Search results for: spectroscopy data analysis
39908 Design of Traffic Counting Android Application with Database Management System and Its Comparative Analysis with Traditional Counting Methods
Authors: Muhammad Nouman, Fahad Tiwana, Muhammad Irfan, Mohsin Tiwana
Abstract:
Traffic congestion has been increasing significantly in major metropolitan areas as a result of increased motorization, urbanization, population growth and changes in the urban density. Traffic congestion compromises efficiency of transport infrastructure and causes multiple traffic concerns; including but not limited to increase of travel time, safety hazards, air pollution, and fuel consumption. Traffic management has become a serious challenge for federal and provincial governments, as well as exasperated commuters. Effective, flexible, efficient and user-friendly traffic information/database management systems characterize traffic conditions by making use of traffic counts for storage, processing, and visualization. While, the emerging data collection technologies continue to proliferate, its accuracy can be guaranteed through the comparison of observed data with the manual handheld counters. This paper presents the design of tablet based manual traffic counting application and framework for development of traffic database management system for Pakistan. The database management system comprises of three components including traffic counting android application; establishing online database and its visualization using Google maps. Oracle relational database was chosen to develop the data structure whereas structured query language (SQL) was adopted to program the system architecture. The GIS application links the data from the database and projects it onto a dynamic map for traffic conditions visualization. The traffic counting device and example of a database application in the real-world problem provided a creative outlet to visualize the uses and advantages of a database management system in real time. Also, traffic data counts by means of handheld tablet/ mobile application can be used for transportation planning and forecasting.Keywords: manual count, emerging data sources, traffic information quality, traffic surveillance, traffic counting device, android; data visualization, traffic management
Procedia PDF Downloads 19539907 Wisdom Can Be the Expression of the Self
Authors: Jaypraksh Show, Pooja Rawat
Abstract:
Experiences are the fundamental aspects of understanding of ourslves and the world around, leading to wisdom. In the path of wisdom, explorative reflection is the process through which we integrate our experiences, weave them into autobiographical narratives. Further, Neisser, a psychologist, and philosopher, thinks ‘ourselves’ is the wide web of different concepts which help us to understand the world, he called it the conceptual self. The conceptual self, as the storehouse of experiences and different concepts, develops a wiser individual narrative. Thus, Wisdom can be conceived as the expression of the Self. Drawing from this, the current work explores the autobiographies of young adults, focusing on their narrative self and foundations of wisdom through narrative analysis. Using the corresponding interview data, we will shed light on the way they exploratively reflect on challenging situations and use their narrative experiences and conceptual understanding. The aim of this study is to understand the ‘conceptual wiser-self’.Keywords: wisdom, self, conceptual self, narrative self, autobiography, narrative analysis
Procedia PDF Downloads 14139906 Nitrate Photoremoval in Water Using Nanocatalysts Based on Ag / Pt over TiO2
Authors: Ana M. Antolín, Sandra Contreras, Francesc Medina, Didier Tichit
Abstract:
Introduction: High levels of nitrates (> 50 ppm NO3-) in drinking water are potentially risky to human health. In the recent years, the trend of nitrate concentration in groundwater is rising in the EU and other countries. Conventional catalytic nitrate reduction processes into N2 and H2O lead to some toxic intermediates and by-products, such as NO2-, NH4+, and NOx gases. Alternatively, photocatalytic nitrate removal using solar irradiation and heterogeneous catalysts is a very promising and ecofriendly technique. It has been scarcely performed and more research on highly efficient catalysts is still needed. In this work, different nanocatalysts supported on Aeroxide Titania P25 (P25) have been prepared varying: 0.5-4 % wt. Ag); Pt (2, 4 % wt.); Pt precursor (H2PtCl6/K2PtCl6); and impregnation order of both metals. Pt was chosen in order to increase the selectivity to N2 and decrease that to NO2-. Catalysts were characterized by nitrogen physisorption, X-Ray diffraction, UV-visible spectroscopy, TEM and X Ray-Photoelectron Spectroscopy. The aim was to determine the influence of the composition and the preparation method of the catalysts on the conversion and selectivity in the nitrate reduction, as well as going through an overall and better understanding of the process. Nanocatalysts synthesis: For the mono and bimetallic catalysts preparation, wise-drop wetness impregnation of the precursors (AgNO3, H2PtCl6, K2PtCl6) followed by a reduction step (NaBH4) was used to obtain the metal colloids. Results and conclusions: Denitration experiments were performed in a 350 mL PTFE batch reactor under inert standard operational conditions, ultraviolet irradiations (λ=254 nm (UV-C); λ=365 nm (UV-A)), and presence/absence of hydrogen gas as a reducing agent, contrary to most studies using oxalic or formic acid. Samples were analyzed by Ionic Chromatography. Blank experiments using respectively P25 (dark conditions), hydrogen only and UV irradiations without hydrogen demonstrated a clear influence of the presence of hydrogen on nitrate reduction. Also, they demonstrated that UV irradiation increased the selectivity to N2. Interestingly, the best activity was obtained under ultraviolet lamps, especially at a closer wavelength to visible light irradiation (λ = 365 nm) and H2. 2% Ag/P25 leaded to the highest NO3- conversion among the monometallic catalysts. However, nitrite quantities have to be diminished. On the other hand, practically no nitrate conversion was observed with the monometallics based on Pt/P25. Therefore, the amount of 2% Ag was chosen for the bimetallic catalysts. Regarding the bimetallic catalysts, it is observed that the metal impregnation order, amount and Pt precursor highly affects the results. Higher selectivity to the desirable N2 gas is obtained when Pt was firstly added, especially with K2PtCl6 as Pt precursor. This suggests that when Pt is secondly added, it covers the Ag particles, which are the most active in this reaction. It could be concluded that Ag allows the nitrate reduction step to nitrite, and Pt the nitrite reduction step toward the desirable N2 gas.Keywords: heterogeneous catalysis, hydrogenation, nanocatalyst, nitrate removal, photocatalysis
Procedia PDF Downloads 27239905 Research on the Impact of Spatial Layout Design on College Students’ Learning and Mental Health: Analysis Based on a Smart Classroom Renovation Project in Shanghai, China
Authors: Zhang Dongqing
Abstract:
Concern for students' mental health and the application of intelligent advanced technologies are driving changes in teaching models. The traditional teacher-centered classroom is beginning to transform into a student-centered smart interactive learning environment. Nowadays, smart classrooms are compatible with constructivist learning. This theory emphasizes the role of teachers in the teaching process as helpers and facilitators of knowledge construction, and students learn by interacting with them. The spatial design of classrooms is closely related to the teaching model and should also be developed in the direction of smart classroom design. The goal is to explore the impact of smart classroom layout on student-centered teaching environment and teacher-student interaction under the guidance of constructivist learning theory, by combining the design process and feedback analysis of the smart transformation project on the campus of Tongji University in Shanghai. During the research process, the theoretical basis of constructivist learning was consolidated through literature research and case analysis. The integration and visual field analysis of the traditional and transformed indoor floor plans were conducted using space syntax tools. Finally, questionnaire surveys and interviews were used to collect data. The main conclusions are as followed: flexible spatial layouts can promote students' learning effects and mental health; the interactivity of smart classroom layouts is different and needs to be combined with different teaching models; the public areas of teaching buildings can also improve the interactive learning atmosphere by adding discussion space. This article provides a data-based research basis for improving students' learning effects and mental health, and provides a reference for future smart classroom design.Keywords: spatial layout, smart classroom, space syntax, renovation, educational environment
Procedia PDF Downloads 7339904 Biological Studies of N-O Donor 4-Acypyrazolone Heterocycle and Its Pd/Pt Complexes of Therapeutic Importance
Authors: Omoruyi Gold Idemudia, Alexander P. Sadimenko
Abstract:
The synthesis of N-heterocycles with novel properties, having broad spectrum biological activities that may become alternative medicinal drugs, have been attracting a lot of research attention due to the emergence of medicinal drug’s limitations such as disease resistance and their toxicity effects among others. Acylpyrazolones have been employed as pharmaceuticals as well as analytical reagent and their application as coordination complexes with transition metal ions have been well established. By way of a condensation reaction with amines acylpyrazolone ketones form a more chelating and superior group of compounds known as azomethines. 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one was reacted with phenylhydrazine to get a new phenylhydrazone which was further reacted with aqueous solutions of palladium and platinum salts, in an effort towards the discovery of transition metal based synthetic drugs. The compounds were characterized by means of analytical, spectroscopic, thermogravimetric analysis TGA, as well as x-ray crystallography. 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one phenylhydrazone crystallizes in a triclinic crystal system with a P-1 (No. 2) space group based on x-ray crystallography. The bidentate ON ligand formed a square planar geometry on coordinating with metal ions based on FTIR, electronic and NMR spectra as well as magnetic moments. Reported compounds showed antibacterial activities against the nominated bacterial isolates using the disc diffusion technique at 20 mg/ml in triplicates. The metal complexes exhibited a better antibacterial activity with platinum complex having an MIC value of 0.63 mg/ml. Similarly, ligand and complexes also showed antioxidant scavenging properties against 2, 2-diphenyl-1-picrylhydrazyl DPPH radical at 0.5mg/ml relative to ascorbic acid (standard drug).Keywords: acylpyrazolone, antibacterial studies, metal complexes, phenylhydrazone, spectroscopy
Procedia PDF Downloads 25439903 Visualization of Quantitative Thresholds in Stocks
Authors: Siddhant Sahu, P. James Daniel Paul
Abstract:
Technical analysis comprised by various technical indicators is a holistic way of representing price movement of stocks in the market. Various forms of indicators have evolved from the primitive ones in the past decades. There have been many attempts to introduce volume as a major determinant to determine strong patterns in market forecasting. The law of demand defines the relationship between the volume and price. Most of the traders are familiar with the volume game. Including the time dimension to the law of demand provides a different visualization to the theory. While attempting the same, it was found that there are different thresholds in the market for different companies. These thresholds have a significant influence on the price. This article is an attempt in determining the thresholds for companies using the three dimensional graphs for optimizing the portfolios. It also emphasizes on the magnitude of importance of volumes as a key factor for determining of predicting strong price movements, bullish and bearish markets. It uses a comprehensive data set of major companies which form a major chunk of the Indian automotive sector and are thus used as an illustration.Keywords: technical analysis, expert system, law of demand, stocks, portfolio analysis, Indian automotive sector
Procedia PDF Downloads 31739902 Length of Pregnancy and Dental Caries Observation in Relation to BMI
Authors: Edit Xhajanka, Gresa Baboci, Irene Malagnino, Mimoza Canga, Vito Antonio Malagnino
Abstract:
Purpose: This study aimed at identifying dental caries increment or reduction, based on factors such as smoking, the scaling of teeth, BMI before and during pregnancy, carbohydrates consumption in relation to childbirth. Material and method: In this observational study, the sample included a total of 98 pregnant women and their age class was 18-45 years old, with a median age of 31.5 years. The setting of the participants resides in Vlora –Albania. Moreover, 64.4% were from the city and 35.6% were from the nearby villages. The study was conducted in the time period January 2018 –June 2021. Body mass index (BMI) was calculated using the standard formula (kg/m²). Maternal pre, during and post-pregnancy BMI was collected by using a validated questionnaire. Statistical analysis was performed using IBM SPSS Statistics 23.0. The significance level (α) was set at 0.05, whereas P-value and analysis of variance (ANOVA) were used to analyze the data. Results: Based on the data analysis, 44.4% of the sample declared that they did smoke before pregnancy and 55.6% not smoked during their pregnancy. As a result, no association was found between smoking and length of pregnancy P=0.95. There is also a strong relation (P=0.000) between the number of teeth with caries before pregnancy and the number of teeth with caries during pregnancy. There is a significant relationship between the scaling of teeth and childbirth, P=0.05. BMI before and during pregnancy in relation to carbohydrates consumption have a significant correlation P=0.004 and P=0.002. The values of BMI before and during pregnancy in relation to childbirth have a strong correlation: P=0.043 and P=0.040, respectively. As a result, obesity was associated with preterm birth. The percentage of children born during 34-36 weeks of pregnancy was 69%, and children born during 32-34 weeks of pregnancy were 31%. CONCLUSION: There was a positive association between dental caries experience, BMI and carbohydrates consumption. Obesity in pregnancy is increasing worldwide; that is why this study suggests the importance of an appropriate weight before and during pregnancy.Keywords: BMI, dental caries, pregnancy, scaling, smoking
Procedia PDF Downloads 19839901 The External Debt in the Context of Economic Growth: The Sample of Turkey
Authors: Ayşen Edirneligil, Mehmet Mucuk
Abstract:
In developing countries, one of the most important restrictions about the economic growth is the lack of national savings which are supposed to finance the investments. In order to overcome this restriction and achieve the higher rate of economic growth by increasing the level of output, countries choose the external borrowing. However, there is a dispute in the literature over the correlation between external debt and economic growth. The aim of this study is to examine the effects of external debt on Turkish economic growth by using VAR analysis with the quarterly data over the period of 2002:01-2014:04. In this respect, Johansen Cointegration Test, Impulse- Response Function and Variance Decomposition Tests will be used for analyses. Empirical findings show that there is no cointegration in the long run.Keywords: external debt, economic growth, Turkish economy, time series analysis
Procedia PDF Downloads 39939900 Collective Intelligence-Based Early Warning Management for Agriculture
Authors: Jarbas Lopes Cardoso Jr., Frederic Andres, Alexandre Guitton, Asanee Kawtrakul, Silvio E. Barbin
Abstract:
The important objective of the CyberBrain Mass Agriculture Alarm Acquisition and Analysis (CBMa4) project is to minimize the impacts of diseases and disasters on rice cultivation. For example, early detection of insects will reduce the volume of insecticides that is applied to the rice fields through the use of CBMa4 platform. In order to reach this goal, two major factors need to be considered: (1) the social network of smart farmers; and (2) the warning data alarm acquisition and analysis component. This paper outlines the process for collecting the warning and improving the decision-making result to the warning. It involves two sub-processes: the warning collection and the understanding enrichment. Human sensors combine basic suitable data processing techniques in order to extract warning related semantic according to collective intelligence. We identify each warning by a semantic content called 'warncons' with multimedia metaphors and metadata related to these metaphors. It is important to describe the metric to measuring the relation among warncons. With this knowledge, a collective intelligence-based decision-making approach determines the action(s) to be launched regarding one or a set of warncons.Keywords: agricultural engineering, warning systems, social network services, context awareness
Procedia PDF Downloads 38239899 Evaluation of Golden Beam Data for the Commissioning of 6 and 18 MV Photons Beams in Varian Linear Accelerator
Authors: Shoukat Ali, Abdul Qadir Jandga, Amjad Hussain
Abstract:
Objective: The main purpose of this study is to compare the Percent Depth dose (PDD) and In-plane and cross-plane profiles of Varian Golden beam data to the measured data of 6 and 18 MV photons for the commissioning of Eclipse treatment planning system. Introduction: Commissioning of treatment planning system requires an extensive acquisition of beam data for the clinical use of linear accelerators. Accurate dose delivery require to enter the PDDs, Profiles and dose rate tables for open and wedges fields into treatment planning system, enabling to calculate the MUs and dose distribution. Varian offers a generic set of beam data as a reference data, however not recommend for clinical use. In this study, we compared the generic beam data with the measured beam data to evaluate the reliability of generic beam data to be used for the clinical purpose. Methods and Material: PDDs and Profiles of Open and Wedge fields for different field sizes and at different depths measured as per Varian’s algorithm commissioning guideline. The measurement performed with PTW 3D-scanning water phantom with semi-flex ion chamber and MEPHYSTO software. The online available Varian Golden Beam Data compared with the measured data to evaluate the accuracy of the golden beam data to be used for the commissioning of Eclipse treatment planning system. Results: The deviation between measured vs. golden beam data was in the range of 2% max. In PDDs, the deviation increases more in the deeper depths than the shallower depths. Similarly, profiles have the same trend of increasing deviation at large field sizes and increasing depths. Conclusion: Study shows that the percentage deviation between measured and golden beam data is within the acceptable tolerance and therefore can be used for the commissioning process; however, verification of small subset of acquired data with the golden beam data should be mandatory before clinical use.Keywords: percent depth dose, flatness, symmetry, golden beam data
Procedia PDF Downloads 48939898 Repurposing Dairy Manure Solids as a Non- Polluting Fertilizer and the Effects on Nutrient Recovery in Tomatoes (Solanum Lycopersicum)
Authors: Devon Simpson
Abstract:
Recycled Manure Solids (RMS), attained via centrifugation from Canadian dairy farms, were synthesized into a non-polluting fertilizer by bonding micronutrients (Fe, Zn, and Mn) to cellulose fibers and then assessed for the effectiveness of nutrient recovery in tomatoes. Manure management technology is critical for improving the sustainability of agroecosystems and has the capacity to offer a truly circular economy. The ability to add value to manure byproducts offers an opportunity for economic benefits while generating tenable solutions to livestock waste. The dairy industry is under increasing pressure from new environmental protections such as government restrictions on manure applications, limitations on herd size as well as increased product demand from a growing population. Current systems use RMS as bedding, so there is a lack of data pertaining to RMS use as a fertilizer. This is because of nutrient distribution, where most nutrients are retained in the liquid effluent of the solid-liquid separation. A literature review on the physical and chemical properties of dairy manure further revealed more data for raw manure than centrifuged solids. This research offers an innovative perspective and a new avenue of exploration in the use of RMS. Manure solids in this study were obtained directly from dairy farms in Salmon Arm and Abbotsford, British Columbia, and underwent physical, chemical, and biological characterizations pre- and post-synthesis processing. Samples were sent to A&L labs Canada for analysis. Once characterized and bonded to micronutrients, the effect of synthesized RMS on nutrient recovery in tomatoes was studied in a greenhouse environment. The agricultural research package ‘agricolae’ for R was used for experimental design and data analysis. The growth trials consisted of a randomized complete block design (RCBD) that allowed for analysis of variance (ANOVA). The primary outcome was to measure nutrient uptake, and this was done using an Inductively Coupled Plasma Mass Spectrometer (IC-PMS) to analyze the micronutrient content of both the tissue and fruit of the tomatoes. It was found that treatments containing bonded dairy manure solids had an increased micronutrient concentration. Treatments with bonded dairy manure solids also saw an increase in yield, and a brix analysis showed higher sugar content than the untreated control and a grower standard.Keywords: aoecosystems, dairy manure, micronutrient fertilizer, manure management, nutrient recovery, nutrient recycling, recycled manure solids, regenerative agricugrlture, sustainable farming
Procedia PDF Downloads 19339897 Variable-Fidelity Surrogate Modelling with Kriging
Authors: Selvakumar Ulaganathan, Ivo Couckuyt, Francesco Ferranti, Tom Dhaene, Eric Laermans
Abstract:
Variable-fidelity surrogate modelling offers an efficient way to approximate function data available in multiple degrees of accuracy each with varying computational cost. In this paper, a Kriging-based variable-fidelity surrogate modelling approach is introduced to approximate such deterministic data. Initially, individual Kriging surrogate models, which are enhanced with gradient data of different degrees of accuracy, are constructed. Then these Gradient enhanced Kriging surrogate models are strategically coupled using a recursive CoKriging formulation to provide an accurate surrogate model for the highest fidelity data. While, intuitively, gradient data is useful to enhance the accuracy of surrogate models, the primary motivation behind this work is to investigate if it is also worthwhile incorporating gradient data of varying degrees of accuracy.Keywords: Kriging, CoKriging, Surrogate modelling, Variable- fidelity modelling, Gradients
Procedia PDF Downloads 55839896 Robust Barcode Detection with Synthetic-to-Real Data Augmentation
Authors: Xiaoyan Dai, Hsieh Yisan
Abstract:
Barcode processing of captured images is a huge challenge, as different shooting conditions can result in different barcode appearances. This paper proposes a deep learning-based barcode detection using synthetic-to-real data augmentation. We first augment barcodes themselves; we then augment images containing the barcodes to generate a large variety of data that is close to the actual shooting environments. Comparisons with previous works and evaluations with our original data show that this approach achieves state-of-the-art performance in various real images. In addition, the system uses hybrid resolution for barcode “scan” and is applicable to real-time applications.Keywords: barcode detection, data augmentation, deep learning, image-based processing
Procedia PDF Downloads 17139895 Identification and Analysis of Supports Required for Teachers Moving to Remote Teaching and Learning during Disasters and Pandemics
Authors: Susan Catapano, Meredith Jones, Carol McNulty
Abstract:
Analysis of one state’s collaborative effort to support teachers, in both public and private schools, as they moved from face-to-face teaching to remote teaching during the Covid pandemic to identify lessons learned and materials put into place to support teachers and families. Surveys were created, distributed, and analyzed throughout the three months of remote teaching, documents and lesson plans were developed, and training materials were created. All data collected and materials developed were analyzed to identify supports teachers used and needed for successful remote teaching. Researchers found most teachers easily moved to online teaching; however, many families did not have access to technology, so teachers needed to develop non-technology-based access and support for remote teaching. Teachers also reported the need to prepare to teach remotely as part of their teaching training, so they were prepared in the future. Finally, data indicated teachers were able to establish stronger relationships with families than usual as a result of remote teaching. The lessons learned and support developed are part of the state’s ongoing policy for online teaching in the event of disasters and pandemics in the future.Keywords: remote learning, teacher education, pandemic, families
Procedia PDF Downloads 16139894 Emotion Detection in Twitter Messages Using Combination of Long Short-Term Memory and Convolutional Deep Neural Networks
Authors: Bahareh Golchin, Nooshin Riahi
Abstract:
One of the most significant issues as attended a lot in recent years is that of recognizing the sentiments and emotions in social media texts. The analysis of sentiments and emotions is intended to recognize the conceptual information such as the opinions, feelings, attitudes and emotions of people towards the products, services, organizations, people, topics, events and features in the written text. These indicate the greatness of the problem space. In the real world, businesses and organizations are always looking for tools to gather ideas, emotions, and directions of people about their products, services, or events related to their own. This article uses the Twitter social network, one of the most popular social networks with about 420 million active users, to extract data. Using this social network, users can share their information and opinions about personal issues, policies, products, events, etc. It can be used with appropriate classification of emotional states due to the availability of its data. In this study, supervised learning and deep neural network algorithms are used to classify the emotional states of Twitter users. The use of deep learning methods to increase the learning capacity of the model is an advantage due to the large amount of available data. Tweets collected on various topics are classified into four classes using a combination of two Bidirectional Long Short Term Memory network and a Convolutional network. The results obtained from this study with an average accuracy of 93%, show good results extracted from the proposed framework and improved accuracy compared to previous work.Keywords: emotion classification, sentiment analysis, social networks, deep neural networks
Procedia PDF Downloads 13839893 Innovation Potential of Palm Kernel Shells from the Littoral Region in Cameroon
Authors: Marcelle Muriel Domkam Tchunkam, Rolin Feudjio
Abstract:
This work investigates the ultrastructure, physicochemical and thermal properties evaluation of Palm Kernel Shells (PKS). PKS Tenera waste samples were obtained from a palm oil mill in Dizangué Sub-Division, Littoral region of Cameroon, while PKS Dura waste samples were collected from the Institute of Agricultural Research for Development (IRAD) of Mbongo. A sodium hydroxide solution was used to wash the shells. They were then rinsed by demineralised water and dried in an oven at 70 °C during 72 hours. They were then grounded and sieved to obtained powders from 0.04 mm to 0.45 mm in size. Transmission Electron Microscopy (TEM) and Surface Electron Microscopy (SEM) were used to characterized powder samples. Chemical compounds and elemental constituents, as well as thermal performance were evaluated by Van Soest Method, TEM/EDXA and SEM/EDS techniques. Thermal characterization was also performed using Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Our results from microstructural analysis revealed that most of the PKS material is made of particles with irregular morphology, mainly amorphous phases of carbon/oxygen with small amounts of Ca, K, and Mg. The DSC data enabled the derivation of the materials’ thermal transition phases and the relevant characteristic temperatures and physical properties. Overall, our data show that PKS have nanopores and show potential in 3D printing and membrane filtration applications.Keywords: DSC, EDXA, palm kernel shells, SEM, TEM
Procedia PDF Downloads 12339892 Enhanced Optical Nonlinearity in Bismuth Borate Glass: Effect of Size of Nanoparticles
Authors: Shivani Singla, Om Prakash Pandey, Gopi Sharma
Abstract:
Metallic nanoparticle doped glasses has lead to rapid development in the field of optics. Large third order non-linearity, ultrafast time response, and a wide range of resonant absorption frequencies make these metallic nanoparticles more important in comparison to their bulk material. All these properties are highly dependent upon the size, shape, and surrounding environment of the nanoparticles. In a quest to find a suitable material for optical applications, several efforts have been devoted to improve the properties of such glasses in the past. In the present study, bismuth borate glass doped with different size gold nanoparticles (AuNPs) has been prepared using the conventional melt-quench technique. Synthesized glasses are characterized by X-ray diffraction (XRD) and Fourier Transformation Infrared spectroscopy (FTIR) to observe the structural modification in the glassy matrix with the variation in the size of the AuNPs. Glasses remain purely amorphous in nature even after the addition of AuNPs, whereas FTIR proposes that the main structure contains BO₃ and BO₄ units. Field emission scanning electron microscopy (FESEM) confirms the existence and variation in the size of AuNPs. Differential thermal analysis (DTA) depicts that prepared glasses are thermally stable and are highly suitable for the fabrication of optical fibers. The nonlinear optical parameters (nonlinear absorption coefficient and nonlinear refractive index) are calculated out by using the Z-scan technique with a Ti: sapphire laser at 800 nm. It has been concluded that the size of the nanoparticles highly influences the structural thermal and optical properties system.Keywords: bismuth borate glass, different size, gold nanoparticles, nonlinearity
Procedia PDF Downloads 12239891 Dynamic Analysis and Design of Lower Extremity Power-Assisted Exoskeleton
Authors: Song Shengli, Tan Zhitao, Li Qing, Fang Husheng, Ye Qing, Zhang Xinglong
Abstract:
Lower extremity power-assisted exoskeleton (LEPEX) is a kind of wearable electromechanical integration intelligent system, walking in synchronization with the wearer, which can assist the wearer walk by means of the driver mounted in the exoskeleton on each joint. In this paper, dynamic analysis and design of the LEPEX are performed. First of all, human walking process is divided into single leg support phase, double legs support phase and ground collision model. The three kinds of dynamics modeling is established using the Lagrange method. Then, the flat walking and climbing stairs dynamic information such as torque and power of lower extremity joints is derived for loading 75kg according to scholar Stansfield measured data of flat walking and scholars R. Riener measured data of climbing stair respectively. On this basis, the joint drive way in the sagittal plane is determined, and the structure of LEPEX is designed. Finally, the designed LEPEX is simulated under ADAMS by using a person’s joint sports information acquired under flat walking and climbing stairs. The simulation result effectively verified the correctness of the structure.Keywords: kinematics, lower extremity exoskeleton, simulation, structure
Procedia PDF Downloads 42539890 The Effects of Multiple Levels of Intelligence in an Algebra 1 Classroom
Authors: Abigail Gragg
Abstract:
The goal of this research study was to adjudicate if implementing Howard Gardner’s multiple levels of intelligence would enhance student achievement levels in an Algebra 1 College Preparatory class. This was conducted within every class by incorporating one level of the eight levels of intelligence into small group work in stations. Every class was conducted utilizing small-group instruction. Achievement levels were measured through various forms of collected data that expressed student understandings in class through formative assessments versus student understandings on summative assessments. The data samples included: assessments (i.e. summative and formative assessments), observable data, video recordings, a daily log book, student surveys, and checklists kept during the observation periods. Formative assessments were analyzed during each class period to measure in-class understanding. Summative assessments were dissected per question per accuracy to review the effects of each intelligence implemented. The data was collated into a coding workbook for further analysis to conclude the resulting themes of the research. These themes include 1) there was no correlation to multiple levels of intelligence enhancing student achievement, 2) bodily-kinesthetic intelligence showed to be the intelligence that had the most improvement on test questions and 3) out of all of the bits of intelligence, interpersonal intelligence enhanced student understanding in class.Keywords: stations, small group instruction, multiple levels of intelligence, Mathematics, Algebra 1, student achievement, secondary school, instructional Pedagogies
Procedia PDF Downloads 11139889 Ultrasensitive Hepatitis B Virus Detection in Blood Using Nano-Porous Silicon Oxide: Towards POC Diagnostics
Authors: N. Das, N. Samanta, L. Pandey, C. Roy Chaudhuri
Abstract:
Early diagnosis of infection like Hep-B virus in blood is important for low cost medical treatment. For this purpose, it is desirable to develop a point of care device which should be able to detect trace quantities of the target molecule in blood. In this paper, we report a nanoporous silicon oxide sensor which is capable of detecting down to 1fM concentration of Hep-B surface antigen in blood without the requirement of any centrifuge or pre-concentration. This has been made possible by the presence of resonant peak in the sensitivity characteristics. This peak is observed to be dependent only on the concentration of the specific antigen and not on the interfering species in blood serum. The occurrence of opposite impedance change within the pores and at the bottom of the pore is responsible for this effect. An electronic interface has also been designed to provide a display of the virus concentration.Keywords: impedance spectroscopy, ultrasensitive detection in blood, peak frequency, electronic interface
Procedia PDF Downloads 40339888 Evaluating the Factors Controlling the Hydrochemistry of Gaza Coastal Aquifer Using Hydrochemical and Multivariate Statistical Analysis
Authors: Madhat Abu Al-Naeem, Ismail Yusoff, Ng Tham Fatt, Yatimah Alias
Abstract:
Groundwater in Gaza strip is increasingly being exposed to anthropic and natural factors that seriously impacted the groundwater quality. Physiochemical data of groundwater can offer important information on changes in groundwater quality that can be useful in improving water management tactics. An integrative hydrochemical and statistical techniques (Hierarchical cluster analysis (HCA) and factor analysis (FA)) have been applied on the existence ten physiochemical data of 84 samples collected in (2000/2001) using STATA, AquaChem, and Surfer softwares to: 1) Provide valuable insight into the salinization sources and the hydrochemical processes controlling the chemistry of groundwater. 2) Differentiate the influence of natural processes and man-made activities. The recorded large diversity in water facies with dominance Na-Cl type that reveals a highly saline aquifer impacted by multiple complex hydrochemical processes. Based on WHO standards, only (15.5%) of the wells were suitable for drinking. HCA yielded three clusters. Cluster 1 is the highest in salinity, mainly due to the impact of Eocene saline water invasion mixed with human inputs. Cluster 2 is the lowest in salinity also due to Eocene saline water invasion but mixed with recent rainfall recharge and limited carbonate dissolution and nitrate pollution. Cluster 3 is similar in salinity to Cluster 2, but with a high diversity of facies due to the impact of many sources of salinity as sea water invasion, carbonate dissolution and human inputs. Factor analysis yielded two factors accounting for 88% of the total variance. Factor 1 (59%) is a salinization factor demonstrating the mixing contribution of natural saline water with human inputs. Factor 2 measure the hardness and pollution which explained 29% of the total variance. The negative relationship between the NO3- and pH may reveal a denitrification process in a heavy polluted aquifer recharged by a limited oxygenated rainfall. Multivariate statistical analysis combined with hydrochemical analysis indicate that the main factors controlling groundwater chemistry were Eocene saline invasion, seawater invasion, sewage invasion and rainfall recharge and the main hydrochemical processes were base ion and reverse ion exchange processes with clay minerals (water rock interactions), nitrification, carbonate dissolution and a limited denitrification process.Keywords: dendrogram and cluster analysis, water facies, Eocene saline invasion and sea water invasion, nitrification and denitrification
Procedia PDF Downloads 36539887 Association between Hypertensive Disorders of Pregnancy and the Development of Offspring Mental and Behavioural Problems: Systematic Review and Meta-Analysis
Authors: Berihun Dachew, Abdullah Mamun, Joemer Maravilla, Rosa Alati
Abstract:
Background: Hypertensive disorders of pregnancy are a major cause of maternal and childhood morbidity and mortality worldwide. However, its effect on offspring mental and behavioural disorders is unclear. Aims:The aim of this study was to provide the best scientific evidence regarding the association between hypertensive disorders of pregnancy and offspring mental and behavioural problems. Methods: We systematically searched Scopus, PubMed, Cochrane, EMBASE, CINAH and PsycINFO databases. A total of 23 studies (11 included in meta-analysis) were identified. A qualitative analysis was conducted by summarizing, comparing, and contrasting the abstracted data for all included studies. For quantitative analysis, relative risk (RR) with 95% confidence interval (95% CI) was used as pooled effect size. Heterogeneity was assessed by measuring Cochran’s Q and I2 test statistics. Results: Of the 23 studies included in this review, 15 studies found that hypertensive disorders of pregnancy had a negative impact for at least one mental or behavioural problem. The pooled effect of 11 studies included in the meta-analysis showed that preeclampsia was associated with increased risk of offspring schizophrenia (RR=1.37; 95% CI, 1.08-1.72). Conclusions: Intrauterine exposure to pre-eclampsia increased the risk of schizophrenia among offspring. However, we found inconclusive finding on the effect of hypertensive disorders of pregnancy and other mental and behavioural problems. Further high quality, large sample, mother child cohort studies are needed to further progress this area of research.Keywords: behavioural disorders, hypertensive disorders of pregnancy, mental disorders, offspring
Procedia PDF Downloads 23839886 Determine the Effectiveness of Group Therapy with Reality Therapy Approach to Reduce Symptoms of Anxiety, Increase Self-esteem, and Internal Control in Infertile Women
Authors: Fatemeh Alsadat Borhani, Hassan Heydari, Mansour Abdi
Abstract:
The purpose of this study to determine the effectiveness of group therapy with approach reality therapy in reducing symptoms of anxiety and increased self- esteem and internal control of infertile women. The population of this study is all infertile women in Qom city in 2012 that with the use of purposeful sampling, 32 individuals were selected as sample. 16 individuals of infertile women in the control group and 16 infertile women in the experimental group is replaced. The research design was of type quasi-experimental with design pretest-posttest with control group. Thus, infertile women were randomly appointed in the experimental and control groups. Also, in this study data through normalized questionnaires, the Beck Anxiety scale, Rotter's Locus of control inventory, Cooper Smith self-esteem inventory was collected. For analysis of data, descriptive statistics, mean, standard deviation and inferential statistics, one way analysis of covariance model with SPSS version 20 software was used. The findings indicated that intervention of the group therapy with approach reality therapy in experimental group reduced symptoms of anxiety and mutually increased self-esteem and internal control in infertile women of experimental group.Keywords: reality therapy, infertile women, anxiety, self esteem, internal control
Procedia PDF Downloads 57439885 Recurrence of Pterygium after Surgery and the Effect of Surgical Technique on the Recurrence of Pterygium in Patients with Pterygium
Authors: Luksanaporn Krungkraipetch
Abstract:
A pterygium is an eye surface lesion that begins in the limbal conjunctiva and progresses to the cornea. The lesion is more common in the nasal limbus than in the temporal, and it has a distinctive wing-like aspect. Indications for surgery, in decreasing order of significance, are grown over the corneal center, decreased vision due to corneal deformation, documented growth, sensations of discomfort, and aesthetic concerns. Recurrent pterygium results in the loss of time, the expense of therapy, and the potential for vision impairment. The objective of this study is to find out how often the recurrence of pterygium after surgery occurs, what effect the surgery technique has, and what causes them to come back in people with pterygium. Materials and Methods: Observational case control in retrospect: the study involves a retrospective analysis of 164 patient samples. Data analysis is descriptive statistics analysis, i.e., basic data details about pterygium surgery and the risk of recurrent pterygium. For factor analysis, the inferential statistics odds ratio (OR) and 95% confidence interval (CI) ANOVA are utilized. A p-value of 0.05 was deemed statistically important. Results: The majority of patients, according to the results, were female (60.4%). Twenty-four of the 164 (14.6%) patients who underwent surgery exhibited recurrent pterygium. The average age is 55.33 years old. Postoperative recurrence was reported in 19 cases (79.3%) of bare sclera techniques and five cases (20.8%) of conjunctival autograft techniques. The recurrence interval is 10.25 months, with the most common (54.17 percent) being 12 months. In 91.67 percent of cases, all follow-ups are successful. The most common recurrence level is 1 (25%). A surgical complication is a subconjunctival hemorrhage (33.33 percent). Comparing the surgeries done on people with recurrent pterygium didn't show anything important (F = 1.13, p = 0.339). Age significantly affected the recurrence of pterygium (95% CI, 6.79-63.56; OR = 20.78, P 0.001). Conclusion: This study discovered a 14.6% rate of pterygium recurrence after pterygium surgery. Across all surgeries and patients, the rate of recurrence was four times higher with the bare sclera method than with conjunctival autograft. The researchers advise selecting a more conventional surgical technique to avoid a recurrence.Keywords: pterygium, recurrence pterygium, pterygium surgery, excision pterygium
Procedia PDF Downloads 9039884 Bioinformatic Approaches in Population Genetics and Phylogenetic Studies
Authors: Masoud Sheidai
Abstract:
Biologists with a special field of population genetics and phylogeny have different research tasks such as populations’ genetic variability and divergence, species relatedness, the evolution of genetic and morphological characters, and identification of DNA SNPs with adaptive potential. To tackle these problems and reach a concise conclusion, they must use the proper and efficient statistical and bioinformatic methods as well as suitable genetic and morphological characteristics. In recent years application of different bioinformatic and statistical methods, which are based on various well-documented assumptions, are the proper analytical tools in the hands of researchers. The species delineation is usually carried out with the use of different clustering methods like K-means clustering based on proper distance measures according to the studied features of organisms. A well-defined species are assumed to be separated from the other taxa by molecular barcodes. The species relationships are studied by using molecular markers, which are analyzed by different analytical methods like multidimensional scaling (MDS) and principal coordinate analysis (PCoA). The species population structuring and genetic divergence are usually investigated by PCoA and PCA methods and a network diagram. These are based on bootstrapping of data. The Association of different genes and DNA sequences to ecological and geographical variables is determined by LFMM (Latent factor mixed model) and redundancy analysis (RDA), which are based on Bayesian and distance methods. Molecular and morphological differentiating characters in the studied species may be identified by linear discriminant analysis (DA) and discriminant analysis of principal components (DAPC). We shall illustrate these methods and related conclusions by giving examples from different edible and medicinal plant species.Keywords: GWAS analysis, K-Means clustering, LFMM, multidimensional scaling, redundancy analysis
Procedia PDF Downloads 12539883 Recurrent Neural Networks for Complex Survival Models
Authors: Pius Marthin, Nihal Ata Tutkun
Abstract:
Survival analysis has become one of the paramount procedures in the modeling of time-to-event data. When we encounter complex survival problems, the traditional approach remains limited in accounting for the complex correlational structure between the covariates and the outcome due to the strong assumptions that limit the inference and prediction ability of the resulting models. Several studies exist on the deep learning approach to survival modeling; moreover, the application for the case of complex survival problems still needs to be improved. In addition, the existing models need to address the data structure's complexity fully and are subject to noise and redundant information. In this study, we design a deep learning technique (CmpXRnnSurv_AE) that obliterates the limitations imposed by traditional approaches and addresses the above issues to jointly predict the risk-specific probabilities and survival function for recurrent events with competing risks. We introduce the component termed Risks Information Weights (RIW) as an attention mechanism to compute the weighted cumulative incidence function (WCIF) and an external auto-encoder (ExternalAE) as a feature selector to extract complex characteristics among the set of covariates responsible for the cause-specific events. We train our model using synthetic and real data sets and employ the appropriate metrics for complex survival models for evaluation. As benchmarks, we selected both traditional and machine learning models and our model demonstrates better performance across all datasets.Keywords: cumulative incidence function (CIF), risk information weight (RIW), autoencoders (AE), survival analysis, recurrent events with competing risks, recurrent neural networks (RNN), long short-term memory (LSTM), self-attention, multilayers perceptrons (MLPs)
Procedia PDF Downloads 9039882 Removing Barriers in Assessment and Feedback for Blind Students in Open Distance Learning
Authors: Sindile Ngubane-Mokiwa
Abstract:
This paper addresses two questions: (1) what barriers do the blind students face with assessment and feedback in open distance learning contexts? And (2) How can these barriers be removed? The paper focuses on the distance education through which most students with disabilities elevate their chances of accessing higher education. Lack of genuine inclusion is also evident in the challenges the blind students face during the assessment. These barriers are experienced at both formative and summative stages. The insights in this paper emanate from a case study that was carried out through qualitative approaches. The data was collected through in-depth interview, life stories, and telephonic interviews. The paper provides a review of local, continental and international views on how best assessment barriers can be removed. A group of five blind students, comprising of two honours students, two master's students and one doctoral student participated in this study. The data analysis was done through thematic analysis. The findings revealed that (a) feedback to the assignment is often inaccessible; (b) the software used is incompatible; (c) learning and assessment are designed in exclusionary approaches; (d) assessment facilities are not conducive; and (e) lack of proactive innovative assessment strategies. The article concludes by recommending ways in which barriers to assessment can be removed. These include addressing inclusive assessment and feedback strategies in professional development initiatives.Keywords: assessment design, barriers, disabilities, blind students, feedback, universal design for learning
Procedia PDF Downloads 36139881 The Interactive Effects among Supervisor Support, Academic Emotion, and Positive Mental Health: An Evidence Based on Longitudinal Cross-Lagged Panel Data Analysis on Postgraduates in China
Authors: Jianzhou Ni, Hua Fan
Abstract:
It has been determined that supervisor support has a major influence on postgraduate students' academic emotions and is considered a method of successfully anticipating postgraduates' good psychological well-being levels. As a result, by assessing the mediating influence upon academic emotions for contemporary postgraduates in China, this study investigated the tight reciprocal relationship between psychological empowerment and positive mental well-being among postgraduates. To that end, a help enables a theoretical analysis of role clarity, academic emotion, and positive psychological health was developed, and its validity and reliability were demonstrated for the first time using the normalized postgrad relationship with supervisor scale, academic emotion scale, and positive mental scale, as well as questionnaire data from Chinese postgraduate students. This study used the cross-lagged (ARCL) panel model data to longitudinally measure 798 valid data from two survey questions polls taken in 2019 (T1) and 2021 (T2) to investigate the link between supervisor support and positive graduate student mental well-being in a bidirectional relationship of influence. The study discovered that mentor assistance could have a considerable beneficial impact on graduate students' academic emotions and, as a result, indirectly help learners attain positive mental health development. This verifies the theoretical premise that academic emotions partially mediate the effect of mentor support on positive mental health development and argues for the coexistence of the two. The outcomes of this study can help researchers gain a better knowledge of the dynamic interplay among three different research variables: supervisor support, academic emotions, and positive mental health, as well as fill gaps in previous research. In this regard, the study indicated that mentor assistance directly stimulates students' academic drive and assists graduate students in developing good academic emotions, which contributes to the development of positive mental health. However, given the restricted measurement time in this study's cross-lagged panel data and the potential effect of moderating effects other than academic mood on graduate students' good mental health, the results of this study need to be more fully understood and validated.Keywords: supervisor support, academic emotions, positive mental health, interaction effects, longitudinal cross-lagged measurements
Procedia PDF Downloads 8739880 Inferring Human Mobility in India Using Machine Learning
Authors: Asra Yousuf, Ajaykumar Tannirkulum
Abstract:
Inferring rural-urban migration trends can help design effective policies that promote better urban planning and rural development. In this paper, we describe how machine learning algorithms can be applied to predict internal migration decisions of people. We consider data collected from household surveys in Tamil Nadu to train our model. To measure the performance of the model, we use data on past migration from National Sample Survey Organisation of India. The factors for training the model include socioeconomic characteristic of each individual like age, gender, place of residence, outstanding loans, strength of the household, etc. and his past migration history. We perform a comparative analysis of the performance of a number of machine learning algorithm to determine their prediction accuracy. Our results show that machine learning algorithms provide a stronger prediction accuracy as compared to statistical models. Our goal through this research is to propose the use of data science techniques in understanding human decisions and behaviour in developing countries.Keywords: development, migration, internal migration, machine learning, prediction
Procedia PDF Downloads 27139879 Investigating Self-Confidence Influence on English as a Foreign Language Student English Language Proficiency Level
Authors: Ali A. Alshahrani
Abstract:
This study aims to identify Saudi English as a Foreign Language (EFL) students' perspectives towards using the English language in their studies. The study explores students' self-confident and its association with students' actual performance in English courses in their different academic programs. A multimodal methodology was used to fulfill the research purpose and answer the research questions. A 25-item survey questionnaire and final examination grades were used to collect data. Two hundred forty-one students agreed to participate in the study. They completed the questionnaire and agreed to release their final grades to be a part of the collected data. The data were coded and analyzed by SPSS software. The findings indicated a significant difference in students' performance in English courses between participants' academic programs on the one hand. Students' self-confidence in their English language skills, on the other hand, was not significantly different between participants' academic programs. Data analysis also revealed no correlational relationship between students' self-confidence level and their language skills and their performance. The study raises more questions about other vital factors such as course instructors' views of the materials, faculty members of the target department, family belief in the usefulness of the program, potential employers. These views and beliefs shape the student's preparation process and, therefore, should be explored further.Keywords: English language intensive program, language proficiency, performance, self-confidence
Procedia PDF Downloads 136