Search results for: shear stress
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4811

Search results for: shear stress

1481 Numerical Study on the Ultimate Load of Offshore Two-Planar Tubular KK-Joints at Fire-Induced Elevated Temperatures

Authors: Hamid Ahmadi, Neda Azari-Dodaran

Abstract:

A total of 270 nonlinear steady-state finite element (FE) analyses were performed on 54 FE models of two-planar circular hollow section (CHS) KK-joints subjected to axial loading at five different temperatures (20 ºC, 200 ºC, 400 ºC, 550 ºC, and 700 ºC). The primary goal was to investigate the effects of temperature and geometrical characteristics on the ultimate strength, modes of failure, and initial stiffness of the KK-joints. Results indicated that on an average basis, the ultimate load of a two-planar tubular KK-joint at 200 ºC, 400 ºC, 550 ºC, and 700 ºC is 90%, 75%, 45%, and 16% of the joint’s ultimate load at ambient temperature, respectively. Outcomes of the parametric study showed that replacing the yield stress at ambient temperature with the corresponding value at elevated temperature to apply the EN 1993-1-8 equations for the calculation of the joint’s ultimate load at elevated temperatures may lead to highly unconservative results that might endanger the safety of the structure. Results of the parametric study were then used to develop a set of design formulas, through nonlinear regression analyses, to calculate the ultimate load of two-planar tubular KK-joints subjected to axial loading at elevated temperatures.

Keywords: ultimate load, two-planar tubular KK-joint, axial loading, elevated temperature, parametric equation

Procedia PDF Downloads 158
1480 Target and Biomarker Identification Platform to Design New Drugs against Aging and Age-Related Diseases

Authors: Peter Fedichev

Abstract:

We studied fundamental aspects of aging to develop a mathematical model of gene regulatory network. We show that aging manifests itself as an inherent instability of gene network leading to exponential accumulation of regulatory errors with age. To validate our approach we studied age-dependent omic data such as transcriptomes, metabolomes etc. of different model organisms and humans. We build a computational platform based on our model to identify the targets and biomarkers of aging to design new drugs against aging and age-related diseases. As biomarkers of aging, we choose the rate of aging and the biological age since they completely determine the state of the organism. Since rate of aging rapidly changes in response to an external stress, this kind of biomarker can be useful as a tool for quantitative efficacy assessment of drugs, their combinations, dose optimization, chronic toxicity estimate, personalized therapies selection, clinical endpoints achievement (within clinical research), and death risk assessments. According to our model, we propose a method for targets identification for further interventions against aging and age-related diseases. Being a biotech company, we offer a complete pipeline to develop an anti-aging drug-candidate.

Keywords: aging, longevity, biomarkers, senescence

Procedia PDF Downloads 274
1479 Body Shape Control of Magnetic Soft Continuum Robots with PID Controller

Authors: M. H. Korayem, N. Sangsefidi

Abstract:

Magnetically guided soft robots have emerged as a promising technology in minimally invasive surgery due to their ability to adapt to complex environments. However, one of the main challenges in this field is damage to the vascular structure caused by unwanted stress on the vessel wall and deformation of the vessel due to improper control of the shape of the robot body during surgery. Therefore, this article proposes an approach for controlling the form of a magnetic, soft, continuous robot body using a PID controller. The magnetic soft continuous robot is modelled using Cosserat theory in static mode and solved numerically. The designed controller adjusts the position of each part of the robot to match the desired shape. The PID controller is considered to minimize the robot's contact with the vessel wall and prevent unwanted vessel deformation. The simulation results confirmed the accuracy of the numerical solution of the static Cosserat model. Also, they showed the effectiveness of the proposed contouring method in achieving the desired shape with a maximum error of about 0.3 millimetres.

Keywords: PID, magnetic soft continuous robot, soft robot shape control, Cosserat theory, minimally invasive surgery

Procedia PDF Downloads 109
1478 Effectiveness of the Resistance to Irradiance Test on Sunglasses Standards

Authors: Mauro Masili, Liliane Ventura

Abstract:

It is still controversial in the literature the ultraviolet (UV) radiation effects on the ocular media, but the World Health Organization has established safe limits on the exposure of eyes to UV radiation based on reports in literature. Sunglasses play an important role in providing safety, and their lenses should provide adequate UV filters. Regarding UV protection for ocular media, the resistance-to-irradiance test for sunglasses under many national standards requires irradiating lenses for 50 uninterrupted hours with a 450 W solar simulator. This artificial aging test may provide a corresponding evaluation of exposure to the sun. Calculating the direct and diffuse solar irradiance at a vertical surface and the corresponding radiant exposure for the entire year, we compare the latter with the 50-hour radiant exposure of a 450 W xenon arc lamp from a solar simulator required by national standards. Our calculations indicate that this stress test is ineffective in its present form. We provide evidence of the need to re-evaluate the parameters of the tests to establish appropriate safe limits against UV radiation. This work is potentially significant for scientists and legislators in the field of sunglasses standards to improve the requirements of sunglasses quality and safety.

Keywords: ISO 12312-1, solar simulator, sunglasses standards, UV protection

Procedia PDF Downloads 197
1477 Buckling Performance of Irregular Section Cold-Formed Steel Columns under Axially Concentric Loading

Authors: Chayanon Hansapinyo

Abstract:

This paper presents experimental investigation and finite element analysis on buckling behavior of irregular section cold-formed steel columns under axially concentric loading. For the experimental study, four different sections of columns were tested to investigate effect of stiffening and width-to-thickness ratio on buckling behavior. For each of the section, three lengths of 230, 950 and 1900 mm. were studied representing short, intermediate long and long columns, respectively. Then, nonlinear finite element analyses of the tested columns were performed. The comparisons in terms of load-deformation response and buckling mode show good agreement and hence the FEM models were validated. Parametric study of stiffening element and thickness of 1.0, 1.15, 1.2, 1.5, 1.6 and 2.0 mm. were analyzed. The test results showed that stiffening effect pays a large contribution to prevent distortional mode. The increase in wall thickness enhanced buckling stress beyond the yielding strength in short and intermediate columns, but not for the long columns.

Keywords: buckling behavior, irregular section, cold-formed steel, concentric loading

Procedia PDF Downloads 275
1476 A Multiple Freezing/Thawing Cycles Influence Internal Structure and Mechanical Properties of Achilles Tendon

Authors: Martyna Ekiert, Natalia Grzechnik, Joanna Karbowniczek, Urszula Stachewicz, Andrzej Mlyniec

Abstract:

Tendon grafting is a common procedure performed to treat tendon rupture. Before the surgical procedure, tissues intended for grafts (i.e., Achilles tendon) are stored in ultra-low temperatures for a long time and also may be subjected to unfavorable conditions, such as repetitive freezing (F) and thawing (T). Such storage protocols may highly influence the graft mechanical properties, decrease its functionality and thus increase the risk of complications during the transplant procedure. The literature reports on the influence of multiple F/T cycles on internal structure and mechanical properties of tendons stay inconclusive, confirming and denying the negative influence of multiple F/T at the same time. An inconsistent research methodology and lack of clear limit of F/T cycles, which disqualifies tissue for surgical graft purposes, encouraged us to investigate the issue of multiple F/T cycles by the mean of biomechanical tensile tests supported with Scanning Electron Microscope (SEM) imaging. The study was conducted on male bovine Achilles tendon-derived from the local abattoir. Fresh tendons were cleaned of excessive membranes and then sectioned to obtained fascicle bundles. Collected samples were randomly assigned to 6 groups subjected to 1, 2, 4, 6, 8 and 12 cycles of freezing-thawing (F/T), respectively. Each F/T cycle included deep freezing at -80°C temperature, followed by thawing at room temperature. After final thawing, thin slices of the side part of samples subjected to 1, 4, 8 and 12 F/T cycles were collected for SEM imaging. Then, the width and thickness of all samples were measured to calculate the cross-sectional area. Biomechanical tests were performed using the universal testing machine (model Instron 8872, INSTRON®, Norwood, Massachusetts, USA) using a load cell with a maximum capacity of 250 kN and standard atmospheric conditions. Both ends of each fascicle bundle were manually clamped in grasping clamps using abrasive paper and wet cellulose wadding swabs to prevent tissue slipping while clamping and testing. Samples were subjected to the testing procedure including pre-loading, pre-cycling, loading, holding and unloading steps to obtain stress-strain curves for representing tendon stretching and relaxation. The stiffness of AT fascicles bundle samples was evaluated in terms of modulus of elasticity (Young’s modulus), calculated from the slope of the linear region of stress-strain curves. SEM imaging was preceded by chemical sample preparation including 24hr fixation in 3% glutaraldehyde buffered with 0.1 M phosphate buffer, washing with 0.1 M phosphate buffer solution and dehydration in a graded ethanol solution. SEM images (Merlin Gemini II microscope, ZEISS®) were taken using 30 000x mag, which allowed measuring a diameter of collagen fibrils. The results confirm a decrease in fascicle bundles Young’s modulus as well as a decrease in the diameter of collagen fibrils. These results confirm the negative influence of multiple F/T cycles on the mechanical properties of tendon tissue.

Keywords: biomechanics, collagen, fascicle bundles, soft tissue

Procedia PDF Downloads 125
1475 Study of Effect of Gear Tooth Accuracy on Transmission Mount Vibration

Authors: Kalyan Deepak Kolla, Ketan Paua, Rajkumar Bhagate

Abstract:

Transmission dynamics occupy major role in customer perception of the product in both senses of touch and quality of sound. The quantity and quality of sound perceived is more concerned with the whine noise of the gears engaged. Whine noise is tonal in nature and tonal noises cause fatigue and irritation to customers, which in turn affect the quality of the product. Transmission error is the usual suspect for whine noise, which can be caused due to misalignments, tolerances, manufacturing variabilities. In-cabin noise is also more sensitive to the gear design. As the details of the gear tooth design and manufacturing are in microns, anything out of the tolerance zone, either in design or manufacturing, will cause a whine noise. This will also cause high variation in stress and deformation due to change in the load and leads to the fatigue failure of the gears. Hence gear design and development take priority in the transmission development process. This paper aims to study such variability by considering five pairs of helical spur gears and their effect on the transmission error, contact pattern and vibration level on the transmission.

Keywords: gears, whine noise, manufacturing variability, mount vibration variability

Procedia PDF Downloads 150
1474 Epicatechin Metabolites and Its Effect on ROS Production in Bovine Aortic Endothelial Cells

Authors: Nasiruddin Khan

Abstract:

The action of (-)-epicatechin, a cocoa (Theobroma cacao) flavanol that modulates redox/oxidative stress are contributed mainly to their antioxidant properties. The present study investigates the concentration and time dependent effect of (-)-epicatechin metabolites 3MeEc, 4MeEc, and 4SulEc on the production of ROS on BAEC using L-012, Lucigenin as chemiluminescence dye and XO/HX system. Our result demonstrates that 3MeEc shows significant (P <0.05) lowering effect of ROS production in BAEC with increasing concentration of metabolite while L-012 was used as chemiluminescence dye but not in the case of Lucigenin. In XO/HX system, using L-012 as chemiluminescence dye, 3MeEc and 4MeEc showed significant lowering effect on ROS production with increasing concentration from 100-500nM as compared to the positive control (SOD). When Lucigenin was used as chemiluminescence dye, 3MeEc exerted significant lowering effect with increasing concentration when compared to the positive control (SOD) whereas 4MeEc showed significant lowering effect in ROS production from 250 nM on as compared to positive control. For 4SulEc, a significant lowering effect of ROS production was only observed at 100 and 250 nM. Overall, although each metabolite shows considerable effect, 3MeEc exhibited more pronounced effect on decreasing the production of ROS as compared to other two metabolites.

Keywords: epicatechin metabolites, HO-1, Nrf2, ROS

Procedia PDF Downloads 231
1473 Aristotle University of Thessaloniki

Authors: Ail Akbar Emamverdian, Neriman Özada, Atabak Rahimzadeh Ilkhchi, Zahra Emamverdian

Abstract:

The reverse shoulder prosthesis is an innovative procedure design to treat of (GH) joint problems with severe rotator cuff deficiency. The original reverse shoulder prosthesis was invented by France surgery in1985 and has been in clinical use in the United States in 2004. These prostheses consist of baseplate that attached to the glenoid, in order to hold a spherical component, and humeral part consist of polyethylene insert which is flat. This prosthesis is the ‘reverse’ configuration. The indications for the reverse prosthesis are: (1) treating failed hemi arthroplasty with irrecoverable rotator cuff tears, (2) relief of painful arthritis associated with cuff tear arthropathy, (3) instauration after tumor resection, (4) pseudo paralysis because of irrecoverable rotator cuff tears (5) some fractures of the shoulder which reverse shoulder prostheses is only the option for treatment. This prosthesis resulting in relief of pain and decreasing the range of motion in above indications. However, this prosthesis and its applications such as notching of the scapula, dislocation of the prosthesis parts and acromial stress fractures. In this article the reverse shoulder prostheses, indication has been reviewed. This study can make clear aspect of reverse shoulder prosthesis that can help to find some solution in future.

Keywords: prostheses, complications, reverse shoulder prosthesis, indications

Procedia PDF Downloads 278
1472 The Effect of Biological Fertilizers on Yield and Yield Components of Maize with Different Levels of Chemical Fertilizers in Normal and Difficit Irrigation Conditions

Authors: Felora Rafiei, Shahram Shoaei

Abstract:

The aim of this studies was to evaluate effect of nitroxin, super nitro plus and biophosphorus on yield and yield components of maize (Zea mays) under different levels of chemical fertilizers in the condition of normal and difficiet irrigation. Experiment laid out as split plot factorial based on randomized complete block design with three replications. Main plots includes two irrigation treatments of 70 (I1), 120(I2) mm evaporation from class A pan. Sub plots were biological fertilizer and chemical fertilizer as factorial biological fertilizer consisting of nitroxin: Azospirillium lipoferum, Azospirillium brasilens, Azotobacter chroococcum Azotobacter agilis (108 CFU ml-1) (B1), super nitro plus (Azospirillium spp, + Pseudomonas fluorescence + Bacillus subtilis (108 CFU ml-1) + biological fungicide) (B2), biophosphorus (Pseudomonas spp + Bacillus spp (107 CFU ml-1) (B3), and chemical fertilizer consisting of NPK (C1), N5oP5oK5o (C2) and NoPoKo (C3).The results showed that usage of biological fertilizer have positive effects on chemical fertilizers use efficiency and tolerance to drought stress in maize. Also with use of biological fertilizer can decrease usage of chemical fertilizers.

Keywords: biological fertilizer, chemical fertilizer, yield component, yield, corn

Procedia PDF Downloads 366
1471 Vibration of Nanobeam Subjected to Constant Magnetic Field and Ramp-Type Thermal Loading under Non-Fourier Heat Conduction Law of Lord-Shulman

Authors: Hamdy M. Youssef

Abstract:

In this work, the usual Euler–Bernoulli nanobeam has been modeled in the context of Lord-Shulman thermoelastic theorem, which contains non-Fourier heat conduction law. The nanobeam has been subjected to a constant magnetic field and ramp-type thermal loading. The Laplace transform definition has been applied to the governing equations, and the solutions have been obtained by using a direct approach. The inversions of the Laplace transform have been calculated numerically by using Tzou approximation method. The solutions have been applied to a nanobeam made of silicon nitride. The distributions of the temperature increment, lateral deflection, strain, stress, and strain-energy density have been represented in figures with different values of the magnetic field intensity and ramp-time heat parameter. The value of the magnetic field intensity and ramp-time heat parameter have significant effects on all the studied functions, and they could be used as tuners to control the energy which has been generated through the nanobeam.

Keywords: nanobeam, vibration, constant magnetic field, ramp-type thermal loading, non-Fourier heat conduction law

Procedia PDF Downloads 138
1470 Regenerated Cotton/Feather Keratin Composite Materials Prepared Using Ionic Liquids

Authors: Rasike De Silva, Xungai Wang, Nolene Byrne

Abstract:

We report on the blending of cotton and duck feather towards developing a new textile fibre. The cotton and duck feather were blended together by dissolving both components in an ionic liquid. Ionic liquids are designer solvents consisting entirely of ions with a melting point below 100˚C. Ionic liquids can be designed to have numerous and varied properties which include the ability to dissolve bio polymers. The dissolution of bio polymers such as cotton or wool generally requires very harsh acid or alkaline conditions and high temperatures. The ionic liquids which can dissolve bio polymers can be considered environmentally benign since they have negligible vapor pressure and can be recycled and reused. We have selected the cellulose dissolving and recyclable ionic liquid 1-allyl-3-methylimidazolium chloride (AMIMCl) as the dissolving and blending solvent for the cotton and duck feather materials. We have casted films and wet spun fibres at varying cotton and duck feather compositions and characterized the material properties of these. We find that the addition of duck feather enhances the elasticity of regenerated cotton. The strain% at breakage of the regenerated film was increased from 4.2% to 11.63% with a 10% duck feather loading, while the corresponding stress at breakage reduced from 54.89 MPa to 47.16 MPa.

Keywords: textile materials, bio polymers, ionic liquids, duck feather

Procedia PDF Downloads 479
1469 Coupling Time-Domain Analysis for Dynamic Positioning during S-Lay Installation

Authors: Sun Li-Ping, Zhu Jian-Xun, Liu Sheng-Nan

Abstract:

In order to study the performance of dynamic positioning system during S-lay operations, dynamic positioning system is simulated with the hull-stinger-pipe coupling effect. The roller of stinger is simulated by the generalized elastic contact theory. The stinger is composed of Morrison members. Force on pipe is calculated by lumped mass method. Time domain of fully coupled barge model is analyzed combining with PID controller, Kalman filter and allocation of thrust using Sequential Quadratic Programming method. It is also analyzed that the effect of hull wave frequency motion on pipe-stinger coupling force and dynamic positioning system. Besides, it is studied that how S-lay operations affect the dynamic positioning accuracy. The simulation results are proved to be available by checking pipe stress with API criterion. The effect of heave and yaw motion cannot be ignored on hull-stinger-pipe coupling force and dynamic positioning system. It is important to decrease the barge’s pitch motion and lay pipe in head sea in order to improve safety of the S-lay installation and dynamic positioning.

Keywords: S-lay operation, dynamic positioning, coupling motion, time domain, allocation of thrust

Procedia PDF Downloads 465
1468 Dynamic Analysis and Vibration Response of Thermoplastic Rolling Elements in a Rotor Bearing System

Authors: Nesrine Gaaliche

Abstract:

This study provides a finite element dynamic model for analyzing rolling bearing system vibration response. The vibration responses of polypropylene bearings with and without defects are studied using FE analysis and compared to experimental data. The viscoelastic behavior of thermoplastic is investigated in this work to evaluate the influence of material flexibility and damping viscosity. The vibrations are detected using 3D dynamic analysis. Peak vibrations are more noticeable in an inner ring defect than in an outer ring defect, according to test data. The performance of thermoplastic bearings is compared to that of metal parts using vibration signals. Both the test and numerical results show that Polypropylene bearings exhibit less vibration than steel counterparts. Unlike bearings made from metal, polypropylene bearings absorb vibrations and handle shaft misalignments. Following validation of the overall vibration spectrum data, Von Mises stresses inside the rings are assessed under high loads. Stress is significantly high under the balls, according to the simulation findings. For the test cases, the computational findings correspond closely to the experimental results.

Keywords: viscoelastic, FE analysis, polypropylene, bearings

Procedia PDF Downloads 104
1467 An Artistic-Narrative Process for Reducing Suicide Risk Among Minority Stressed Individuals

Authors: Lewis Mehl-Madrona, Barbara Mainguy, Patrick McFarlane

Abstract:

Introduction: There are many risk factors for attempting suicide, including young age, “minority stress,” which would include Transgender and Gender Diverse orientations (TGD). The rate of TGD youths for suicide attempts is 3 times higher than heterosexual cis-gender youth. Half of TGD youth have seriously contemplated taking their own lives; of those, about half attempted suicide; and 18% of the TGD teenagers reported suicidal thoughts linked to their gender identity. Native American TGD have a six times higher suicide attempt rate. Conventional mental health has not generally helped these individuals. Stigma and discrimination contribute to healthcare disparities. Storytelling plays a crucial role in the development of human culture and individual identities. Sharing narrative artwork, creative writing, and personal stories allow people to build trust and to share their vulnerabilities. This helps people become aware of themselves in relation to others and gain a sense of comfort that their stories are similar; they may also be transformed in the process. Art provides a means to reach people who are otherwise difficult to engage in services. Methods: TGD individuals are recruited through a snowballing procedure. Following a life story interview, participants complete a scale of gender dysphoria, identification with conventional masculinity, patient-reported anxiety, and depression measure, and a quality-of-life scale. The interview completes the Columbia Suicide Scale. Following this, an artist and a therapist works with the participant to create a story related to their gender identity using the six-part story method. This story is then rendered to an artists’ book, which combines narrative with art (drawings, collage, computer images, etc.) and can take the form of a graphic novella, a zine, or a comic book. The pages can range from plain to ornate, as can the covers. Participants describe their process of making the books as the work unfolds and then participate in an exit interview at the completion of their book, remarking on what has changed for them and how the process affected them. Results: Preliminary results show high levels of suicidal thoughts among this population, as expected. Participants participate enthusiastically in the life story interview process and in the construction of a story related to gender identity. They enthusiastically participate in the studio process of putting their story into the form of a graphic novel, zine, or comic book. Participants reported feeling more comfortable with their TGD identity after the process and more able to resist negative judgments of family members and society. Suicidal thoughts diminish, and participants reported improved emotional wellbeing. Quantitative analysis of questionnaire data is underway Conclusions: A process in which narrative therapy is combined with art therapy shows promise for attracting and helping TGD individuals to reduce their risk for suicide without the stigma of going for mental health treatment. This process can be done outside of conventional mental health settings, on college and University campuses. This can provide an exciting alternative pathway for minority stressed and stigmatized individuals to engage in reflective, psychotherapeutic work without the trappings of psychotherapy or mental health treatment.

Keywords: minority stress, narrative process, artists' books, life story interview

Procedia PDF Downloads 175
1466 A Neural Network System for Predicting the Hardness of Titanium Aluminum Nitrite (TiAlN) Coatings

Authors: Omar M. Elmabrouk

Abstract:

The cutting tool, in the high-speed machining process, is consistently dealing with high localized stress at the tool tip, tip temperature exceeds 800°C and the chip slides along the rake face. These conditions are affecting the tool wear, the cutting tool performances, the quality of the produced parts and the tool life. Therefore, a thin film coating on the cutting tool should be considered to improve the tool surface properties while maintaining its bulks properties. One of the general coating processes in applying thin film for hard coating purpose is PVD magnetron sputtering. In this paper, the prediction of the effects of PVD magnetron sputtering coating process parameters, sputter power in the range of (4.81-7.19 kW), bias voltage in the range of (50.00-300.00 Volts) and substrate temperature in the range of (281.08-600.00 °C), were studied using artificial neural network (ANN). The results were compared with previously published results using RSM model. It was found that the ANN is more accurate in prediction of tool hardness, and hence, it will not only improve the tool life of the tool but also significantly enhances the efficiency of the machining processes.

Keywords: artificial neural network, hardness, prediction, titanium aluminium nitrate coating

Procedia PDF Downloads 554
1465 Rheological Characterization of Gels Based on Medicinal Plant Extracts Mixture (Zingibar Officinale and Cinnamomum Cassia)

Authors: Zahia Aliche, Fatiha Boudjema, Benyoucef Khelidj, Selma Mettai, Zohra Bouriahi, Saliha Mohammed Belkebir, Ridha Mazouz

Abstract:

The purpose of this work is the study of the viscoelastic behaviour formulating gels based plant extractions. The extracts of Zingibar officinale and Cinnamomum cassia were included in the gel at different concentrations of these plants in order to be applied in anti-inflammatory drugs. The yield of ethanolic extraction of Zingibar o. is 3.98% and for Cinnamomum c., essential oil by hydrodistillation is 1.67 %. The ethanolic extract of Zingibar.o, the essential oil of Cinnamomum c. and the mixture showed an anti-DPPH radicals’ activity, presented by EC50 values of 11.32, 13.48 and 14.39 mg/ml respectively. A gel based on different concentrations of these extracts was prepared. Microbiological tests conducted against Staphylococcus aureus and Escherichia colishowed moderate inhibition of Cinnamomum c. gel and less the gel based on Cinnamomum c./ Zingibar o. (20/80). The yeast Candida albicansis resistant to gels. The viscoelastic formulation property was carried out in dynamic and creep and modeled with the Kelvin-Voigt model. The influence of some parameters on the stability of the gel (time, temperature and applied stress) has been studied.

Keywords: Cinnamomum cassia, Zingibar officinale, antioxidant activity, antimicrobien activity, gel, viscoelastic behaviour

Procedia PDF Downloads 89
1464 Integration of Acoustic Solutions for Classrooms

Authors: Eyibo Ebengeobong Eddie, Halil Zafer Alibaba

Abstract:

The neglect of classroom acoustics is dominant in most educational facilities, meanwhile, hearing and listening is the learning process in this kind of facilities. A classroom should therefore be an environment that encourages listening, without an obstacles to understanding what is being taught. Although different studies have shown teachers to complain that noise is the everyday factor that causes stress in classroom, the capacity of individuals to understand speech is further affected by Echoes, Reverberation, and room modes. It is therefore necessary for classrooms to have an ideal acoustics to aid the intelligibility of students in the learning process. The influence of these acoustical parameters on learning and teaching in schools needs to be further researched upon to enhance the teaching and learning capacity of both teacher and student. For this reason, there is a strong need to provide and collect data to analyse and define the suitable quality of classrooms needed for a learning environment. Research has shown that acoustical problems are still experienced in both newer and older schools. However, recently, principle of acoustics has been analysed and room acoustics can now be measured with various technologies and sound systems to improve and solve the problem of acoustics in classrooms. These acoustic solutions, materials, construction methods and integration processes would be discussed in this paper.

Keywords: classroom, acoustics, materials, integration, speech intelligibility

Procedia PDF Downloads 417
1463 Evaluation of Gasoline Engine Piston with Various Coating Materials Using Finite Element Method

Authors: Nouby Ghazaly, Gamal Fouad, Ali Abd-El-Tawwab, K. A. Abd El-Gwwad

Abstract:

The purpose of this paper is to examine the piston stress distribution using several thicknesses of the coating materials to achieve higher gasoline engine performance. First of all, finite element structure analysis is used to uncoated petrol piston made of aluminum alloy. Then, steel and cast-iron piston materials are conducted and compared with the aluminum piston. After that, investigation of four coating materials namely, yttria-stabilized zirconia, magnesia-stabilized zirconia, alumina, and mullite are studied for each piston materials. Next, influence of various thickness coating layers on the structure stresses of the top surfaces is examined. Comparison between simulated results for aluminum, steel, and cast-iron materials is reported. Moreover, the influences of different coating thickness on the Von Mises stresses of four coating materials are investigated. From the simulation results, it can report that the maximum Von Mises stresses and deformations for the piston materials are decreasing with increasing the coating thickness for magnesia-stabilized zirconia, yttria-stabilized zirconia, mullite and alumina coated materials.

Keywords: structure analysis, aluminum piston, MgZrO₃, YTZ, mullite and alumina

Procedia PDF Downloads 151
1462 Numerical Prediction of Width Crack of Concrete Dapped-End Beams

Authors: Jatziri Y. Moreno-Martinez, Arturo Galvan, Xavier Chavez Cardenas, Hiram Arroyo

Abstract:

Several methods have been utilized to study the prediction of cracking of concrete structural under loading. The finite element analysis is an alternative that shows good results. The aim of this work was the numerical study of the width crack in reinforced concrete beams with dapped ends, these are frequently found in bridge girders and precast concrete construction. Properly restricting cracking is an important aspect of the design in dapped ends, it has been observed that the cracks that exceed the allowable widths are unacceptable in an aggressive environment for reinforcing steel. For simulating the crack width, the discrete crack approach was considered by means of a Cohesive Zone (CZM) Model using a function to represent the crack opening. Two cases of dapped-end were constructed and tested in the laboratory of Structures and Materials of Engineering Institute of UNAM. The first case considers a reinforcement based on hangers as well as on vertical and horizontal ring, the second case considers 50% of the vertical stirrups in the dapped end to the main part of the beam were replaced by an equivalent area (vertically projected) of diagonal bars under. The loading protocol consisted on applying symmetrical loading to reach the service load. The models were performed using the software package ANSYS v. 16.2. The concrete structure was modeled using three-dimensional solid elements SOLID65 capable of cracking in tension and crushing in compression. Drucker-Prager yield surface was used to include the plastic deformations. The reinforcement was introduced with smeared approach. Interface delamination was modeled by traditional fracture mechanics methods such as the nodal release technique adopting softening relationships between tractions and the separations, which in turn introduce a critical fracture energy that is also the energy required to break apart the interface surfaces. This technique is called CZM. The interface surfaces of the materials are represented by a contact elements Surface-to-Surface (CONTA173) with bonded (initial contact). The Mode I dominated bilinear CZM model assumes that the separation of the material interface is dominated by the displacement jump normal to the interface. Furthermore, the opening crack was taken into consideration according to the maximum normal contact stress, the contact gap at the completion of debonding, and the maximum equivalent tangential contact stress. The contact elements were placed in the crack re-entrant corner. To validate the proposed approach, the results obtained with the previous procedure are compared with experimental test. A good correlation between the experimental and numerical Load-Displacement curves was presented, the numerical models also allowed to obtain the load-crack width curves. In these two cases, the proposed model confirms the capability of predicting the maximum crack width, with an error of ± 30 %. Finally, the orientation of the crack is a fundamental for the prediction of crack width. The results regarding the crack width can be considered as good from the practical point view. Load-Displacement curve of the test and the location of the crack were able to obtain favorable results.

Keywords: cohesive zone model, dapped-end beams, discrete crack approach, finite element analysis

Procedia PDF Downloads 167
1461 Chronic Impact of Silver Nanoparticle on Aerobic Wastewater Biofilm

Authors: Sanaz Alizadeh, Yves Comeau, Arshath Abdul Rahim, Sunhasis Ghoshal

Abstract:

The application of silver nanoparticles (AgNPs) in personal care products, various household and industrial products has resulted in an inevitable environmental exposure of such engineered nanoparticles (ENPs). Ag ENPs, released via household and industrial wastes, reach water resource recovery facilities (WRRFs), yet the fate and transport of ENPs in WRRFs and their potential risk in the biological wastewater processes are poorly understood. Accordingly, our main objective was to elucidate the impact of long-term continuous exposure to AgNPs on biological activity of aerobic wastewater biofilm. The fate, transport and toxicity of 10 μg.L-1and 100 μg.L-1 PVP-stabilized AgNPs (50 nm) were evaluated in an attached growth biological treatment process, using lab-scale moving bed bioreactors (MBBRs). Two MBBR systems for organic matter removal were fed with a synthetic influent and operated at a hydraulic retention time (HRT) of 180 min and 60% volumetric filling ratio of Anox-K5 carriers with specific surface area of 800 m2/m3. Both reactors were operated for 85 days after reaching steady state conditions to develop a mature biofilm. The impact of AgNPs on the biological performance of the MBBRs was characterized over a period of 64 days in terms of the filtered biodegradable COD (SCOD) removal efficiency, the biofilm viability and key enzymatic activities (α-glucosidase and protease). The AgNPs were quantitatively characterized using single-particle inductively coupled plasma mass spectroscopy (spICP-MS), determining simultaneously the particle size distribution, particle concentration and dissolved silver content in influent, bioreactor and effluent samples. The generation of reactive oxygen species and the oxidative stress were assessed as the proposed toxicity mechanism of AgNPs. Results indicated that a low concentration of AgNPs (10 μg.L-1) did not significantly affect the SCOD removal efficiency whereas a significant reduction in treatment efficiency (37%) was observed at 100 μg.L-1AgNPs. Neither the viability nor the enzymatic activities of biofilm were affected at 10 μg.L-1AgNPs but a higher concentration of AgNPs induced cell membrane integrity damage resulting in 31% loss of viability and reduced α-glucosidase and protease enzymatic activities by 31% and 29%, respectively, over the 64-day exposure period. The elevated intercellular ROS in biofilm at a higher AgNPs concentration over time was consistent with a reduced biological biofilm performance, confirming the occurrence of a nanoparticle-induced oxidative stress in the heterotrophic biofilm. The spICP-MS analysis demonstrated a decrease in the nanoparticles concentration over the first 25 days, indicating a significant partitioning of AgNPs into the biofilm matrix in both reactors. The concentration of nanoparticles increased in effluent of both reactors after 25 days, however, indicating a decreased retention capacity of AgNPs in biofilm. The observed significant detachment of biofilm also contributed to a higher release of nanoparticles due to cell-wall destabilizing properties of AgNPs as an antimicrobial agent. The removal efficiency of PVP-AgNPs and the biofilm biological responses were a function of nanoparticle concentration and exposure time. This study contributes to a better understanding of the fate and behavior of AgNPs in biological wastewater processes, providing key information that can be used to predict the environmental risks of ENPs in aquatic ecosystems.

Keywords: biofilm, silver nanoparticle, single particle ICP-MS, toxicity, wastewater

Procedia PDF Downloads 268
1460 Evaluation of Hard Rocks Destruction Effectiveness at Drilling

Authors: Ekaterina Leusheva, Valentin Morenov

Abstract:

Well drilling in hard rocks is coupled with high energy demands which negates the speed of the process and thus reduces overall effectiveness. Aim of this project is to develop the technique of experimental research, which would allow to select optimal washing fluid composition while adding special hardness reducing detergent reagents. Based on the analysis of existing references and conducted experiments, technique dealing with quantitative evaluation of washing fluid weakening influence on drilled rocks was developed, which considers laboratory determination of three mud properties (density, surface tension, specific electrical resistance) and three rock properties (ultimate stress, dynamic strength, micro-hardness). Developed technique can be used in the well drilling technologies and particularly while creating new compositions of drilling muds for increased destruction effectiveness of hard rocks. It can be concluded that given technique introduces coefficient of hard rocks destruction effectiveness that allows quantitative evaluation of different drilling muds on the drilling process to be taken. Correct choice of drilling mud composition with hardness reducing detergent reagents will increase drilling penetration rate and drill meterage per bit.

Keywords: detergent reagents, drilling mud, drilling process stimulation, hard rocks

Procedia PDF Downloads 547
1459 Seismic Performance of Two-Storey RC Frame Designed EC8 under In-Plane Cyclic Loading

Authors: N. H. Hamid, A. Azmi, M. I. Adiyanto

Abstract:

This main purpose of this paper is to evaluate the seismic performance of double bay two-storey reinforced concrete frame under in-plane lateral cyclic loading which designed using Eurocode 8 (EC8) by taking into account of seismic loading. The prototype model of reinforced concrete frame was constructed in one-half scale tested under in-plane lateral cyclic loading starts with ±0.2% drift, ±0.25% up to ±3.0% drift with the increment of ±0.25%. The performance of the RC frame is evaluated in terms of the hysteresis loop (load vs. displacement), stiffness, ductility, lateral strength, stress-strain relationship and equivalent viscous damping. Visual observation of the crack pattern after testing were observed where the beam- column joint suffer the most severe damage as it is the critical part in moment resisting frame. Spalling of concrete starts occurred at ±2.0% drift and become worse at ±2.5% drift. The experimental result shows that the maximum lateral strength of specimen is 99.98 kN and ductility of the specimen is µ=4.07 which lies between 3≤µ≤6 in order to withstand moderate to severe earthquakes.

Keywords: ductility, equivalent viscous damping, hysteresis loops, lateral strength, stiffness

Procedia PDF Downloads 357
1458 Soil Liquefaction Hazard Evaluation for Infrastructure in the New Bejaia Quai, Algeria

Authors: Mohamed Khiatine, Amal Medjnoun, Ramdane Bahar

Abstract:

The North Algeria is a highly seismic zone, as evidenced by the historical seismicity. During the past two decades, it has experienced several moderate to strong earthquakes. Therefore, the geotechnical engineering problems that involve dynamic loading of soils and soil-structure interaction system requires, in the presence of saturated loose sand formations, liquefaction studies. Bejaia city, located in North-East of Algiers, Algeria, is a part of the alluvial plain which covers an area of approximately 750 hectares. According to the Algerian seismic code, it is classified as moderate seismicity zone. This area had not experienced in the past urban development because of the different hazards identified by hydraulic and geotechnical studies conducted in the region. The low bearing capacity of the soil, its high compressibility and the risk of liquefaction and flooding are among these risks and are a constraint on urbanization. In this area, several cases of structures founded on shallow foundations have suffered damages. Hence, the soils need treatment to reduce the risk. Many field and laboratory investigations, core drilling, pressuremeter test, standard penetration test (SPT), cone penetrometer test (CPT) and geophysical down hole test, were performed in different locations of the area. The major part of the area consists of silty fine sand , sometimes heterogeneous, has not yet reached a sufficient degree of consolidation. The ground water depth changes between 1.5 and 4 m. These investigations show that the liquefaction phenomenon is one of the critical problems for geotechnical engineers and one of the obstacles found in design phase of projects. This paper presents an analysis to evaluate the liquefaction potential, using the empirical methods based on Standard Penetration Test (SPT), Cone Penetration Test (CPT) and shear wave velocity and numerical analysis. These liquefaction assessment procedures indicate that liquefaction can occur to considerable depths in silty sand of harbor zone of Bejaia.

Keywords: earthquake, modeling, liquefaction potential, laboratory investigations

Procedia PDF Downloads 353
1457 Amplitude Versus Offset (AVO) Modeling as a Tool for Seismic Reservoir Characterization of the Semliki Basin

Authors: Hillary Mwongyera

Abstract:

The Semliki basin has become a frontier for petroleum exploration in recent years. Exploration efforts have resulted into extensive seismic data acquisition and drilling of three wells namely; Turaco 1, Turaco 2 and Turaco 3. A petrophysical analysis of the Turaco 1 well was carried out to identify two reservoir zones on which AVO modeling was performed. A combination of seismic modeling and rock physics modeling was applied during reservoir characterization and monitoring to determine variations of seismic responses with amplitude characteristics. AVO intercept gradient analysis applied on AVO synthetic CDP gathers classified AVO anomalies associated with both reservoir zones as Class 1 AVO anomalies. Fluid replacement modeling was carried out on both reservoir zones using homogeneous mixing and patchy saturation patterns to determine effects of fluid substitution on rock property interactions. For both homogeneous mixing and saturation patterns, density (ρ) showed an increasing trend with increasing brine substitution while Shear wave velocity (Vs) decreased with increasing brine substitution. A study of compressional wave velocity (Vp) with increasing brine substitution for both homogeneous mixing and patchy saturation gave quite interesting results. During patchy saturation, Vp increased with increasing brine substitution. During homogeneous mixing however, Vp showed a slightly decreasing trend with increasing brine substitution but increased tremendously towards and at full brine saturation. A sensitivity analysis carried out showed that density was a very sensitive rock property responding to brine saturation except at full brine saturation during homogeneous mixing where Vp showed greater sensitivity with brine saturation. Rock physics modeling was performed to predict diagnostics of reservoir quality using an inverse deterministic approach which showed low shale content and a high degree of shale stiffness within reservoir zones.

Keywords: Amplitude Versus Offset (AVO), fluid replacement modelling, reservoir characterization, AVO attributes, rock physics modelling, reservoir monitoring

Procedia PDF Downloads 531
1456 Improved Multi-Objective Particle Swarm Optimization Applied to Design Problem

Authors: Kapse Swapnil, K. Shankar

Abstract:

Aiming at optimizing the weight and deflection of cantilever beam subjected to maximum stress and maximum deflection, Multi-objective Particle Swarm Optimization (MOPSO) with Utopia Point based local search is implemented. Utopia point is used to govern the search towards the Pareto Optimal set. The elite candidates obtained during the iterations are stored in an archive according to non-dominated sorting and also the archive is truncated based on least crowding distance. Local search is also performed on elite candidates and the most diverse particle is selected as the global best. This method is implemented on standard test functions and it is observed that the improved algorithm gives better convergence and diversity as compared to NSGA-II in fewer iterations. Implementation on practical structural problem shows that in 5 to 6 iterations, the improved algorithm converges with better diversity as evident by the improvement of cantilever beam on an average of 0.78% and 9.28% in the weight and deflection respectively compared to NSGA-II.

Keywords: Utopia point, multi-objective particle swarm optimization, local search, cantilever beam

Procedia PDF Downloads 520
1455 Criticality Assessment of Power Transformer by Using Entropy Weight Method

Authors: Rattanakorn Phadungthin, Juthathip Haema

Abstract:

This research presents an assessment of the criticality of the substation's power transformer using the Entropy Weight method to enable more effective maintenance planning. Typically, transformers fail due to heat, electricity, chemical reactions, mechanical stress, and extreme climatic conditions. Effective monitoring of the insulating oil is critical to prevent transformer failure. However, finding appropriate weights for dissolved gases is a major difficulty due to the lack of a defined baseline and the requirement for subjective expert opinion. To decrease expert prejudice and subjectivity, the Entropy Weight method is used to optimise the weightings of eleven key dissolved gases. The algorithm to assess the criticality operates through five steps: create a decision matrix, normalise the decision matrix, compute the entropy, calculate the weight, and calculate the criticality score. This study not only optimises gas weighing but also greatly minimises the need for expert judgment in transformer maintenance. It is expected to improve the efficiency and reliability of power transformers so failures and related economic costs are minimized. Furthermore, maintenance schemes and ranking are accomplished appropriately when the assessment of criticality is reached.

Keywords: criticality assessment, dissolved gas, maintenance scheme, power transformer

Procedia PDF Downloads 8
1454 Characterization and Predictors of Paranoid Ideation in Youths

Authors: Marina Sousa, Célia Barreto Carvalho, Carolina da Motta, Joana Cabral, Vera Pereira, Suzana Nunes Caldeira, Ermelindo Peixoto

Abstract:

Paranoid ideation is a common thought process that constitutes a defense against perceived social threats. The current study aimed at the characterization of paranoid ideation in youths and to explore the possible predictors involved in the development of paranoid ideations. Paranoid ideation, shame, submission, early childhood memories and current depressive, anxious and stress symptomatology was assessed in a sample of 1516 Portuguese youths. Higher frequencies of paranoid ideation were observed, particularly in females and youths from lower socio-economic status. The main predictors identified relates to submissive behaviors and adverse childhood experiences, and especially to shame feelings. The current study emphasizes that the these predictors are similar to findings in adults and clinical populations, and future implications to research and clinical practice aiming at paranoid ideations are discussed, as well as the pertinence of the study of mediating factors that allow a wider understanding of this thought process in younger populations and the prevention of psychopathology in adulthood.

Keywords: adolescence, early memories, paranoid ideation, parenting styles, shame, submissiveness

Procedia PDF Downloads 500
1453 Adherence of Hypertensive Patients to Lifestyle Modification Factors: A Cross-Sectional Study

Authors: Fadwa Alhalaiqa, Ahmad Al-Nawafleh, Abdul-Monim Batiha, Rami Masadeh, Aida Abd Alrazek

Abstract:

Healthy lifestyle recommendations (e.g. physical inactivity, unhealthy diet, increased cholesterol levels, obesity, and poor stress management) play an important role in controlling BP. This study aimed to assess lifestyle modification factors among patient diagnosed with hypertension. Methods and materials: A cross section-survey design was used. Data was collected by four questionnaires one was the beliefs about medication (BMQ) and rest were developed to collect data about demographics and clinical characteristics and lifestyle modification factors. Results: Total 312 questionnaires had been completed. The participants had a mean age of 57.6 years (SD =11.8). The results revealed that our participants did not follow healthy lifestyle recommendations; for example the means BS level, BMI, and cholesterol levels were 155 mg/dl (SD= 71.9), 29 kg/2m (SD= 5.4) and 197 mg/dl (SD= 86.6) respectively. A significant correlation was shown between age and BP (P= 0.000). Increase in DBP correlates with a significant increase in cholesterol level (P= .002) and BMI (P= .006). Conclusion: Hypertensive patients did not adhere to healthy lifestyle modification factors. Therefore, an urgent action by addressing behavioral risk factors has a positive impact on preventing and controlling hypertension.

Keywords: adherence, healthy lifestyle, hypertension, patients

Procedia PDF Downloads 278
1452 Combined Proteomic and Metabolomic Analysis Approaches to Investigate the Modification in the Proteome and Metabolome of in vitro Models Treated with Gold Nanoparticles (AuNPs)

Authors: H. Chassaigne, S. Gioria, J. Lobo Vicente, D. Carpi, P. Barboro, G. Tomasi, A. Kinsner-Ovaskainen, F. Rossi

Abstract:

Emerging approaches in the area of exposure to nanomaterials and assessment of human health effects combine the use of in vitro systems and analytical techniques to study the perturbation of the proteome and/or the metabolome. We investigated the modification in the cytoplasmic compartment of the Balb/3T3 cell line exposed to gold nanoparticles. On one hand, the proteomic approach is quite standardized even if it requires precautions when dealing with in vitro systems. On the other hand, metabolomic analysis is challenging due to the chemical diversity of cellular metabolites that complicate data elaboration and interpretation. Differentially expressed proteins were found to cover a range of functions including stress response, cell metabolism, cell growth and cytoskeleton organization. In addition, de-regulated metabolites were annotated using the HMDB database. The "omics" fields hold huge promises in the interaction of nanoparticles with biological systems. The combination of proteomics and metabolomics data is possible however challenging.

Keywords: data processing, gold nanoparticles, in vitro systems, metabolomics, proteomics

Procedia PDF Downloads 503