Search results for: language acquisition and learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10285

Search results for: language acquisition and learning

6925 Understanding and Improving Neural Network Weight Initialization

Authors: Diego Aguirre, Olac Fuentes

Abstract:

In this paper, we present a taxonomy of weight initialization schemes used in deep learning. We survey the most representative techniques in each class and compare them in terms of overhead cost, convergence rate, and applicability. We also introduce a new weight initialization scheme. In this technique, we perform an initial feedforward pass through the network using an initialization mini-batch. Using statistics obtained from this pass, we initialize the weights of the network, so the following properties are met: 1) weight matrices are orthogonal; 2) ReLU layers produce a predetermined number of non-zero activations; 3) the output produced by each internal layer has a unit variance; 4) weights in the last layer are chosen to minimize the error in the initial mini-batch. We evaluate our method on three popular architectures, and a faster converge rates are achieved on the MNIST, CIFAR-10/100, and ImageNet datasets when compared to state-of-the-art initialization techniques.

Keywords: deep learning, image classification, supervised learning, weight initialization

Procedia PDF Downloads 135
6924 Technique and Use of Machine Readable Dictionary: In Special Reference to Hindi-Marathi Machine Translation

Authors: Milind Patil

Abstract:

Present paper is a discussion on Hindi-Marathi Morphological Analysis and generating rules for Machine Translation on the basis of Machine Readable Dictionary (MRD). This used Transformative Generative Grammar (TGG) rules to design the MRD. As per TGG rules, the suffix of a particular root word is based on its Tense, Aspect, Modality and Voice. That's why the suffix is very important for the word meanings (or root meanings). The Hindi and Marathi Language both have relation with Indo-Aryan language family. Both have been derived from Sanskrit language and their script is 'Devnagari'. But there are lots of differences in terms of semantics and grammatical level too. In Marathi, there are three genders, but in Hindi only two (Masculine and Feminine), the Natural gender is absent in Hindi. Likewise other grammatical categories also differ in their level of use. For MRD the suffixes (or Morpheme) are of particular root word for GNP (Gender, Number and Person) are based on its natural phenomena. A particular Suffix and Morphine change as per the need of person, number and gender. The design of MRD also based on this format. In first, Person, Number, Gender and Tense are key points than root words and suffix of particular Person, Number Gender (PNG). After that the inferences are drawn on the basis of rules that is (V.stem) (Pre.T/Past.T) (x) + (Aux-Pre.T) (x) → (V.Stem.) + (SP.TM) (X).

Keywords: MRD, TGG, stem, morph, morpheme, suffix, PNG, TAM&V, root

Procedia PDF Downloads 324
6923 Explicitation as a Non-Professional Translation Universal: Evidence from the Translation of Promotional Material

Authors: Julieta Alos

Abstract:

Following the explicitation hypothesis, it has been proposed that explicitation is a translation universal, i.e., one of those features that characterize translated texts, and cannot be traced back to interference from a particular language. The explicitation hypothesis has been enthusiastically endorsed by some scholars, and firmly rejected by others. Focusing on the translation of promotional material from English into Arabic, specifically in the luxury goods market, the aims of this study are twofold: First, to contribute to the debate regarding the notion of explicitation in order to advance our understanding of what has become a contentious concept. Second, to add to the growing body of literature on non-professional translation by shedding light on this particular aspect of it. To this end, our study uses a combination of qualitative and quantitative methods to explore a corpus of brochures pertaining to the luxury industry, translated into Arabic at the local marketing agencies promoting the brands in question, by bilingual employees who have no translation training. Our data reveals a preference to avoid creative language choices in favor of more direct advertising messages, suggestive of a general tendency towards explicitation in non-professional translation, beyond what is dictated by the grammatical and stylistic constraints of Arabic. We argue, further, that this translation approach is at odds with the principles of luxury advertising, which emphasize implicitness and ambiguity, and view language as an extension of the creative process involved in the production of the luxury item.

Keywords: English-Arabic translation, explicitation, non-professional translation, promotional texts

Procedia PDF Downloads 375
6922 The Effect of Students’ Social and Scholastic Background and Environmental Impact on Shaping Their Pattern of Digital Learning in Academia: A Pre- and Post-COVID Comparative View

Authors: Nitza Davidovitch, Yael Yossel-Eisenbach

Abstract:

The purpose of the study was to inquire whether there was a change in the shaping of undergraduate students’ digitally-oriented study pattern in the pre-Covid (2016-2017) versus post-Covid period (2022-2023), as affected by three factors: social background characteristics, high school, and academic background characteristics. These two-time points were cauterized by dramatic changes in teaching and learning at institutions of higher education. The data were collected via cross-sectional surveys at two-time points, in the 2016-2017 academic school year (N=443) and in the 2022-2023 school year (N=326). The questionnaire was distributed on social media and it includes questions on demographic background characteristics, previous studies in high school and present academic studies, and questions on learning and reading habits. Method of analysis: A. Statistical descriptive analysis, B. Mean comparison tests were conducted to analyze the variations in the mean score for the digitally-oriented learning pattern variable at two-time points (pre- and post-Covid) in relation to each of the independent variables. C. Analysis of variance was performed to test the main effects and the interactions. D. Applying linear regression, the research aimed to examine the combined effect of the independent variables on shaping students' digitally-oriented learning habits. The analysis includes four models. In all four models, the dependent variable is students’ perception of digitally oriented learning. The first model included social background variables; the second model included scholastic background as well. In the third model, the academic background variables were added, and the fourth model includes all the independent variables together with the variable of period (pre- and post-COVID). E. Factor analysis confirms using the principal component method with varimax rotation; the variables were constructed by a weighted mean of all the relevant statements merged to form a single variable denoting a shared content world. The research findings indicate a significant rise in students’ perceptions of digitally-oriented learning in the post-COVID period. From a gender perspective, the impact of COVID on shaping a digital learning pattern was much more significant for female students. The socioeconomic status perspective is eliminated when controlling for the period, and the student’s job is affected - more than all other variables. It may be assumed that the student’s work pattern mediates effects related to the convenience offered by digital learning regarding distance and time. The significant effect of scholastic background on shaping students’ digital learning patterns remained stable, even when controlling for all explanatory variables. The advantage that universities had over colleges in shaping a digital learning pattern in the pre-COVID period dissipated. Therefore, it can be said that after COVID, there was a change in how colleges shape students’ digital learning patterns in such a way that no institutional differences are evident with regard to shaping the digital learning pattern. The study shows that period has a significant independent effect on shaping students’ digital learning patterns when controlling for the explanatory variables.

Keywords: learning pattern, COVID, socioeconomic status, digital learning

Procedia PDF Downloads 62
6921 Sentiment Analysis of Consumers’ Perceptions on Social Media about the Main Mobile Providers in Jamaica

Authors: Sherrene Bogle, Verlia Bogle, Tyrone Anderson

Abstract:

In recent years, organizations have become increasingly interested in the possibility of analyzing social media as a means of gaining meaningful feedback about their products and services. The aspect based sentiment analysis approach is used to predict the sentiment for Twitter datasets for Digicel and Lime, the main mobile companies in Jamaica, using supervised learning classification techniques. The results indicate an average of 82.2 percent accuracy in classifying tweets when comparing three separate classification algorithms against the purported baseline of 70 percent and an average root mean squared error of 0.31. These results indicate that the analysis of sentiment on social media in order to gain customer feedback can be a viable solution for mobile companies looking to improve business performance.

Keywords: machine learning, sentiment analysis, social media, supervised learning

Procedia PDF Downloads 444
6920 Churn Prediction for Savings Bank Customers: A Machine Learning Approach

Authors: Prashant Verma

Abstract:

Commercial banks are facing immense pressure, including financial disintermediation, interest rate volatility and digital ways of finance. Retaining an existing customer is 5 to 25 less expensive than acquiring a new one. This paper explores customer churn prediction, based on various statistical & machine learning models and uses under-sampling, to improve the predictive power of these models. The results show that out of the various machine learning models, Random Forest which predicts the churn with 78% accuracy, has been found to be the most powerful model for the scenario. Customer vintage, customer’s age, average balance, occupation code, population code, average withdrawal amount, and an average number of transactions were found to be the variables with high predictive power for the churn prediction model. The model can be deployed by the commercial banks in order to avoid the customer churn so that they may retain the funds, which are kept by savings bank (SB) customers. The article suggests a customized campaign to be initiated by commercial banks to avoid SB customer churn. Hence, by giving better customer satisfaction and experience, the commercial banks can limit the customer churn and maintain their deposits.

Keywords: savings bank, customer churn, customer retention, random forests, machine learning, under-sampling

Procedia PDF Downloads 143
6919 Pedagogy of Possibility: Exploring the TVET of Southern African Workers on Foreign Vessels Mediated by Ubiquitous Google and Microsoft apps

Authors: Robin Ferguson

Abstract:

The context which this paper explores is the provision of Technical Vocational Education and Training (TVET) of southern African workers at sea on local and foreign vessels using a blended learning approach. The pedagogical challenge of providing quality education in this context is that multiple African and foreign languages and cultural norms are found amongst the all-male crew; and there are widely differing levels of education, low levels of digital literacy and limited connectivity. The methodology used is a nested case study. The study describes the mechanisms used to provide ongoing, real-time workplace TVET on two foreign vessels. Some training was done in person when the vessels came into port, however, the majority of the TVET was achieved from shore to ship using a combination of commonly available Google and Microsoft Apps and WhatsApp. Voice, video and text in multiple languages were used to accommodate different learning styles. The learning was supported by the development of learning networks using social media. This paper also reflects on the shore-based organisational change processes required to support sea learning. The conceptual framework used is the Theory of Practice Architectures (TPA) as is provides a site-ontological perspective of the sayings/thinkings, doings and relatings of this workplace training which is multiplanar as it plays out at sea and ashore, in-person and on-line. Using TPA, the overarching practice architectures and supporting structures which confound or enable these learning practices are revealed. The contribution which this paper makes is an insight into an innovative vocational pedagogy which promotes ICT-mediated learning amongst workers who suffer from low levels of literacies and limited ICT-access and who work and live in remote places. It is a pedagogy of possibility which crosses the digital divide.

Keywords: theory of practice architecture, microsoft, google, whatsapp, vocational pedagogy, mariners, distributed workplaces

Procedia PDF Downloads 81
6918 Learning at Workplace: Competences and Contexts in Sensory Evaluation

Authors: Ulriikka Savela-Huovinen, Hanni Muukkonen, Auli Toom

Abstract:

The development of workplace as a learning environment has been emphasized in research field of workplace learning. The prior literature on sensory performance emphasized the individual’s competences as assessor, while the competences in the collaborative interactional and knowledge creation practices as workplace learning method are not often mentioned. In the present study aims to find out what kinds of competences and contexts are central when assessor conducts food sensory evaluation in authentic professional context. The aim was to answer the following questions: first, what kinds of competences does sensory evaluation require according to assessors? And second, what kinds of contexts for sensory evaluation do assessors report? Altogether thirteen assessors from three Finnish food companies were interviewed by using semi-structural thematic interviews to map practices and development intentions as well as to explicate already established practices. The qualitative data were analyzed by following the principles of abductive and inductive content analysis. Analysis phases were combined and their results were considered together as a cross-analysis. When evaluated independently required competences were perception, knowledge of specific domains and methods and cognitive skills e.g. memory. Altogether, 42% of analysis units described individual evaluation contexts, 53% of analysis units described collaborative interactional contexts, and 5% of analysis units described collaborative knowledge creation contexts. Related to collaboration, analysis reviewed learning, sharing and reviewing both external and in-house consumer feedback, developing methods to moderate small-panel evaluation and developing product vocabulary collectively between the assessors. Knowledge creation contexts individualized from daily practices especially in cases product defects were sought and discussed. The study findings contribute to the explanation that sensory assessors learn extensively from one another in the collaborative interactional and knowledge creation context. Assessors learning and abilities to work collaboratively in the interactional and knowledge creation contexts need to be ensured in the development of the expertise.

Keywords: assessor, collaboration, competences, contexts, learning and practices, sensory evaluation

Procedia PDF Downloads 237
6917 The Feminine Disruption of Speech and Refounding of Discourse: Kristeva’s Semiotic Chora and Psychoanalysis

Authors: Kevin Klein-Cardeña

Abstract:

For Julia Kristeva, contra Lacan, the instinctive body refuses to go away within discourse. Neither is the pre-Oedipal stage of maternal fusion vanquished by the emergence of language and with it, the law of the father. On the contrary, Kristeva argues, the pre-symbolic ambivalently haunts the society of speech, simultaneously animating and threatening the very foundations of signification. Kristeva invents the term “the semiotic” to refer to this continual breaking-through of the material unconscious onto the scene of meaning. This presentation examines Kristeva’s semiotic as a theoretical gesture that itself is a disruption of discourse, re-presenting the ‘return of the repressed’ body in theory—-the breaking-through of the unconscious onto the science of meaning. Faced with linguistic theories concerned with abstract sign-systems as well as Lacanian doctrine privileging the linguistic sign unequivocally over the bodily drive, Kristeva’s theoretical corpus issues the message of a psychic remainder that disrupts with a view toward replenishing theoretical accounts of language and sense. Reviewing Semiotic challenge across these two levels (the sense and science of language), the presentation suggests that Kristeva’s offerings constitute a coherent gestalt, providing an account of the feminist nature of her dual intervention. In contrast to other feminist critiques, Kristeva’s gesture hinges on its restoration of the maternal contribution to subjectivity. Against the backdrop of ‘phallogocentric’ and ‘necrophilic’ theories that strip language of a subject and strip the subject of a body, Kristeva recasts linguistic study through a metaphor of life and birthing. Yet the semiotic fragments the subject it produces, dialoguing with an unconscious curtailed by but also exceeding the symbolic order of signification. Linguistics, too, becomes fragmented in the same measure as it is more meaningfully renewed by its confrontation with the semiotic body. It is Kristeva’s own body that issues this challenge, on both sides of the boundary between the theory and the theorized. The Semiotic becomes comprehensible as a project unified by its concern to disrupt and rehabilitate language, the subject, and the scholarly discourses that treat them.

Keywords: Julia kristeva, the Semiotic, french feminism, psychoanalysic theory, linguistics

Procedia PDF Downloads 75
6916 Exploring Gaming-Learning Interaction in MMOG Using Data Mining Methods

Authors: Meng-Tzu Cheng, Louisa Rosenheck, Chen-Yen Lin, Eric Klopfer

Abstract:

The purpose of the research is to explore some of the ways in which gameplay data can be analyzed to yield results that feedback into the learning ecosystem. Back-end data for all users as they played an MMOG, The Radix Endeavor, was collected, and this study reports the analyses on a specific genetics quest by using the data mining techniques, including the decision tree method. In the study, different reasons for quest failure between participants who eventually succeeded and who never succeeded were revealed. Regarding the in-game tools use, trait examiner was a key tool in the quest completion process. Subsequently, the results of decision tree showed that a lack of trait examiner usage can be made up with additional Punnett square uses, displaying multiple pathways to success in this quest. The methods of analysis used in this study and the resulting usage patterns indicate some useful ways that gameplay data can provide insights in two main areas. The first is for game designers to know how players are interacting with and learning from their game. The second is for players themselves as well as their teachers to get information on how they are progressing through the game, and to provide help they may need based on strategies and misconceptions identified in the data.

Keywords: MMOG, decision tree, genetics, gaming-learning interaction

Procedia PDF Downloads 357
6915 Convolutional Neural Networks versus Radiomic Analysis for Classification of Breast Mammogram

Authors: Mehwish Asghar

Abstract:

Breast Cancer (BC) is a common type of cancer among women. Its screening is usually performed using different imaging modalities such as magnetic resonance imaging, mammogram, X-ray, CT, etc. Among these modalities’ mammogram is considered a powerful tool for diagnosis and screening of breast cancer. Sophisticated machine learning approaches have shown promising results in complementing human diagnosis. Generally, machine learning methods can be divided into two major classes: one is Radiomics analysis (RA), where image features are extracted manually; and the other one is the concept of convolutional neural networks (CNN), in which the computer learns to recognize image features on its own. This research aims to improve the incidence of early detection, thus reducing the mortality rate caused by breast cancer through the latest advancements in computer science, in general, and machine learning, in particular. It has also been aimed to ease the burden of doctors by improving and automating the process of breast cancer detection. This research is related to a relative analysis of different techniques for the implementation of different models for detecting and classifying breast cancer. The main goal of this research is to provide a detailed view of results and performances between different techniques. The purpose of this paper is to explore the potential of a convolutional neural network (CNN) w.r.t feature extractor and as a classifier. Also, in this research, it has been aimed to add the module of Radiomics for comparison of its results with deep learning techniques.

Keywords: breast cancer (BC), machine learning (ML), convolutional neural network (CNN), radionics, magnetic resonance imaging, artificial intelligence

Procedia PDF Downloads 225
6914 Application of Deep Learning and Ensemble Methods for Biomarker Discovery in Diabetic Nephropathy through Fibrosis and Propionate Metabolism Pathways

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

Diabetic nephropathy (DN) is a major complication of diabetes, with fibrosis and propionate metabolism playing critical roles in its progression. Identifying biomarkers linked to these pathways may provide novel insights into DN diagnosis and treatment. This study aims to identify biomarkers associated with fibrosis and propionate metabolism in DN. Analyze the biological pathways and regulatory mechanisms of these biomarkers. Develop a machine learning model to predict DN-related biomarkers and validate their functional roles. Publicly available transcriptome datasets related to DN (GSE96804 and GSE104948) were obtained from the GEO database (https://www.ncbi.nlm.nih.gov/gds), and 924 propionate metabolism-related genes (PMRGs) and 656 fibrosis-related genes (FRGs) were identified. The analysis began with the extraction of DN-differentially expressed genes (DN-DEGs) and propionate metabolism-related DEGs (PM-DEGs), followed by the intersection of these with fibrosis-related genes to identify key intersected genes. Instead of relying on traditional models, we employed a combination of deep neural networks (DNNs) and ensemble methods such as Gradient Boosting Machines (GBM) and XGBoost to enhance feature selection and biomarker discovery. Recursive feature elimination (RFE) was coupled with these advanced algorithms to refine the selection of the most critical biomarkers. Functional validation was conducted using convolutional neural networks (CNN) for gene set enrichment and immunoinfiltration analysis, revealing seven significant biomarkers—SLC37A4, ACOX2, GPD1, ACE2, SLC9A3, AGT, and PLG. These biomarkers are involved in critical biological processes such as fatty acid metabolism and glomerular development, providing a mechanistic link to DN progression. Furthermore, a TF–miRNA–mRNA regulatory network was constructed using natural language processing models to identify 8 transcription factors and 60 miRNAs that regulate these biomarkers, while a drug–gene interaction network revealed potential therapeutic targets such as UROKINASE–PLG and ATENOLOL–AGT. This integrative approach, leveraging deep learning and ensemble models, not only enhances the accuracy of biomarker discovery but also offers new perspectives on DN diagnosis and treatment, specifically targeting fibrosis and propionate metabolism pathways.

Keywords: diabetic nephropathy, deep neural networks, gradient boosting machines (GBM), XGBoost

Procedia PDF Downloads 9
6913 Optimizing E-commerce Retention: A Detailed Study of Machine Learning Techniques for Churn Prediction

Authors: Saurabh Kumar

Abstract:

In the fiercely competitive landscape of e-commerce, understanding and mitigating customer churn has become paramount for sustainable business growth. This paper presents a thorough investigation into the application of machine learning techniques for churn prediction in e-commerce, aiming to provide actionable insights for businesses seeking to enhance customer retention strategies. We conduct a comparative study of various machine learning algorithms, including traditional statistical methods and ensemble techniques, leveraging a rich dataset sourced from Kaggle. Through rigorous evaluation, we assess the predictive performance, interpretability, and scalability of each method, elucidating their respective strengths and limitations in capturing the intricate dynamics of customer churn. We identified the XGBoost classifier to be the best performing. Our findings not only offer practical guidelines for selecting suitable modeling approaches but also contribute to the broader understanding of customer behavior in the e-commerce domain. Ultimately, this research equips businesses with the knowledge and tools necessary to proactively identify and address churn, thereby fostering long-term customer relationships and sustaining competitive advantage.

Keywords: customer churn, e-commerce, machine learning techniques, predictive performance, sustainable business growth

Procedia PDF Downloads 29
6912 Transfer Knowledge From Multiple Source Problems to a Target Problem in Genetic Algorithm

Authors: Terence Soule, Tami Al Ghamdi

Abstract:

To study how to transfer knowledge from multiple source problems to the target problem, we modeled the Transfer Learning (TL) process using Genetic Algorithms as the model solver. TL is the process that aims to transfer learned data from one problem to another problem. The TL process aims to help Machine Learning (ML) algorithms find a solution to the problems. The Genetic Algorithms (GA) give researchers access to information that we have about how the old problem is solved. In this paper, we have five different source problems, and we transfer the knowledge to the target problem. We studied different scenarios of the target problem. The results showed combined knowledge from multiple source problems improves the GA performance. Also, the process of combining knowledge from several problems results in promoting diversity of the transferred population.

Keywords: transfer learning, genetic algorithm, evolutionary computation, source and target

Procedia PDF Downloads 140
6911 Innovative Business Education Pedagogy: A Case Study of Action Learning at NITIE, Mumbai

Authors: Sudheer Dhume, T. Prasad

Abstract:

There are distinct signs of Business Education losing its sheen. It is more so in developing countries. One of the reasons is the value addition at the end of 2 year MBA program is not matching with the requirements of present times and expectations of the students. In this backdrop, Pedagogy Innovation has become prerequisite for making our MBA programs relevant and useful. This paper is the description and analysis of innovative Action Learning pedagogical approach adopted by a group of faculty members at NITIE Mumbai. It not only promotes multidisciplinary research but also enhances integration of the functional areas skillsets in the students. The paper discusses the theoretical bases of this pedagogy and evaluates the effectiveness of it vis-à-vis conventional pedagogical tools. The evaluation research using Bloom’s taxonomy framework showed that this blended method of Business Education is much superior as compared to conventional pedagogy.

Keywords: action learning, blooms taxonomy, business education, innovation, pedagogy

Procedia PDF Downloads 270
6910 Effect of Timing and Contributing Factors for Early Language Intervention in Toddlers with Repaired Cleft Lip and Palate

Authors: Pushpavathi M., Kavya V., Akshatha V.

Abstract:

Introduction: Cleft lip and palate (CLP) is a congenital condition which hinders effectual communication due to associated speech and language difficulties. Expressive language delay (ELD) is a feature seen in this population which is influenced by factors such as type and severity of CLP, age at surgical and linguistic intervention and also the type and intensity of speech and language therapy (SLT). Since CLP is the most common congenital abnormality seen in Indian children, early intervention is a necessity which plays a critical role in enhancing their speech and language skills. The interaction between the timing of intervention and factors which contribute to effective intervention by caregivers is an area which needs to be explored. Objectives: The present study attempts to determine the effect of timing of intervention on the contributing maternal factors for effective linguistic intervention in toddlers with repaired CLP with respect to the awareness, home training patterns, speech and non-speech behaviors of the mothers. Participants: Thirty six toddlers in the age range of 1 to 4 years diagnosed as ELD secondary to repaired CLP, along with their mothers served as participants. Group I (Early Intervention Group, EIG) included 19 mother-child pairs who came to seek SLT soon after corrective surgery and group II (Delayed Intervention Group, DIG) included 16 mother-child pairs who received SLT after the age of 3 years. Further, the groups were divided into group A, and group B. Group ‘A’ received SLT for 60 sessions by Speech Language Pathologist (SLP), while Group B received SLT for 30 sessions by SLP and 30 sessions only by mother without supervision of SLP. Method: The mothers were enrolled for the Early Language Intervention Program and following this, their awareness about CLP was assessed through the Parental awareness questionnaire. The quality of home training was assessed through Mohite’s Inventory. Subsequently, the speech and non-speech behaviors of the mothers were assessed using a Mother’s behavioral checklist. Detailed counseling and orientation was done to the mothers, and SLT was initiated for toddlers. After 60 sessions of intensive SLT, the questionnaire and checklists were re-administered to find out the changes in scores between the pre- and posttest measurements. Results: The scores obtained under different domains in the awareness questionnaire, Mohite’s inventory and Mothers behavior checklist were tabulated and subjected to statistical analysis. Since the data did not follow normal distribution (i.e. p > 0.05), Mann-Whitney U test was conducted which revealed that there was no significant difference between groups I and II as well as groups A and B. Further, Wilcoxon Signed Rank test revealed that mothers had better awareness regarding issues related to CLP and improved home-training abilities post-orientation (p ≤ 0.05). A statistically significant difference was also noted for speech and non-speech behaviors of the mothers (p ≤ 0.05). Conclusions: Extensive orientation and counseling helped mothers of both EI and DI groups to improve their knowledge about CLP. Intensive SLT using focused stimulation and a parent-implemented approach enabled them to carry out the intervention in an effectual manner.

Keywords: awareness, cleft lip and palate, early language intervention program, home training, orientation, timing of intervention

Procedia PDF Downloads 122
6909 Children’s Perception of Conversational Agents and Their Attention When Learning from Dialogic TV

Authors: Katherine Karayianis

Abstract:

Children with Attention Deficit Hyperactivity Disorder (ADHD) have trouble learning in traditional classrooms. These children miss out on important developmental opportunities in school, which leads to challenges starting in early childhood, and these problems persist throughout their adult lives. Despite receiving supplemental support in school, children with ADHD still perform below their non-ADHD peers. Thus, there is a great need to find better ways of facilitating learning in children with ADHD. Evidence has shown that children with ADHD learn best through interactive engagement, but this is not always possible in schools, given classroom restraints and the large student-to-teacher ratio. Redesigning classrooms may not be feasible, so informal learning opportunities provide a possible alternative. One popular informal learning opportunity is educational TV shows like Sesame Street. These types of educational shows can teach children foundational skills taught in pre-K and early elementary school. One downside to these shows is the lack of interactive dialogue between the TV characters and the child viewers. Pseudo-interaction is often deployed, but the benefits are limited if the characters can neither understand nor contingently respond to the child. AI technology has become extremely advanced and is now popular in many electronic devices that both children and adults have access to. AI has been successfully used to create interactive dialogue in children’s educational TV shows, and results show that this enhances children’s learning and engagement, especially when children perceive the character as a reliable teacher. It is likely that children with ADHD, whose minds may otherwise wander, may especially benefit from this type of interactive technology, possibly to a greater extent depending on their perception of the animated dialogic agent. To investigate this issue, I have begun examining the moderating role of inattention among children’s learning from an educational TV show with different types of dialogic interactions. Preliminary results have shown that when character interactions are neither immediate nor accurate, children who are more easily distracted will have greater difficulty learning from the show, but contingent interactions with a TV character seem to buffer these negative effects of distractibility by keeping the child engaged. To extend this line of work, the moderating role of the child’s perception of the dialogic agent as a reliable teacher will be examined in the association between children’s attention and the type of dialogic interaction in the TV show. As such, the current study will investigate this moderated moderation.

Keywords: attention, dialogic TV, informal learning, educational TV, perception of teacher

Procedia PDF Downloads 85
6908 Deictic Expressions in Selected Football Commentaries

Authors: Vera Ofori Akomah

Abstract:

There is no society without language. In football, language serves as a tool for communication. The football language and meaning of activities are largely revealed through the utterances of football commentators. The linguistic subfield of pragmatics is related to the study of meaning. Pragmatics shows that the interpretation of utterances not only depends on linguistic knowledge but also depends on knowledge about the context of the utterance, knowledge about the status of those involved such as the intent of the speaker, the place, and time of the utterance. Pragmatics analysis comes in several forms and one of such is Deixis. In football commentating, commentators often use deitic expressions in building utterances. The researcher intends to analyse deixis contained in three selected football commentaries through the use of Levinson’s deixis theory. This research is a qualitative study with content analysis as its method. This is because this study focuses on deitic expressions in football commentaries. The data of this study are utterances from English commentaries from 2016 El Classico match between Barcelona and Real Madrid, 2018 FIFA World Cup: Portugal vs Spain and 2022 FIFA World Cup Qualifier: Ghana v Nigeria. The result of the study reveals that there are five kinds of deixis which are person deixis (divided into three: the first person, the second person and the third person), place deixis, time deixis, discourse deixis and social deixis.

Keywords: pragmatics analysis, football commentary, deixis, types of deixis

Procedia PDF Downloads 27
6907 Identifying Physiological Markers That Are Sensitive to Cognitive Load in Preschoolers

Authors: Priyashri Kamlesh Sridhar, Suranga Nanayakkara

Abstract:

Current frameworks in assessment follow lesson delivery and rely heavily on test performance or teacher’s observations. This, however, neglects the underlying cognitive load during the learning process. Identifying the pivotal points when the load occurs helps design effective pedagogies and tools that respond to learners’ cognitive state. There has been limited research on quantifying cognitive load in preschoolers, real-time. In this study, we recorded electrodermal activity and heart rate variability (HRV) from 10 kindergarteners performing executive function tasks and Johnson Woodcock test of cognitive abilities. Preliminary findings suggest that there are indeed sensitive task-dependent markers in skin conductance (number of SCRs and average amplitude of SCRs) and HRV (mean heart rate and low frequency component) captured during the learning process.

Keywords: early childhood, learning, methodologies, pedagogies

Procedia PDF Downloads 320
6906 A Collaborative Learning Model in Engineering Science Based on a Cyber-Physical Production Line

Authors: Yosr Ghozzi

Abstract:

The Cyber-Physical Systems terminology has been well received by the industrial community and specifically appropriated in educational settings. Indeed, our latest educational activities are based on the development of experimental platforms on an industrial scale. In fact, we built a collaborative learning model because of an international market study that led us to place ourselves at the heart of this technology. To align with these findings, a competency-based approach study was conducted, and program content was revised by reflecting the projectbased approach. Thus, this article deals with the development of educational devices according to a generated curriculum and specific educational activities while respecting the repository of skills adopted from what constitutes the educational cyber-physical production systems and the laboratories that are compliant and adapted to them. The implementation of these platforms was systematically carried out in the school's workshops spaces. The objective has been twofold, both research and teaching for the students in mechatronics and logistics of the electromechanical department. We act as trainers and industrial experts to involve students in the implementation of possible extension systems around multidisciplinary projects and reconnect with industrial projects for better professional integration.

Keywords: education 4.0, competency-based learning, teaching factory, project-based learning, cyber-physical systems, industry 4.0

Procedia PDF Downloads 107
6905 An iTunes U App for Development of Metacognition Skills Delivered in the Enrichment Program Offered to Gifted Students at the Secondary Level

Authors: Maha Awad M. Almuttairi

Abstract:

This research aimed to measure the impact of the use of a mobile learning (iTunes U) app for the development of metacognition skills delivered in the enrichment program offered to gifted students at the secondary level in Jeddah. The author targeted a group of students on an experimental scale to evaluate the achievement. The research sample consisted of a group of 38 gifted female students. The scale of evaluation of the metacognition skills used to measure the performance of students in the enrichment program was as follows: Satisfaction scale for the assessment of the technique used and the final product form after completion of the program. Appropriate statistical treatment used includes Paired Samples T-Test Cronbach’s alpha formula and eta squared formula. It was concluded in the results the difference of α≤ 0.05, which means the performance of students in the skills of metacognition in favor of using iTunes U. In light of the conclusion of the experiment, a number of recommendations and suggestions were present; the most important benefit of mobile learning applications is to provide enrichment programs for gifted students in the Kingdom of Saudi Arabia, as well as conducting further research on mobile learning and gifted student teaching.

Keywords: enrichment program, gifted students, metacognition skills, mobile learning

Procedia PDF Downloads 118
6904 Support Vector Machine Based Retinal Therapeutic for Glaucoma Using Machine Learning Algorithm

Authors: P. S. Jagadeesh Kumar, Mingmin Pan, Yang Yung, Tracy Lin Huan

Abstract:

Glaucoma is a group of visual maladies represented by the scheduled optic nerve neuropathy; means to the increasing dwindling in vision ground, resulting in loss of sight. In this paper, a novel support vector machine based retinal therapeutic for glaucoma using machine learning algorithm is conservative. The algorithm has fitting pragmatism; subsequently sustained on correlation clustering mode, it visualizes perfect computations in the multi-dimensional space. Support vector clustering turns out to be comparable to the scale-space advance that investigates the cluster organization by means of a kernel density estimation of the likelihood distribution, where cluster midpoints are idiosyncratic by the neighborhood maxima of the concreteness. The predicted planning has 91% attainment rate on data set deterrent on a consolidation of 500 realistic images of resolute and glaucoma retina; therefore, the computational benefit of depending on the cluster overlapping system pedestal on machine learning algorithm has complete performance in glaucoma therapeutic.

Keywords: machine learning algorithm, correlation clustering mode, cluster overlapping system, glaucoma, kernel density estimation, retinal therapeutic

Procedia PDF Downloads 254
6903 Big Data in Telecom Industry: Effective Predictive Techniques on Call Detail Records

Authors: Sara ElElimy, Samir Moustafa

Abstract:

Mobile network operators start to face many challenges in the digital era, especially with high demands from customers. Since mobile network operators are considered a source of big data, traditional techniques are not effective with new era of big data, Internet of things (IoT) and 5G; as a result, handling effectively different big datasets becomes a vital task for operators with the continuous growth of data and moving from long term evolution (LTE) to 5G. So, there is an urgent need for effective Big data analytics to predict future demands, traffic, and network performance to full fill the requirements of the fifth generation of mobile network technology. In this paper, we introduce data science techniques using machine learning and deep learning algorithms: the autoregressive integrated moving average (ARIMA), Bayesian-based curve fitting, and recurrent neural network (RNN) are employed for a data-driven application to mobile network operators. The main framework included in models are identification parameters of each model, estimation, prediction, and final data-driven application of this prediction from business and network performance applications. These models are applied to Telecom Italia Big Data challenge call detail records (CDRs) datasets. The performance of these models is found out using a specific well-known evaluation criteria shows that ARIMA (machine learning-based model) is more accurate as a predictive model in such a dataset than the RNN (deep learning model).

Keywords: big data analytics, machine learning, CDRs, 5G

Procedia PDF Downloads 139
6902 Investigating the Factors Affecting Generalization of Deep Learning Models for Plant Disease Detection

Authors: Praveen S. Muthukumarana, Achala C. Aponso

Abstract:

A large percentage of global crop harvest is lost due to crop diseases. Timely identification and treatment of crop diseases is difficult in many developing nations due to insufficient trained professionals in the field of agriculture. Many crop diseases can be accurately diagnosed by visual symptoms. In the past decade, deep learning has been successfully utilized in domains such as healthcare but adoption in agriculture for plant disease detection is rare. The literature shows that models trained with popular datasets such as PlantVillage does not generalize well on real world images. This paper attempts to find out how to make plant disease identification models that generalize well with real world images.

Keywords: agriculture, convolutional neural network, deep learning, plant disease classification, plant disease detection, plant disease diagnosis

Procedia PDF Downloads 146
6901 Signals Monitored during Anaesthesia

Authors: Launcelot.McGrath

Abstract:

A comprehensive understanding of physiological data is a vital aid to the anaesthesiologist in monitoring and maintaining the well-being of a patient undergoing surgery. Biosignal analysis is one of the most important topics that researchers have tried to develop over the last century to understand numerous human diseases. Understanding which biological signals are most important during anaesthesia is critically important. It is important that the anaesthesiologist understand both the signals themselves and the limitations introduced by the processes of acquisition. In this article, we provide an overview of different types of biological signals as well as the mechanisms applied to acquire them.

Keywords: general biosignals, anaesthesia, biological, electroencephalogram

Procedia PDF Downloads 146
6900 Machine Learning for Aiding Meningitis Diagnosis in Pediatric Patients

Authors: Karina Zaccari, Ernesto Cordeiro Marujo

Abstract:

This paper presents a Machine Learning (ML) approach to support Meningitis diagnosis in patients at a children’s hospital in Sao Paulo, Brazil. The aim is to use ML techniques to reduce the use of invasive procedures, such as cerebrospinal fluid (CSF) collection, as much as possible. In this study, we focus on predicting the probability of Meningitis given the results of a blood and urine laboratory tests, together with the analysis of pain or other complaints from the patient. We tested a number of different ML algorithms, including: Adaptative Boosting (AdaBoost), Decision Tree, Gradient Boosting, K-Nearest Neighbors (KNN), Logistic Regression, Random Forest and Support Vector Machines (SVM). Decision Tree algorithm performed best, with 94.56% and 96.18% accuracy for training and testing data, respectively. These results represent a significant aid to doctors in diagnosing Meningitis as early as possible and in preventing expensive and painful procedures on some children.

Keywords: machine learning, medical diagnosis, meningitis detection, pediatric research

Procedia PDF Downloads 151
6899 Improving Similarity Search Using Clustered Data

Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong

Abstract:

This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.

Keywords: visual search, deep learning, convolutional neural network, machine learning

Procedia PDF Downloads 215
6898 Ukrainians Professors in a Luso-Hispanophone Brazilian Border Region: a Case-Study on the Management of Multilingualism in Higher Education

Authors: Isis Ribeiro Berger

Abstract:

In view of recent war conflicts between Russia and Ukraine, the government of Paraná State, in Brazil, started a program to host Ukrainian scientists in state universities in 2022. The initiative aimed at integrating these scientists into the Brazilian academic community, strengthening the role of universities in producing science and innovation even in times of war, as well as fostering Higher Education internationalization. Paraná state was a pioneer in this initiative due to the fact it has been home to the largest contingent of immigrants and descendants of Ukrainians in Brazil because of migratory processes that began at the end of the 19th century. One of the universities receiving Ukrainian scientists is in Foz do Iguaçu, a city that borders Argentina and Paraguay. It is a multilingual environment, whose majority languages are Portuguese (the official language of Brazil), Spanish (the official language of both Argentina and Paraguay), as well as Guarani (the co-official indigenous language of Paraguay). It is in such a sociolinguistic environment that two Ukrainian professors began their activities within the scope of an Interdisciplinary Postgraduate Program (master’s and doctorate degree). This case study, whose theme is the management of multilingualism, was developed within the scope of Language Policy. It aimed at identifying the attitudes of both Ukrainian professors and postgraduate students towards multilingualism in this context, given the plural linguistic repertoire of the academic community, as well as identifying the language management strategies for the construction of knowledge implemented by the program and in the classroom by these participants. Therefore, the study was conducted under a qualitative approach, for which surveys and interviews were adopted as part of its methodological procedures. Data revealed the presence of different languages in the classroom (Portuguese, Spanish, English and Ukrainian), which made pedagogical practices challenging for both professors and students, whose levels of knowledge in the different languages varied significantly. The results indicate that multilingualism was the norm as the means of instruction adopted in this context, in which bilingual Portuguese-English-Ukrainian instruction was used by the professors in their lectures. Although English has been privileged for the internationalization of Higher Education in various contexts, it was not used as an exclusive means of instruction in this case, mostly because it is a predominantly Portuguese-Spanish-speaking environment. In addition, the professors counted on the mediation of an interpreter hired by the program since not every student had sufficient knowledge of English as part of their repertoires. The findings also suggest Portuguese is the language that most of the participants of this study prefer, both because it is the mother tongue of majority, and because it is the official language of the host country to the professors, who have sought to integrate to the local culture and community. This research is inserted in the Axis: Multilingualism and Education, of the UNESCO Chair on Language Policies for Multilingualism to which this study is related.

Keywords: attitudes, border region, multilingualism management, Ukrainian professors

Procedia PDF Downloads 69
6897 An E-Maintenance IoT Sensor Node Designed for Fleets of Diverse Heavy-Duty Vehicles

Authors: George Charkoftakis, Panagiotis Liosatos, Nicolas-Alexander Tatlas, Dimitrios Goustouridis, Stelios M. Potirakis

Abstract:

E-maintenance is a relatively new concept, generally referring to maintenance management by monitoring assets over the Internet. One of the key links in the chain of an e-maintenance system is data acquisition and transmission. Specifically for the case of a fleet of heavy-duty vehicles, where the main challenge is the diversity of the vehicles and vehicle-embedded self-diagnostic/reporting technologies, the design of the data acquisition and transmission unit is a demanding task. This clear if one takes into account that a heavy-vehicles fleet assortment may range from vehicles with only a limited number of analog sensors monitored by dashboard light indicators and gauges to vehicles with plethora of sensors monitored by a vehicle computer producing digital reporting. The present work proposes an adaptable internet of things (IoT) sensor node that is capable of addressing this challenge. The proposed sensor node architecture is based on the increasingly popular single-board computer – expansion boards approach. In the proposed solution, the expansion boards undertake the tasks of position identification by means of a global navigation satellite system (GNSS), cellular connectivity by means of 3G/long-term evolution (LTE) modem, connectivity to on-board diagnostics (OBD), and connectivity to analog and digital sensors by means of a novel design of expansion board. Specifically, the later provides eight analog plus three digital sensor channels, as well as one on-board temperature / relative humidity sensor. The specific device offers a number of adaptability features based on appropriate zero-ohm resistor placement and appropriate value selection for limited number of passive components. For example, although in the standard configuration four voltage analog channels with constant voltage sources for the power supply of the corresponding sensors are available, up to two of these voltage channels can be converted to provide power to the connected sensors by means of corresponding constant current source circuits, whereas all parameters of analog sensor power supply and matching circuits are fully configurable offering the advantage of covering a wide variety of industrial sensors. Note that a key feature of the proposed sensor node, ensuring the reliable operation of the connected sensors, is the appropriate supply of external power to the connected sensors and their proper matching to the IoT sensor node. In standard mode, the IoT sensor node communicates to the data center through 3G/LTE, transmitting all digital/digitized sensor data, IoT device identity, and position. Moreover, the proposed IoT sensor node offers WiFi connectivity to mobile devices (smartphones, tablets) equipped with an appropriate application for the manual registration of vehicle- and driver-specific information, and these data are also forwarded to the data center. All control and communication tasks of the IoT sensor node are performed by dedicated firmware. It is programmed with a high-level language (Python) on top of a modern operating system (Linux). Acknowledgment: This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship, and Innovation, under the call RESEARCH—CREATE—INNOVATE (project code: T1EDK- 01359, IntelligentLogger).

Keywords: IoT sensor nodes, e-maintenance, single-board computers, sensor expansion boards, on-board diagnostics

Procedia PDF Downloads 154
6896 A Conv-Long Short-term Memory Deep Learning Model for Traffic Flow Prediction

Authors: Ali Reza Sattarzadeh, Ronny J. Kutadinata, Pubudu N. Pathirana, Van Thanh Huynh

Abstract:

Traffic congestion has become a severe worldwide problem, affecting everyday life, fuel consumption, time, and air pollution. The primary causes of these issues are inadequate transportation infrastructure, poor traffic signal management, and rising population. Traffic flow forecasting is one of the essential and effective methods in urban congestion and traffic management, which has attracted the attention of researchers. With the development of technology, undeniable progress has been achieved in existing methods. However, there is a possibility of improvement in the extraction of temporal and spatial features to determine the importance of traffic flow sequences and extraction features. In the proposed model, we implement the convolutional neural network (CNN) and long short-term memory (LSTM) deep learning models for mining nonlinear correlations and their effectiveness in increasing the accuracy of traffic flow prediction in the real dataset. According to the experiments, the results indicate that implementing Conv-LSTM networks increases the productivity and accuracy of deep learning models for traffic flow prediction.

Keywords: deep learning algorithms, intelligent transportation systems, spatiotemporal features, traffic flow prediction

Procedia PDF Downloads 171