Search results for: learning difficulty
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7929

Search results for: learning difficulty

4599 Foundation Phase Teachers' Experiences of School Based Support Teams: A Case of Selected Schools in Johannesburg

Authors: Ambeck Celyne Tebid, Harry S. Rampa

Abstract:

The South African Education system recognises the need for all learners including those experiencing learning difficulties, to have access to a single unified system of education. For teachers to be pedagogically responsive to an increasingly diverse learner population without appropriate support has been proven to be unrealistic. As such, this has considerably hampered interest amongst teachers, especially those at the foundation phase to work within an Inclusive Education (IE) and training system. This qualitative study aimed at investigating foundation phase teachers’ experiences of school-based support teams (SBSTs) in two Full-Service (inclusive schools) and one Mainstream public primary school in the Gauteng province of South Africa; with particular emphasis on finding ways to supporting them, since teachers claimed they were not empowered in their initial training to teach learners experiencing learning difficulties. Hence, SBSTs were created at school levels to fill this gap thereby, supporting teaching and learning by identifying and addressing learners’, teachers’ and schools’ needs. With the notion that IE may be failing because of systemic reasons, this study uses Bronfenbrenner’s (1979) ecosystemic as well as Piaget’s (1980) maturational theory to examine the nature of support and experiences amongst teachers taking individual and systemic factors into consideration. Data was collected using in-depth, face-to-face interviews, document analysis and observation with 6 foundation phase teachers drawn from 3 different schools, 3 SBST coordinators, and 3 school principals. Data was analysed using the phenomenological data analysis method. Amongst the findings of the study is that South African full- service and mainstream schools have functional SBSTs which render formal and informal support to the teachers; this support varies in quality depending on the socio-economic status of the relevant community where the schools are situated. This paper, however, argues that what foundation phase teachers settled for as ‘support’ is flawed; as well as how they perceive the SBST and its role is problematic. The paper conclude by recommending that, the SBST should consider other approaches at foundation phase teacher support such as, empowering teachers with continuous practical experiences on how to deal with real classroom scenarios, as well as ensuring that all support, be it on academic or non-academic issues should be provided within a learning community framework where the teacher, family, SBST and where necessary, community organisations should harness their skills towards a common goal.

Keywords: foundation phase, full- service schools, inclusive education, learning difficulties, school-based support teams, teacher support

Procedia PDF Downloads 241
4598 A Survey of Skin Cancer Detection and Classification from Skin Lesion Images Using Deep Learning

Authors: Joseph George, Anne Kotteswara Roa

Abstract:

Skin disease is one of the most common and popular kinds of health issues faced by people nowadays. Skin cancer (SC) is one among them, and its detection relies on the skin biopsy outputs and the expertise of the doctors, but it consumes more time and some inaccurate results. At the early stage, skin cancer detection is a challenging task, and it easily spreads to the whole body and leads to an increase in the mortality rate. Skin cancer is curable when it is detected at an early stage. In order to classify correct and accurate skin cancer, the critical task is skin cancer identification and classification, and it is more based on the cancer disease features such as shape, size, color, symmetry and etc. More similar characteristics are present in many skin diseases; hence it makes it a challenging issue to select important features from a skin cancer dataset images. Hence, the skin cancer diagnostic accuracy is improved by requiring an automated skin cancer detection and classification framework; thereby, the human expert’s scarcity is handled. Recently, the deep learning techniques like Convolutional neural network (CNN), Deep belief neural network (DBN), Artificial neural network (ANN), Recurrent neural network (RNN), and Long and short term memory (LSTM) have been widely used for the identification and classification of skin cancers. This survey reviews different DL techniques for skin cancer identification and classification. The performance metrics such as precision, recall, accuracy, sensitivity, specificity, and F-measures are used to evaluate the effectiveness of SC identification using DL techniques. By using these DL techniques, the classification accuracy increases along with the mitigation of computational complexities and time consumption.

Keywords: skin cancer, deep learning, performance measures, accuracy, datasets

Procedia PDF Downloads 137
4597 A Model for Adaptive Online Quiz: QCitra

Authors: Rosilah Hassan, Karam Dhafer Mayoof, Norngainy Mohd Tawil, Shamshubaridah Ramlee

Abstract:

Application of adaptive online quiz system and a design are performed in this paper. The purpose of adaptive quiz system is to establish different questions automatically for each student and measure their competence on a definite area of discipline. This model determines students competencies in cases like distant-learning which experience challenges frequently. Questions are specialized to allow clear deductions about student gains; they are able to identify student competencies more effectively. Also, negative effects of questions requiring higher knowledge than competency over student’s morale and self-confidence are dismissed. The advantage of the system in the quiz management requires less total time for measuring and is more flexible. Self sufficiency of the system in terms of repeating, planning and assessment of the measurement process allows itself to be used in the individual education sets. Adaptive quiz technique prevents students from distraction and motivation loss, which is led by the questions with quite lower hardness level than student’s competency.

Keywords: e-learning, adaptive system, security, quiz database

Procedia PDF Downloads 457
4596 Still Pictures for Learning Foreign Language Sounds

Authors: Kaoru Tomita

Abstract:

This study explores how visual information helps us to learn foreign language pronunciation. Visual assistance and its effect for learning foreign language have been discussed widely. For example, simplified illustrations in textbooks are used for telling learners which part of the articulation organs are used for pronouncing sounds. Vowels are put into a chart that depicts a vowel space. Consonants are put into a table that contains two axes of place and manner of articulation. When comparing a still picture and a moving picture for visualizing learners’ pronunciation, it becomes clear that the former works better than the latter. The visualization of vowels was applied to class activities in which native and non-native speakers’ English was compared and the learners’ feedback was collected: the positions of six vowels did not scatter as much as they were expected to do. Specifically, two vowels were not discriminated and were arranged very close in the vowel space. It was surprising for the author to find that learners liked analyzing their own pronunciation by linking formant ones and twos on a sheet of paper with a pencil. Even a simple method works well if it leads learners to think about their pronunciation analytically.

Keywords: feedback, pronunciation, visualization, vowel

Procedia PDF Downloads 255
4595 The Complaint Speech Act Set Produced by Arab Students in the UAE

Authors: Tanju Deveci

Abstract:

It appears that the speech act of complaint has not received as much attention as other speech acts. However, the face-threatening nature of this speech act requires a special attention in multicultural contexts in particular. The teaching context in the UAE universities, where a big majority of teaching staff comes from other cultures, requires investigations into this speech act in order to improve communication between students and faculty. This session will outline the results of a study conducted with this purpose. The realization of complaints by Freshman English students in Communication courses at Petroleum Institute was investigated to identify communication patterns that seem to cause a strain. Data were collected using a role-play between a teacher and students, and a judgment scale completed by two of the instructors in the Communications Department. The initial findings reveal that the students had difficulty putting their case, produced the speech act of criticism along with a complaint and that they produced both requests and demands as candidate solutions. The judgement scales revealed that the students’ attitude was not appropriate most of the time and that the judges would behave differently from students. It is concluded that speech acts, in general, and complaint, in particular, need to be taught to learners explicitly to improve interpersonal communication in multicultural societies. Some teaching ideas are provided to help increase foreign language learners’ sociolinguistic competence.

Keywords: speech act, complaint, pragmatics, sociolinguistics, language teaching

Procedia PDF Downloads 514
4594 Change of Education Business in the Age of 5G

Authors: Heikki Ruohomaa, Vesa Salminen

Abstract:

Regions are facing huge competition to attract companies, businesses, inhabitants, students, etc. This way to improve living and business environment, which is rapidly changing due to digitalization. On the other hand, from the industry's point of view, the availability of a skilled labor force and an innovative environment are crucial factors. In this context, qualified staff has been seen to utilize the opportunities of digitalization and respond to the needs of future skills. World Manufacturing Forum has stated in the year 2019- report that in next five years, 40% of workers have to change their core competencies. Through digital transformation, new technologies like cloud, mobile, big data, 5G- infrastructure, platform- technology, data- analysis, and social networks with increasing intelligence and automation, enterprises can capitalize on new opportunities and optimize existing operations to achieve significant business improvement. Digitalization will be an important part of the everyday life of citizens and present in the working day of the average citizen and employee in the future. For that reason, the education system and education programs on all levels of education from diaper age to doctorate have been directed to fulfill this ecosystem strategy. Goal: The Fourth Industrial Revolution will bring unprecedented change to societies, education organizations and business environments. This article aims to identify how education, education content, the way education has proceeded, and overall whole the education business is changing. Most important is how we should respond to this inevitable co- evolution. Methodology: The study aims to verify how the learning process is boosted by new digital content, new learning software and tools, and customer-oriented learning environments. The change of education programs and individual education modules can be supported by applied research projects. You can use them in making proof- of- the concept of new technology, new ways to teach and train, and through the experiences gathered change education content, way to educate and finally education business as a whole. Major findings: Applied research projects can prove the concept- phases on real environment field labs to test technology opportunities and new tools for training purposes. Customer-oriented applied research projects are also excellent for students to make assignments and use new knowledge and content and teachers to test new tools and create new ways to educate. New content and problem-based learning are used in future education modules. This article introduces some case study experiences on customer-oriented digital transformation projects and how gathered knowledge on new digital content and a new way to educate has influenced education. The case study is related to experiences of research projects, customer-oriented field labs/learning environments and education programs of Häme University of Applied Sciences.

Keywords: education process, digitalization content, digital tools for education, learning environments, transdisciplinary co-operation

Procedia PDF Downloads 180
4593 Intrusion Detection in Cloud Computing Using Machine Learning

Authors: Faiza Babur Khan, Sohail Asghar

Abstract:

With an emergence of distributed environment, cloud computing is proving to be the most stimulating computing paradigm shift in computer technology, resulting in spectacular expansion in IT industry. Many companies have augmented their technical infrastructure by adopting cloud resource sharing architecture. Cloud computing has opened doors to unlimited opportunities from application to platform availability, expandable storage and provision of computing environment. However, from a security viewpoint, an added risk level is introduced from clouds, weakening the protection mechanisms, and hardening the availability of privacy, data security and on demand service. Issues of trust, confidentiality, and integrity are elevated due to multitenant resource sharing architecture of cloud. Trust or reliability of cloud refers to its capability of providing the needed services precisely and unfailingly. Confidentiality is the ability of the architecture to ensure authorization of the relevant party to access its private data. It also guarantees integrity to protect the data from being fabricated by an unauthorized user. So in order to assure provision of secured cloud, a roadmap or model is obligatory to analyze a security problem, design mitigation strategies, and evaluate solutions. The aim of the paper is twofold; first to enlighten the factors which make cloud security critical along with alleviation strategies and secondly to propose an intrusion detection model that identifies the attackers in a preventive way using machine learning Random Forest classifier with an accuracy of 99.8%. This model uses less number of features. A comparison with other classifiers is also presented.

Keywords: cloud security, threats, machine learning, random forest, classification

Procedia PDF Downloads 324
4592 A Qualitative Study of the Efficacy of Teaching for Conceptual Understanding to Enhance Confidence and Engagement in Early Mathematics

Authors: Nigel P. Coutts, Stellina Z. Sim

Abstract:

Research suggests that the pedagogy we utilize when teaching mathematics contributes to a negative attitude towards the discipline. Worried by this, we have explored teaching mathematics for understanding, fluency, and confidence. We investigated strategies to engage students with the beauty of mathematics, moving them beyond mimicry and memorization. The result is an integrated pedagogy and curriculum arrangement which combines concept-based mathematics with Number Talks, Visible Thinking Routines, and Teaching for Understanding. Our qualitative research shows that students self-report greater self-confidence and heightened engagement with mathematical thinking. Teacher reflections on student learning echo this finding. As a result of this, we advocate for teacher training in the implementation of a concept-based curriculum supplemented with Number Talk strategies.

Keywords: mathematical thinking, teaching for understanding, student confidence, concept-based learning, engagement

Procedia PDF Downloads 157
4591 Short-Term Forecast of Wind Turbine Production with Machine Learning Methods: Direct Approach and Indirect Approach

Authors: Mamadou Dione, Eric Matzner-lober, Philippe Alexandre

Abstract:

The Energy Transition Act defined by the French State has precise implications on Renewable Energies, in particular on its remuneration mechanism. Until then, a purchase obligation contract permitted the sale of wind-generated electricity at a fixed rate. Tomorrow, it will be necessary to sell this electricity on the Market (at variable rates) before obtaining additional compensation intended to reduce the risk. This sale on the market requires to announce in advance (about 48 hours before) the production that will be delivered on the network, so to be able to predict (in the short term) this production. The fundamental problem remains the variability of the Wind accentuated by the geographical situation. The objective of the project is to provide, every day, short-term forecasts (48-hour horizon) of wind production using weather data. The predictions of the GFS model and those of the ECMWF model are used as explanatory variables. The variable to be predicted is the production of a wind farm. We do two approaches: a direct approach that predicts wind generation directly from weather data, and an integrated approach that estimâtes wind from weather data and converts it into wind power by power curves. We used machine learning techniques to predict this production. The models tested are random forests, CART + Bagging, CART + Boosting, SVM (Support Vector Machine). The application is made on a wind farm of 22MW (11 wind turbines) of the Compagnie du Vent (that became Engie Green France). Our results are very conclusive compared to the literature.

Keywords: forecast aggregation, machine learning, spatio-temporal dynamics modeling, wind power forcast

Procedia PDF Downloads 220
4590 Current Global Education Trends: Issues and Challenges of Physical and Health Education Teaching and Learning in Nigerian Schools

Authors: Bichi Muktar Sani

Abstract:

The philosophy of Physical and Health Education is to develop academic and professional competency which will enable individuals earn a living and render unique services to the society and also provide good basis of knowledge and experience that characterize an educated and fully developed person through physical activities. With the increase of sedentary activities such as watching television, playing videogames, increased computer technology, automation and reduction of high school Physical and Health Education schedules, young people are most likely to become overweight, and less fit. Physical Education is a systematic instruction in sports, training, practice, gymnastics, exercises, and hygiene given as part of a school or college program. Physical and Health Education is the study, practice, and appreciation of the art and science of human movement. Physical and Health Education is course in the curricula that utilizes the learning in the cognitive, affective, and psychomotor domains in a lay or movement exploration setting. The paper made some recommendations on the way forward.

Keywords: issues, challenges, physical education, school

Procedia PDF Downloads 46
4589 Thermal Transport Properties of Common Transition Single Metal Atom Catalysts

Authors: Yuxi Zhu, Zhenqian Chen

Abstract:

It is of great interest to investigate the thermal properties of non-precious metal catalysts for Proton exchange membrane fuel cell (PEMFC) based on the thermal management requirements. Due to the low symmetry of materials, to accurately obtain the thermal conductivity of materials, it is necessary to obtain the second and third order force constants by combining density functional theory and machine learning interatomic potential. To be specific, the interatomic force constants are obtained by moment tensor potential (MTP), which is trained by the computational trajectory of Ab initio molecular dynamics (AIMD) at 50, 300, 600, and 900 K for 1 ps each, with a time step of 1 fs in the AIMD computation. And then the thermal conductivity can be obtained by solving the Boltzmann transport equation. In this paper, the thermal transport properties of single metal atom catalysts are studied for the first time to our best knowledge by machine-learning interatomic potential (MLIP). Results show that the single metal atom catalysts exhibit anisotropic thermal conductivities and partially exhibit good thermal conductivity. The average lattice thermal conductivities of G-FeN₄, G-CoN₄ and G-NiN₄ at 300 K are 88.61 W/mK, 205.32 W/mK and 210.57 W/mK, respectively. While other single metal atom catalysts show low thermal conductivity due to their low phonon lifetime. The results also show that low-frequency phonons (0-10 THz) dominate thermal transport properties. The results provide theoretical insights into the application of single metal atom catalysts in thermal management.

Keywords: proton exchange membrane fuel cell, single metal atom catalysts, density functional theory, thermal conductivity, machine-learning interatomic potential

Procedia PDF Downloads 33
4588 Upgrading along Value Chains: Strategies for Thailand's Functional Milk Industry

Authors: Panisa Harnpathananun

Abstract:

This paper is 'Practical Experience Analysis' which aims to analyze critical obstacles hampering the growth of the functional milk industry and suggest recommendations to overcome those obstacles. Using the Sectoral Innovation System (SIS) along value chain analysis, it is found that restriction in regulation of milk disinfection process, difficulty of dairy entrepreneurs for health claim approval of functional food and beverage and lack of intermediary between entrepreneurs and certified units for certification of functional foods and milk are major causes that needed to be resolved. Consequently, policy recommendations are proposed to tackle the problems occurring throughout the value chain. For the upstream, a collaborative platform using the quadruple helix model is proposed in a pattern of effective dairy cooperatives. For the midstream, regulation issues of new process, extended shelf life (ESL) milk, or prolonged milk are necessary, which can be extended the global market opportunity. For the downstream, mechanism of intermediary between entrepreneurs and certified units can be assisted in certified process of functional milk, especially a process of 'health claim' approval.

Keywords: Thailand, functional milk, supply chain, quadruple helix, intermediary, functional food

Procedia PDF Downloads 153
4587 Mannequin Evaluation of 3D-Printed Intermittent Oro-Esophageal Tube Guide for Dysphagia

Authors: Yujin Jeong, Youkyung Son, Myounghwan Choi, Sanghyub Lee, Sangyeol Lee, Changho Hwang, Kyo-in Koo

Abstract:

Dysphasia is difficulty in swallowing food because of oral cavity impairments induced by stroke, muscle damage, tumor. Intermittent oro-esophageal (IOE) tube feeding is one of the well-known feeding methods for the dysphasia patients. However, it is hard to insert at the proper position in esophagus. In this study, we design and fabricate the IOE tube guide using 3-dimensional (3D) printer. The printed IOE tube is tested in a mannequin (Airway Management Trainer, Co., Ltd., Copenhagen, Denmark) mimicking human’s esophagus. The gag reflex point is measured as the design point in the mannequin. To avoid the gag reflex, we design various shapes of IOE tube guide. One structure is separated into three parts; biting part, part through oral cavity, connecting part to oro-esophageal. We designed 6 types of IOE tube guide adjusting length and angle of these three parts. To evaluate the IOE tube guide, it is inserted in the mannequin, and through the inserted guide, an endoscopic camera successfully arrived at the oro-esophageal. We had planned to apply this mannequin-based design experience to patients in near future.

Keywords: dysphagia, feeding method, IOE tube guide, 3-D printer

Procedia PDF Downloads 436
4586 Using Wiki for Enhancing the Knowledge Transfer to Newcomers: An Experience Report

Authors: Hualter Oliveira Barbosa, Raquel Feitosa do Vale Cunha, Erika Muniz dos Santos, Fernanda Belmira Souza, Fabio Sousa, Luis Henrique Pascareli, Franciney de Oliveira Lima, Ana Cláudia Reis da Silva, Christiane Moreira de Almeida

Abstract:

Software development is intrinsic human-based knowledge-intensive. Due to globalization, software development has become a complex challenge and we usually face barriers related to knowledge management, team building, costly testing processes, especially in distributed settings. For this reason, several approaches have been proposed to minimize barriers caused by geographic distance. In this paper, we present as we use experimental studies to improve our knowledge management process using the Wiki system. According to the results, it was possible to identify learning preferences from our software projects leader team, organize and improve the learning experience of our Wiki and; facilitate collaboration by newcomers to improve Wiki with new contents available in the Wiki.

Keywords: mobile product, knowledge transfer, knowledge management process, wiki, GSD

Procedia PDF Downloads 181
4585 Making Use of Content and Language Integrated Learning for Teaching Entrepreneurship and Neuromarketing to Master Students: Case Study

Authors: Svetlana Polskaya

Abstract:

The study deals with the issue of using the Content and Language Integrated Learning (CLIL) concept when teaching Master Program students majoring in neuromarketing and entrepreneurship. Present-day employers expect young graduates to conduct professional communication with their English-speaking peers and demonstrate proper knowledge of the industry’s terminology and jargon. The idea of applying CLIL was the result of the above-mentioned students possessing high proficiency in English, thus, not requiring any further knowledge of the English language in terms of traditional grammar or lexis. Due to this situation, a CLIL-type program was devised, allowing learners to acquire new knowledge of entrepreneurship and neuromarketing spheres combined with simultaneous honing their English language practical usage. The case study analyzes CLIL application within this particular program as well as the experience accumulated in the process.

Keywords: CLIL, entrepreneurship, neuromarketing, foreign language acquisition, proficiency level

Procedia PDF Downloads 96
4584 1-D Convolutional Neural Network Approach for Wheel Flat Detection for Freight Wagons

Authors: Dachuan Shi, M. Hecht, Y. Ye

Abstract:

With the trend of digitalization in railway freight transport, a large number of freight wagons in Germany have been equipped with telematics devices, commonly placed on the wagon body. A telematics device contains a GPS module for tracking and a 3-axis accelerometer for shock detection. Besides these basic functions, it is desired to use the integrated accelerometer for condition monitoring without any additional sensors. Wheel flats as a common type of failure on wheel tread cause large impacts on wagons and infrastructure as well as impulsive noise. A large wheel flat may even cause safety issues such as derailments. In this sense, this paper proposes a machine learning approach for wheel flat detection by using car body accelerations. Due to suspension systems, impulsive signals caused by wheel flats are damped significantly and thus could be buried in signal noise and disturbances. Therefore, it is very challenging to detect wheel flats using car body accelerations. The proposed algorithm considers the envelope spectrum of car body accelerations to eliminate the effect of noise and disturbances. Subsequently, a 1-D convolutional neural network (CNN), which is well known as a deep learning method, is constructed to automatically extract features in the envelope-frequency domain and conduct classification. The constructed CNN is trained and tested on field test data, which are measured on the underframe of a tank wagon with a wheel flat of 20 mm length in the operational condition. The test results demonstrate the good performance of the proposed algorithm for real-time fault detection.

Keywords: fault detection, wheel flat, convolutional neural network, machine learning

Procedia PDF Downloads 134
4583 The Development of Digital Commerce in Community Enterprise Products to Promote the Distribution of Samut Songkhram Province

Authors: Natcha Wattanaprapa, Alongkorn Taengtong, Phachaya Chaiwchan

Abstract:

This study investigates and promotes the distribution of community enterprise products of Samut Songkhram province by using e-commerce web technology to help distribute the products. This study also aims to develop the information system to be able to operate on multiple platforms and promote the easy usability on smartphones to increase the efficiency and promote the distribution of community enterprise products of Samut Songkhram province in three areas including Baan Saraphi learning center, the learning center of Bang Noi Floating market as well as Bang Nang Li learning center. The main structure consists of spreading the knowledge regarding the tourist attraction in the area of community enterprise, e-commerce system of community enterprise products, and Chatbot. The researcher developed the system into an application form using the software package to create and manage the content on the internet. Connect management system (CMS) word press was used for managing web pages. Add-on CMS word press was used for creating the system of Chatbot, and the database of PHP My Admin was used as the database management system. The evaluation by the experts and users in 5 aspects, including the system efficiency, the accuracy in the operation of the system, the convenience and ease of use of the system, the design, and the promotion of product distribution in Samut Songkhram province by using questionnaires revealed that the result of evaluation in the promotion of product distribution in Samut Songkhram province was the highest with the mean of 4.20. When evaluating the efficiency of the developed system, it was found that the result of system efficiency was the highest level with a mean of 4.10.

Keywords: community enterprise, digital commerce, promotion of product distribution, Samut Songkhram province

Procedia PDF Downloads 153
4582 [Keynote Talk] The Practices and Issues of Career Education: Focusing on Career Development Course on Various Problems of Society

Authors: Azusa Katsumata

Abstract:

Several universities in Japan have introduced activities aimed at the mutual enlightenment of a diversity of people in career education. However, several programs emphasize on delivering results, and on practicing the prepared materials as planned. Few programs focus on unexpected failures and setbacks. This way of learning is important in career education so that classmates can help each other, overcome difficulties, draw out each other’s strengths, and learn from them. Seijo University in Tokyo offered excursion focusing Various Problems of Society, as second year career education course, Students will learn about contraception, infertility, homeless people, LGBT, and they will discuss based on the excursion. This paper aims to study the ‘learning platform’ created by a series of processes such as the excursion, the discussion, and the presentation. In this course, students looked back on their lives and imagined the future in concrete terms, performing tasks in groups. The students came across a range of values through lectures and conversations, thereby developing feelings of self-efficacy. We conducted a questionnaire to measure the development of career in class. From the results of the questionnaire, we can see, in the example of this class, that students respected diversity and understood the importance of uncertainty and discontinuity. Whereas the students developed career awareness, they actually did not come across that scene and would do so only in the future when it became necessary. In this class, students consciously considered social problems, but did not develop the practical skills necessary to deal with these. This is appropriate for one of project, but we need to consider how this can be incorporated into future courses. University constitutes only a single period in life-long career formation. Thus, further research may be indicated to determine whether the positive effects of career education at university continue to contribute to individual careers going forward.

Keywords: career education of university, excursion, learning platform, problems of society

Procedia PDF Downloads 268
4581 Epidemiological Profile of Patients with Painful Degenerative Lumbar Disc Disease

Authors: Ghoul Rachid Brahim

Abstract:

Introduction: Degenerative disc disease is a process of premature and accelerated deterioration of the intervertebral disc; it is of multifactorial origin and is responsible for chronic low back pain. Objectives: Determine an epidemiological profile of patients with painful lumbar degenerative disc disease. Patients and methods: We performed a prospective study of 104 patients operated on for degenerative painful lumbar disc disease over a period of 25 months. The parameters analyzed were: age, sex, Body Mass Index (BMI), comorbidities, family history of low back pain, and difficulty with professional activity. Results: The average age was 43.3 years, with a clear predominance of men: 72 men for 32 women, the average BMI was 26.80Kg / m2, and 63.5% of the patients were overweight. The occurrence of disc degeneration in pathological conditions was noted in 14.4% of cases. The notion of familial low back pain was found in 49% of cases. The majority of patients perform more or less arduous work (51%) in the cases. Conclusion: In our series, degenerative painful lumbar disc disease predominates in the male subject, active obese who performs more or less painful work, in whom we find a family history of low back pain.

Keywords: degenerative disc disease, low back pain, body mass index, disque intervertebrale

Procedia PDF Downloads 98
4580 Project-Based Learning and Evidence Based Nursing as Tools for Developing Students' Integrative Critical Thinking Skills: Content Analysis of Final Students' Projects

Authors: E. Maoz

Abstract:

Background: As a teaching method, project-based learning is strongly linked to developing students’ critical thinking skills. It combines creative independent thinking, team work, and disciplinary subject-field integration. In the 'Introduction to Nursing Research Methods' course (year 3, Generic Track), project based learning is used to teach the topic of 'Evidence-Based Nursing'. This topic examines a clinical care issue encountered by students in the field. At the end of their project, students present proposals for managing the said issue. Proposals are the product of independent integrative thinking integrating a wide range of factors influencing the issue’s management. Method: Papers by 27 groups of students (165 students) were content analyzed to identify which themes emerged from the students' recommendations for managing the clinical issue. Findings: Five main themes emerged—current management approach; adapting procedures in line with current recent research recommendations; training for change (veteran nursing staff, beginner students, patients, significant others); analysis of 'economic benefit vs. patient benefit'; multidisciplinary team engagement in implementing change in practice. Two surprising themes also emerged: advertising and marketing using new technologies, which reflects how the new generation thinks. Summary and Recommendations: Among the main challenges in nursing education is training nursing graduates to think independently, integratively, and critically. Combining PBL with classical teaching methods stimulates students cognitively while opening new vistas with implications on all levels of the profession: management, research, education, and practice. Advanced students can successfully grasp and interpret the current state of clinical practice. They are competent and open to leading change and able to consider the diverse factors and interconnections that characterize the nurse's work.

Keywords: evidence based nursing, critical thinking skills, project based learning, students education

Procedia PDF Downloads 94
4579 Students’ Perceptions on Educational Game for Learning Programming Subject: A Case Study

Authors: Roslina Ibrahim, Azizah Jaafar, Khalili Khalil

Abstract:

Educational games (EG) are regarded as a promising teaching and learning tool for the new generation. Growing number of studies and literatures can be found in EG studies. Both academic researchers and commercial developers come out with various educational games prototypes and titles. Despite that, acceptance of educational games still lacks among the students. It is important to understanding students’ perceptions of EG, since they are the main stakeholder of the technology. Thus, this study seeks to understand perceptions of undergraduates’ students using a framework originated from user acceptance theory. The framework consists of six constructs with twenty-eight items. Data collection was done on 180 undergraduate students of Universiti Teknologi Malaysia, Kuala Lumpur using self-developed online EG called ROBO-C. Data analysis was done using descriptive, factor analysis and correlations. Performance expectancy, effort expectancy, attitude, and enjoyment factors were found significantly correlated with the intention to use EG. This study provides more understanding towards the use of educational games among students.

Keywords: educational games, perceptions, acceptance, UTAUT

Procedia PDF Downloads 417
4578 An Efficient Machine Learning Model to Detect Metastatic Cancer in Pathology Scans Using Principal Component Analysis Algorithm, Genetic Algorithm, and Classification Algorithms

Authors: Bliss Singhal

Abstract:

Machine learning (ML) is a branch of Artificial Intelligence (AI) where computers analyze data and find patterns in the data. The study focuses on the detection of metastatic cancer using ML. Metastatic cancer is the stage where cancer has spread to other parts of the body and is the cause of approximately 90% of cancer-related deaths. Normally, pathologists spend hours each day to manually classifying whether tumors are benign or malignant. This tedious task contributes to mislabeling metastasis being over 60% of the time and emphasizes the importance of being aware of human error and other inefficiencies. ML is a good candidate to improve the correct identification of metastatic cancer, saving thousands of lives and can also improve the speed and efficiency of the process, thereby taking fewer resources and time. So far, the deep learning methodology of AI has been used in research to detect cancer. This study is a novel approach to determining the potential of using preprocessing algorithms combined with classification algorithms in detecting metastatic cancer. The study used two preprocessing algorithms: principal component analysis (PCA) and the genetic algorithm, to reduce the dimensionality of the dataset and then used three classification algorithms: logistic regression, decision tree classifier, and k-nearest neighbors to detect metastatic cancer in the pathology scans. The highest accuracy of 71.14% was produced by the ML pipeline comprising of PCA, the genetic algorithm, and the k-nearest neighbor algorithm, suggesting that preprocessing and classification algorithms have great potential for detecting metastatic cancer.

Keywords: breast cancer, principal component analysis, genetic algorithm, k-nearest neighbors, decision tree classifier, logistic regression

Procedia PDF Downloads 91
4577 The Impact of Neuroscience Knowledge on the Field of Education

Authors: Paula Andrea Segura Delgado, Martha Helena Ramírez-Bahena

Abstract:

Research on how the brain learns has a transcendental application in the educational context. It is crucial for teacher training to understand the nature of brain changes and their direct influence on learning processes. This communication is based on a literature review focused on neuroscience, neuroeducation, and the impact of digital technology on the human brain. Information was gathered from both English and Spanish language sources, using online journals, books and reports. The general objective was to analyze the role of neuroscience knowledge in enriching our understanding of the learning process. In fact, the authors have focused on the impact of digital technology on the human brain as well as its influence in the field of education..Neuroscience knowledge can contribute significantly to improving the training of educators and therefore educational practices. Education as an instrument of change and school as an agent of socialization, it is necessary to understand what it aims to transform: the human brain. Understanding the functioning of the human brain has important repercussions on education: this elucidates cognitive skills, psychological processes and elements that influence the learning process (memory, executive functions, emotions and the circadian cycle); helps identify psychological and neurological deficits that can impede learning processes (dyslexia, autism, hyperactivity); It allows creating environments that promote brain development and contribute to the advancement of brain capabilities in alignment with the stages of neurobiological development. The digital age presents diverse opportunities to every social environment. The frequent use of digital technology (DT) has had a significant and abrupt impact on both the cognitive abilities and physico-chemical properties of the brain, significantly influencing educational processes. Hence, educational community, with the insights from advances in neuroscience, aspire to identify the positive and negative effects of digital technology on the human brain. This knowledge helps ensure the alignment of teacher training and practices with these findings. The knowledge of neuroscience enables teachers to develop teaching methods that are aligned with the way the brain works. For example, neuroscience research has shown that digital technology is having a significant impact on the human brain (addition, anxiety, high levels of dopamine, circadian cycle disorder, decrease in attention, memory, concentration, problems with their social relationships). Therefore, it is important to understand the nature of these changes, their impact on the learning process, and how educators should effectively adapt their approaches based on these brain's changes.

Keywords: digital technology, learn process, neuroscience knowledge, neuroeducation, training proffesors

Procedia PDF Downloads 66
4576 The Use of Artificial Intelligence in Diagnosis of Mastitis in Cows

Authors: Djeddi Khaled, Houssou Hind, Miloudi Abdellatif, Rabah Siham

Abstract:

In the field of veterinary medicine, there is a growing application of artificial intelligence (AI) for diagnosing bovine mastitis, a prevalent inflammatory disease in dairy cattle. AI technologies, such as automated milking systems, have streamlined the assessment of key metrics crucial for managing cow health during milking and identifying prevalent diseases, including mastitis. These automated milking systems empower farmers to implement automatic mastitis detection by analyzing indicators like milk yield, electrical conductivity, fat, protein, lactose, blood content in the milk, and milk flow rate. Furthermore, reports highlight the integration of somatic cell count (SCC), thermal infrared thermography, and diverse systems utilizing statistical models and machine learning techniques, including artificial neural networks, to enhance the overall efficiency and accuracy of mastitis detection. According to a review of 15 publications, machine learning technology can predict the risk and detect mastitis in cattle with an accuracy ranging from 87.62% to 98.10% and sensitivity and specificity ranging from 84.62% to 99.4% and 81.25% to 98.8%, respectively. Additionally, machine learning algorithms and microarray meta-analysis are utilized to identify mastitis genes in dairy cattle, providing insights into the underlying functional modules of mastitis disease. Moreover, AI applications can assist in developing predictive models that anticipate the likelihood of mastitis outbreaks based on factors such as environmental conditions, herd management practices, and animal health history. This proactive approach supports farmers in implementing preventive measures and optimizing herd health. By harnessing the power of artificial intelligence, the diagnosis of bovine mastitis can be significantly improved, enabling more effective management strategies and ultimately enhancing the health and productivity of dairy cattle. The integration of artificial intelligence presents valuable opportunities for the precise and early detection of mastitis, providing substantial benefits to the dairy industry.

Keywords: artificial insemination, automatic milking system, cattle, machine learning, mastitis

Procedia PDF Downloads 71
4575 Applying Multiple Intelligences to Teach Buddhist Doctrines in a Classroom

Authors: Phalaunnnaphat Siriwongs

Abstract:

The classroom of the 21st century is an ever changing forum for new and innovative thoughts and ideas. With increasing technology and opportunity, students have rapid access to information that only decades ago would have taken weeks to obtain. Unfortunately, new techniques and technology are not the cure for the fundamental problems that have plagued the classroom ever since education was established. Class size has been an issue long debated in academia. While it is difficult to pin point an exact number, it is clear that in this case more does not mean better. By looking into the success and pitfalls of classroom size the true advantages of smaller classes will become clear. Previously, one class was comprised of 50 students. Being seventeen and eighteen- year- old students, sometimes it was quite difficult for them to stay focused. To help them understand and gain much knowledge, a researcher introduced “The Theory of Multiple Intelligence” and this, in fact, enabled students to learn according to their own learning preferences no matter how they were being taught. In this lesson, the researcher designed a cycle of learning activities involving all intelligences so that everyone had equal opportunities to learn.

Keywords: multiple intelligences, role play, performance assessment, formative assessment

Procedia PDF Downloads 279
4574 The Role of Named Entity Recognition for Information Extraction

Authors: Girma Yohannis Bade, Olga Kolesnikova, Grigori Sidorov

Abstract:

Named entity recognition (NER) is a building block for information extraction. Though the information extraction process has been automated using a variety of techniques to find and extract a piece of relevant information from unstructured documents, the discovery of targeted knowledge still poses a number of research difficulties because of the variability and lack of structure in Web data. NER, a subtask of information extraction (IE), came to exist to smooth such difficulty. It deals with finding the proper names (named entities), such as the name of the person, country, location, organization, dates, and event in a document, and categorizing them as predetermined labels, which is an initial step in IE tasks. This survey paper presents the roles and importance of NER to IE from the perspective of different algorithms and application area domains. Thus, this paper well summarizes how researchers implemented NER in particular application areas like finance, medicine, defense, business, food science, archeology, and so on. It also outlines the three types of sequence labeling algorithms for NER such as feature-based, neural network-based, and rule-based. Finally, the state-of-the-art and evaluation metrics of NER were presented.

Keywords: the role of NER, named entity recognition, information extraction, sequence labeling algorithms, named entity application area

Procedia PDF Downloads 85
4573 Jointly Learning Python Programming and Analytic Geometry

Authors: Cristina-Maria Păcurar

Abstract:

The paper presents an original Python-based application that outlines the advantages of combining some elementary notions of mathematics with the study of a programming language. The application support refers to some of the first lessons of analytic geometry, meaning conics and quadrics and their reduction to a standard form, as well as some related notions. The chosen programming language is Python, not only for its closer to an everyday language syntax – and therefore, enhanced readability – but also for its highly reusable code, which is of utmost importance for a mathematician that is accustomed to exploit already known and used problems to solve new ones. The purpose of this paper is, on one hand, to support the idea that one of the most appropriate means to initiate one into programming is throughout mathematics, and reciprocal, one of the most facile and handy ways to assimilate some basic knowledge in the study of mathematics is to apply them in a personal project. On the other hand, besides being a mean of learning both programming and analytic geometry, the application subject to this paper is itself a useful tool for it can be seen as an independent original Python package for analytic geometry.

Keywords: analytic geometry, conics, python, quadrics

Procedia PDF Downloads 302
4572 Electrophysiological Correlates of Statistical Learning in Children with and without Developmental Language Disorder

Authors: Ana Paula Soares, Alexandrina Lages, Helena Oliveira, Francisco-Javier Gutiérrez-Domínguez, Marisa Lousada

Abstract:

From an early age, exposure to a spoken language allows us to implicitly capture the structure underlying the succession of the speech sounds in that language and to segment it into meaningful units (words). Statistical learning (SL), i.e., the ability to pick up patterns in the sensory environment even without intention or consciousness of doing it, is thus assumed to play a central role in the acquisition of the rule-governed aspects of language and possibly to lie behind the language difficulties exhibited by children with development language disorder (DLD). The research conducted so far has, however, led to inconsistent results, which might stem from the behavioral tasks used to test SL. In a classic SL experiment, participants are first exposed to a continuous stream (e.g., syllables) in which, unbeknownst to the participants, stimuli are grouped into triplets that always appear together in the stream (e.g., ‘tokibu’, ‘tipolu’), with no pauses between each other (e.g., ‘tokibutipolugopilatokibu’) and without any information regarding the task or the stimuli. Following exposure, SL is assessed by asking participants to discriminate between triplets previously presented (‘tokibu’) from new sequences never presented together during exposure (‘kipopi’), i.e., to perform a two-alternative-forced-choice (2-AFC) task. Despite the widespread use of the 2-AFC to test SL, it has come under increasing criticism as it is an offline post-learning task that only assesses the result of the learning that had occurred during the previous exposure phase and that might be affected by other factors beyond the computation of regularities embedded in the input, typically the likelihood two syllables occurring together, a statistic known as transitional probability (TP). One solution to overcome these limitations is to assess SL as exposure to the stream unfolds using online techniques such as event-related potentials (ERP) that is highly sensitive to the time-course of the learning in the brain. Here we collected ERPs to examine the neurofunctional correlates of SL in preschool children with DLD, and chronological-age typical language development (TLD) controls who were exposed to an auditory stream in which eight three-syllable nonsense words, four of which presenting high-TPs and the other four low-TPs, to further analyze whether the ability of DLD and TLD children to extract-word-like units from the steam was modulated by words’ predictability. Moreover, to ascertain if the previous knowledge of the to-be-learned-regularities affected the neural responses to high- and low-TP words, children performed the auditory SL task, firstly, under implicit, and, subsequently, under explicit conditions. Although behavioral evidence of SL was not obtained in either group, the neural responses elicited during the exposure phases of the SL tasks differentiated children with DLD from children with TLD. Specifically, the results indicated that only children from the TDL group showed neural evidence of SL, particularly in the SL task performed under explicit conditions, firstly, for the low-TP, and, subsequently, for the high-TP ‘words’. Taken together, these findings support the view that children with DLD showed deficits in the extraction of the regularities embedded in the auditory input which might underlie the language difficulties.

Keywords: development language disorder, statistical learning, transitional probabilities, word segmentation

Procedia PDF Downloads 191
4571 Online Faculty Professional Development: An Approach to the Design Process

Authors: Marie Bountrogianni, Leonora Zefi, Krystle Phirangee, Naza Djafarova

Abstract:

Faculty development is critical for any institution as it impacts students’ learning experiences and faculty performance with regards to course delivery. With that in mind, The Chang School at Ryerson University embarked on an initiative to develop a comprehensive, relevant faculty development program for online faculty and instructors. Teaching Adult Learners Online (TALO) is a professional development program designed to build capacity among online teaching faculty to enhance communication/facilitation skills for online instruction and establish a Community of Practice to allow for opportunities for online faculty to network and exchange ideas and experiences. TALO is comprised of four online modules and each module provides three hours of learning materials. The topics focus on online teaching and learning experience, principles and practices, opportunities and challenges in online assessments as well as course design and development. TALO offers a unique experience for online instructors who are placed in the role of a student and an instructor through interactivities involving discussions, hands-on assignments, peer mentoring while experimenting with technological tools available for their online teaching. Through exchanges and informal peer mentoring, a small interdisciplinary community of practice has started to take shape. Successful participants have to meet four requirements for completion: i) participate actively in online discussions and activities, ii) develop a communication plan for the course they are teaching, iii) design one learning activity/or media component, iv) design one online learning module. This study adopted a mixed methods exploratory sequential design. For the qualitative phase of this study, a thorough literature review was conducted on what constitutes effective faculty development programs. Based on that review, the design team identified desired competencies for online teaching/facilitation and course design. Once the competencies were identified, a focus group interview with The Chang School teaching community was conducted as a needs assessment and to validate the competencies. In the quantitative phase, questionnaires were distributed to instructors and faculty after the program was launched to continue ongoing evaluation and revisions, in hopes of further improving the program to meet the teaching community’s needs. Four faculty members participated in a one-hour focus group interview. Major findings from the focus group interview revealed that for the training program, faculty wanted i) to better engage students online, ii) to enhance their online teaching with specific strategies, iii) to explore different ways to assess students online. 91 faculty members completed the questionnaire in which findings indicated that: i) the majority of faculty stated that they gained the necessary skills to demonstrate instructor presence through communication and use of technological tools provided, ii) increased faculty confidence with course management strategies, iii) learning from peers is most effective – the Community of Practice is strengthened and valued even more as program alumni become facilitators. Although this professional development program is not mandatory for online instructors, since its launch in Fall 2014, over 152 online instructors have successfully completed the program. A Community of Practice emerged as a result of the program and participants continue to exchange thoughts and ideas about online teaching and learning.

Keywords: community of practice, customized, faculty development, inclusive design

Procedia PDF Downloads 179
4570 Multi-Sensor Target Tracking Using Ensemble Learning

Authors: Bhekisipho Twala, Mantepu Masetshaba, Ramapulana Nkoana

Abstract:

Multiple classifier systems combine several individual classifiers to deliver a final classification decision. However, an increasingly controversial question is whether such systems can outperform the single best classifier, and if so, what form of multiple classifiers system yields the most significant benefit. Also, multi-target tracking detection using multiple sensors is an important research field in mobile techniques and military applications. In this paper, several multiple classifiers systems are evaluated in terms of their ability to predict a system’s failure or success for multi-sensor target tracking tasks. The Bristol Eden project dataset is utilised for this task. Experimental and simulation results show that the human activity identification system can fulfill requirements of target tracking due to improved sensors classification performances with multiple classifier systems constructed using boosting achieving higher accuracy rates.

Keywords: single classifier, ensemble learning, multi-target tracking, multiple classifiers

Procedia PDF Downloads 276