Search results for: field efficiency
10815 Compact Dual-band 4-MIMO Antenna Elements for 5G Mobile Applications
Authors: Fayad Ghawbar
Abstract:
The significance of the Multiple Input Multiple Output (MIMO) system in the 5G wireless communication system is essential to enhance channel capacity and provide a high data rate resulting in a need for dual-polarization in vertical and horizontal. Furthermore, size reduction is critical in a MIMO system to deploy more antenna elements requiring a compact, low-profile design. A compact dual-band 4-MIMO antenna system has been presented in this paper with pattern and polarization diversity. The proposed single antenna structure has been designed using two antenna layers with a C shape in the front layer and a partial slot with a U-shaped cut in the ground to enhance isolation. The single antenna is printed on an FR4 dielectric substrate with an overall size of 18 mm×18 mm×1.6 mm. The 4-MIMO antenna elements were printed orthogonally on an FR4 substrate with a size dimension of 36 × 36 × 1.6 mm3 with zero edge-to-edge separation distance. The proposed compact 4-MIMO antenna elements resonate at 3.4-3.6 GHz and 4.8-5 GHz. The s-parameters measurement and simulation results agree, especially in the lower band with a slight frequency shift of the measurement results at the upper band due to fabrication imperfection. The proposed design shows isolation above -15 dB and -22 dB across the 4-MIMO elements. The MIMO diversity performance has been evaluated in terms of efficiency, ECC, DG, TARC, and CCL. The total and radiation efficiency were above 50 % across all parameters in both frequency bands. The ECC values were lower than 0.10, and the DG results were about 9.95 dB in all antenna elements. TARC results exhibited values lower than 0 dB with values lower than -25 dB in all MIMO elements at the dual-bands. Moreover, the channel capacity losses in the MIMO system were depicted using CCL with values lower than 0.4 Bits/s/Hz.Keywords: compact antennas, MIMO antenna system, 5G communication, dual band, ECC, DG, TARC
Procedia PDF Downloads 14310814 Quantitative Seismic Interpretation in the LP3D Concession, Central of the Sirte Basin, Libya
Authors: Tawfig Alghbaili
Abstract:
LP3D Field is located near the center of the Sirt Basin in the Marada Trough approximately 215 km south Marsa Al Braga City. The Marada Trough is bounded on the west by a major fault, which forms the edge of the Beda Platform, while on the east, a bounding fault marks the edge of the Zelten Platform. The main reservoir in the LP3D Field is Upper Paleocene Beda Formation. The Beda Formation is mainly limestone interbedded with shale. The reservoir average thickness is 117.5 feet. To develop a better understanding of the characterization and distribution of the Beda reservoir, quantitative seismic data interpretation has been done, and also, well logs data were analyzed. Six reflectors corresponding to the tops of the Beda, Hagfa Shale, Gir, Kheir Shale, Khalifa Shale, and Zelten Formations were picked and mapped. Special work was done on fault interpretation part because of the complexities of the faults at the structure area. Different attribute analyses were done to build up more understanding of structures lateral extension and to view a clear image of the fault blocks. Time to depth conversion was computed using velocity modeling generated from check shot and sonic data. The simplified stratigraphic cross-section was drawn through the wells A1, A2, A3, and A4-LP3D. The distribution and the thickness variations of the Beda reservoir along the study area had been demonstrating. Petrophysical analysis of wireline logging also was done and Cross plots of some petrophysical parameters are generated to evaluate the lithology of reservoir interval. Structure and Stratigraphic Framework was designed and run to generate different model like faults, facies, and petrophysical models and calculate the reservoir volumetric. This study concluded that the depth structure map of the Beda formation shows the main structure in the area of study, which is north to south faulted anticline. Based on the Beda reservoir models, volumetric for the base case has been calculated and it has STOIIP of 41MMSTB and Recoverable oil of 10MMSTB. Seismic attributes confirm the structure trend and build a better understanding of the fault system in the area.Keywords: LP3D Field, Beda Formation, reservoir models, Seismic attributes
Procedia PDF Downloads 21510813 An Intelligent Prediction Method for Annular Pressure Driven by Mechanism and Data
Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li, Shuo Zhu, Shiming Duan, Xuezhe Yao
Abstract:
Accurate calculation of wellbore pressure is of great significance to prevent wellbore risk during drilling. The traditional mechanism model needs a lot of iterative solving procedures in the calculation process, which reduces the calculation efficiency and is difficult to meet the demand of dynamic control of wellbore pressure. In recent years, many scholars have introduced artificial intelligence algorithms into wellbore pressure calculation, which significantly improves the calculation efficiency and accuracy of wellbore pressure. However, due to the ‘black box’ property of intelligent algorithm, the existing intelligent calculation model of wellbore pressure is difficult to play a role outside the scope of training data and overreacts to data noise, often resulting in abnormal calculation results. In this study, the multi-phase flow mechanism is embedded into the objective function of the neural network model as a constraint condition, and an intelligent prediction model of wellbore pressure under the constraint condition is established based on more than 400,000 sets of pressure measurement while drilling (MPD) data. The constraint of the multi-phase flow mechanism makes the prediction results of the neural network model more consistent with the distribution law of wellbore pressure, which overcomes the black-box attribute of the neural network model to some extent. The main performance is that the accuracy of the independent test data set is further improved, and the abnormal calculation values basically disappear. This method is a prediction method driven by MPD data and multi-phase flow mechanism, and it is the main way to predict wellbore pressure accurately and efficiently in the future.Keywords: multiphase flow mechanism, pressure while drilling data, wellbore pressure, mechanism constraints, combined drive
Procedia PDF Downloads 17410812 Engineering the Topological Insulator Structures for Terahertz Detectors
Authors: M. Marchewka
Abstract:
The article is devoted to the possible optical transitions in double quantum wells system based on HgTe/HgCd(Mn)Te heterostructures. Such structures can find applications as detectors and sources of radiation in the terahertz range. The Double Quantum Wells (DQW) systems consist of two QWs separated by the transparent for electrons barrier. Such systems look promising from the point of view of the additional degrees of freedom. In the case of the topological insulator in about 6.4nm wide HgTe QW or strained 3D HgTe films at the interfaces, the topologically protected surface states appear at the interfaces/surfaces. Electrons in those edge states move along the interfaces/surfaces without backscattering due to time-reversal symmetry. Combination of the topological properties, which was already verified by the experimental way, together with the very well know properties of the DQWs, can be very interesting from the applications point of view, especially in the THz area. It is important that at the present stage, the technology makes it possible to create high-quality structures of this type, and intensive experimental and theoretical studies of their properties are already underway. The idea presented in this paper is based on the eight-band KP model, including the additional terms related to the structural inversion asymmetry, interfaces inversion asymmetry, the influence of the magnetically content, and the uniaxial strain describe the full pictures of the possible real structure. All of this term, together with the external electric field, can be sources of breaking symmetry in investigated materials. Using the 8 band KP model, we investigated the electronic shape structure with and without magnetic field from the application point of view as a THz detector in a small magnetic field (below 2T). We believe that such structures are the way to get the tunable topological insulators and the multilayer topological insulator. Using the one-dimensional electrons at the topologically protected interface states as fast and collision-free signal carriers as charge and signal carriers, the detection of the optical signal should be fast, which is very important in the high-resolution detection of signals in the THz range. The proposed engineering of the investigated structures is now one of the important steps on the way to get the proper structures with predicted properties.Keywords: topological insulator, THz spectroscopy, KP model, II-VI compounds
Procedia PDF Downloads 12210811 Marker Assisted Selection of Rice Genotypes for Xa5 and Xa13 Bacterial Leaf Blight Resistance Genes
Authors: P. Sindhumole, K. Soumya, R. Renjimol
Abstract:
Rice (Oryza sativa L.) is the major staple food crop over the world. It is prone to a number of biotic and abiotic stresses, out of which Bacterial Leaf Blight (BLB), caused by Xanthomonas oryzae pv. oryzae, is the most rampant. Management of this disease through chemicals or any other means is very difficult. The best way to control BLB is by the development of Host Plant Resistance. BLB resistance is not an activity of a single gene but it involves a cluster of more than thirty genes reported. Among these, Xa5 and Xa13 genes are two important ones, which can be diagnosed through marker assisted selection using closely linked molecular markers. During 2014, the first phase of field screening using forty traditional rice genotypes was carried out and twenty resistant symptomless genotypes were identified. Molecular characterisation of these genotypes using RM 122 SSR marker revealed the presence of Xa5 gene in thirteen genotypes. Forty-two traditional rice genotypes were used for the second phase of field screening for BLB resistance. Among these, sixteen resistant genotypes were identified. These genotypes, along with two susceptible check genotypes, were subjected to marker assisted selection for Xa13 gene, using the linked STS marker RG-136. During this process, presence of Xa13 gene could be detected in ten resistant genotypes. In future, these selected genotypes can be directly utilised as donors in Marker assisted breeding programmes for BLB resistance in rice.Keywords: oryza sativa, SSR, STS, marker, disease, breeding
Procedia PDF Downloads 39510810 Screening the Best Integrated Pest Management Treatments against Helicoverpa armigera
Authors: Ajmal Khan Kassi, Humayun Javed, Tariq Mukhtar
Abstract:
The research was conducted to screen out resistance and susceptibility of okra varieties against Helicoverpa armigera under field conditions 2016. In this experiment, the different management practices viz. release Trichogramma chilonis, hoeing, and weeding, clipping, and lufenuron were tested individually and with all possible combinations for the controlling of American bollworm at 3 diverse localities viz. University research farm Koont, National Agriculture Research Centre (NARC) and farmer field Taxila by using resistant variety Arka Anamika. All the treatment combinations regarding damage of shoot and fruit showed significant results. The minimum fruit infestation, i.e., 3.20% and 3.58% was recorded with combined treatment (i.e., T. chilonis + hoeing + weeding + lufenuron) in two different localities. The minimum shoot infestation, i.e., 7.18%, 7.08%, and 6.85% was also observed with (T. chilonis + hoeing + weeding + lufenuron) combined treatment at all three different localities. The above-combined treatment (T. chilonis + hoeing + weeding + lufenuron) also resulted in maximum yield at NARC and Taxila, i.e., 57.67 and 62.66 q/ha respectively. On the basis of combined treatment (i.e., T. chilonis + hoeing + weeding + lufenuron) in three different localities, Arka Anamika variety proved to be comparatively resistant against H. armigera. So this variety is recommended for the cultivation in Pothwar region to get maximum yield and minimum losses against H. armigera.Keywords: okra, screening, combine treatment, Helicoverpa armigera
Procedia PDF Downloads 15510809 Promoting Authenticity in Employer Brands to Address the Global-Local Problem in Complex Organisations: The Case of a Developing Country
Authors: Saud Al Taj
Abstract:
Employer branding is considered as a useful tool for addressing the global-local problem facing complex organisations that have operations scattered across the globe and face challenges of dealing with the local environment alongside. Despite being an established field of study within the Western developed world, there is little empirical evidence concerning the relevance of employer branding to global companies that operate in the under-developed economies. This paper fills this gap by gaining rich insight into the implementation of employer branding programs in a foreign multinational operating in Pakistan dealing with the global-local problem. The study is qualitative in nature and employs semi-structured and focus group interviews with senior/middle managers and local frontline employees to deeply examine the phenomenon in case organisation. Findings suggest that authenticity is required in employer brands to enable them to respond to the local needs thereby leading to the resolution of the global-local problem. However, the role of signaling theory is key to the development of authentic employer brands as it stresses on the need to establish an efficient and effective signaling environment wherein signals travel in both directions (from signal designers to receivers and backwards) and facilitate firms with the global-local problem. The paper also identifies future avenues of research for the employer branding field.Keywords: authenticity, counter-signals, employer branding, global-local problem, signaling theory
Procedia PDF Downloads 36710808 Structural and Magnetic Properties of NiFe2O4 Spinel Ferrite Nanoparticles Synthesized by Starch-Assisted Sol-Gel Auto-Combustion Method
Authors: R. S. Yadav, J. Havlica, I. Kuřitka, Z. Kozakova, J. Masilko, L. Kalina, M. Hajdúchová, V. Enev, J. Wasserbauer
Abstract:
Nickel spinel ferrite NiFe2O4 nanoparticles with different particle size at different annealing temperature were synthesized using the starch-assisted sol-gel auto-combustion method. The synthesized nanoparticles were characterized by conventional powder X-ray diffraction (XRD) spectroscopy, Raman Spectroscopy, Fourier Transform Infrared Spectroscopy, Field-Emission Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy and Vibrating Sample Magnetometer. The XRD patterns confirmed the formation of NiFe2O4 spinel ferrite nanoparticles. Field-Emission Scanning Electron Microscopy revealed that particles are of spherical morphology with particle size 5-20 nm at lower annealing temperature. An infrared spectroscopy study showed the presence of two principal absorption bands in the frequency range around 525 cm-1 (ν1) and around 340 cm-1 (ν2); which indicate the presence of tetrahedral and octahedral group complexes, respectively, within the spinel ferrite nanoparticles. Raman spectroscopy study also indicated the change in octahedral and tetrahedral site related Raman modes in nickel ferrite nanoparticles with change of particle size. This change in magnetic behavior with change of particle size of NiFe2O4 nanoparticles was observed.Keywords: nickel ferrite, nanoparticles, magnetic property, NiFe2O4
Procedia PDF Downloads 38310807 Creativity and Intelligence: Psychoeducational Connections
Authors: Cristina Costa-Lobo, Carla B. Vestena, Filomena E. Ponte
Abstract:
Creativity and intelligence are concepts that have aroused very expressive interest in the field of educational sciences and the field of psychological science since the middle of the last century since they have a great impact on the potential and well-being of individuals. However, due to progress in cognitive and positive psychology, there has been a growing interest in the psychoeducational domain of intelligence and creativity in the last decade. In this theoretical work, are analyzed comparatively the theoretical models that relate the intelligence and the creativity, are analyzed several psychoeducational intervention programs that have been implemented with a view to the promotion of creativity and signal possibilities, realities and ironies around the psychological evaluation of intelligence and creativity. In order to reach a broad perspective on creativity, the evidence is presented that points the need to evaluate different psychological domains. The psychoeducational intervention programs addressed have, with a common characteristic, the full stimulation of the creative potential of the participants, assumed as a highly valued capacity at the present time. The results point to the systematize that all interventions in the ambit of creativity have two guiding principles: all individuals can be creative, and creativity is a capacity that can be stimulated. This work refers to the importance of stimulus creativity in educational contexts, to the usefulness and pertinence of the creation, the implementation, and monitoring of flexible curricula, adapted to the educational needs of students, promoting a collaborative work among teachers, parents, students, psychologists, managers and educational administrators.Keywords: creativity, intelligence, psychoeducational intervention programs, psychological evaluation, educational contexts
Procedia PDF Downloads 40510806 Sequence Stratigraphy and Petrophysical Analysis of Sawan Gas Field, Central Indus Basin, Pakistan
Authors: Saeed Ur Rehman Chaudhry
Abstract:
The objectives of the study are to reconstruct sequence stratigraphic framework and petrophysical analysis of the reservoir marked by using sequence stratigraphy of Sawan Gas Field. The study area lies in Central Indus Basin, District Khairpur, Sindh province, Pakistan. The study area lies tectonically in an extensional regime. Lower Goru Formation and Sembar Formation act as a reservoir and source respectively. To achieve objectives, data set of seismic lines, consisting of seismic lines PSM96-114, PSM96-115, PSM96-133, PSM98-201, PSM98-202 and well logs of Sawan-01, Sawan-02 and Gajwaro-01 has been used. First of all interpretation of seismic lines has been carried out. Interpretation of seismic lines shows extensional regime in the area and cut entire Cretaceous section. Total of seven reflectors has been marked on each seismic line. Lower Goru Formation is thinning towards west. Seismic lines also show eastward tilt of stratigraphy due to uplift at the western side. Sequence stratigraphic reconstruction has been done by integrating seismic and wireline log data. Total of seven sequence boundaries has been interpreted between the top of Chiltan Limestone to Top of Lower Goru Formation. It has been observed on seismic lines that Sembar Formation initially generated shelf margin profile and then ramp margin on which Lower Goru deposition took place. Shelf edge deltas and slope fans have been observed on seismic lines, and signatures of slope fans are also observed on wireline logs as well. Total of six sequences has been interpreted. Stratigraphic and sequence stratigraphic correlation has been carried out by using Sawan 01, Sawan 02 and Gajwaro 01 and a Low Stand Systems tract (LST) within Lower Goru C sands has been marked as a zone of interest. The petrophysical interpretation includes shale volume, effective porosity, permeability, saturation of water and hydrocarbon. On the basis of good effective porosity and hydrocarbon saturation petrophysical analysis confirms that the LST in Sawan-01 and Sawan-02 has good hydrocarbon potential.Keywords: petrophysical analysis, reservoir potential, Sawan Gas Field, sequence stratigraphy
Procedia PDF Downloads 26210805 Research on Urban Design Method of Ancient City Guided by Catalyst Theory
Authors: Wang Zhiwei, Wang Weiwu
Abstract:
The process of urbanization in China has entered a critical period of transformation from urban expansion and construction to delicate urban design, thus forming a new direction in the field of urban design. So far, catalyst theory has become a prominent guiding strategy in urban planning and design. In this paper, under the background of urban renewal, catalyst theory is taken as the guiding ideology to explore the method of urban design in shouxian county. Firstly, this study briefly introduces and analyzes the catalyst theory. Through field investigation, it is found that the city has a large number of idle Spaces, such as abandoned factories and schools. In the design, the idle Spaces in the county town are utilized and interlinked in space, and functional interaction is carried out from the pattern of the county town. On the one hand, the results showed that the catalyst theory can enhance the vitality of the linear street space with a small amount of monomer construction. On the other hand, the city can also increase the cultural and economic sites of the city without damaging the historical relics and the sense of alterations of the ancient city, to improve the quality of life and quality of life of citizens. The city micro-transformation represented by catalyst theory can help ancient cities like shouxian to realize the activation of the old city and realize the gradual development.Keywords: catalytic theory, urban design, China's ancient city, Renaissance
Procedia PDF Downloads 12410804 Efficiency of a Molecularly Imprinted Polymer for Selective Removal of Chlorpyrifos from Water Samples
Authors: Oya A. Urucu, Aslı B. Çiğil, Hatice Birtane, Ece K. Yetimoğlu, Memet Vezir Kahraman
Abstract:
Chlorpyrifos is an organophosphorus pesticide which can be found in environmental water samples. The efficiency and reuse of a molecularly imprinted polymer (chlorpyrifos - MIP) were investigated for the selective removal of chlorpyrifos residues. MIP was prepared with UV curing thiol-ene polymerization technology by using multifunctional thiol and ene monomers. The thiol-ene curing reaction is a radical induced process, however unlike other photoinitiated polymerization processes, this polymerization process is a free-radical reaction that proceeds by a step-growth mechanism, involving two main steps; a free-radical addition followed by a chain transfer reaction. It assures a very rapidly formation of a uniform crosslinked network with low shrinkage, reduced oxygen inhibition during curing and excellent adhesion. In this study, thiol-ene based UV-curable polymeric materials were prepared by mixing pentaerythritol tetrakis(3-mercaptopropionate), glyoxal bis diallyl acetal, polyethylene glycol diacrylate (PEGDA) and photoinitiator. Chlorpyrifos was added at a definite ratio to the prepared formulation. Chemical structure and thermal properties were characterized by FTIR and thermogravimetric analysis (TGA), respectively. The pesticide analysis was performed by gas chromatography-mass spectrometry (GC-MS). The influences of some analytical parameters such as pH, sample volume, amounts of analyte concentration were studied for the quantitative recoveries of the analyte. The proposed MIP method was applied to the determination of chlorpyrifos in river and tap water samples. The use of the MIP provided a selective and easy solution for removing chlorpyrifos from the water.Keywords: molecularly imprinted polymers, selective removal, thilol-ene, uv-curable polymer
Procedia PDF Downloads 30110803 Application Problems of Anchor Dowels in Reinforced Concrete Shear Wall and Frame Connections
Authors: Musa H. Arslan
Abstract:
Strengthening of the existing seismically deficient reinforced concrete (RC) buildings is an important issue in earthquake prone regions. Addition of RC shear wall as infill or external walls into the structural system has been a commonly preferred strengthening technique since the Big Erzincan Earthquake occurred in Turkey, 1992. The newly added rigid infill walls act primarily as shear walls and relieve the non-ductile existing frames from being subjected to large shear demands providing that new RC inner or external walls are adequately anchored to the existing weak RC frame. The performance of the RC shear walls-RC weak frame connections by steel anchor dowels depends on some parameters such as compressive strength of the existing RC frame concrete, diameter and embedment length of anchored rebar, type of rebar, yielding stress of bar, properties of used chemicals, position of the anchor bars in RC. In this study, application problems of the steel anchor dowels have been checked with some field studies such as tensile test. Two different RC buildings which will be strengthened were selected, and before strengthening, some tests have been performed in the existing RC buildings. According to the field observation and experimental studies, if the concrete compressive strength is lower than 10 MPa, the performance of the anchors is reduced by 70%.Keywords: anchor dowel, concrete, damage, reinforced concrete, shear wall, frame
Procedia PDF Downloads 37110802 Optimization of the Administration of Intravenous Medication by Reduction of the Residual Volume, Taking User-Friendliness, Cost Efficiency, and Safety into Account
Authors: A. Poukens, I. Sluyts, A. Krings, J. Swartenbroekx, D. Geeroms, J. Poukens
Abstract:
Introduction and Objectives: It has been known for many years that with the administration of intravenous medication, a rather significant part of the planned to be administered infusion solution, the residual volume ( the volume that remains in the IV line and or infusion bag), does not reach the patient and is wasted. This could possibly result in under dosage and diminished therapeutic effect. Despite the important impact on the patient, the reduction of residual volume lacks attention. An optimized and clearly stated protocol concerning the reduction of residual volume in an IV line is necessary for each hospital. As described in my Master’s thesis, acquiring the degree of Master in Hospital Pharmacy, administration of intravenous medication can be optimized by reduction of the residual volume. Herewith effectiveness, user-friendliness, cost efficiency and safety were taken into account. Material and Methods: By usage of a literature study and an online questionnaire sent out to all Flemish hospitals and hospitals in the Netherlands (province Limburg), current flush methods could be mapped out. In laboratory research, possible flush methods aiming to reduce the residual volume were measured. Furthermore, a self-developed experimental method to reduce the residual volume was added to the study. The current flush methods and the self-developed experimental method were compared to each other based on cost efficiency, user-friendliness and safety. Results: There is a major difference between the Flemish and the hospitals in the Netherlands (Province Limburg) concerning the approach and method of flushing IV lines after administration of intravenous medication. The residual volumes were measured and laboratory research showed that if flushing was done minimally 1-time equivalent to the residual volume, 95 percent of glucose would be flushed through. Based on the comparison, it became clear that flushing by use of a pre-filled syringe would be the most cost-efficient, user-friendly and safest method. According to laboratory research, the self-developed experimental method is feasible and has the advantage that the remaining fraction of the medication can be administered to the patient in unchanged concentration without dilution. Furthermore, this technique can be applied regardless of the level of the residual volume. Conclusion and Recommendations: It is recommendable to revise the current infusion systems and flushing methods in most hospitals. Aside from education of the hospital staff and alignment on a uniform substantiated protocol, an optimized and clear policy on the reduction of residual volume is necessary for each hospital. It is recommended to flush all IV lines with rinsing fluid with at least the equivalent volume of the residual volume. Further laboratory and clinical research for the self-developed experimental method are needed before this method can be implemented clinically in a broader setting.Keywords: intravenous medication, infusion therapy, IV flushing, residual volume
Procedia PDF Downloads 13510801 Use of Nanosensors in Detection and Treatment of HIV
Authors: Sayed Obeidullah Abrar
Abstract:
Nanosensor is the combination of two terms nanoparticles and sensors. These are chemical or physical sensor constructed using nanoscale components, usually microscopic or submicroscopic in size. These sensors are very sensitive and can detect single virus particle or even very low concentrations of substances that could be potentially harmful. Nanosensors have a large scope of research especially in the field of medical sciences, military applications, pharmaceuticals etc.Keywords: HIV/AIDS, nanosensors, DNA, RNA
Procedia PDF Downloads 29910800 Facile Fabrication of TiO₂NT/Fe₂O₃@Ag₂CO₃ Nanocomposite and Its Highly Efficient Visible Light Photocatalytic and Antibacterial Activity
Authors: Amal A. Al-Kahlawy, Heba H. El-Maghrabi
Abstract:
Due to the increasing need to environment protection in real time need to energize new materials are under extensive investigations. Between others, TiO2 nanotubes (TNTs) nanocomposite with iron oxide and silver carbonate, are promising alternatives as high-efficiency visible light photocatalyst due to their unique properties and their superior charge transport properties. Our efforts in this domain aim the construction of novel nanocomposite of TiO2NT/Fe2O3@Ag2CO3. The structure, surface morphology, chemical composition and optical properties were characterized by X-ray diffraction (XRD), Raman, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and UV–vis diffuse reflectance spectroscopy (DRS). XRD results confirm the interaction of TiO2-NT with iron oxide. This novel nanocomposite shows remarkably enhanced performance for phenol compounds photodegradation. The experimental data shows a promising photocatalytic activity. In particular, a maximum value of 450 mg/g was removed within 60 min at solar light irradiation with degradation efficiency of 99.5%. The high photocatalytic activity of the nanocomposite is found to be related to the increased adsorption toward chemical species, enhanced light absorption and efficient charge separation and transfer. Finally, the designed TiO2NT/Fe2O3@Ag2CO3 nanocomposite has a great degree of sustainability and could has a potential application for the industrial treatment of wastewater containing toxic organic materials.Keywords: nanocomposite, photocatalyst, solar energy, titanium dioxide nanotubes
Procedia PDF Downloads 24710799 Study of Heat Transfer through the Ground and its Accumulation Properties to Increase the Energy Efficiency of Underground Buildings
Authors: Sandeep Bandarwadkar, Tadas Zdankus
Abstract:
To maintain a comfortable indoor temperature for its residents in the colder season, heating a building is necessary. Due to the expansion in the construction sectors, the consumption of heating energy is increasing. According to Eurostat data, in the European Union, the share of energy consumption of heating energy for space and cooling in residential buildings was around 63% in 2019. These figures indicate that heating energy still accounts for a significant portion of total energy consumption in Europe. Innovation is crucial to reduce energy consumption in buildings and achieve greater energy efficiency and sustainability. It can bring about new solutions that are smarter and more natural energy generation to reduce greenhouse gas emissions. The ground can serve as an effective and sustainable heat accumulator for heating and cooling. The temperature of the ground is higher than that of the ambient air in the colder period and lower in the warmer period. The building deep in the soil could use less thermal energy compared to the above-ground buildings that provide the same amount of thermal comfort. The temperature difference between the soil and the air inside the building decreases as the temperature of the soil increases. In progress, this process generates the condition that acts against heat loss. However, heat dissipates further to the consecutive layers and reaches thermal equilibrium. The charging of the ground by heat and its dissipation through the adjacent soil layers was investigated experimentally. The results of this research showed that 9% of the energy savings in partially underground buildings and 44.4% in completely underground buildings were derived from heating the space. Heat loss to the ground is treated as a charge of the soil by thermal energy. The dependence of the intensity of the charge on time was analysed and presented.Keywords: heat transfer, accumulation of heat, underground building, soil charge
Procedia PDF Downloads 7110798 Thermal Performance of an Air Heating Storing System
Authors: Mohammed A. Elhaj, Jamal S. Yassin
Abstract:
Owing to the lack of synchronization between the solar energy availability and the heat demands in a specific application, the energy storing sub-system is necessary to maintain the continuity of thermal process. The present work is dealing with an active solar heating storing system in which an air solar collector is connected to storing unit where this energy is distributed and provided to the heated space in a controlled manner. The solar collector is a box type absorber where the air flows between a number of vanes attached between the collector absorber and the bottom plate. This design can improve the efficiency due to increasing the heat transfer area exposed to the flowing air, as well as the heat conduction through the metal vanes from the top absorbing surface. The storing unit is a packed bed type where the air is coming from the air collector and circulated through the bed in order to add/remove the energy through the charging / discharging processes, respectively. The major advantage of the packed bed storage is its high degree of thermal stratification. Numerical solution of the packed bed energy storage is considered through dividing the bed into a number of equal segments for the bed particles and solved the energy equation for each segment depending on the neighbor ones. The studied design and performance parameters in the developed simulation model including, particle size, void fraction, etc. The final results showed that the collector efficiency was fluctuated between 55%-61% in winter season (January) under the climatic conditions of Misurata in Libya. Maximum temperature of 52ºC is attained at the top of the bed while the lower one is 25ºC at the end of the charging process of hot air into the bed. This distribution can satisfy the required load for the most house heating in Libya.Keywords: solar energy, thermal process, performance, collector, packed bed, numerical analysis, simulation
Procedia PDF Downloads 33110797 A Simulation Study of Direct Injection Compressed Natural Gas Spark Ignition Engine Performance Utilizing Turbulent Jet Ignition with Controlled Air Charge
Authors: Siyamak Ziyaei, Siti Khalijah Mazlan, Petros Lappas
Abstract:
Compressed Natural Gas (CNG) mainly consists of Methane CH₄ and has a low carbon to hydrogen ratio relative to other hydrocarbons. As a result, it has the potential to reduce CO₂ emissions by more than 20% relative to conventional fuels like diesel or gasoline Although Natural Gas (NG) has environmental advantages compared to other hydrocarbon fuels whether they are gaseous or liquid, its main component, CH₄, burns at a slower rate than conventional fuels A higher pressure and a leaner cylinder environment will overemphasize slow burn characteristic of CH₄. Lean combustion and high compression ratios are well-known methods for increasing the efficiency of internal combustion engines. In order to achieve successful CNG lean combustion in Spark Ignition (SI) engines, a strong ignition system is essential to avoid engine misfires, especially in ultra-lean conditions. Turbulent Jet Ignition (TJI) is an ignition system that employs a pre-combustion chamber to ignite the lean fuel mixture in the main combustion chamber using a fraction of the total fuel per cycle. TJI enables ultra-lean combustion by providing distributed ignition sites through orifices. The fast burn rate provided by TJI enables the ordinary SI engine to be comparable to other combustion systems such as Homogeneous Charge Compression Ignition (HCCI) or Controlled Auto-Ignition (CAI) in terms of thermal efficiency, through the increased levels of dilution without the need of sophisticated control systems. Due to the physical geometry of TJIs, which contain small orifices that connect the prechamber to the main chamber, scavenging is one of the main factors that reduce TJI performance. Specifically, providing the right mixture of fuel and air has been identified as a key challenge. The reason for this is the insufficient amount of air that is pushed into the pre-chamber during each compression stroke. There is also the problem that combustion residual gases such as CO₂, CO and NOx from the previous combustion cycle dilute the pre- chamber fuel-air mixture preventing rapid combustion in the pre-chamber. An air-controlled active TJI is presented in this paper in order to address these issues. By applying air to the pre-chamber at a sufficient pressure, residual gases are exhausted, and the air-fuel ratio is controlled within the pre-chamber, thereby improving the quality of combustion. This paper investigates the 3D-simulated combustion characteristics of a Direct Injected (DI-CNG) fuelled SI en- gine with a pre-chamber equipped with an air channel by using AVL FIRE software. Experiments and simulations were performed at the Worldwide Mapping Point (WWMP) at 1500 Revolutions Per Minute (RPM), 3.3 bar Indicated Mean Effective Pressure (IMEP), using only conventional spark plugs as the baseline. After validating simulation data, baseline engine conditions were set for all simulation scenarios at λ=1. Following that, the pre-chambers with and without an auxiliary fuel supply were simulated. In the simulated (DI-CNG) SI engine, active TJI was observed to perform better than passive TJI and spark plug. In conclusion, the active pre-chamber with an air channel demon-strated an improved thermal efficiency (ηth) over other counterparts and conventional spark ignition systems.Keywords: turbulent jet ignition, active air control turbulent jet ignition, pre-chamber ignition system, active and passive pre-chamber, thermal efficiency, methane combustion, internal combustion engine combustion emissions
Procedia PDF Downloads 8710796 Evaluation of Railway Network and Service Performance Based on Transportation Sustainability in DKI Jakarta
Authors: Nur Bella Octoria Bella, Ayomi Dita Rarasati
Abstract:
DKI Jakarta is Indonesia's capital city with the 10th highest congestion rate in the world based on the 2019 traffic index. Other than that based on World Air Quality Report in 2019 showed DKI Jakarta's air pollutant concentrate 49.4 µg and the 5th highest air pollutant in the world. In the urban city nowadays, the mobility rate is high enough and the efficiency for sustainability assessment in transport infrastructure development is needed. This efficiency is the important key for sustainable infrastructure development. DKI Jakarta is nowadays in the process of constructing the railway infrastructure to support the transportation system. The problems appearing are the railway infrastructure networks and the service in DKI Jakarta already planned based on sustainability factors or not. Therefore, the aim of this research is to make the evaluation of railways infrastructure networks performance and services in DKI Jakarta regards on the railway sustainability key factors. Further, this evaluation will be used to make the railway sustainability assessment framework and to offer some of the alternative solutions to improve railway transportation sustainability in DKI Jakarta. Firstly a very detailed literature review of papers that have focused on railway sustainability factors and their improvements of railway sustainability, published in the scientific journal in the period 2011 until 2021. Regarding the sustainability factors from the literature review, further, it is used to assess the current condition of railway infrastructure in DKI Jakarta. The evaluation will be using a Likert rate questionnaire and directed to the transportation railway expert and the passenger. Furthermore, the mapping and evaluation rate based on the sustainability factors will be compared to the effect factors using the Analytical Hierarchical Process (AHP). This research offers the network's performance and service rate impact on the sustainability aspect and the passenger willingness for using the rail public transportation in DKI Jakarta.Keywords: transportation sustainability, railway transportation, sustainability, DKI Jakarta
Procedia PDF Downloads 16310795 Correlations Between Electrical Resistivity and Some Properties of Clayey Soils
Authors: F. A. Hassona, M. M. Abu-Heleika, M. A. Hassan, A. E. Sidhom
Abstract:
Application of electrical measurements to evaluate engineering properties of soils has gained a wide, promising field of research in recent years. So, understanding of the relation between in-situ electrical resistivity of clay soil, and their mechanical and physical properties consider a promising field of research. This would assist in introducing a new technique for the determination of soil properties based on electrical resistivity. In this work soil physical and mechanical properties of clayey soil have been determined by experimental tests and correlated with the in-situ electrical resistivity. The research program was conducted through measuring fifteen vertical electrical sounding stations along with fifteen selected boreholes. These samples were analyzed and subjected to experimental tests such as physical tests namely bulk density, water content, specific gravity, and grain size distribution, and Attereberg limits tests. Mechanical test was also conducted such as direct shear test. The electrical resistivity data were interpreted and correlated with each one of the measured experimental parameters. Based on this study mathematical relations were extracted and discussed. These results exhibit an excellent match with the results reported in the literature. This study demonstrates the utility of the developed methodology for determining the mechanical properties of soils easily and rapidly depending on their electrical resistivity measurements.Keywords: electrical resistivity, clayey soil, physical properties, shear properties
Procedia PDF Downloads 29610794 Exploring the Role of Building Information Modeling for Delivering Successful Construction Projects
Authors: Muhammad Abu Bakar Tariq
Abstract:
Construction industry plays a crucial role in the progress of societies and economies. Furthermore, construction projects have social as well as economic implications, thus, their success/failure have wider impacts. However, the industry is lagging behind in terms of efficiency and productivity. Building Information Modeling (BIM) is recognized as a revolutionary development in Architecture, Engineering and Construction (AEC) industry. There are numerous interest groups around the world providing definitions of BIM, proponents describing its advantages and opponents identifying challenges/barriers regarding adoption of BIM. This research is aimed at to determine what actually BIM is, along with its potential role in delivering successful construction projects. The methodology is critical analysis of secondary data sources i.e. information present in public domain, which include peer reviewed journal articles, industry and government reports, conference papers, books, case studies etc. It is discovered that clash detection and visualization are two major advantages of BIM. Clash detection option identifies clashes among structural, architectural and MEP designs before construction actually commences, which subsequently saves time as well as cost and ensures quality during execution phase of a project. Visualization is a powerful tool that facilitates in rapid decision-making in addition to communication and coordination among stakeholders throughout project’s life cycle. By eliminating inconsistencies that consume time besides cost during actual construction, improving collaboration among stakeholders throughout project’s life cycle, BIM can play a positive role to achieve efficiency and productivity that consequently deliver successful construction projects.Keywords: building information modeling, clash detection, construction project success, visualization
Procedia PDF Downloads 26010793 LiTa2PO8-based Composite Solid Polymer Electrolytes for High-Voltage Cathodes in Lithium-Metal Batteries
Authors: Kumlachew Zelalem Walle, Chun-Chen Yang
Abstract:
Solid-state Lithium metal batteries (SSLMBs) that contain polymer and ceramic solid electrolytes have received considerable attention as an alternative to substitute liquid electrolytes in lithium metal batteries (LMBs) for highly safe, excellent energy storage performance and stability under elevated temperature situations. Here, a novel fast Li-ion conducting material, LiTa₂PO₈ (LTPO), was synthesized and electrochemical performance of as-prepared powder and LTPO-incorporated composite solid polymer electrolyte (LTPO-CPE) membrane were investigated. The as-prepared LTPO powder was homogeneously dispersed in polymer matrices, and a hybrid solid electrolyte membrane was synthesized via a simple solution-casting method. The room temperature total ionic conductivity (σt) of the LTPO pellet and LTPO-CPE membrane were 0.14 and 0.57 mS cm-1, respectively. A coin battery with NCM811 cathode is cycled under 1C between 2.8 to 4.5 V at room temperature, achieving a Coulombic efficiency of 99.3% with capacity retention of 74.1% after 300 cycles. Similarly, the LFP cathode also delivered an excellent performance at 0.5C with an average Coulombic efficiency of 100% without virtually capacity loss (the maximum specific capacity is at 27th: 138 mAh g−1 and 500th: 131.3 mAh g−1). These results demonstrates the feasibility of a high Li-ion conductor LTPO as a filler, and the developed polymer/ceramic hybrid electrolyte has potential to be a high-performance electrolyte for high-voltage cathodes, which may provide a fresh platform for developing more advanced solid-state electrolytes.Keywords: li-ion conductor, lithium-metal batteries, composite solid electrolytes, liTa2PO8, high-voltage cathode
Procedia PDF Downloads 6610792 Experimental Study of Impregnated Diamond Bit Wear During Sharpening
Authors: Rui Huang, Thomas Richard, Masood Mostofi
Abstract:
The lifetime of impregnated diamond bits and their drilling efficiency are in part governed by the bit wear conditions, not only the extent of the diamonds’ wear but also their exposure or protrusion out of the matrix bonding. As much as individual diamonds wear, the bonding matrix does also wear through two-body abrasion (direct matrix-rock contact) and three-body erosion (cuttings trapped in the space between rock and matrix). Although there is some work dedicated to the study of diamond bit wear, there is still a lack of understanding on how matrix erosion and diamond exposure relate to the bit drilling response and drilling efficiency, as well as no literature on the process that governs bit sharpening a procedure commonly implemented by drillers when the extent of diamond polishing yield extremely low rate of penetration. The aim of this research is (i) to derive a correlation between the wear state of the bit and the drilling performance but also (ii) to gain a better understanding of the process associated with tool sharpening. The research effort combines specific drilling experiments and precise mapping of the tool-cutting face (impregnated diamond bits and segments). Bit wear is produced by drilling through a rock sample at a fixed rate of penetration for a given period of time. Before and after each wear test, the bit drilling response and thus efficiency is mapped out using a tailored design experimental protocol. After each drilling test, the bit or segment cutting face is scanned with an optical microscope. The test results show that, under the fixed rate of penetration, diamond exposure increases with drilling distance but at a decreasing rate, up to a threshold exposure that corresponds to the optimum drilling condition for this feed rate. The data further shows that the threshold exposure scale with the rate of penetration up to a point where exposure reaches a maximum beyond which no more matrix can be eroded under normal drilling conditions. The second phase of this research focuses on the wear process referred as bit sharpening. Drillers rely on different approaches (increase feed rate or decrease flow rate) with the aim of tearing worn diamonds away from the bit matrix, wearing out some of the matrix, and thus exposing fresh sharp diamonds and recovering a higher rate of penetration. Although a common procedure, there is no rigorous methodology to sharpen the bit and avoid excessive wear or bit damage. This paper aims to gain some insight into the mechanisms that accompany bit sharpening by carefully tracking diamond fracturing, matrix wear, and erosion and how they relate to drilling parameters recorded while sharpening the tool. The results show that there exist optimal conditions (operating parameters and duration of the procedure) for sharpening that minimize overall bit wear and that the extent of bit sharpening can be monitored in real-time.Keywords: bit sharpening, diamond exposure, drilling response, impregnated diamond bit, matrix erosion, wear rate
Procedia PDF Downloads 9910791 Field Studies of 2017 in the Water Catch Basin in the River Vere to Safeguard the Population of Tbilisi against the Erosive-Mudflow Processes and Its Evaluation
Authors: Natia Gavardashvili
Abstract:
From April through June of 2017, the field-scientific studies to ensure the safety of the population of Tbilisi were accomplished in the water catch basin of the river Vere, in the water catch basin of the river Jakhana dry gully. 5 sensitive sites were identified, and areas, 20x20 m each, were marked around them, with their locations fixed with GPS coordinates. The gained areas were plotted on a digital map, and the state of the surface was explored by considering the evaluation of erosive processes. Aiming at evaluating the soils and grounds of the sensitive areas, the ground samples were taken, and average diameter was identified, with its value changing to D0 = 4,67-15,48 mm, and integral curves of the grain size were drafted. By using the obtained data, the transporting capability of mudflow can be identified at the next stage to use to calculate mudflow peak discharges of different provisions in developing the new designs of mudflow-protection structures with the goal of ensuring the safety of Tbilisi population. The studies were accomplished under the financing of Young Scientists’ Grant of Shota Rustaveli National Science Foundation 'The study of erosive-mudflow processes in the water catch basin in the river Vere to ensure the safety of the population of Tbilisi and their consideration in developing new environmental protection plans' (YS15_2.1.5_8)Keywords: water catch basin, mudflow-protection structures, erosive-mudflow processes, safety
Procedia PDF Downloads 30510790 Development of In Situ Permeability Test Using Constant Discharge Method for Sandy Soils
Authors: A. Rifa’i, Y. Takeshita, M. Komatsu
Abstract:
The post-rain puddles problem that occurs in the first yard of Prambanan Temple are often disturbing visitor activity. A poodle layer and a drainage system has ever built to avoid such a problem, but puddles still didn’t stop appearing after rain. Permeability parameter needs to be determined by using more simple procedure to find exact method of solution. The instrument modelling were proposed according to the development of field permeability testing instrument. This experiment used proposed Constant Discharge method. Constant Discharge method used a tube poured with constant water flow. The procedure were carried out from unsaturated until saturated soil condition. Volumetric water content (θ) were being monitored by soil moisture measurement device. The results were relationship between k and θ which drawn by numerical approach Van Genutchen model. Parameters θr optimum value obtained from the test was at very dry soil. Coefficient of permeability with a density of 19.8 kN/m3 for unsaturated conditions was in range of 3 x 10-6 cm/sec (Sr= 68 %) until 9.98 x 10-4 cm/sec (Sr= 82 %). The equipment and testing procedure developed in this research was quite effective, simple and easy to be implemented on determining field soil permeability coefficient value of sandy soil. Using constant discharge method in proposed permeability test, value of permeability coefficient under unsaturated condition can be obtained without establish soil water characteristic curve.Keywords: constant discharge method, in situ permeability test, sandy soil, unsaturated conditions
Procedia PDF Downloads 38410789 Distribution, Seasonal Phenology and Infestation Dispersal of the Chickpea Leafminer Liriomyza cicerina (Diptera: Agromizidae) on Two Winter and Spring Chickpea Varieties
Authors: Abir Soltani, Moez Amri, Jouda Mediouni Ben Jemâa
Abstract:
In North Africa, the chickpea leafminer Liriomyza cicerina (Rondani) (Diptera: Agromizidae) is one of the major damaging pests affecting both spring and winter-planted chickpea. Damage is caused by the larvae which feed in the leaf mesophyll tissue, resulting in desiccation and premature leaf fall that can cause severe yield losses. In the present work, the distribution and the seasonal phenology of L. cicerina were studied on two chickpea varieties; a winter variety Beja 1 which is the most cultivated variety in Tunisia and a spring-sown variety Amdoun 1. The experiment was conducted during the cropping season 2015-2016. In the experimental research station Oued Beja, in the Beja region (36°44’N; 9°13’E). To determine the distribution and seasonal phenology of L. cicerina in both studied varieties Beja 1 and Amdoun 1, respectively 100 leave samples (50 from the top and 50 from the base) were collected from 10 chickpea plants randomly chosen from each field. The sampling was done during three development stages (i) 20-25 days before flowering (BFL), (ii) at flowering (FL) and (ii) at pod setting stage (PS). For each plant, leaves were checked from the base till the upper ones for the insect infestation progress into the plant in correlation with chickpea growth Stages. Fly adult populations were monitored using 8 yellow sticky traps together with weekly leaves sampling in each field. The traps were placed 70 cm above ground. Trap catches were collected once a week over the cropping season period. Results showed that L. cicerina distribution varied among both studied chickpea varieties and crop development stage all with seasonal phenology. For the winter chickpea variety Beja 1, infestation levels of 2%, 10.3% and 20.3% were recorded on the bases plant part for BFL, FL and PS stages respectively against 0%, 8.1% and 45.8% recorded for the upper plant part leaves for the same stages respectively. For the spring-sown variety Amdoun 1 the infestation level reached 71.5% during flowering stage. Population dynamic study revealed that for Beja 1 variety, L. cicerina accomplished three annual generations over the cropping season period with the third one being the most important with a capture level of 85 adult/trap by mid-May against a capture level of 139 adult/trap at the end May recorded for cv. Amdoun 1. Also, results showed that L. cicerina field infestation dispersal depends on the field part and on the crop growth stage. The border areas plants were more infested than the plants placed inside the plots. For cv. Beja 1, border areas infestations were 11%, 28% and 91.2% for BFL, FL and PS stages respectively, against 2%, 10.73% and 69.2% recorded on the on the inside plot plants during the for the same growth stages respectively. For the cv. Amdoun1 infestation level of 90% was observed on the border plants at FL and PS stages against an infestation level less than 65% recorded inside the plot.Keywords: leaf miner, liriomyza cicerina, chickpea, distribution, seasonal phenology, Tunisia
Procedia PDF Downloads 28210788 Phenolic Compounds and Antioxidant Capacity of Nine Genotypes of Thai Rice (Oryza sativa L.)
Authors: Pitchaon Maisuthisakul, Ladawan Changchub
Abstract:
Rice (Oryza sativa L.) is a staple diet in Thailand. Rice cultivation is traditional occupation of Thailand which passed down through generations. The 1 Rai 1 san project is new agricultural theory according to sufficient economy using green technology without using chemical substances. This study was conducted to evaluate total phenolics using HPLC and colorimetric methods including total anthocyanin content of Thai rice extracting by simulated gastric and intestinal condition and to estimate antioxidant capacity using DPPH and thiocyanate methods. Color and visible spectrum of rice grains were also investigated. Rice grains were classified into three groups according to their color appearance. The light brown grain genotypes are Sin Lek, Jasmine 105, Lao Tek and Hawm Ubon. The red group is Sang Yod and Red Jasmine. Genotypes Kum, Hawm Kanya and Hawm Nil are black rice grains. Cyanidin-3-O-glucoside was found in only black rice genotypes, whereas chlorogenic acid was found in all rice grains. The black rice had higher phenolic content than red and light brown samples. Phenolic acids constitute a small portion of phenolic compounds after digestion in human and contribute to the antioxidant activity of Thai rice grains. Anthocyanin contents of all rice extracts ranged from 45.9 to 442.1 mg CGE/kg. All rice extracts showed the antioxidant efficiency lower than ferulic acid. Genotype Kum and Hawm nil exhibited the ability of antioxidant efficiency higher than α-tocopherol. Interestingly, the visible spectrum of only black rice genotypes showed the maximum peak at 530-540 nm. The results suggest that consumption of black rice gives more health benefits of grain to consumer.Keywords: rice, phenolic, antioxidant, anthocyanin
Procedia PDF Downloads 35910787 Seasonal and Monthly Field Soil Respiration Rate and Litter Fall Amounts of Kasuga-Yama Hill Primeval Forest
Authors: Ayuko Itsuki, Sachiyo Aburatani
Abstract:
The seasonal (January, April, July and October) and monthly soil respiration rate and the monthly litter fall amounts were examined in the laurel-leaved (B_B-1) and Cryptomeria japonica (B_B-2 and PW) forests in the Kasugayama Hill Primeval Forest (Nara, Japan). The change of the seasonal soil respiration rate corresponded to that of the soil temperature. The soil respiration rate was higher in October when fresh organic matter was supplied in the forest floor than in April in spite of the same temperature. The seasonal soil respiration rate of B_B-1 was higher than that of B_B-2, which corresponded to more numbers of bacteria and fungi counted by the dilution plate method and by the direct count method by microscopy in B_B-1 than that of B_B-2. The seasonal soil respiration rate of B_B-2 was higher than that of PW, which corresponded to more microbial biomass by the direct count method by microscopy in B_B-2 than that of PW. The correlation coefficient with the seasonal soil respiration and the soil temperature was higher than that of the monthly soil respiration. The soil respiration carbon was more than the litter fall carbon. It was suggested that the soil respiration included in the carbon dioxide which was emitted by the plant root and soil animal, or that the litter fall supplied to the forest floor included in animal and plant litter.Keywords: field soil respiration rate, forest soil, litter fall, mineralization rate
Procedia PDF Downloads 29010786 Effects of Positron Concentration and Temperature on Ion-Acoustic Solitons in Magnetized Electron-Positron-Ion Plasma
Authors: S. K. Jain, M. K. Mishra
Abstract:
Oblique propagation of ion-acoustic solitons in magnetized electron-positron-ion (EPI) plasma with warm adiabatic ions and isothermal electrons has been studied. Korteweg-de Vries (KdV) equation using reductive perturbation method has been derived for the system, which admits an obliquely propagating soliton solution. It is found that for the selected set of parameter values, the system supports only compressive solitons. Investigations reveal that an increase in positron concentration diminishes the amplitude as well as the width of the soliton. It is also found that the temperature ratio of electron to positron (γ) affects the amplitude of the solitary wave. An external magnetic field do not affect the amplitude of ion-acoustic solitons, but obliqueness angle (θ), the angle between wave vector and magnetic field affects the amplitude. The amplitude of the ion-acoustic solitons increases with increase in angle of obliqueness. Magnetization and obliqueness drastically affect the width of the soliton. An increase in ionic temperature decreases the amplitude and width. For the fixed set of parameters, profiles have been drawn to study the combined effect with variation of two parameters on the characteristics of the ion-acoustic solitons (i.e., amplitude and width). The result may be applicable to plasma in the laboratory as well as in the magnetospheric region of the earth.Keywords: ion-acoustic solitons, Korteweg-de Vries (KdV) equation, magnetized electron-positron-ion (EPI) plasma, reductive perturbation method
Procedia PDF Downloads 293