacturers in three key areas-quality systems and tools; quality control and types of inspection; sampling procedures chosen for garment inspection. The focus of this research also aimed to distinguish quality approaches used by companies that supplied the finished garments to both domestic and international markets. The feedback from each of company’s representatives was obtained using the online survey, which comprised of five sections and 44 questions on the organizational profile and quality approaches used in the garment industry. The results revealed that almost all companies had established their own mechanism of process control by conducting a series of quality inspection for daily production either it was formally been set up or vice versa. Quality inspection was the predominant quality control activity in the garment manufacturing and the level of complexity of these activities was substantially dictated by the customers. AQL-based sampling was utilized by companies dealing with the export market, whilst almost all the companies that only concentrated on the domestic market were comfortable using their own sampling procedures for garment inspection. This research provides an insight into the implementation of quality approaches that were perceived as important and useful in the garment manufacturing sector, which is truly labour-intensive.

Keywords: garment manufacturing, quality approaches, quality control, inspection, Acceptance Quality Limit (AQL), sampling

Procedia PDF Downloads 444
2128 The Influence of Air Temperature Controls in Estimation of Air Temperature over Homogeneous Terrain

Authors: Fariza Yunus, Jasmee Jaafar, Zamalia Mahmud, Nurul Nisa’ Khairul Azmi, Nursalleh K. Chang, Nursalleh K. Chang

Abstract:

Variation of air temperature from one place to another is cause by air temperature controls. In general, the most important control of air temperature is elevation. Another significant independent variable in estimating air temperature is the location of meteorological stations. Distances to coastline and land use type are also contributed to significant variations in the air temperature. On the other hand, in homogeneous terrain direct interpolation of discrete points of air temperature work well to estimate air temperature values in un-sampled area. In this process the estimation is solely based on discrete points of air temperature. However, this study presents that air temperature controls also play significant roles in estimating air temperature over homogenous terrain of Peninsular Malaysia. An Inverse Distance Weighting (IDW) interpolation technique was adopted to generate continuous data of air temperature. This study compared two different datasets, observed mean monthly data of T, and estimation error of T–T’, where T’ estimated value from a multiple regression model. The multiple regression model considered eight independent variables of elevation, latitude, longitude, coastline, and four land use types of water bodies, forest, agriculture and build up areas, to represent the role of air temperature controls. Cross validation analysis was conducted to review accuracy of the estimation values. Final results show, estimation values of T–T’ produced lower errors for mean monthly mean air temperature over homogeneous terrain in Peninsular Malaysia.

Keywords: air temperature control, interpolation analysis, peninsular Malaysia, regression model, air temperature

Procedia PDF Downloads 374
2127 Parameters Identification of Granular Soils around PMT Test by Inverse Analysis

Authors: Younes Abed

Abstract:

The successful application of in-situ testing of soils heavily depends on development of interpretation methods of tests. The pressuremeter test simulates the expansion of a cylindrical cavity and because it has well defined boundary conditions, it is more unable to rigorous theoretical analysis (i. e. cavity expansion theory) then most other in-situ tests. In this article, and in order to make the identification process more convenient, we propose a relatively simple procedure which involves the numerical identification of some mechanical parameters of a granular soil, especially, the elastic modulus and the friction angle from a pressuremeter curve. The procedure, applied here to identify the parameters of generalised prager model associated to the Drucker & Prager criterion from a pressuremeter curve, is based on an inverse analysis approach, which consists of minimizing the function representing the difference between the experimental curve and the curve obtained by integrating the model along the loading path in in-situ testing. The numerical process implemented here is based on the established finite element program. We present a validation of the proposed approach by a database of tests on expansion of cylindrical cavity. This database consists of four types of tests; thick cylinder tests carried out on the Hostun RF sand, pressuremeter tests carried out on the Hostun sand, in-situ pressuremeter tests carried out at the site of Fos with marine self-boring pressuremeter and in-situ pressuremeter tests realized on the site of Labenne with Menard pressuremeter.

Keywords: granular soils, cavity expansion, pressuremeter test, finite element method, identification procedure

Procedia PDF Downloads 292
2126 Protein Extraction by Enzyme-Assisted Extraction followed by Alkaline Extraction from Red Seaweed Eucheuma denticulatum (Spinosum) Used in Carrageenan Production

Authors: Alireza Naseri, Susan L. Holdt, Charlotte Jacobsen

Abstract:

In 2014, the global amount of carrageenan production was 60,000 ton with a value of US$ 626 million. From this number, it can be estimated that the total dried seaweed consumption for this production was at least 300,000 ton/year. The protein content of these types of seaweed is 5 – 25%. If just half of this total amount of protein could be extracted, 18,000 ton/year of a high-value protein product would be obtained. The overall aim of this study was to develop a technology that will ensure further utilization of the seaweed that is used only as raw materials for carrageenan production as single extraction at present. More specifically, proteins should be extracted from the seaweed either before or after extraction of carrageenan with focus on maintaining the quality of carrageenan as a main product. Different mechanical, chemical and enzymatic technologies were evaluated. The optimized process was implemented in lab scale and based on its results; the new experiments were done a pilot and larger scale. In order to calculate the efficiency of the new upstream multi-extraction process, protein content was tested before and after extraction. After this step, the extraction of carrageenan was done and carrageenan content and the effect of extraction on yield were evaluated. The functionality and quality of carrageenan were measured based on rheological parameters. The results showed that by using the new multi-extraction process (submitted patent); it is possible to extract almost 50% of total protein without any negative impact on the carrageenan quality. Moreover, compared to the routine carrageenan extraction process, the new multi-extraction process could increase the yield of carrageenan and the rheological properties such as gel strength in the final carrageenan had a promising improvement. The extracted protein has initially been screened as a plant protein source in typical food applications. Further work will be carried out in order to improve properties such as color, solubility, and taste.

Keywords: carrageenan, extraction, protein, seaweed

Procedia PDF Downloads 284
2125 Strength Parameters and the Rate Process Theory Applied to Compacted Fadama Soils

Authors: Samuel Akinlabi Ola, Emeka Segun Nnochiri, Stephen Kayode Aderomose, Paul Ayesemhe Edoh

Abstract:

Fadama soils of Northern Nigeria are generally a problem soil for highway and geotechnical engineers. There has been no consistent conclusion on the effect of the strain rate on the shear strength of soils, thus necessitating the need to clarify this issue with various types of soil. Consolidated undrained tests with pore pressure measurements were conducted at optimum moisture content and maximum dry density using standard proctor compaction. Back pressures were applied to saturate the soil. The shear strength parameters were determined. Analyzing the results and model studies using the Rate Process Theory, functional relationships between the deviator stress and strain rate were determined and expressed mathematically as deviator stress = β0+ β1 log(strain rate) at each cell pressure where β0 and β1 are constants. Also, functional relationships between the pore pressure coefficient Āf and the time to failure were determined and expressed mathematically as pore pressure coefficient, Āf = ψ0+ѱ1log (time to failure) where ψ0 and ѱ1 are constants. For cell pressure between 69 – 310 kN/m2 (10 - 45psi) the constants found for Fadama soil in this study are ψ0=0.17 and ѱ1=0.18. The study also shows the dependence of the angle of friction (ø’) on the rate of strain as it increases from 22o to 25o for an increase in the rate of strain from 0.08%/min to 1.0%/min. Conclusively, the study also shows that within the strain rate utilized in the research, the deviator strength increased with the strain rate while the excess pore water pressure decreased with an increase in the rate of strain.

Keywords: deviator stress, Fadama soils, pore pressure coefficient, rate process

Procedia PDF Downloads 76
2124 Acacia mearnsii De Wild-A New Scourge on Cork Oak Forests of El Kala National Park (North-Eastern Algeria)

Authors: Samir Chekchaki, ArifaBeddiar

Abstract:

Nowadays, more and more species are introduced outside their natural range. If most of them remain difficult, some may adopt a much more dynamic behavior. Indeed, we have witnessed in recent decades, the development of high forests of Acacia mearnsii in El Kala National Park. Introduced indefinitely, this leguminous intended to make money (nitrogen supply for industrial plantations of Eucalyptus), became one of the most invasive and more costly in terms of forest management. It has crossed all barriers: it has acclimatized, naturalized and then expanded through diverse landscapes; entry into competition with native species such as cork oak and altered ecosystem functioning. Therefore, it is interesting to analyze this new threat by relying on plants as bio-indicator for assessing biodiversity at different scales. We have identified the species present in several plots distributed in a range of vegetation types subjected to different degrees of disturbance by using the braun-blanquet method. Fifty-six species have been recorded. They are distributed in 48 genera and 29 families. The analysis of the relative frequency of species correlated with relative abundance clearly shows that the Acacia mearnsii feels marginalized. The ecological analysis of this biological invasion shows that disruption of either natural or anthropogenic origin (fire, prolonged drought, cut) represent the factors that exacerbate invasion by opening invasion windows. The lifting of seeds of Acacia mearnsii lasting physical dormancy (and variable) is ensured by the thermal shock in relation to its heliophilous character.

Keywords: Acacia mearnsii De Wild, El Kala National park, fire, invasive, vegetation

Procedia PDF Downloads 357
2123 Geochemistry and Petrogenesis of Anorogenic Acid Plutonic Rocks of Khanak and Devsar of Southwestern Haryana

Authors: Naresh Kumar, Radhika Sharma, A. K. Singh

Abstract:

Acid plutonic rocks from the Khanak and Devsar areas of southwestern Haryana were investigated to understand their geochemical and petrogenetic characteristics and tectonic environments. Three dominant rock types (grey, grayish green and pink granites) are the principal geochemical features of Khanak and Devsar areas which reflect the dependencies of their composition on varied geological environment during the anorogenic magmatism. These rocks are enriched in SiO₂, Na₂O+K₂O, Fe/Mg, Rb, Zr, Y, Th, U, REE (Rare Earth Elements) enriched and depleted in MgO, CaO, Sr, P, Ti, Ni, Cr, V and Eu and exhibit a clear affinity to the within-plate granites that were emplaced in an extensional tectonic environment. Chondrite-normalized REE patterns show enriched LREE (Light Rare Earth Elements), moderate to strong negative Eu anomalies and flat heavy REE and grey and grayish green is different from pink granite which is enriched by Rb, Ga, Nb, Th, U, Y and HREE (Heavy Rare Earth Elements) concentrations. The composition of parental magma of both areas corresponds to mafic source contaminated with crustal materials. Petrogenetic modelling suggest that the acid plutonic rocks might have been generated from a basaltic source by partial melting (15-25%) leaving a residue with 35% plagioclase, 25% alkali feldspar, 25% quartz, 7% orthopyroxene, 5% biotite and 3% hornblende. Granites from both areas might be formed from different sources with different degree of melting for grey, grayish green and pink granites.

Keywords: A-type granite, anorogenic, Malani igneous suite, Khanak and Devsar

Procedia PDF Downloads 176
2122 Effect of Genuine Missing Data Imputation on Prediction of Urinary Incontinence

Authors: Suzan Arslanturk, Mohammad-Reza Siadat, Theophilus Ogunyemi, Ananias Diokno

Abstract:

Missing data is a common challenge in statistical analyses of most clinical survey datasets. A variety of methods have been developed to enable analysis of survey data to deal with missing values. Imputation is the most commonly used among the above methods. However, in order to minimize the bias introduced due to imputation, one must choose the right imputation technique and apply it to the correct type of missing data. In this paper, we have identified different types of missing values: missing data due to skip pattern (SPMD), undetermined missing data (UMD), and genuine missing data (GMD) and applied rough set imputation on only the GMD portion of the missing data. We have used rough set imputation to evaluate the effect of such imputation on prediction by generating several simulation datasets based on an existing epidemiological dataset (MESA). To measure how well each dataset lends itself to the prediction model (logistic regression), we have used p-values from the Wald test. To evaluate the accuracy of the prediction, we have considered the width of 95% confidence interval for the probability of incontinence. Both imputed and non-imputed simulation datasets were fit to the prediction model, and they both turned out to be significant (p-value < 0.05). However, the Wald score shows a better fit for the imputed compared to non-imputed datasets (28.7 vs. 23.4). The average confidence interval width was decreased by 10.4% when the imputed dataset was used, meaning higher precision. The results show that using the rough set method for missing data imputation on GMD data improve the predictive capability of the logistic regression. Further studies are required to generalize this conclusion to other clinical survey datasets.

Keywords: rough set, imputation, clinical survey data simulation, genuine missing data, predictive index

Procedia PDF Downloads 168
2121 HLB Disease Detection in Omani Lime Trees using Hyperspectral Imaging Based Techniques

Authors: Jacintha Menezes, Ramalingam Dharmalingam, Palaiahnakote Shivakumara

Abstract:

In the recent years, Omani acid lime cultivation and production has been affected by Citrus greening or Huanglongbing (HLB) disease. HLB disease is one of the most destructive diseases for citrus, with no remedies or countermeasures to stop the disease. Currently used Polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) HLB detection tests require lengthy and labor-intensive laboratory procedures. Furthermore, the equipment and staff needed to carry out the laboratory procedures are frequently specialized hence making them a less optimal solution for the detection of the disease. The current research uses hyperspectral imaging technology for automatic detection of citrus trees with HLB disease. Omani citrus tree leaf images were captured through portable Specim IQ hyperspectral camera. The research considered healthy, nutrition deficient, and HLB infected leaf samples based on the Polymerase chain reaction (PCR) test. The highresolution image samples were sliced to into sub cubes. The sub cubes were further processed to obtain RGB images with spatial features. Similarly, RGB spectral slices were obtained through a moving window on the wavelength. The resized spectral-Spatial RGB images were given to Convolution Neural Networks for deep features extraction. The current research was able to classify a given sample to the appropriate class with 92.86% accuracy indicating the effectiveness of the proposed techniques. The significant bands with a difference in three types of leaves are found to be 560nm, 678nm, 726 nm and 750nm.

Keywords: huanglongbing (HLB), hyperspectral imaging (HSI), · omani citrus, CNN

Procedia PDF Downloads 80
2120 Quantification Model for Capability Evaluation of Optical-Based in-Situ Monitoring System for Laser Powder Bed Fusion (LPBF) Process

Authors: Song Zhang, Hui Wang, Johannes Henrich Schleifenbaum

Abstract:

Due to the increasing demand for quality assurance and reliability for additive manufacturing, the development of an advanced in-situ monitoring system is required to monitor the process anomalies as input for further process control. Optical-based monitoring systems, such as CMOS cameras and NIR cameras, are proved as effective ways to monitor the geometrical distortion and exceptional thermal distribution. Therefore, many studies and applications are focusing on the availability of the optical-based monitoring system for detecting varied types of defects. However, the capability of the monitoring setup is not quantified. In this study, a quantification model to evaluate the capability of the monitoring setups for the LPBF machine based on acquired monitoring data of a designed test artifact is presented, while the design of the relevant test artifacts is discussed. The monitoring setup is evaluated based on its hardware properties, location of the integration, and light condition. Methodology of data processing to quantify the capacity for each aspect is discussed. The minimal capability of the detectable size of the monitoring set up in the application is estimated by quantifying its resolution and accuracy. The quantification model is validated using a CCD camera-based monitoring system for LPBF machines in the laboratory with different setups. The result shows the model to quantify the monitoring system's performance, which makes the evaluation of monitoring systems with the same concept but different setups possible for the LPBF process and provides the direction to improve the setups.

Keywords: data processing, in-situ monitoring, LPBF process, optical system, quantization model, test artifact

Procedia PDF Downloads 197
2119 Inquiry on the Improvement Teaching Quality in the Classroom with Meta-Teaching Skills

Authors: Shahlan Surat, Saemah Rahman, Saadiah Kummin

Abstract:

When teachers reflect and evaluate whether their teaching methods actually have an impact on students’ learning, they will adjust their practices accordingly. This inevitably improves their students’ learning and performance. The approach in meta-teaching can invigorate and create a passion for teaching. It thus helps to increase the commitment and love for the teaching profession. This study was conducted to determine the level of metacognitive thinking of teachers in the process of teaching and learning in the classroom. Metacognitive thinking teachers include the use of metacognitive knowledge which consists of different types of knowledge: declarative, procedural and conditional. The ability of the teachers to plan, monitor and evaluate the teaching process can also be determined. This study was conducted on 377 graduate teachers in Klang Valley, Malaysia. The stratified sampling method was selected for the purpose of this study. The metacognitive teaching inventory consisting of 24 items is called InKePMG (Teacher Indicators of Effectiveness Meta-Teaching). The results showed the level of mean is high for two components of metacognitive knowledge; declarative knowledge (mean = 4.16) and conditional (mean = 4.11) whereas, the mean of procedural knowledge is 4.00 (moderately high). Similarly, the level of knowledge in monitoring (mean = 4.11), evaluating (mean = 4.00) which indicate high score and planning (mean = 4.00) are moderately high score among teachers. In conclusion, this study shows that the planning and procedural knowledge is an important element in improving the quality of teachers teaching in the classroom. Thus, the researcher recommended that further studies should focus on training programs for teachers on metacognitive skills and also on developing creative thinking among teachers.

Keywords: metacognitive thinking skills, procedural knowledge, conditional knowledge, meta-teaching and regulation of cognitive

Procedia PDF Downloads 409
2118 Influence of Counterface and Environmental Conditions on the Lubricity of Multilayer Graphene Coatings Produced on Nickel by Chemical Vapour Deposition

Authors: Iram Zahra

Abstract:

Friction and wear properties of multilayer graphene coatings (MLG) on nickel substrate were investigated at the macroscale, and different failure mechanisms working at the interface of nickel-graphene coatings were evaluated. Multilayer graphene coatings were produced on a nickel substrate using the atmospheric chemical vapour deposition (CVD) technique. Wear tests were performed on the pin-on-disk tribometer apparatus under dry air conditions, and using the saltwater solution, distilled water, and mineral oil lubricants and counterparts used in these wear tests were fabricated of stainless steel, chromium, and silicon nitride. The wear test parameters such as rotational speed, wear track diameter, temperature, relative humidity, and load were 60 rpm, 6 mm, 22˚C, 45%, and 2N, respectively. To analyse the friction and wear behaviour, coefficient of friction (COF) vs time curves were plotted, and the sliding surfaces of the samples and counterparts were examined using the optical microscope. Results indicated that graphene-coated nickel in mineral oil lubrication and dry conditions gave the minimum average value of COP (0.05) and wear track width ( ̴151 µm) against the three different types of counterparts. In contrast, uncoated nickel samples indicated a maximum wear track width ( ̴411 µm) and COF (0.5). Thorough investigation and analysis concluded that graphene-coated samples have two times lower COF and three times lower wear than the bare nickel samples. Furthermore, mechanical failures were significantly lower in the case of graphene-coated nickel. The overall findings suggested that multilayer graphene coatings have drastically decreased wear and friction on nickel substrate at the macroscale under various lubricating conditions and against different counterparts.

Keywords: friction, lubricity, multilayer graphene, sliding, wear

Procedia PDF Downloads 140
2117 Culturing of Bovine Pre-Compacted Morlae in TCM-199 and Baf in a Standard 5% CO2 Laboratory Incubator and in the Vagina of a Goat Doe

Authors: Daniel M. Barry

Abstract:

Since more than half a century ago, attempts have been made to culture cells and embryos outside the body (in vitro or ex vivo). This was done with different culture media and in various “incubators”. In the present study two different culture media were used: a standard TCM-199 culture medium and first trimester amniotic fluid (BAF) collected sterilely from pregnant cows after slaughter. Two different culture conditions were also investigated, the standard laboratory CO2 incubator versus culturing bovine embryos in the vagina of a goat doe. Two experiments were done: Firstly the permeability of different receptacles to CO2 gas was analyzed for possible culture in the vagina. Four-well plates and straws were used to incubate TCM-199 and BAF for a period of 120 h in the presence or absence of 5% CO2 gas. The pH values were measured and recorded every 24 h. In the second experiment pre-compacted morula stage bovine embryos were cultured in the above culture media in sealed 0.25 mL straws in a standard laboratory incubator and in the vagina of a goat doe. Evaluation was done on (1) stage of development and (2) number of blastomeres after 96 h of culture. In the first experiment it was shown that the CO2 gas diffused out of the 4-well plate as well as through the wall of the straws in the absence of CO2 gas, while in the presence of CO2 the pH of both media stabilized between 7.3 and 7.5. This meant that the semen straws were permeable to CO2 gas and could therefore be used as receptacles for culturing early stage bovine embryos. In the second experiment no statistical differences (p>0.05) were found in the number of pre-compacted bovine embryos that developed to the blastocyst stage, or the hatched blastocyst stage, neither for the culture medium used, or the method of culturing in the two incubators. Neither was there any difference (p>0.05) in the number of blastomeres that developed at the blastocyst stage between the two types of incubators. The bovine embryos tended to develop more blastomeres when cultured in BAF than when cultured in TCM-199 in both the standard laboratory incubator and when using the vagina of a goat doe as an incubator.

Keywords: alternative culture, bovine embryos, vagina, bovine amniotic fluid, incubator

Procedia PDF Downloads 490
2116 Evaluating a Holistic Fitness Program Used by High Performance Athletes and Mass Participants

Authors: Peter Smolianov, Jed Smith, Lisa Chen, Steven Dion, Christopher Schoen, Jaclyn Norberg

Abstract:

This study evaluated the effectiveness of an experimental training program used to improve performance and health of competitive athletes and recreational sport participants. This holistic program integrated and advanced Eastern and Western methods of prolonging elite sports participation and enjoying lifelong fitness, particularly from China, India, Russia, and the United States. The program included outdoor, gym, and water training approaches focused on strengthening while stretching/decompressing and on full body activation-all in order to improve performance as well as treat and prevent common disorders and pains. The study observed and surveyed over 100 users of the program including recreational fitness and sports enthusiasts as well as elite athletes who competed for national teams of different countries and for Division I teams of National Collegiate Athletic Association in the United States. Different types of sport were studied, including territorial games (e.g., American football, basketball, volleyball), endurance/cyclical (athletics/track and field, swimming), and artistic (e.g., gymnastics and synchronized swimming). Results of the study showed positive effects on the participants’ performance and health, particularly for those who used the program for more than two years and especially in reducing spinal disorders and in enabling to perform new training tasks which previously caused back pain.

Keywords: lifelong fitness, injury prevention, prolonging sport participation, improving performance and health

Procedia PDF Downloads 155
2115 Derivation of BCK\BCI-Algebras

Authors: Tumadhir Fahim M Alsulami

Abstract:

The concept of this paper builds on connecting between two important notions, fuzzy ideals of BCK-algebras and derivation of BCI-algebras. The result we got is a new concept called derivation fuzzy ideals of BCI-algebras. Followed by various results and important theorems on different types of ideals. In chapter 1: We presented the basic and fundamental concepts of BCK\ BCI- algebras as follows: BCK/BCI-algebras, BCK sub-algebras, bounded BCK-algebras, positive implicative BCK-algebras, commutative BCK-algebras, implicative BCK- algebras. Moreover, we discussed ideals of BCK-algebras, positive implicative ideals, implicative ideals and commutative ideals. In the last section of chapter 1 we proposed the notion of derivation of BCI-algebras, regular derivation of BCI-algebras and basic definitions and properties. In chapter 2: It includes 3 sections as follows: Section 1 contains elementary concepts of fuzzy sets and fuzzy set operations. Section 2 shows O. G. Xi idea, where he applies fuzzy sets concept to BCK-algebras and we studied fuzzy sub-algebras as well. Section 3 contains fuzzy ideals of BCK-algebras basic definitions, closed fuzzy ideals, fuzzy commutative ideals, fuzzy positive implicative ideals, fuzzy implicative ideals, fuzzy H-ideals and fuzzy p-ideals. Moreover, we investigated their concepts in diverse theorems and propositions. In chapter 3: The main concept of our thesis on derivation fuzzy ideals of BCI- algebras is introduced. Chapter 3 splits into 4 sections. We start with General definitions and important theorems on derivation fuzzy ideal theory in section 1. Section 2 and 3 contain derivations fuzzy p-ideals and derivations fuzzy H-ideals of BCI- algebras, several important theorems and propositions were introduced. The last section studied derivations fuzzy implicative ideals of BCI-algebras and it includes new theorems and results. Furthermore, we presented a new theorem that associate derivations fuzzy implicative ideals, derivations fuzzy positive implicative ideals and derivations fuzzy commutative ideals. These concepts and the new results were obtained and introduced in chapter 3 were submitted in two separated articles and accepted for publication.

Keywords: BCK, BCI, algebras, derivation

Procedia PDF Downloads 124
2114 Large Eddy Simulation of Hydrogen Deflagration in Open Space and Vented Enclosure

Authors: T. Nozu, K. Hibi, T. Nishiie

Abstract:

This paper discusses the applicability of the numerical model for a damage prediction method of the accidental hydrogen explosion occurring in a hydrogen facility. The numerical model was based on an unstructured finite volume method (FVM) code “NuFD/FrontFlowRed”. For simulating unsteady turbulent combustion of leaked hydrogen gas, a combination of Large Eddy Simulation (LES) and a combustion model were used. The combustion model was based on a two scalar flamelet approach, where a G-equation model and a conserved scalar model expressed a propagation of premixed flame surface and a diffusion combustion process, respectively. For validation of this numerical model, we have simulated the previous two types of hydrogen explosion tests. One is open-space explosion test, and the source was a prismatic 5.27 m3 volume with 30% of hydrogen-air mixture. A reinforced concrete wall was set 4 m away from the front surface of the source. The source was ignited at the bottom center by a spark. The other is vented enclosure explosion test, and the chamber was 4.6 m × 4.6 m × 3.0 m with a vent opening on one side. Vent area of 5.4 m2 was used. Test was performed with ignition at the center of the wall opposite the vent. Hydrogen-air mixtures with hydrogen concentrations close to 18% vol. were used in the tests. The results from the numerical simulations are compared with the previous experimental data for the accuracy of the numerical model, and we have verified that the simulated overpressures and flame time-of-arrival data were in good agreement with the results of the previous two explosion tests.

Keywords: deflagration, large eddy simulation, turbulent combustion, vented enclosure

Procedia PDF Downloads 244
2113 Dynamic Process Model for Designing Smart Spaces Based on Context-Awareness and Computational Methods Principles

Authors: Heba M. Jahin, Ali F. Bakr, Zeyad T. Elsayad

Abstract:

As smart spaces can be defined as any working environment which integrates embedded computers, information appliances and multi-modal sensors to remain focused on the interaction between the users, their activity, and their behavior in the space; hence, smart space must be aware of their contexts and automatically adapt to their changing context-awareness, by interacting with their physical environment through natural and multimodal interfaces. Also, by serving the information used proactively. This paper suggests a dynamic framework through the architectural design process of the space based on the principles of computational methods and context-awareness principles to help in creating a field of changes and modifications. It generates possibilities, concerns about the physical, structural and user contexts. This framework is concerned with five main processes: gathering and analyzing data to generate smart design scenarios, parameters, and attributes; which will be transformed by coding into four types of models. Furthmore, connecting those models together in the interaction model which will represent the context-awareness system. Then, transforming that model into a virtual and ambient environment which represents the physical and real environments, to act as a linkage phase between the users and their activities taking place in that smart space . Finally, the feedback phase from users of that environment to be sure that the design of that smart space fulfill their needs. Therefore, the generated design process will help in designing smarts spaces that can be adapted and controlled to answer the users’ defined goals, needs, and activity.

Keywords: computational methods, context-awareness, design process, smart spaces

Procedia PDF Downloads 331
2112 Valorisation of Waste Chicken Feathers: Electrospun Antibacterial Nanoparticles-Embedded Keratin Composite Nanofibers

Authors: Lebogang L. R. Mphahlele, Bruce B. Sithole

Abstract:

Chicken meat is the highest consumed meat in south Africa, with a per capita consumption of >33 kg yearly. Hence, South Africa produces over 250 million kg of waste chicken feathers each year, the majority of which is landfilled or incinerated. The discarded feathers have caused environmental pollution and natural protein resource waste. Therefore, the valorisation of waste chicken feathers is measured as a more environmentally friendly and cost-effective treatment. Feather contains 91% protein, the main component being beta-keratin, a fibrous and insoluble structural protein extensively cross linked by disulfide bonds. Keratin is usually converted it into nanofibers via electrospinning for a variety of applications. keratin nanofiber composites have many potential biomedical applications for their attractive features, such as high surface-to-volume ratio and very high porosity. The application of nanofibers in the biomedical wound dressing requires antimicrobial properties for materials. One approach is incorporating inorganic nanoparticles, among which silver nanoparticles played an important alternative antibacterial agent and have been studied against many types of microbes. The objective of this study is to combine synthetic polymer, chicken feather keratin, and antibacterial nanoparticles to develop novel electrospun antibacterial nanofibrous composites for possible wound dressing application. Furthermore, this study will converting a two-dimensional electrospun nanofiber membrane to three-dimensional fiber networks that resemble the structure of the extracellular matrix (ECM)

Keywords: chicken feather keratin, nanofibers, nanoparticles, nanocomposites, wound dressing

Procedia PDF Downloads 132
2111 Assessment of Landfill Pollution Load on Hydroecosystem by Use of Heavy Metal Bioaccumulation Data in Fish

Authors: Gintarė Sauliutė, Gintaras Svecevičius

Abstract:

Landfill leachates contain a number of persistent pollutants, including heavy metals. They have the ability to spread in ecosystems and accumulate in fish which most of them are classified as top-consumers of trophic chains. Fish are freely swimming organisms; but perhaps, due to their species-specific ecological and behavioral properties, they often prefer the most suitable biotopes and therefore, did not avoid harmful substances or environments. That is why it is necessary to evaluate the persistent pollutant dispersion in hydroecosystem using fish tissue metal concentration. In hydroecosystems of hybrid type (e.g. river-pond-river) the distance from the pollution source could be a perfect indicator of such a kind of metal distribution. The studies were carried out in the Kairiai landfill neighboring hybrid-type ecosystem which is located 5 km east of the Šiauliai City. Fish tissue (gills, liver, and muscle) metal concentration measurements were performed on two types of ecologically-different fishes according to their feeding characteristics: benthophagous (Gibel carp, roach) and predatory (Northern pike, perch). A number of mathematical models (linear, non-linear, using log and other transformations) have been applied in order to identify the most satisfactorily description of the interdependence between fish tissue metal concentration and the distance from the pollution source. However, the only one log-multiple regression model revealed the pattern that the distance from the pollution source is closely and positively correlated with metal concentration in all predatory fish tissues studied (gills, liver, and muscle).

Keywords: bioaccumulation in fish, heavy metals, hydroecosystem, landfill leachate, mathematical model

Procedia PDF Downloads 286
2110 Planning Water Reservoirs as Complementary Habitats for Waterbirds

Authors: Tamar Trop, Ido Izhaki

Abstract:

Small natural freshwater bodies (SNFWBs), which are vital for many waterbird species, are considered endangered habitats due to their progressive loss and extensive degradation. While SNFWBs are becoming extinct, studies have indicated that many waterbird species may greatly benefit from various types of small artificial waterbodies (SAWBs), such as floodwater and treated water reservoirs. If designed and managed with care, SAWBs hold significant potential to serve as alternative or complementary habitats for birds, and thus mitigate the adverse effects of SNFWBs loss. Currently, most reservoirs are built as infrastructural facilities and designed according to engineering best practices and site-specific considerations, which do not include catering for waterbirds' needs. Furthermore, as things stand, there is still a lack of clear and comprehensive knowledge regarding the additional factors that should be considered in tackling the challenge of attracting waterbirds' to reservoirs, without compromising on the reservoirs' original functions. This study attempts to narrow this knowledge gap by performing a systematic review of the various factors (e.g., bird attributes; physical, structural, spatial, climatic, chemical, and biological characteristics of the waterbody; and anthropogenic activities) affecting the occurrence, abundance, richness, and diversity of waterbirds in SNFWBs. The methodical review provides a concise and relatively unbiased synthesis of the knowledge in the field, which can inform decision-making and practice regarding the planning, design, and management of reservoirs with birds in mind. Such knowledge is especially beneficial for arid and semiarid areas, where natural water sources are deteriorating and becoming extinct even faster due to climate change.

Keywords: artificial waterbodies, reservoirs, small waterbodies, waterbirds

Procedia PDF Downloads 73
2109 A Review on Cloud Computing and Internet of Things

Authors: Sahar S. Tabrizi, Dogan Ibrahim

Abstract:

Cloud Computing is a convenient model for on-demand networks that uses shared pools of virtual configurable computing resources, such as servers, networks, storage devices, applications, etc. The cloud serves as an environment for companies and organizations to use infrastructure resources without making any purchases and they can access such resources wherever and whenever they need. Cloud computing is useful to overcome a number of problems in various Information Technology (IT) domains such as Geographical Information Systems (GIS), Scientific Research, e-Governance Systems, Decision Support Systems, ERP, Web Application Development, Mobile Technology, etc. Companies can use Cloud Computing services to store large amounts of data that can be accessed from anywhere on Earth and also at any time. Such services are rented by the client companies where the actual rent depends upon the amount of data stored on the cloud and also the amount of processing power used in a given time period. The resources offered by the cloud service companies are flexible in the sense that the user companies can increase or decrease their storage requirements or the processing power requirements at any time, thus minimizing the overall rental cost of the service they receive. In addition, the Cloud Computing service providers offer fast processors and applications software that can be shared by their clients. This is especially important for small companies with limited budgets which cannot afford to purchase their own expensive hardware and software. This paper is an overview of the Cloud Computing, giving its types, principles, advantages, and disadvantages. In addition, the paper gives some example engineering applications of Cloud Computing and makes suggestions for possible future applications in the field of engineering.

Keywords: cloud computing, cloud systems, cloud services, IaaS, PaaS, SaaS

Procedia PDF Downloads 233
2108 Fire Protection Performance of Different Industrial Intumescent Coatings for Steel Beams

Authors: Serkan Kocapinar, Gülay Altay

Abstract:

This study investigates the efficiency of two different industrial intumescent coatings which have different types of certifications, in the fire protection performance in steel beams in the case of ISO 834 fire for 2 hours. A better understanding of industrial intumescent coatings, which assure structural integrity and prevent a collapse of steel structures, is needed to minimize the fire risks in steel structures. A comparison and understanding of different fire protective intumescent coatings, which are Product A and Product B, are used as a thermal barrier between the steel components and the fire. Product A is tested according to EN 13381-8 and BS 476-20,22 and is certificated by ISO Standards. Product B is tested according to EN 13381-8 and ASTM UL-94 and is certificated by the Turkish Standards Institute (TSE). Generally, fire tests to evaluate the fire performance of steel components are done numerically with commercial software instead of experiments due to the high cost of an ISO 834 fire test in a furnace. Hence, there is a gap in the literature about the comparisons of different certificated intumescent coatings for fire protection in the case of ISO 834 fire in a furnace experiment for 2 hours. The experiment was carried out by using two 1-meter UPN 200 steel sections. Each one was coated by different industrial intumescent coatings. A furnace was used by the Turkish Standards Institute (TSE) for the experiment. The temperature of the protected steels and the inside of the furnace was measured with the help of 24 thermocouples which were applied before the intumescent coatings during the two hours for the performance of intumescent coatings by getting a temperature-time curve of steel components. FIN EC software was used to determine the critical temperatures of protected steels, and Abaqus was used for thermal analysis to get theoretical results to compare with the experimental results.

Keywords: fire safety, structural steel, ABAQUS, thermal analysis, FIN EC, intumescent coatings

Procedia PDF Downloads 103
2107 Effect of Knowledge of Bubble Point Pressure on Estimating PVT Properties from Correlations

Authors: Ahmed El-Banbi, Ahmed El-Maraghi

Abstract:

PVT properties are needed as input data in all reservoir, production, and surface facilities engineering calculations. In the absence of PVT reports on valid reservoir fluid samples, engineers rely on PVT correlations to generate the required PVT data. The accuracy of PVT correlations varies, and no correlation group has been found to provide accurate results for all oil types. The effect of inaccurate PVT data can be significant in engineering calculations and is well documented in the literature. Bubble point pressure can sometimes be obtained from external sources. In this paper, we show how to utilize the known bubble point pressure to improve the accuracy of calculated PVT properties from correlations. We conducted a systematic study using around 250 reservoir oil samples to quantify the effect of pre-knowledge of bubble point pressure. The samples spanned a wide range of oils, from very volatile oils to black oils and all the way to low-GOR oils. A method for shifting both undersaturated and saturated sections of the PVT properties curves to the correct bubble point is explained. Seven PVT correlation families were used in this study. All PVT properties (e.g., solution gas-oil ratio, formation volume factor, density, viscosity, and compressibility) were calculated using the correct bubble point pressure and the correlation estimated bubble point pressure. Comparisons between the calculated PVT properties and actual laboratory-measured values were made. It was found that pre-knowledge of bubble point pressure and using the shifting technique presented in the paper improved the correlation-estimated values by 10% to more than 30%. The most improvement was seen in the solution gas-oil ratio and formation volume factor.

Keywords: PVT data, PVT properties, PVT correlations, bubble point pressure

Procedia PDF Downloads 63