Search results for: moving biological reactors
204 Ant and Spider Diversity in a Rural Landscape of the Vhembe Biosphere, South Africa
Authors: Evans V. Mauda, Stefan H. Foord, Thinandavha C. Munyai
Abstract:
The greatest threat to biodiversity is a loss of habitat through landscape fragmentation and attrition. Land use changes are therefore among the most immediate drivers of species diversity. Urbanization and agriculture are the main drivers of habitat loss and transformation in the Savanna biomes of South Africa. Agricultural expansion and the intensification in particular, take place at the expense of biodiversity and will probably be the primary driver of biodiversity loss in this century. Arthropods show measurable behavioural responses to changing land mosaics at the smallest scale and heterogeneous environments are therefore predicted to support more complex and diverse biological assemblages. Ants are premier soil turners, channelers of energy and dominate insect fauna, while spiders are a mega-diverse group that can regulate other invertebrate populations. This study aims to quantify the response of these two taxa in a rural-urban mosaic of a rapidly developing communal area. The study took place in and around two villages in the north-eastern corner of South Africa. Two replicates for each of the dominant land use categories, viz. urban settlements, dryland cultivation and cattle rangelands, were set out in each of the villages and sampled during the dry and wet seasons for a total of 2 villages × 3 land use categories × 2 seasons = 24 assemblages. Local scale variables measured included vertical and horizontal habitat structure as well as structural and chemical composition of the soil. Ant richness was not affected by land use but local scale variables such as vertical vegetation structure (+) and leaf litter cover (+), although vegetation complexity at lower levels was negatively associated with ant richness. However, ant richness was largely shaped by regional and temporal processes invoking the importance of dispersal and historical processes. Spider species richness was mostly affected by land use and local conditions highlighting their landscape elements. Spider richness did not vary much between villages and across seasons and seems to be less dependent on context or history. There was a considerable amount of variation in spider richness that was not explained and this could be related to factors which were not measured in this study such as temperature and competition. For both ant and spider assemblages the constrained ordination explained 18 % of variation in these taxa. Three environmental variables (leaf litter cover, active carbon and rock cover) were important in explaining ant assemblage structure, while two (sand and leaf litter cover) were important for spider assemblage structure. This study highlights the importance of disturbance (land use activities) and leaf litter with the associated effects on ant and spider assemblages across the study area.Keywords: ants, assemblages, biosphere, diversity, land use, spiders, urbanization
Procedia PDF Downloads 267203 Stimulation of Nerve Tissue Differentiation and Development Using Scaffold-Based Cell Culture in Bioreactors
Authors: Simon Grossemy, Peggy P. Y. Chan, Pauline M. Doran
Abstract:
Nerve tissue engineering is the main field of research aimed at finding an alternative to autografts as a treatment for nerve injuries. Scaffolds are used as a support to enhance nerve regeneration. In order to successfully design novel scaffolds and in vitro cell culture systems, a deep understanding of the factors affecting nerve regeneration processes is needed. Physical and biological parameters associated with the culture environment have been identified as potentially influential in nerve cell differentiation, including electrical stimulation, exposure to extracellular-matrix (ECM) proteins, dynamic medium conditions and co-culture with glial cells. The mechanisms involved in driving the cell to differentiation in the presence of these factors are poorly understood; the complexity of each of them raises the possibility that they may strongly influence each other. Some questions that arise in investigating nerve regeneration include: What are the best protein coatings to promote neural cell attachment? Is the scaffold design suitable for providing all the required factors combined? What is the influence of dynamic stimulation on cell viability and differentiation? In order to study these effects, scaffolds adaptable to bioreactor culture conditions were designed to allow electrical stimulation of cells exposed to ECM proteins, all within a dynamic medium environment. Gold coatings were used to make the surface of viscose rayon microfiber scaffolds (VRMS) conductive, and poly-L-lysine (PLL) and laminin (LN) surface coatings were used to mimic the ECM environment and allow the attachment of rat PC12 neural cells. The robustness of the coatings was analyzed by surface resistivity measurements, scanning electron microscope (SEM) observation and immunocytochemistry. Cell attachment to protein coatings of PLL, LN and PLL+LN was studied using DNA quantification with Hoechst. The double coating of PLL+LN was selected based on high levels of PC12 cell attachment and the reported advantages of laminin for neural differentiation. The underlying gold coatings were shown to be biocompatible using cell proliferation and live/dead staining assays. Coatings exhibiting stable properties over time under dynamic fluid conditions were developed; indeed, cell attachment and the conductive power of the scaffolds were maintained over 2 weeks of bioreactor operation. These scaffolds are promising research tools for understanding complex neural cell behavior. They have been used to investigate major factors in the physical culture environment that affect nerve cell viability and differentiation, including electrical stimulation, bioreactor hydrodynamic conditions, and combinations of these parameters. The cell and tissue differentiation response was evaluated using DNA quantification, immunocytochemistry, RT-qPCR and functional analyses.Keywords: bioreactor, electrical stimulation, nerve differentiation, PC12 cells, scaffold
Procedia PDF Downloads 244202 Effect of Supplementation of Hay with Noug Seed Cake (Guizotia abyssinica), Wheat Bran and Their Mixtures on Feed Utilization, Digestiblity and Live Weight Change in Farta Sheep
Authors: Fentie Bishaw Wagayie
Abstract:
This study was carried out with the objective of studying the response of Farta sheep in feed intake and live weight change when fed on hay supplemented with noug seed cake (NSC), wheat bran (WB), and their mixtures. The digestibility trial of 7 days and 90 days of feeding trial was conducted using 25 intact male Farta sheep with a mean initial live weight of 16.83 ± 0.169 kg. The experimental animals were arranged randomly into five blocks based on the initial live weight, and the five treatments were assigned randomly to each animal in a block. Five dietary treatments used in the experiment comprised of grass hay fed ad libitum (T1), grass hay ad libitum + 300 g DM WB (T2), grass hay ad libitum + 300 g DM (67% WB: 33% NSC mixture) (T3), grass hay ad libitum + 300 g DM (67% NSC: 33% WB) (T4) and 300 g DM/ head/day NSC (T5). Common salt and water were offered ad libitum. The supplements were offered twice daily at 0800 and 1600 hours. The experimental sheep were kept in individual pens. Supplementation of NSC, WB, and their mixtures significantly increased (p < 0.01) the total dry matter (DM) (665.84-788 g/head/day) and (p < 0.001) crude protein (CP) intake. Unsupplemented sheep consumed significantly higher (p < 0.01) grass hay DM (540.5g/head/day) as compared to the supplemented treatments (365.8-488 g/h/d), except T2. Among supplemented sheep, T5 had significantly higher (p < 0.001) CP intake (99.98 g/head/day) than the others (85.52-90.2 g/head/day). Supplementation significantly improved (p < 0.001) the digestibility of CP (66.61-78.9%), but there was no significant effect (p > 0.05) on DM, OM, NDF, and ADF digestibility between supplemented and control treatments. Very low CP digestibility (11.55%) observed in the basal diet (grass hay) used in this study indicated that feeding sole grass hay could not provide nutrients even for the maintenance requirement of growing sheep. Significant final and daily live weight gain (p < 0.001) in the range of 70.11-82.44 g/head/day was observed in supplemented Farta sheep, but unsupplemented sheep lost weight by 9.11g/head/day. Numerically, among the supplemented treatments, sheep supplemented with a higher proportion of NSC in T4 (201 NSC + 99 g WB) gained more weight than the rest, though not statistically significant (p > 0.05). The absence of statistical difference in daily body weight gain between all supplemented sheep indicated that the supplementation of NSC, WB, and their mixtures had similar potential to provide nutrients. Generally, supplementation of NSC, WB, and their mixtures to the basal grass hay diet improved feed conversion ratio, total DM intake, CP intake, and CP digestibility, and it also improved the growth performance with a similar trend for all supplemented Farta sheep over the control group. Therefore, from a biological point of view, to attain the required level of slaughter body weight within a short period of the growing program, sheep producer can use all the supplement types depending upon their local availability, but in the order of priority, T4, T5, T3, and T2, respectively. However, based on partial budget analysis, supplementation of 300 g DM/head /day NSC (T5) could be recommended as profitable for producers with no capital limitation, whereas T4 supplementation (201 g NSC + 99 WB DM/day) is recommended when there is capital scarcity.Keywords: weight gain, supplement, Farta sheep, hay as basal diet
Procedia PDF Downloads 63201 Electrohydrodynamic Patterning for Surface Enhanced Raman Scattering for Point-of-Care Diagnostics
Authors: J. J. Rickard, A. Belli, P. Goldberg Oppenheimer
Abstract:
Medical diagnostics, environmental monitoring, homeland security and forensics increasingly demand specific and field-deployable analytical technologies for quick point-of-care diagnostics. Although technological advancements have made optical methods well-suited for miniaturization, a highly-sensitive detection technique for minute sample volumes is required. Raman spectroscopy is a well-known analytical tool, but has very weak signals and hence is unsuitable for trace level analysis. Enhancement via localized optical fields (surface plasmons resonances) on nanoscale metallic materials generates huge signals in surface-enhanced Raman scattering (SERS), enabling single molecule detection. This enhancement can be tuned by manipulation of the surface roughness and architecture at the sub-micron level. Nevertheless, the development and application of SERS has been inhibited by the irreproducibility and complexity of fabrication routes. The ability to generate straightforward, cost-effective, multiplex-able and addressable SERS substrates with high enhancements is of profound interest for SERS-based sensing devices. While most SERS substrates are manufactured by conventional lithographic methods, the development of a cost-effective approach to create nanostructured surfaces is a much sought-after goal in the SERS community. Here, a method is established to create controlled, self-organized, hierarchical nanostructures using electrohydrodynamic (HEHD) instabilities. The created structures are readily fine-tuned, which is an important requirement for optimizing SERS to obtain the highest enhancements. HEHD pattern formation enables the fabrication of multiscale 3D structured arrays as SERS-active platforms. Importantly, each of the HEHD-patterned individual structural units yield a considerable SERS enhancement. This enables each single unit to function as an isolated sensor. Each of the formed structures can be effectively tuned and tailored to provide high SERS enhancement, while arising from different HEHD morphologies. The HEHD fabrication of sub-micrometer architectures is straightforward and robust, providing an elegant route for high-throughput biological and chemical sensing. The superior detection properties and the ability to fabricate SERS substrates on the miniaturized scale, will facilitate the development of advanced and novel opto-fluidic devices, such as portable detection systems, and will offer numerous applications in biomedical diagnostics, forensics, ecological warfare and homeland security.Keywords: hierarchical electrohydrodynamic patterning, medical diagnostics, point-of care devices, SERS
Procedia PDF Downloads 346200 Arc Plasma Application for Solid Waste Processing
Authors: Vladimir Messerle, Alfred Mosse, Alexandr Ustimenko, Oleg Lavrichshev
Abstract:
Hygiene and sanitary study of typical medical-biological waste made in Kazakhstan, Russia, Belarus and other countries show that their risk to the environment is much higher than that of most chemical wastes. For example, toxicity of solid waste (SW) containing cytotoxic drugs and antibiotics is comparable to toxicity of radioactive waste of high and medium level activity. This report presents the results of the thermodynamic analysis of thermal processing of SW and experiments at the developed plasma unit for SW processing. Thermodynamic calculations showed that the maximum yield of the synthesis gas at plasma gasification of SW in air and steam mediums is achieved at a temperature of 1600K. At the air plasma gasification of SW high-calorific synthesis gas with a concentration of 82.4% (СO – 31.7%, H2 – 50.7%) can be obtained, and at the steam plasma gasification – with a concentration of 94.5% (СO – 33.6%, H2 – 60.9%). Specific heat of combustion of the synthesis gas produced by air gasification amounts to 14267 kJ/kg, while by steam gasification - 19414 kJ/kg. At the optimal temperature (1600 K), the specific power consumption for air gasification of SW constitutes 1.92 kWh/kg, while for steam gasification - 2.44 kWh/kg. Experimental study was carried out in a plasma reactor. This is device of periodic action. The arc plasma torch of 70 kW electric power is used for SW processing. Consumption of SW was 30 kg/h. Flow of plasma-forming air was 12 kg/h. Under the influence of air plasma flame weight average temperature in the chamber reaches 1800 K. Gaseous products are taken out of the reactor into the flue gas cooling unit, and the condensed products accumulate in the slag formation zone. The cooled gaseous products enter the gas purification unit, after which via gas sampling system is supplied to the analyzer. Ventilation system provides a negative pressure in the reactor up to 10 mm of water column. Condensed products of SW processing are removed from the reactor after its stopping. By the results of experiments on SW plasma gasification the reactor operating conditions were determined, the exhaust gas analysis was performed and the residual carbon content in the slag was determined. Gas analysis showed the following composition of the gas at the exit of gas purification unit, (vol.%): СO – 26.5, H2 – 44.6, N2–28.9. The total concentration of the syngas was 71.1%, which agreed well with the thermodynamic calculations. The discrepancy between experiment and calculation by the yield of the target syngas did not exceed 16%. Specific power consumption for SW gasification in the plasma reactor according to the results of experiments amounted to 2.25 kWh/kg of working substance. No harmful impurities were found in both gas and condensed products of SW plasma gasification. Comparison of experimental results and calculations showed good agreement. Acknowledgement—This work was supported by Ministry of Education and Science of the Republic of Kazakhstan and Ministry of Education and Science of the Russian Federation (Agreement on grant No. 14.607.21.0118, project RFMEF160715X0118).Keywords: coal, efficiency, ignition, numerical modeling, plasma-fuel system, plasma generator
Procedia PDF Downloads 250199 p-Type Multilayer MoS₂ Enabled by Plasma Doping for Ultraviolet Photodetectors Application
Authors: Xiao-Mei Zhang, Sian-Hong Tseng, Ming-Yen Lu
Abstract:
Two-dimensional (2D) transition metal dichalcogenides (TMDCs), such as MoS₂, have attracted considerable attention owing to the unique optical and electronic properties related to its 2D ultrathin atomic layer structure. MoS₂ is becoming prevalent in post-silicon digital electronics and in highly efficient optoelectronics due to its extremely low thickness and its tunable band gap (Eg = 1-2 eV). For low-power, high-performance complementary logic applications, both p- and n-type MoS₂ FETs (NFETs and PFETs) must be developed. NFETs with an electron accumulation channel can be obtained using unintentionally doped n-type MoS₂. However, the fabrication of MoS₂ FETs with complementary p-type characteristics is challenging due to the significant difficulty of injecting holes into its inversion channel. Plasma treatments with different species (including CF₄, SF₆, O₂, and CHF₃) have also been found to achieve the desired property modifications of MoS₂. In this work, we demonstrated a p-type multilayer MoS₂ enabled by selective-area doping using CHF₃ plasma treatment. Compared with single layer MoS₂, multilayer MoS₂ can carry a higher drive current due to its lower bandgap and multiple conduction channels. Moreover, it has three times the density of states at its minimum conduction band. Large-area growth of MoS₂ films on 300 nm thick SiO₂/Si substrate is carried out by thermal decomposition of ammonium tetrathiomolybdate, (NH₄)₂MoS₄, in a tube furnace. A two-step annealing process is conducted to synthesize MoS₂ films. For the first step, the temperature is set to 280 °C for 30 min in an N₂ rich environment at 1.8 Torr. This is done to transform (NH₄)₂MoS₄ into MoS₃. To further reduce MoS₃ into MoS₂, the second step of annealing is performed. For the second step, the temperature is set to 750 °C for 30 min in a reducing atmosphere consisting of 90% Ar and 10% H₂ at 1.8 Torr. The grown MoS₂ films are subjected to out-of-plane doping by CHF₃ plasma treatment using a Dry-etching system (ULVAC original NLD-570). The radiofrequency power of this dry-etching system is set to 100 W and the pressure is set to 7.5 mTorr. The final thickness of the treated samples is obtained by etching for 30 s. Back-gated MoS₂ PFETs were presented with an on/off current ratio in the order of 10³ and a field-effect mobility of 65.2 cm²V⁻¹s⁻¹. The MoS₂ PFETs photodetector exhibited ultraviolet (UV) photodetection capability with a rapid response time of 37 ms and exhibited modulation of the generated photocurrent by back-gate voltage. This work suggests the potential application of the mild plasma-doped p-type multilayer MoS₂ in UV photodetectors for environmental monitoring, human health monitoring, and biological analysis.Keywords: photodetection, p-type doping, multilayers, MoS₂
Procedia PDF Downloads 104198 Genetic Diversity of Termite (Isoptera) Fauna of Western Ghats of India
Authors: A. S. Vidyashree, C. M. Kalleshwaraswamy, R. Asokan, H. M. Mahadevaswamy
Abstract:
Termites are very vital ecological thespians in tropical ecosystem, having been designated as “ecosystem engineers”, due to their significant role in providing soil ecosystem services. Despite their importance, our understanding of a number of their basic biological processes in termites is extremely limited. Developing a better understanding of termite biology is closely dependent upon consistent species identification. At present, identification of termites is relied on soldier castes. But for many species, soldier caste is not reported, that creates confusion in identification. The use of molecular markers may be helpful in estimating phylogenetic relatedness between the termite species and estimating genetic differentiation among local populations within each species. To understand this, termites samples were collected from various places of Western Ghats covering four states namely Karnataka, Kerala, Tamil Nadu, Maharashtra during 2013-15. Termite samples were identified based on their morphological characteristics, molecular characteristics, or both. Survey on the termite fauna in Karnataka, Kerala, Maharashtra and Tamil Nadu indicated the presence of a 16 species belongs to 4 subfamilies under two families viz., Rhinotermitidae and Termitidae. Termititidae was the dominant family which was belonging to 4 genera and four subfamilies viz., Macrotermitinae, Amitermitinae, Nasutitermitinae and Termitinae. Amitermitinae had three species namely, Microcerotermes fletcheri, M. pakistanicus and Speculitermes sinhalensis. Macrotermitinae had the highest number of species belonging two genera, namely Microtermes and Odontotermes. Microtermes genus was with only one species i.e., Microtermes obesi. The genus Odontotermes was represented by the highest number of species (07), namely, O. obesus was the dominant (41 per cent) and the most widely distributed species in Karnataka, Karala, Maharashtra and Tamil nadu followed by O. feae (19 per cent), O.assmuthi (11 per cent) and others like O. bellahunisensis O. horni O. redemanni, O. yadevi. Nasutitermitinae was represented by two genera namely Nasutitermes anamalaiensis and Trinervitermes biformis. Termitinae subfamily was represented by Labiocapritermes distortus. Rhinotermitidae was represented by single subfamily Heterotermetinae. In Heterotermetinae, two species namely Heterotermes balwanthi and H. malabaricus were recorded. Genetic relationship among termites collected from various locations of Western Ghats of India was characterized based on mitochondrial DNA sequences (12S, 16S, and COII). Sequence analysis and divergence among the species was assessed. These results suggest that the use of both molecular and morphological approaches is crucial in ensuring accurate species identification. Efforts were made to understand their evolution and to address the ambiguities in morphological taxonomy. The implication of the study in revising the taxonomy of Indian termites, their characterization and molecular comparisons between the sequences are discussed.Keywords: isoptera, mitochondrial DNA sequences, rhinotermitidae, termitidae, Western ghats
Procedia PDF Downloads 266197 A Conceptual Framework of Integrated Evaluation Methodology for Aquaculture Lakes
Authors: Robby Y. Tallar, Nikodemus L., Yuri S., Jian P. Suen
Abstract:
Research in the subject of ecological water resources management is full of trivial questions addressed and it seems, today to be one branch of science that can strongly contribute to the study of complexity (physical, biological, ecological, socio-economic, environmental, and other aspects). Existing literature available on different facets of these studies, much of it is technical and targeted for specific users. This study offered the combination all aspects in evaluation methodology for aquaculture lakes with its paradigm refer to hierarchical theory and to the effects of spatial specific arrangement of an object into a space or local area. Therefore, the process in developing a conceptual framework represents the more integrated and related applicable concept from the grounded theory. A design of integrated evaluation methodology for aquaculture lakes is presented. The method is based on the identification of a series of attributes which can be used to describe status of aquaculture lakes using certain indicators from aquaculture water quality index (AWQI), aesthetic aquaculture lake index (AALI) and rapid appraisal for fisheries index (RAPFISH). The preliminary preparation could be accomplished as follows: first, the characterization of study area was undertaken at different spatial scales. Second, an inventory data as a core resource such as city master plan, water quality reports from environmental agency, and related government regulations. Third, ground-checking survey should be completed to validate the on-site condition of study area. In order to design an integrated evaluation methodology for aquaculture lakes, finally we integrated and developed rating scores system which called Integrated Aquaculture Lake Index (IALI).The development of IALI are reflecting a compromise all aspects and it responds the needs of concise information about the current status of aquaculture lakes by the comprehensive approach. IALI was elaborated as a decision aid tool for stakeholders to evaluate the impact and contribution of anthropogenic activities on the aquaculture lake’s environment. The conclusion was while there is no denying the fact that the aquaculture lakes are under great threat from the pressure of the increasing human activities, one must realize that no evaluation methodology for aquaculture lakes can succeed by keeping the pristine condition. The IALI developed in this work can be used as an effective, low-cost evaluation methodology of aquaculture lakes for developing countries. Because IALI emphasizes the simplicity and understandability as it must communicate to decision makers and the experts. Moreover, stakeholders need to be helped to perceive their lakes so that sites can be accepted and valued by local people. For this site of lake development, accessibility and planning designation of the site is of decisive importance: the local people want to know whether the lake condition is safe or whether it can be used.Keywords: aesthetic value, AHP, aquaculture lakes, integrated lakes, RAPFISH
Procedia PDF Downloads 237196 Recent Advances in Research on Carotenoids: From Agrofood Production to Health Outcomes
Authors: Antonio J. Melendez-Martinez
Abstract:
Beyond their role as natural colorants, some carotenoids are provitamins A and may be involved in health-promoting biological actions and contribute to reducing the risk of developing non-communicable diseases, including several types of cancer, cardiovascular disease, eye conditions, skin disorders or metabolic disorders. Given the versatility of carotenoids, the COST-funded European network to advance carotenoid research and applications in agro-food and health (EUROCAROTEN) is aimed at promoting health through the diet and increasing well-being by means. Stakeholders from 38 countries participate in this network, and one of its main objectives is to promote research on little-studied carotenoids. In this contribution, recent advances of our research group and collaborators in the study of two such understudied carotenoids, namely phytoene and phytofluene, the colorless carotenoids, are outlined. The study of these carotenoids is important as they have been largely neglected despite they are present in our diets, fluids, and tissues, and evidence is accumulating that they may be involved in health-promoting actions. More specifically, studies on their levels in diverse tomato and orange varieties were carried out as well as on their potential bioavailability from different dietary sources. Furthermore, the potential effect of these carotenoids on an animal model subjected to oxidative stress was evaluated. The tomatoes were grown in research greenhouses, and some of them were subjected to regulated deficit irrigation, a sustainable agronomic practice. The citrus samples were obtained from an experimental field. The levels of carotenoids were assessed using HPLC according to routine methodologies followed in our lab. Regarding the potential bioavailability (bioaccessibility) studies, different products containing colorless carotenoids, like fruits, juices, were subjected to simulated in vitro digestions, and their incorporation into mixed micelles was assessed. The effect of the carotenoids on oxidative stress was evaluated on the Caenorhabditis elegans model. For that purpose, the worms were subjected to oxidative stress by means of a hydrogen peroxide challenge. In relation to the presence of colorless carotenoids in tomatoes and orange varieties, it was observed that they are widespread in such products and that there are mutants with very high quantities of them, for instance, the Cara Cara or Pinalate mutant oranges. The studies on their bioaccessibility revealed that, in general, phytoene and phytofluene are more bioaccessible than other common dietary carotenoids, probably due to their distinctive chemical structure. About the in vivo antioxidant capacity of phytoene and phytofluene, it was observed that they both exerted antioxidant effects at certain doses. In conclusion, evidence on the importance of phytoene and phytofluene as dietary easily bioavailable and antioxidant carotenoids has been obtained in recent studies from our group, which can be important shortly to innovate in health-promotion through the development of functional foods and related products.Keywords: carotenoids, health, functional foods, nutrition, phytoene, phytofluene
Procedia PDF Downloads 103195 Biological Significance of Long Intergenic Noncoding RNA LINC00273 in Lung Cancer Cell Metastasis
Authors: Ipsita Biswas, Arnab Sarkar, Ashikur Rahaman, Gopeswar Mukherjee, Subhrangsu Chatterjee, Shamee Bhattacharjee, Deba Prasad Mandal
Abstract:
One of the major reasons for the high mortality rate of lung cancer is the substantial delays in disease detection at late metastatic stages. It is of utmost importance to understand the detailed molecular signaling and detect the molecular markers that can be used for the early diagnosis of cancer. Several studies explored the emerging roles of long noncoding RNAs (lncRNAs) in various cancers as well as lung cancer. A long non-coding RNA LINC00273 was recently discovered to promote cancer cell migration and invasion, and its positive correlation with the pathological stages of metastasis may prove it to be a potential target for inhibiting cancer cell metastasis. Comparing real-time expression of LINC00273 in various human clinical cancer tissue samples with normal tissue samples revealed significantly higher expression in cancer tissues. This long intergenic noncoding RNA was found to be highly expressed in human liver tumor-initiating cells, human gastric adenocarcinoma AGS cell line, as well as human non-small cell lung cancer A549 cell line. SiRNA and shRNA-induced knockdown of LINC00273 in both in vitro and in vivo nude mice significantly subsided AGS and A549 cancer cell migration and invasion. LINC00273 knockdown also reduced TGF-β induced SNAIL, SLUG, VIMENTIN, ZEB1 expression, and metastasis in A549 cells. Plenty of reports have suggested the role of microRNAs of the miR200 family in reversing epithelial to mesenchymal transition (EMT) by inhibiting ZEB transcription factors. In this study, hsa-miR-200a-3p was predicted via IntaRNA-Freiburg RNA tools to be a potential target of LINC00273 with a negative free binding energy of −8.793 kcal/mol, and this interaction was verified as a confirmed target of LINC00273 by RNA pulldown, real-time PCR and luciferase assay. Mechanistically, LINC00273 accelerated TGF-β induced EMT by sponging hsa-miR-200a-3p which in turn liberated ZEB1 and promoted prometastatic functions in A549 cells in vitro as verified by real-time PCR and western blotting. The similar expression patterns of these EMT regulatory pathway molecules, viz. LINC00273, hsa-miR-200a-3p, ZEB1 and TGF-β, were also detected in various clinical samples like breast cancer tissues, oral cancer tissues, lung cancer tissues, etc. Overall, this LINC00273 mediated EMT regulatory signaling can serve as a potential therapeutic target for the prevention of lung cancer metastasis.Keywords: epithelial to mesenchymal transition, long noncoding RNA, microRNA, non-small-cell lung carcinoma
Procedia PDF Downloads 156194 Magnetic SF (Silk Fibroin) E-Gel Scaffolds Containing bFGF-Conjugated Fe3O4 Nanoparticles
Authors: Z. Karahaliloğlu, E. Yalçın, M. Demirbilek, E.B. Denkbaş
Abstract:
Critical-sized bone defects caused by trauma, bone diseases, prosthetic implant revision or tumor excision cannot be repaired by physiological regenerative processes. Current orthopedic applications for critical-sized bone defects are to use autologous bone grafts, bone allografts, or synthetic graft materials. However, these strategies are unable to solve completely the problem, and motivate the development of novel effective biological scaffolds for tissue engineering applications and regenerative medicine applications. In particular, scaffolds combined with a variety of bio-agents as fundamental tools emerge to provide the regeneration of damaged bone tissues due to their ability to promote cell growth and function. In this study, a magnetic silk fibroin (SF) hydrogel scaffold was prepared by electrogelation process of the concentrated Bombxy mori silk fibroin (8 %wt) aqueous solution. For enhancement of osteoblast-like cells (SaOS-2) growth and adhesion, basal fibroblast growth factor (bFGF) were conjugated physically to the HSA-coated magnetic nanoparticles (Fe3O4) and magnetic SF e-gel scaffolds were prepared by incorporation of Fe3O4, HSA (human serum albumin)=Fe3O4 and HSA=Fe3O4-bFGF nanoparticles. HSA=Fe3O4, HSA=Fe3O4-bFGF loaded and bare SF e-gels scaffolds were characterized using scanning electron microscopy (SEM.) For cell studies, human osteoblast-like cell line (SaOS-2) was used and an MTT assay was used to assess the cytotoxicity of magnetic silk fibroin e-gel scaffolds and cell density on these surfaces. For the evaluation osteogenic activation, ALP (alkaline phosphatase), the amount of mineralized calcium, total protein and collagen were studied. Fe3O4 nanoparticles were successfully synthesized and bFGF was conjugated to HSA=Fe3O4 nanoparticles with %97.5 of binding yield which has a particle size of 71.52±2.3 nm. Electron microscopy images of the prepared HSA and bFGF incorporated SF e-gel scaffolds showed a 3D porous morphology. In terms of water uptake results, bFGF conjugated HSA=Fe3O4 nanoparticles has the best water absorbability behavior among all groups. In the in-vitro cell culture studies realized using SaOS-2 cell line, the coating of Fe3O4 nanoparticles surface with a protein enhance the cell viability and HSA coating and bFGF conjugation, the both have an inductive effect in the cell proliferation. One of the markers of bone formation and osteoblast differentiation, according to the ALP activity and total protein results, HSA=Fe3O4-bFGF loaded SF e-gels had significantly enhanced ALP activity. Osteoblast cultured HSA=Fe3O4-bFGF loaded SF e-gels deposited more calcium compared with SF e-gel. The proposed magnetic scaffolds seem to be promising for bone tissue regeneration and used in future work for various applications.Keywords: basic fibroblast growth factor (bFGF), e-gel, iron oxide nanoparticles, silk fibroin
Procedia PDF Downloads 289193 Characterization of a Three-Electrodes Bioelectrochemical System from Mangrove Water and Sediments for the Reduction of Chlordecone in Martinique
Authors: Malory Jonata
Abstract:
Chlordecone (CLD) is an organochlorine pesticide used between 1971 and 1993 in both Guadeloupe and Martinique for the control of banana black weevil. The bishomocubane structure which characterizes this chemical compound led to high stability in organic matter and high persistence in the environment. Recently, researchers found that CLD can be degraded by isolated bacteria consortiums and, particularly, by bacteria such as Citrobacter sp 86 and Delsulfovibrio sp 86. Actually, six transformation product families of CLD are known. Moreover, the latest discovery showed that CLD was disappearing faster than first predicted in highly contaminated soil in Guadeloupe. However, the toxicity of transformation products is still unknown, and knowledge has to be deepened on the degradation ways and chemical characteristics of chlordecone and its transformation products. Microbial fuel cells (MFC) are electrochemical systems that can convert organic matter into electricity thanks to electroactive bacteria. These bacteria can exchange electrons through their membranes to solid surfaces or molecules. MFC have proven their efficiency as bioremediation systems in water and soils. They are already used for the bioremediation of several organochlorine compounds such as perchlorate, trichlorophenol or hexachlorobenzene. In this study, a three-electrodes system, inspired by MFC, is used to try to degrade chlordecone using bacteria from a mangrove swamp in Martinique. As we know, some mangrove bacteria are electroactive. Furthermore, the CLD rate seems to decline in mangrove swamp sediments. This study aims to prove that electroactive bacteria from a mangrove swamp in Martinique can degrade CLD thanks to a three-electrodes bioelectrochemical system. To achieve this goal, the tree-electrodes assembly has been connected to a potentiostat. The substrate used is mangrove water and sediments sampled in the mangrove swamp of La Trinité, a coastal city in Martinique, where CLD contamination has already been studied. Electroactive biofilms are formed by imposing a potential relative to Saturated Calomel Electrode using chronoamperometry. Moreover, their comportment has been studied by using cyclic voltametry. Biofilms have been studied under different imposed potentials, several conditions of the substrate and with or without CLD. In order to quantify the evolution of CLD rates in the substrate’s system, gas chromatography coupled with mass spectrometry (GC-MS) was performed on pre-treated samples of water and sediments after short, medium and long-term contact with the electroactive biofilms. Results showed that between -0,8V and -0,2V, the three-electrodes system was able to reduce the chemical in the substrate solution. The first GC-MS analysis result of samples spiked with CLD seems to reveal decreased CLD concentration over time. In conclusion, the designed bioelectrochemical system can provide the necessary conditions for chlordecone degradation. However, it is necessary to improve three-electrodes control settings in order to increase degradation rates. The biological pathways are yet to enlighten by biologicals analysis of electroactive biofilms formed in this system. Moreover, the electrochemical study of mangrove substrate gives new informations on the potential use of this substrate for bioremediation. But further studies are needed to a better understanding of the electrochemical potential of this environment.Keywords: bioelectrochemistry, bioremediation, chlordecone, mangrove swamp
Procedia PDF Downloads 83192 Development of 3D Printed Natural Fiber Reinforced Composite Scaffolds for Maxillofacial Reconstruction
Authors: Sri Sai Ramya Bojedla, Falguni Pati
Abstract:
Nature provides the best of solutions to humans. One such incredible gift to regenerative medicine is silk. The literature has publicized a long appreciation for silk owing to its incredible physical and biological assets. Its bioactive nature, unique mechanical strength, and processing flexibility make us curious to explore further to apply it in the clinics for the welfare of mankind. In this study, Antheraea mylitta and Bombyx mori silk fibroin microfibers are developed by two economical and straightforward steps via degumming and hydrolysis for the first time, and a bioactive composite is manufactured by mixing silk fibroin microfibers at various concentrations with polycaprolactone (PCL), a biocompatible, aliphatic semi-crystalline synthetic polymer. Reconstructive surgery in any part of the body except for the maxillofacial region deals with replacing its function. But answering both the aesthetics and function is of utmost importance when it comes to facial reconstruction as it plays a critical role in the psychological and social well-being of the patient. The main concern in developing adequate bone graft substitutes or a scaffold is the noteworthy variation in each patient's bone anatomy. Additionally, the anatomical shape and size will vary based on the type of defect. The advent of additive manufacturing (AM) or 3D printing techniques to bone tissue engineering has facilitated overcoming many of the restraints of conventional fabrication techniques. The acquired patient's CT data is converted into a stereolithographic (STL)-file which is further utilized by the 3D printer to create a 3D scaffold structure in an interconnected layer-by-layer fashion. This study aims to address the limitations of currently available materials and fabrication technologies and develop a customized biomaterial implant via 3D printing technology to reconstruct complex form, function, and aesthetics of the facial anatomy. These composite scaffolds underwent structural and mechanical characterization. Atomic force microscopic (AFM) and field emission scanning electron microscopic (FESEM) images showed the uniform dispersion of the silk fibroin microfibers in the PCL matrix. With the addition of silk, there is improvement in the compressive strength of the hybrid scaffolds. The scaffolds with Antheraea mylitta silk revealed higher compressive modulus than that of Bombyx mori silk. The above results of PCL-silk scaffolds strongly recommend their utilization in bone regenerative applications. Successful completion of this research will provide a great weapon in the maxillofacial reconstructive armamentarium.Keywords: compressive modulus, 3d printing, maxillofacial reconstruction, natural fiber reinforced composites, silk fibroin microfibers
Procedia PDF Downloads 199191 Tailorability of Poly(Aspartic Acid)/BSA Complex by Self-Assembling in Aqueous Solutions
Authors: Loredana E. Nita, Aurica P. Chiriac, Elena Stoleru, Alina Diaconu, Tudorachi Nita
Abstract:
Self-assembly processes are an attractive method to form new and complex structures between macromolecular compounds to be used for specific applications. In this context, intramolecular and intermolecular bonds play a key role during self-assembling processes in preparation of carrier systems of bioactive substances. Polyelectrolyte complexes (PECs) are formed through electrostatic interactions, and though they are significantly below of the covalent linkages in their strength, these complexes are sufficiently stable owing to the association processes. The relative ease way of PECs formation makes from them a versatile tool for preparation of various materials, with properties that can be tuned by adjusting several parameters, such as the chemical composition and structure of polyelectrolytes, pH and ionic strength of solutions, temperature and post-treatment procedures. For example, protein-polyelectrolyte complexes (PPCs) are playing an important role in various chemical and biological processes, such as protein separation, enzyme stabilization and polymer drug delivery systems. The present investigation is focused on evaluation of the PPC formation between a synthetic polypeptide (poly(aspartic acid) – PAS) and a natural protein (bovine serum albumin - BSA). The PPC obtained from PAS and BSA in different ratio was investigated by corroboration of various techniques of characterization as: spectroscopy, microscopy, thermo-gravimetric analysis, DLS and zeta potential determination, measurements which were performed in static and/or dynamic conditions. The static contact angle of the sample films was also determined in order to evaluate the changes brought upon surface free energy of the prepared PPCs in interdependence with the complexes composition. The evolution of hydrodynamic diameter and zeta potential of the PPC, recorded in situ, confirm changes of both co-partners conformation, a 1/1 ratio between protein and polyelectrolyte being benefit for the preparation of a stable PPC. Also, the study evidenced the dependence of PPC formation on the temperature of preparation. Thus, at low temperatures the PPC is formed with compact structure, small dimension and hydrodynamic diameter, close to those of BSA. The behavior at thermal treatment of the prepared PPCs is in agreement with the composition of the complexes. From the contact angle determination results the increase of the PPC films cohesion, which is higher than that of BSA films. Also, a higher hydrophobicity corresponds to the new PPC films denoting a good adhesion of the red blood cells onto the surface of PSA/BSA interpenetrated systems. The SEM investigation evidenced as well the specific internal structure of PPC concretized in phases with different size and shape in interdependence with the interpolymer mixture composition.Keywords: polyelectrolyte – protein complex, bovine serum albumin, poly(aspartic acid), self-assembly
Procedia PDF Downloads 246190 Inhibition of Food Borne Pathogens by Bacteriocinogenic Enterococcus Strains
Authors: Neha Farid
Abstract:
Due to the abuse of antimicrobial medications in animal feed, the occurrence of multi-drug resistant (MDR) pathogens in foods is currently a growing public health concern on a global scale. MDR infections have the potential to penetrate the food chain by posing a serious risk to both consumers and animals. Food pathogens are those biological agents that have the tendency to cause pathogenicity in the host body upon ingestion. The major reservoirs of foodborne pathogens include food-producing fauna like cows, pigs, goats, sheep, deer, etc. The intestines of these animals are highly condensed with several different types of food pathogens. Bacterial food pathogens are the main cause of foodborne disease in humans; almost 66% of the reported cases of food illness in a year are caused by the infestation of bacterial food pathogens. When ingested, these pathogens reproduce and survive or form different kinds of toxins inside host cells causing severe infections. The genus Listeria consists of gram-positive, rod-shaped, non-spore-forming bacteria. The disease caused by Listeria monocytogenes is listeriosis or gastroenteritis, which induces fever, vomiting, and severe diarrhea in the affected body. Campylobacter jejuni is a gram-negative, curved-rod-shaped bacteria causing foodborne illness. The major source of Campylobacter jejuni is livestock and poultry; particularly, chicken is highly colonized with Campylobacter jejuni. Serious public health concerns include the widespread growth of bacteria that are resistant to antibiotics and the slowing in the discovery of new classes of medicines. The objective of this study is to provide some potential antibacterial activities with certain broad-range antibiotics and our desired bacteriocins, i.e., Enterococcus faecium from specific strains preventing microbial contamination pathways in order to safeguard the food by lowering food deterioration, contamination, and foodborne illnesses. The food pathogens were isolated from various sources of dairy products and meat samples. The isolates were tested for the presence of Listeria and Campylobacter by gram staining and biochemical testing. They were further sub-cultured on selective media enriched with the growth supplements for Listeria and Campylobacter. All six strains of Listeria and Campylobacter were tested against ten antibiotics. Campylobacter strains showed resistance against all the antibiotics, whereas Listeria was found to be resistant only against Nalidixic Acid and Erythromycin. Further, the strains were tested against the two bacteriocins isolated from Enterococcus faecium. It was found that bacteriocins showed better antimicrobial activity against food pathogens. They can be used as a potential antimicrobial for food preservation. Thus, the study concluded that natural antimicrobials could be used as alternatives to synthetic antimicrobials to overcome the problem of food spoilage and severe food diseases.Keywords: food pathogens, listeria, campylobacter, antibiotics, bacteriocins
Procedia PDF Downloads 71189 Analysis of the Blastocysts Chromosomal Set Obtained after the Use of Donor Oocyte Cytoplasmic Transfer Technology
Authors: Julia Gontar, Natalia Buderatskaya, Igor Ilyin, Olga Parnitskaya, Sergey Lavrynenko, Eduard Kapustin, Ekaterina Ilyina, Yana Lakhno
Abstract:
Introduction: It is well known that oocytes obtained from older reproductive women have accumulated mitochondrial DNA mutations, which negatively affects the morphology of a developing embryo and may lead to the birth of a child with mitochondrial disease. Special techniques have been developed to allow a donor oocyte cytoplasmic transfer with the parents’ biological nuclear DNA retention. At the same time, it is important to understand whether the procedure affects the future embryonic chromosome sets as the nuclear DNA is the transfer subject in this new complex procedure. Material and Methods: From July 2015 to July 2016, the investigation was carried out in the Medical Centre IGR. 34 donor oocytes (group A) were used for the manipulation with the aim of donating cytoplasm: 21 oocytes were used for zygotes pronuclear transfer and oocytes 13 – for the spindle transfer. The mean age of the oocyte donors was 28.4±2.9 years. The procedure was performed using Nikon Ti Eclipse inverted microscope equipped with the micromanipulators Narishige system (Japan), Saturn 3 laser console (UK), Oosight imaging systems (USA). For the preimplantation genetic screening (PGS) blastocyst biopsy was performed, trophectoderm samples were diagnosed using fluorescent in situ hybridization on chromosomes 9, 13, 15, 16, 17, 18, 21, 22, X, Y. For comparison of morphological characteristics and euploidy, was chosen a group of embryos (group B) with the amount of 121 blastocysts obtained from 213 oocytes, which were gotten from the donor programs of assisted reproductive technologies (ART). Group B was not subjected to donor oocyte cytoplasmic transfer procedure and studied on the above mentioned chromosomes. Statistical analysis was carried out using the criteria t, x^2 at a significance levels p<0.05, p<0.01, p<0.001. Results: After the donor cytoplasm transfer process the amount of the third day developing embryos was 27 (79.4%). In this stage, the group B consisted of 189 (88.7%) developing embryos, and there was no statistically significant difference (SSD) between the two groups (p>0.05). After a comparative analysis of the morphological characteristics of the embryos on the fifth day, we also found no SSD among the studied groups (p>0.05): from 34 oocytes exposed to manipulation, 14 (41.2%) blastocysts was obtained, while the group B blastocyst yield was 56.8% (n=121) from 213 oocytes. The following results were obtained after PGS performing: in group A euploidy in studied chromosomes were 28.6%(n=4) blastocysts, whereas in group B this rate was 40.5%(n=49), 28.6%(n=4) and 21.5%(n=26) of mosaic embryos and 42.8%(n=6) and 38.0%(n=46) aneuploid blastocysts respectively were identified. None of these specified parameters had an SSD (p>0.05). But attention was drawn by the blastocysts in group A with identified mosaicism, which was chaotic without any cell having euploid chromosomal set, in contrast to the mosaic embryos in group B where identified chaotic mosaicism was only 2.5%(n=3). Conclusions: According to the obtained results, there is no direct procedural effect on the chromosome in embryos obtained following donor oocyte cytoplasmic transfer. Thus, the technology introduction will enhance the infertility treating effectiveness as well as avoiding having a child with mitochondrial disease.Keywords: donor oocyte cytoplasmic transfer, embryos’ chromosome set, oocyte spindle transfer, pronuclear transfer
Procedia PDF Downloads 328188 Implication of Woman’s Status on Child Health in India
Authors: Rakesh Mishra
Abstract:
India’s Demography has always amazed the world because of its unprecedented outcomes in the presence of multifaceted socioeconomic and geographical characteristics. Being the first one to implement family panning in 1952, it occupies 2nd largest population of the world, with some of its state like Uttar Pradesh contributing 5th largest population to the world population surpassing Brazil. Being the one with higher in number it is more prone to the demographic disparity persisting into its territories brought upon by the inequalities in availability, accessibility and attainability of socioeconomic and various other resources. Fifth goal of Millennium Development Goal emphasis to improve maternal and child health across the world as Children’s development is very important for the overall development of society and the best way to develop national human resources is to take care of children. The target is to reduce the infant deaths by three quarters between 1990 and 2015. Child health status depends on the care and delivery by trained personnel, particularly through institutional facilities which is further associated with the status of the mother. However, delivery in institutional facilities and delivery by skilled personnel are rising slowly in India. The main objective of the present study is to measure the child health status on based on the educational and occupational background of the women in India. Study indicates that women education plays a very crucial role in deciding the health of the new born care and access to family planning, but the women autonomy indicates to have mixed results in different states of India. It is observed that rural women are 1.61 times more likely to exclusive breastfed their children compared to urban women. With respect to Hindu category, women belonging to other religious community were 21 percent less likely to exclusive breastfed their child. Taking scheduled caste as reference category, the odds of exclusive breastfeeding is found to be decreasing in comparison to other castes, and it is found to be significant among general category. Women of high education status have higher odds of using family planning methods in most of the southern states of India. By and large, girls and boys are about equally undernourished. Under nutrition is generally lower for first births than for subsequent births and consistently increases with increasing birth order for all measures of nutritional status. It is to be noted that at age 12-23 months, when many children are being weaned from breast milk, 30 percent of children are severely stunted and around 21 percent are severely underweight. So, this paper presents the evidence on the patterns of prevailing child health status in India and its states with reference to the mother socioeconomics and biological characteristics and examines trends in these, and discusses plausible explanations.Keywords: immunization, exclusive breastfeeding, under five mortality, binary logistic regression, ordinal regression and life table
Procedia PDF Downloads 265187 The Effects of Heavy Metal and Aromatic Hydrocarbon Pollution on Bees
Authors: Katarzyna Zięba, Hajnalka Szentgyörgyi, Paweł Miśkowiec, Agnieszka Moos-Matysik
Abstract:
Bees are effective pollinators of plants using by humans. However, there is a concern about the fate different species due to their recently decline. Pollution of the environment is described in the literature as one of the causes of this phenomenon. Due to human activities, heavy metals and aromatic hydrocarbons can occur in bee organisms in high concentrations. The presented study aims to provide information on how pollution affects bee quality, taking into account, also the biological differences between various groups of bees. Understanding the consequences of environmental pollution on bees can help to create and promote bee friendly habitats and actions. The analyses were carried out using two contamination gradients with 5 sites on each. The first, mainly heavy metal polluted gradient is stretching approx. 30km from the Bukowno Zinc smelter near Olkusz in the Lesser Poland Voivodship, to the north. The second cuts through the agglomeration of Kraków up to the southern borders of the Ojców National Park. The gradient near Olkusz is a well-described pollution gradient contaminated mainly by zinc, lead, and cadmium. The second gradient cut through the agglomeration of Kraków and end below the Ojców National Park. On each gradient, two bee species were installed: red mason bees (Osmia bicornis) and honey bees (Apis mellifera). Red mason bee is a polylectic, solitary bee species, widely distributed in Poland. Honey bees are a highly social species of bees, with clearly defined casts and roles in the colony. Before installing the bees in the field, samples of imagos of red mason bees and samples of pollen and imagos from each honey bee colony were analysed for zinc, lead cadmium, polycyclic and monocyclic hydrocarbons levels. After collecting the bees from the field, samples of bees and pollen samples for each site were prepared for heavy metal, monocyclic hydrocarbon, and polycyclic hydrocarbon analysis. Analyses of aromatic hydrocarbons were performed with gas chromatography coupled with a headspace sampler (HP 7694E) and mass spectrometer (MS) as detector. Monocyclic compounds were injected into column with headspace sampler while polycyclic ones with manual injector (after solid-liquid extraction with hexane). The heavy metal content (zinc, lead and cadmium) was assessed with flame atomic absorption spectroscopy (FAAS AAnalyst 300 Perkin Elmer spectrometer) according to the methods for honey and bee products described in the literature. Pollution levels found in bee bodies and imago body masses in both species, and proportion of sex in case of red mason bees were correlated with pollution levels found in pollen for each site and colony or trap nest. An attempt to pinpoint the most important form of contamination regarding bee health was also be undertaken based on the achieved results.Keywords: heavy metals, aromatic hydrocarbons, bees, pollution
Procedia PDF Downloads 508186 A Robust Stretchable Bio Micro-Electromechanical Systems Technology for High-Strain in vitro Cellular Studies
Authors: Tiffany Baetens, Sophie Halliez, Luc Buée, Emiliano Pallecchi, Vincent Thomy, Steve Arscott
Abstract:
We demonstrate here a viable stretchable bio-microelectromechanical systems (BioMEMS) technology for use with biological studies concerned with the effect of high mechanical strains on living cells. An example of this is traumatic brain injury (TBI) where neurons are damaged with physical force to the brain during, e.g., accidents and sports. Robust, miniaturized integrated systems are needed by biologists to be able to study the effect of TBI on neuron cells in vitro. The major challenges in this area are (i) to develop micro, and nanofabrication processes which are based on stretchable substrates and to (ii) create systems which are robust and performant at very high mechanical strain values—sometimes as high as 100%. At the time of writing, such processes and systems were rapidly evolving subject of research and development. The BioMEMS which we present here is composed of an elastomer substrate (low Young’s modulus ~1 MPa) onto which is patterned robust electrodes and insulators. The patterning of the thin films is achieved using standard photolithography techniques directly on the elastomer substrate—thus making the process generic and applicable to many materials’ in based systems. The chosen elastomer used is commercial ‘Sylgard 184’ polydimethylsiloxane (PDMS). It is spin-coated onto a silicon wafer. Multistep ultra-violet based photolithography involving commercial photoresists are then used to pattern robust thin film metallic electrodes (chromium/gold) and insulating layers (parylene) on the top of the PDMS substrate. The thin film metals are deposited using thermal evaporation and shaped using lift-off techniques The BioMEMS has been characterized mechanically using an in-house strain-applicator tool. The system is composed of 12 electrodes with one reference electrode transversally-orientated to the uniaxial longitudinal straining of the system. The electrical resistance of the electrodes is observed to remain very stable with applied strain—with a resistivity approaching that of evaporated gold—up to an interline strain of ~50%. The mechanical characterization revealed some interesting original properties of such stretchable BioMEMS. For example, a Poisson effect induced electrical ‘self-healing’ of cracking was identified. Biocompatibility of the commercial photoresist has been studied and is conclusive. We will present the results of the BioMEMS, which has also characterized living cells with a commercial Multi Electrode Array (MEA) characterization tool (Multi Channel Systems, USA). The BioMEMS enables the cells to be strained up to 50% and then characterized electrically and optically.Keywords: BioMEMS, elastomer, electrical impedance measurements of living cells, high mechanical strain, microfabrication, stretchable systems, thin films, traumatic brain injury
Procedia PDF Downloads 146185 Ecosystem Modeling along the Western Bay of Bengal
Authors: A. D. Rao, Sachiko Mohanty, R. Gayathri, V. Ranga Rao
Abstract:
Modeling on coupled physical and biogeochemical processes of coastal waters is vital to identify the primary production status under different natural and anthropogenic conditions. About 7, 500 km length of Indian coastline is occupied with number of semi enclosed coastal bodies such as estuaries, inlets, bays, lagoons, and other near shore, offshore shelf waters, etc. This coastline is also rich in wide varieties of ecosystem flora and fauna. Directly/indirectly extensive domestic and industrial sewage enter into these coastal water bodies affecting the ecosystem character and create environment problems such as water quality degradation, hypoxia, anoxia, harmful algal blooms, etc. lead to decline in fishery and other related biological production. The present study is focused on the southeast coast of India, starting from Pulicat to Gulf of Mannar, which is rich in marine diversity such as lagoon, mangrove and coral ecosystem. Three dimensional Massachusetts Institute of Technology general circulation model (MITgcm) along with Darwin biogeochemical module is configured for the western Bay of Bengal (BoB) to study the biogeochemistry over this region. The biogeochemical module resolves the cycling of carbon, phosphorous, nitrogen, silica, iron and oxygen through inorganic, living, dissolved and particulate organic phases. The model domain extends from 4°N-16.5°N and 77°E-86°E with a horizontal resolution of 1 km. The bathymetry is derived from General Bathymetric Chart of the Oceans (GEBCO), which has a resolution of 30 sec. The model is initialized by using the temperature, salinity filed from the World Ocean Atlas (WOA2013) of National Oceanographic Data Centre with a resolution of 0.25°. The model is forced by the surface wind stress from ASCAT and the photosynthetically active radiation from the MODIS-Aqua satellite. Seasonal climatology of nutrients (phosphate, nitrate and silicate) for the southwest BoB region are prepared using available National Institute of Oceanography (NIO) in-situ data sets and compared with the WOA2013 seasonal climatology data. The model simulations with the two different initial conditions viz., WOA2013 and the generated NIO climatology, showed evident changes in the concentration and the evolution of the nutrients in the study region. It is observed that the availability of nutrients is more in NIO data compared to WOA in the model domain. The model simulated primary productivity is compared with the spatially distributed satellite derived chlorophyll data and at various locations with the in-situ data. The seasonal variability of the model simulated primary productivity is also studied.Keywords: Bay of Bengal, Massachusetts Institute of Technology general circulation model, MITgcm, biogeochemistry, primary productivity
Procedia PDF Downloads 141184 Reinforcing The Nagoya Protocol through a Coherent Global Intellectual Property Framework: Effective Protection for Traditional Knowledge Associated with Genetic Resources in Biodiverse African States
Authors: Oluwatobiloba Moody
Abstract:
On October 12, 2014, the Nagoya Protocol, negotiated by Parties to the Convention on Biological Diversity (CBD), entered into force. The Protocol was negotiated to implement the third objective of the CBD which relates to the fair and equitable sharing of benefits arising from the utilization of genetic resources (GRs). The Protocol aims to ‘protect’ GRs and traditional knowledge (TK) associated with GRs from ‘biopiracy’, through the establishment of a binding international regime on access and benefit sharing (ABS). In reflecting on the question of ‘effectiveness’ in the Protocol’s implementation, this paper argues that the underlying problem of ‘biopiracy’, which the Protocol seeks to address, is one which goes beyond the ABS regime. It rather thrives due to indispensable factors emanating from the global intellectual property (IP) regime. It contends that biopiracy therefore constitutes an international problem of ‘borders’ as much as of ‘regimes’ and, therefore, while the implementation of the Protocol may effectively address the ‘trans-border’ issues which have hitherto troubled African provider countries in their establishment of regulatory mechanisms, it remains unable to address the ‘trans-regime’ issues related to the eradication of biopiracy, especially those issues which involve the IP regime. This is due to the glaring incoherence in the Nagoya Protocol’s implementation and the existing global IP system. In arriving at conclusions, the paper examines the ongoing related discussions within the IP regime, specifically those within the WIPO Intergovernmental Committee on Intellectual Property and Genetic Resources, Traditional Knowledge and Folklore (IGC) and the WTO TRIPS Council. It concludes that the Protocol’s effectiveness in protecting TK associated with GRs is conditional on the attainment of outcomes, within the ongoing negotiations of the IP regime, which could be implemented in a coherent manner with the Nagoya Protocol. It proposes specific ways to achieve this coherence. Three main methodological steps have been incorporated in the paper’s development. First, a review of data accumulated over a two year period arising from the coordination of six important negotiating sessions of the WIPO Intergovernmental Committee on Intellectual Property and Genetic Resources, Traditional Knowledge and Folklore. In this respect, the research benefits from reflections on the political, institutional and substantive nuances which have coloured the IP negotiations and which provide both the context and subtext to emerging texts. Second, a desktop review of the history, nature and significance of the Nagoya Protocol, using relevant primary and secondary literature from international and national sources. Third, a comparative analysis of selected biopiracy cases is undertaken for the purpose of establishing the inseparability of the IP regime and the ABS regime in the conceptualization and development of solutions to biopiracy. A comparative analysis of select African regulatory mechanisms (Kenya, South Africa and Ethiopia and the ARIPO Swakopmund Protocol) for the protection of TK is also undertaken.Keywords: biopiracy, intellectual property, Nagoya protocol, traditional knowledge
Procedia PDF Downloads 430183 Stress, Anxiety and Its Associated Factors Within the Transgender Population of Delhi: A Cross-Sectional Study
Authors: Annie Singh, Ishaan Singh
Abstract:
Background: Transgenders are people who have a gender identity different from their sex assigned at birth. Their gender behaviour doesn’t match their body anatomy. The community faces discrimination due to their gender identity all across the world. The term transgender is an umbrella term for many people non-conformal to their biological identity; note that the term transgender is different from gender dysphoria, which is a DSM-5 disorder defined as problems faced by an individual due to their non-conforming gender identity. Transgender people have been a part of Indian culture for ages yet have continued to face exclusion and discrimination in society. This has led to the low socio-economic status of the community. Various studies done across the world have established the role of discrimination, harassment and exclusion in the development of psychological disorders. The study is aimed to assess the frequency of stress and anxiety in the transgender population and understand the various factors affecting the same. Methodology: A cross-sectional survey of self consenting transgender individuals above the age of 18 residing in Delhi was done to assess their socioeconomic status and experiential ecology. Recruitment of participants was done with the help of NGOs. The survey was constructed GAD-7 and PSS-10, two well-known scales were used to assess the stress and anxiety levels. Medians, means and ranges are used for reporting continuous data wherever required, while frequencies and percentages are used for categorical data. For associations and comparison between groups in categorical data, the Chi-square test was used, while the Kruskal-Wallis H test was employed for associations involving multiple ordinal groups. SPSS v28.0 was used to perform the statistical analysis for this study. Results: The survey showed that the frequency of stress and anxiety is high in the transgender population. A demographic survey indicates a low socio-economic background. 44% of participants reported facing discrimination on a daily basis; the frequency of discrimination is higher in transwomen than in transmen. Stress and anxiety levels are similar among both transmen and transwomen. Only 34.5% of participants said they had receptive family or friends. The majority of participants (72.7%) reported a positive or neutral experience with healthcare workers. The prevalence of discrimination is significantly lower in the higher educated groups. Analysis of data shows a positive impact of acceptance and reception on mental health, while discrimination is correlated with higher levels of stress and anxiety. Conclusion: The prevalence of widespread transphobia and discrimination faced by the transgender community has culminated in high levels of stress and anxiety in the transgender population and shows variance according to multiple socio-demographic factors. Educating people about the LGBT community formation of support groups, policies and laws are required to establish trust and promote integration.Keywords: transgender, gender, stress, anxiety, mental health, discrimination, exclusion
Procedia PDF Downloads 111182 Switchable Lipids: From a Molecular Switch to a pH-Sensitive System for the Drug and Gene Delivery
Authors: Jeanne Leblond, Warren Viricel, Amira Mbarek
Abstract:
Although several products have reached the market, gene therapeutics are still in their first stages and require optimization. It is possible to improve their lacking efficiency by the use of carefully engineered vectors, able to carry the genetic material through each of the biological barriers they need to cross. In particular, getting inside the cell is a major challenge, because these hydrophilic nucleic acids have to cross the lipid-rich plasmatic and/or endosomal membrane, before being degraded into lysosomes. It takes less than one hour for newly endocytosed liposomes to reach highly acidic lysosomes, meaning that the degradation of the carried gene occurs rapidly, thus limiting the transfection efficiency. We propose to use a new pH-sensitive lipid able to change its conformation upon protonation at endosomal pH values, leading to the disruption of the lipidic bilayer and thus to the fast release of the nucleic acids into the cytosol. It is expected that this new pH-sensitive mechanism promote endosomal escape of the gene, thereby its transfection efficiency. The main challenge of this work was to design a preparation presenting fast-responding lipidic bilayer destabilization properties at endosomal pH 5 while remaining stable at blood pH value and during storage. A series of pH-sensitive lipids able to perform a conformational switch upon acidification were designed and synthesized. Liposomes containing these switchable lipids, as well as co-lipids were prepared and characterized. The liposomes were stable at 4°C and pH 7.4 for several months. Incubation with siRNA led to the full entrapment of nucleic acids as soon as the positive/negative charge ratio was superior to 2. The best liposomal formulation demonstrated a silencing efficiency up to 10% on HeLa cells, very similar to a commercial agent, with a lowest toxicity than the commercial agent. Using flow cytometry and microscopy assays, we demonstrated that drop of pH was required for the transfection efficiency, since bafilomycin blocked the transfection efficiency. Additional evidence was brought by the synthesis of a negative control lipid, which was unable to switch its conformation, and consequently exhibited no transfection ability. Mechanistic studies revealed that the uptake was mediated through endocytosis, by clathrin and caveolae pathways, as reported for previous lipid nanoparticle systems. This potent system was used for the treatment of hypercholesterolemia. The switchable lipids were able to knockdown PCSK9 expression on human hepatocytes (Huh-7). Its efficiency is currently evaluated on in vivo mice model of PCSK9 KO mice. In summary, we designed and optimized a new cationic pH-sensitive lipid for gene delivery. Its transfection efficiency is similar to the best available commercial agent, without the usually associated toxicity. The promising results lead to its use for the treatment of hypercholesterolemia on a mice model. Anticancer applications and pulmonary chronic disease are also currently investigated.Keywords: liposomes, siRNA, pH-sensitive, molecular switch
Procedia PDF Downloads 204181 2,7-Diazaindole as a Photophysical Probe for Excited State Hydrogen/Proton Transfer
Authors: Simran Baweja, Bhavika Kalal, Surajit Maity
Abstract:
Photoinduced tautomerization reactions have been the centre of attention among the scientific community over the past several decades because of their significance in various biological systems. 7-azaindole (7AI) is considered a model system for DNA base pairing and to understand the role of such tautomerization reactions in mutations. To the best of our knowledge, extensive studies have been carried out on 7-azaindole and its solvent clusters exhibiting proton/ hydrogen transfer in both solution as well as gas phases. Derivatives of the above molecule, like 2,7- and 2,6-diazaindoles are proposed to have even better photophysical properties due to the presence of -aza group on the 2nd position. However, there are studies in the solution phase that suggest the relevance of these molecules, but there are no experimental studies reported in the gas phase yet. In our current investigation, we present the first gas phase spectroscopic data of 2,7-diazaindole (2,7-DAI) and its solvent cluster (2,7-DAI-H2O). In this, we have employed state-of-the-art laser spectroscopic methods such as fluorescence excitation (LIF), dispersed fluorescence (DF), resonant two-photon ionization-time of flight mass spectrometry (2C-R2PI), photoionization efficiency spectroscopy (PIE), IR-UV double resonance spectroscopy, i.e., fluorescence-dip infrared spectroscopy (FDIR) and resonant ion-dip infrared spectroscopy (IDIR) to understand the electronic structure of the molecule. The origin band corresponding to the S1 ← S0 transition of the bare 2,7-DAI is found to be positioned at 33910 cm-1, whereas the origin band corresponding to S1 ← S0 transition of the 2,7-DAI-H2O is positioned at 33074 cm-1. The red-shifted transition in the case of solvent cluster suggests the enhanced feasibility of excited state hydrogen/ proton transfer. The ionization potential for the 2,7-DAI molecule is found to be 8.92 eV which is significantly higher than the previously reported 7AI (8.11 eV) molecule, making it a comparatively complex molecule to study. The ionization potential is reduced by 0.14 eV in the case of 2,7-DAI-H2O (8.78 eV) cluster compared to that of 2,7-DAI. Moreover, on comparison with the available literature values of 7AI, we found the origin band of 2,7-DAI and 2,7-DAI-H2O to be red-shifted by -729 and -280 cm-1 respectively. The ground and excited state N-H stretching frequencies of the 27DAI molecule were determined using fluorescence-dip infrared spectra (FDIR) and resonant ion dip infrared spectroscopy (IDIR), obtained at 3523 and 3467 cm-1, respectively. The lower value of vNH in the electronically excited state of 27DAI implies the higher acidity of the group compared to the ground state. Moreover, we have done extensive computational analysis, which suggests that the energy barrier in the excited state reduces significantly as we increase the number of catalytic solvent molecules (S= H2O, NH3) as well as the polarity of solvent molecules. We found that the ammonia molecule is a better candidate for hydrogen transfer compared to water because of its higher gas-phase basicity. Further studies are underway to understand the excited state dynamics and photochemistry of such N-rich chromophores.Keywords: excited state hydrogen transfer, supersonic expansion, gas phase spectroscopy, IR-UV double resonance spectroscopy, laser induced fluorescence, photoionization efficiency spectroscopy
Procedia PDF Downloads 75180 Contributory Antioxidant Role of Testosterone and Oxidative Stress Biomarkers in Males Exposed to Mixed Chemicals in an Automobile Repair Community
Authors: Saheed A. Adekola, Mabel A. Charles-Davies, Ridwan A. Adekola
Abstract:
Background: Testosterone is a known androgenic and anabolic steroid, primarily secreted in the testes. It plays an important role in the development of testes and prostate and has a range of biological actions. There is evidence that exposure to mixed chemicals in the workplace leads to the generation of free radicals and inadequate antioxidants leading to oxidative stress, which may serve as an early indicator of a pathophysiologic state. Based on findings, testosterone shows direct antioxidant effects by increasing the activities of antioxidant enzymes like glutathione peroxidase, thus indirectly contributing to antioxidant capacity. Objective: To evaluate the antioxidant role of testosterone as well as the relationship between testosterone and oxidative stress biomarkers in males exposed to mixed chemicals in the automobile repair community. Methods: The study included 43 participants aged 22- 60years exposed to mixed chemicals (EMC) from the automobile repair community. Forty (40) apparently healthy, unexposed, age-matched controls were recruited after informed consent. Demographic, sexual and anthropometric characteristics were obtained from pre-test structured questionnaires using standard methods. Blood samples (10mls) were collected from each subject into plain bottles and sera obtained were used for biochemical analyses. Serum levels of testosterone and luteinizing hormone (LH) were determined by enzyme immunoassay method, EIA (Immunometrics UK.LTD). Levels of total antioxidant capacity (TAC), total plasma peroxide (TPP), Malondialdehyde (MDA), hydrogen peroxide (H2O2), glutathione peroxide (GPX), superoxide dismutase (SOD), glutathione-S-transferase (GST), and reduced glutathione (GSH) were determined using spectrophotometric methods respectively. Results obtained were analyzed using the Student’s t-test and Chi-square test for quantitative variables and qualitative variables respectively. Multiple regression was used to find associations and relationships between the variables. Results: Significant higher concentrations of TPP, MDA, OSI, H2O2 and GST were observed in EMC compared with controls (p < 0.001). Within EMC, significantly higher levels of testosterone, LH and TAC were observed in eugonadic when compared with hypogonadic participants (p < 0.001). Diastolic blood pressure, waist circumference, waist height ratio and waist hip ratio were significantly higher in participants EMC compared with the controls. Sexual history and dietary intake showed that the controls had normal erection during sex and took more vegetables in their diet which may therefore be beneficial. Conclusion: The significantly increased levels of total antioxidant capacity in males exposed to mixed chemicals despite their exposure may probably reflect the contributory antioxidant role testosterone that prevents oxidative stress.Keywords: mixed chemicals, oxidative stress, antioxidant, hypogonadism testosterone
Procedia PDF Downloads 145179 The Social Ecology of Serratia entomophila: Pathogen of Costelytra giveni
Authors: C. Watson, T. Glare, M. O'Callaghan, M. Hurst
Abstract:
The endemic New Zealand grass grub (Costelytra giveni, Coleoptera: Scarabaeidae) is an economically significant grassland pest in New Zealand. Due to their impacts on production within the agricultural sector, one of New Zealand's primary industries, several methods are being used to either control or prevent the establishment of new grass grub populations in the pasture. One such method involves the use of a biopesticide based on the bacterium Serratia entomophila. This species is one of the causative agents of amber disease, a chronic disease of the larvae which results in death via septicaemia after approximately 2 to 3 months. The ability of S. entomophila to cause amber disease is dependant upon the presence of the amber disease associated plasmid (pADAP), which encodes for the key virulence determinants required for the establishment and maintenance of the disease. Following the collapse of grass grub populations within the soil, resulting from either natural population build-up or application of the bacteria, non-pathogenic plasmid-free Serratia strains begin to predominate within the soil. Whilst the interactions between S. entomophila and grass grub larvae are well studied, less information is known on the interactions between plasmid-bearing and plasmid-free strains, particularly the potential impact of these interactions upon the efficacy of an applied biopesticide. Using a range of constructed strains with antibiotic tags, in vitro (broth culture) and in vivo (soil and larvae) experiments were conducted using inoculants comprised of differing ratios of isogenic pathogenic and non-pathogenic Serratia strains, enabling the relative growth of pADAP+ and pADAP- strains under competition conditions to be assessed. In nutrient-rich, the non-pathogenic pADAP- strain outgrew the pathogenic pADAP+ strain by day 3 when inoculated in equal quantities, and by day 5 when applied as the minority inoculant, however, there was an overall gradual decline in the number of viable bacteria for both strains over a 7-day period. Similar results were obtained in additional experiments using the same strains and continuous broth cultures re-inoculated at 24-hour intervals, although in these cultures, the viable cell count did not diminish over the 7-day period. When the same ratios were assessed in soil microcosms with limited available nutrients, the strains remained relatively stable over a 2-month period. Additionally, in vivo grass grub co-infections assays using the same ratios of tagged Serratia strains revealed similar results to those observed in the soil, but there was also evidence of horizontal transfer of pADAP from the pathogenic to the non-pathogenic strain within the larval gut after a period of 4 days. Whilst the influence of competition is more apparent in broth cultures than within the soil or larvae, further testing is required to determine whether this competition between pathogenic and non-pathogenic Serratia strains has any influence on efficacy and disease progression, and how this may impact on the ability of S. entomophila to cause amber disease within grass grub larvae when applied as a biopesticide.Keywords: biological control, entomopathogen, microbial ecology, New Zealand
Procedia PDF Downloads 156178 Dys-Regulation of Immune and Inflammatory Response in in vitro Fertilization Implantation Failure Patients under Ovarian Stimulation
Authors: Amruta D. S. Pathare, Indira Hinduja, Kusum Zaveri
Abstract:
Implantation failure (IF) even after the good-quality embryo transfer (ET) in the physiologically normal endometrium is the main obstacle in in vitro fertilization (IVF). Various microarray studies have been performed worldwide to elucidate the genes requisite for endometrial receptivity. These studies have included the population based on different phases of menstrual cycle during natural cycle and stimulated cycle in normal fertile women. Additionally, the literature is also available in recurrent implantation failure patients versus oocyte donors in natural cycle. However, for the first time, we aim to study the genomics of endometrial receptivity in IF patients under controlled ovarian stimulation (COS) during which ET is generally practised in IVF. Endometrial gene expression profiling in IF patients (n=10) and oocyte donors (n=8) were compared during window of implantation under COS by whole genome microarray (using Illumina platform). Enrichment analysis of microarray data was performed to determine dys-regulated biological functions and pathways using Database for Annotation, Visualization and Integrated Discovery, v6.8 (DAVID). The enrichment mapping was performed with the help of Cytoscape software. Microarray results were validated by real-time PCR. Localization of genes related to immune response (Progestagen-Associated Endometrial Protein (PAEP), Leukaemia Inhibitory Factor (LIF), Interleukin-6 Signal Transducer (IL6ST) was detected by immunohistochemistry. The study revealed 418 genes downregulated and 519 genes upregulated in IF patients compared to healthy fertile controls. The gene ontology, pathway analysis and enrichment mapping revealed significant downregulation in activation and regulation of immune and inflammation response in IF patients under COS. The lower expression of Progestagen Associated Endometrial Protein (PAEP), Leukemia Inhibitory Factor (LIF) and Interleukin 6 Signal Transducer (IL6ST) in cases compared to controls by real time and immunohistochemistry suggests the functional importance of these genes. The study was proved useful to uncover the probable reason of implantation failure being imbalance of immune and inflammatory regulation in our group of subjects. Based on the present study findings, a panel of significant dysregulated genes related to immune and inflammatory pathways needs to be further substantiated in larger cohort in natural as well as stimulated cycle. Upon which these genes could be screened in IF patients during window of implantation (WOI) before going for embryo transfer or any other immunological treatment. This would help to estimate the regulation of specific immune response during WOI in a patient. The appropriate treatment of either activation of immune response or suppression of immune response can be then attempted in IF patients to enhance the receptivity of endometrium.Keywords: endometrial receptivity, immune and inflammatory response, gene expression microarray, window of implantation
Procedia PDF Downloads 155177 Effects of Soil Neutron Irradiation in Soil Carbon Neutron Gamma Analysis
Authors: Aleksandr Kavetskiy, Galina Yakubova, Nikolay Sargsyan, Stephen A. Prior, H. Allen Torbert
Abstract:
The carbon sequestration question of modern times requires the development of an in-situ method of measuring soil carbon over large landmasses. Traditional chemical analytical methods used to evaluate large land areas require extensive soil sampling prior to processing for laboratory analysis; collectively, this is labor-intensive and time-consuming. An alternative method is to apply nuclear physics analysis, primarily in the form of pulsed fast-thermal neutron-gamma soil carbon analysis. This method is based on measuring the gamma-ray response that appears upon neutron irradiation of soil. Specific gamma lines with energies of 4.438 MeV appearing from neutron irradiation can be attributed to soil carbon nuclei. Based on measuring gamma line intensity, assessments of soil carbon concentration can be made. This method can be done directly in the field using a specially developed pulsed fast-thermal neutron-gamma system (PFTNA system). This system conducts in-situ analysis in a scanning mode coupled with GPS, which provides soil carbon concentration and distribution over large fields. The system has radiation shielding to minimize the dose rate (within radiation safety guidelines) for safe operator usage. Questions concerning the effect of neutron irradiation on soil health will be addressed. Information regarding absorbed neutron and gamma dose received by soil and its distribution with depth will be discussed in this study. This information was generated based on Monte-Carlo simulations (MCNP6.2 code) of neutron and gamma propagation in soil. Received data were used for the analysis of possible induced irradiation effects. The physical, chemical and biological effects of neutron soil irradiation were considered. From a physical aspect, we considered neutron (produced by the PFTNA system) induction of new isotopes and estimated the possibility of increasing the post-irradiation gamma background by comparisons to the natural background. An insignificant increase in gamma background appeared immediately after irradiation but returned to original values after several minutes due to the decay of short-lived new isotopes. From a chemical aspect, possible radiolysis of water (presented in soil) was considered. Based on stimulations of radiolysis of water, we concluded that the gamma dose rate used cannot produce gamma rays of notable rates. Possible effects of neutron irradiation (by the PFTNA system) on soil biota were also assessed experimentally. No notable changes were noted at the taxonomic level, nor was functional soil diversity affected. Our assessment suggested that the use of a PFTNA system with a neutron flux of 1e7 n/s for soil carbon analysis does not notably affect soil properties or soil health.Keywords: carbon sequestration, neutron gamma analysis, radiation effect on soil, Monte-Carlo simulation
Procedia PDF Downloads 143176 Evaluation of Some Serum Proteins as Markers for Myeloma Bone Disease
Authors: V. T. Gerov, D. I. Gerova, I. D. Micheva, N. F. Nazifova-Tasinova, M. N. Nikolova, M. G. Pasheva, B. T. Galunska
Abstract:
Multiple myeloma (MM) is the most frequent plasma cell (PC) dyscrasia that involves the skeleton. Myeloma bone disease (MBD) is characterized by osteolytic bone lesions as a result of increased osteoclasts activity not followed by reactive bone formation due to osteoblasts suppression. Skeletal complications cause significant adverse effects on quality of life and lead to increased morbidity and mortality. Last decade studies revealed the implication of different proteins in osteoclast activation and osteoblast inhibition. The aim of the present study was to determine serum levels of periostin, sRANKL and osteopontin and to evaluate their role as bone markers in MBD. Materials and methods. Thirty-two newly diagnosed MM patients (mean age: 62.2 ± 10.7 years) and 33 healthy controls (mean age: 58.9 ± 7.5 years) were enrolled in the study. According to IMWG criteria 28 patients were with symptomatic MM and 4 with monoclonal gammopathy of undetermined significance (MGUS). In respect to their bone involvement all symptomatic patients were divided into two groups (G): 9 patients with 0-3 osteolytic lesions (G1) and 19 patients with >3 osteolytic lesions and/or pathologic fractures (G2). Blood samples were drawn for routine laboratory analysis and for measurement of periostin, sRANKL and osteopontin serum levels by ELISA kits (Shanghai Sunred Biological Technology, China). Descriptive analysis, Mann-Whitney test for assessment the differences between groups and non-parametric correlation analysis were performed using GraphPad Prism v8.01. Results. The median serum levels of periostin, sRANKL and osteopontin of ММ patients were significantly higher compared to controls (554.7pg/ml (IQR=424.0-720.6) vs 396.9pg/ml (IQR=308.6-471.9), p=0.0001; 8.9pg/ml (IQR=7.1-10.5) vs 5.6pg/ml (IQR=5.1-6.4, p<0.0001 and 514.0ng/ml (IQR=469.3-754.0) vs 387.0ng/ml (IQR=335.9-441.9), p<0.0001, respectively). for assessment of differences between groups and non-parametric correlation analysis were performed using GraphPad Prism v8.01. Statistical significance was found for all tested bone markers between symptomatic MM patients and controls: G1 vs controls (p<0.03), G2 vs controls (p<0.0001) for periostin; G1 vs controls (p<0.0001), G2 vs controls (p<0.0001) for sRANKL; G1 vs controls (p=0.002), G2 vs controls (p<0.0001) for osteopontin, as well between symptomatic MM patients and MGUS patients: G1 vs MGUS (p<0.003), G2 vs MGUS (p=0.003) for periostin; G1 vs MGUS (p<0.05), G2 vs MGUS (p<0.001) for sRANKL; G1 vs MGUS (p=0.011), G2 vs MGUS (p=0.0001) for osteopontin. No differences were detected between MGUS and controls and between patients in G1 and G2 groups. Spearman correlation analysis revealed moderate positive correlation between periostin and beta-2-microglobulin (r=0.416, p=0.018), percentage bone marrow myeloma PC (r=0.432, p=0.014), and serum total protein (r=0.427, p=0.015). Osteopontin levels were also positively related to beta-2-microglobulin (r=0.540, p=0.0014), percentage bone marrow myeloma PC (r=0.423, p=0.016), and serum total protein (r=0.413, p=0.019). Serum sRANKL was only related to beta-2-microglobulin levels (r=0.398, p=0.024). Conclusion: In the present study, serum levels of periostin, sRANKL and osteopontin in newly diagnosed MM patients were evaluated. They gradually increased from MGUS to more advanced stages of MM reflecting the severity of bone destruction. These results support the idea that some new protein markers could be used in monitoring the MBD as a most severe complication of MM.Keywords: myeloma bone disease, periostin, sRANKL, osteopontin
Procedia PDF Downloads 57175 Influence of Counter-Face Roughness on the Friction of Bionic Microstructures
Authors: Haytam Kasem
Abstract:
The problem of quick and easy reversible attachment has become of great importance in different fields of technology. For the reason, during the last decade, a new emerging field of adhesion science has been developed. Essentially inspired by some animals and insects, which during their natural evolution have developed fantastic biological attachment systems allowing them to adhere and run on walls and ceilings of uneven surfaces. Potential applications of engineering bio-inspired solutions include climbing robots, handling systems for wafers in nanofabrication facilities, and mobile sensor platforms, to name a few. However, despite the efforts provided to apply bio-inspired patterned adhesive-surfaces to the biomedical field, they are still in the early stages compared with their conventional uses in other industries mentioned above. In fact, there are some critical issues that still need to be addressed for the wide usage of the bio-inspired patterned surfaces as advanced biomedical platforms. For example, surface durability and long-term stability of surfaces with high adhesive capacity should be improved, but also the friction and adhesion capacities of these bio-inspired microstructures when contacting rough surfaces. One of the well-known prototypes for bio-inspired attachment systems is biomimetic wall-shaped hierarchical microstructure for gecko-like attachments. Although physical background of these attachment systems is widely understood, the influence of counter-face roughness and its relationship with the friction force generated when sliding against wall-shaped hierarchical microstructure have yet to be fully analyzed and understood. To elucidate the effect of the counter-face roughness on the friction of biomimetic wall-shaped hierarchical microstructure we have replicated the isotropic topography of 12 different surfaces using replicas made of the same epoxy material. The different counter-faces were fully characterized under 3D optical profilometer to measure roughness parameters. The friction forces generated by spatula-shaped microstructure in contact with the tested counter-faces were measured on a home-made tribometer and compared with the friction forces generated by the spatulae in contact with a smooth reference. It was found that classical roughness parameters, such as average roughness Ra and others, could not be utilized to explain topography-related variation in friction force. This has led us to the development of an integrated roughness parameter obtained by combining different parameters which are the mean asperity radius of curvature (R), the asperity density (η), the deviation of asperities high (σ) and the mean asperities angle (SDQ). This new integrated parameter is capable of explaining the variation of results of friction measurements. Based on the experimental results, we developed and validated an analytical model to predict the variation of the friction force as a function of roughness parameters of the counter-face and the applied normal load, as well.Keywords: friction, bio-mimetic micro-structure, counter-face roughness, analytical model
Procedia PDF Downloads 239