Search results for: elastic light scattering spectroscopy
3140 Design and Fabrication of ZSO Nanocomposite Thin Film Based NO2 Gas Sensor
Authors: Bal Chandra Yadav, Rakesh K. Sonker, Anjali Sharma, Punit Tyagi, Vinay Gupta, Monika Tomar
Abstract:
In the present study, ZnO doped SnO2 thin films of various compositions were deposited on the surface of a corning substrate by dropping the two sols containing the precursors for composite (ZSO) with subsequent heat treatment. The sensor materials used for selective detection of nitrogen dioxide (NO2) were designed from the correlation between the sensor composition and gas response. The available NO2 sensors are operative at very high temperature (150-800 °C) with low sensing response (2-100) even in higher concentrations. Efforts are continuing towards the development of NO2 gas sensor aiming with an enhanced response along with a reduction in operating temperature by incorporating some catalysts or dopants. Thus in this work, a novel sensor structure based on ZSO nanocomposite has been fabricated using chemical route for the detection of NO2 gas. The structural, surface morphological and optical properties of prepared films have been studied by using X-ray diffraction (XRD), Atomic force microscopy (AFM), Transmission electron microscope (TEM) and UV-visible spectroscopy respectively. The effect of thickness variation from 230 nm to 644 nm of ZSO composite thin film has been studied and the ZSO thin film of thickness ~ 460 nm was found to exhibit the maximum gas sensing response ~ 2.1×103 towards 20 ppm NO2 gas at an operating temperature of 90 °C. The average response and recovery times of the sensor were observed to be 3.51 and 6.91 min respectively. Selectivity of the sensor was checked with the cross-exposure of vapour CO, acetone, IPA, CH4, NH3 and CO2 gases. It was found that besides the higher sensing response towards NO2 gas, the prepared ZSO thin film was also highly selective towards NO2 gas.Keywords: ZSO nanocomposite thin film, ZnO tetrapod structure, NO2 gas sensor, sol-gel method
Procedia PDF Downloads 3423139 Malachite Ore Treatment with Typical Ammonium Salts and Its Mechanism to Promote the Flotation Performance
Authors: Ayman M. Ibrahim, Jinpeng Cai, Peilun Shen, Dianwen Liu
Abstract:
The difference in promoting sulfurization between different ammonium salts and its anion's effect on the sulfurization of the malachite surface was systematically studied. Therefore, this study takes malachite, a typical copper oxide mineral, as the research object, field emission scanning electron microscopy and energy-dispersive X-ray analysis (FESEM‒EDS), X-ray photoelectron spectroscopy (XPS), and other analytical and testing methods, as well as pure mineral flotation experiments, were carried out to examine the superiority of the ammonium salts as the sulfurizing reagent of malachite at the microscopic level. Additionally, the promoting effects of ammonium sulfate and ammonium phosphate on the malachite sulfurization of xanthate-flotation were compared systematically from the microstructure of sulfurized products, elemental composition, chemical state of characteristic elements, and hydrophobicity surface evolution. The FESEM and AFM results presented that after being pre-treated with ammonium salts, the adhesion of sulfurized products formed on the mineral surface was denser; thus, the flake radial dimension product was significantly greater. For malachite sulfurization flotation, the impact of ammonium phosphate in promoting sulfurization is weaker than ammonium sulfate. The reason may be that hydrolyzing phosphate consumes a substantial quantity of H+ in the solution, which hastens the formation of the copper-sulfur products, decreasing the adhesion stability of copper-sulfur species on the malachite surface.Keywords: sulfurization flotation, adsorption characteristics, malachite, hydrophobicity
Procedia PDF Downloads 693138 Elucidation of the Photoreactivity of 2-Hydroxychalcones and the Effect of Continuous Photoflow Method on the Photoreactivity
Authors: Sobiya George, Anna Dora Gudmundsdottir
Abstract:
The 2-hydroxychalcones form an important group of organic compounds not only because of their pharmacological properties but also because they are intermediates in the biosynthesis of flavanones. We studied the photoreactivity of 2-hydroxychalcone derivatives in aprotic solvent acetonitrile and found that their photochemistry is concentration-dependent. Irradiation of 2-hydroxychalcone derivatives with 365 nm light emitting diode (LED) in dilute concentration selectively forms flavanones, whereas, at higher concentrations, an additional photoproduct is observed. However, the application of the continuous photo-flow method resulted in the selective formation of flavanones even at higher concentrations. To understand the reaction mechanism and explain the concentration-dependent photoreactivity of 2-hydroxychalcones, we preformed trapping studies with tris(trimethylsilyl)silane, nanosecond laser flash photolysis, and time dependent-density functional theory (TD-DFT) calculations.Keywords: flavanones, hydroxychalcones, laser flash photolysis, TD-DFT calculations
Procedia PDF Downloads 1513137 Tailoring Polycrystalline Diamond for Increasing Earth-Drilling Challenges
Authors: Jie Chen, Chris Cheng, Kai Zhang
Abstract:
Polycrystalline diamond compact (PDC) cutters with a polycrystalline diamond (PCD) table supported by a cemented tungsten carbide substrate have been widely used for earth-drilling tools in the oil and gas industry. Both wear and impact resistances are key figure of merits of PDC cutters, and they are closely related to the microstructure of the PCD table. As oil and gas exploration enters deeper, harder, and more complex formations, plus increasing requirement of accelerated downhole drilling speed and drilling cost reduction, current PDC cutters face unprecedented challenges for maintaining a longer drilling life than ever. Excessive wear on uneven hard formations, spalling, chipping, and premature fracture due to impact loads are common failure modes of PDC cutters in the field. Tailoring microstructure of the PCD table is one of the effective approaches to improve the wear and impact resistances of PDC cutters, along with other factors such as cutter geometry and bit design. In this research, cross-sectional microstructure, fracture surface, wear surface, and elemental composition of PDC cutters were analyzed using scanning electron microscopy (SEM) with both backscattered electron and secondary electron detectors, and energy dispersive X-ray spectroscopy (EDS). The microstructure and elemental composition were further correlated with the wear and impact resistances of corresponding PDC cutters. Wear modes and impact toughening mechanisms of state-of-the-art PDCs were identified. Directions to further improve the wear and impact resistances of PDC cutters were proposed.Keywords: fracture surface, microstructure, polycrystalline diamond, PDC, wear surface
Procedia PDF Downloads 553136 Wear Behaviors of B4C and SiC Particle Reinforced AZ91 Magnesium Matrix Metal Composites
Authors: M. E. Turan, H. Zengin, E. Cevik, Y. Sun, Y. Turen, H. Ahlatci
Abstract:
In this study, the effects of B4C and SiC particle reinforcements on wear properties of magnesium matrix metal composites produced by pressure infiltration method were investigated. AZ91 (9%Al-1%Zn) magnesium alloy was used as a matrix. AZ91 magnesium alloy was melted under an argon atmosphere. The melt was infiltrated to the particles with an appropriate pressure. Wear tests, hardness tests were performed respectively. Microstructure characterizations were examined by light optical (LOM) and scanning electron microscope (SEM). The results showed that uniform particle distributions were achieved in both B4C and SiC reinforced composites. Wear behaviors of magnesium matrix metal composites changed as a function of type of particles. SiC reinforced composite has better wear performance and higher hardness than B4C reinforced composite.Keywords: magnesium matrix composite, pressure infiltration, SEM, wear
Procedia PDF Downloads 3613135 Synthesis and Characterization of Un-Doped and Velvet Tamarind Doped ZnS Crystals, Using Sol Gel Method
Authors: Uchechukwu Vincent Okpala
Abstract:
Under the Sun, energy is a key factor for the sustenance of life and its environment. The need to protect the environment as energy is generated and consumed has called for renewable and green energy sources. To be part of this green revolution, we synthesized and characterized undoped and velvet tamarind doped zinc sulfide (ZnS) crystals using sol-gel methods. Velvet tamarind was whittled down using the top-down approach of nanotechnology. Sodium silicate, tartaric acid, zinc nitrate, and thiourea were used as precursors. The grown samples were annealed at 105°C. Structural, optical, and compositional analyses of the grown samples revealed crystalline structures with varied crystallite sizes influenced by doping. Energy-dispersive X-ray spectroscopy confirmed elemental compositions of Zn, S, C and O in the films. Atomic percentages of the elements varied with VT doping. FT-IR analysis indicated the presence of functional groups like O-H stretching (alcohol), C=C=C stretching (alkene group), C=C bending, C-H stretching (alkane), N-H stretching (aliphatic primary amine) and N=C=S stretching (isothiocyanate) constituent in the film. The transmittance of the samples increased from the visible region to the infrared region making the samples good for poultry and solar energy applications. The bandgap energy of the films decreased as the number of VT drops increased, from 2.4 to 2.2. They were wide band gap materials and were good for optoelectronic, photo-thermal, high temperature, high power and solar cell applications.Keywords: doping, sol-gel, velvet tamarind, ZnS.
Procedia PDF Downloads 493134 Enhancement of Dielectric Properties of Co-Precipitated Spinel Ferrites NiFe₂O₄/Carbon Nano Fibers Nanohybrid
Authors: Iftikhar Hussain Gul, Syeda Aatika
Abstract:
Nickel ferrite was prepared via wet chemical co-precipitation route. Carbon Nano Fibers (CNFs) were used to prepare NiFe₂O₄/CNFs nanohybrids. Polar solvent (ortho-xylene) was used for the dispersion of CNFs in ferrite matrix. X-ray diffraction patterns confirmed the formation of NiFe₂O₄/CNFs nanohybrids without any impurity peak. FTIR patterns showed two consistent characteristic absorption bands for tetrahedral and octahedral sites, confirming the formation of spinel structure of NiFe₂O₄. Scanning Electron Microscopy (SEM) images confirmed the coating of nickel ferrite nanoparticles on CNFs, which confirms the efficiency of deployed method. The dielectric properties were measured as a function of frequency at room temperature. Pure NiFe₂O₄ showed dielectric constant of 1.79 ×10³ at 100 Hz, which increased massively to 2.92 ×10⁶ at 100 Hz with the addition of 20% by weight of CNFs, proving it to be potential candidate for applications in supercapacitors. The impedance analysis showed a considerable decrease of resistance, reactance and cole-cole plot which confirms the decline of impedance on addition of CNFs. The pure NiFe₂O₄ has highest impedance values of 5.89 ×10⁷ Ohm at 100 Hz while the NiFe₂O₄/CNFs nanohybrid with CNFs (20% by weight) has the lowest impedance values of 4.25×10³ Ohm at 100 Hz, which proves this nanohybrid is useful for high-frequency applications.Keywords: AC impedance, co-precipitation, nanohybrid, Fourier transform infrared spectroscopy, x-ray diffraction
Procedia PDF Downloads 1413133 L2 Acquisition of Tense and Aspect by Cantonese and Mandarin ESL Learners of Different Proficiency Levels
Authors: Mable Chan
Abstract:
The present study about the acquisition of tense and aspect by Cantonese and Mandarin ESL learners aims to investigate the relationship between knowledge, the role that classroom input plays in the development of that knowledge, and learners' use of the L2 knowledge they acquire (i.e. their performance). Chinese has been argued as a tenseless language and Chinese ESL learners have to acquire the property from scratch. The study of acquisition of tense and aspect is a very fruitful research area in second language acquisition for a number of reasons. First, tense and aspect are notorious for being difficult for Chinese ESL learners. Second, to our knowledge, no studies have been done to compare Cantonese and Mandarin ESL learners and age effects in one single study. Data are now being collected and the findings from this comparison study of tense-aspect acquisition will shed light on both theoretical and pedagogical issues in second language acquisition, and contribute to a better understanding of both theoretical aspect concerning L2 acquisition of tense and aspect, and pedagogy of tense for L2 Chinese ESL learners.Keywords: aspect, second language acquisition, tense, universal grammar
Procedia PDF Downloads 3513132 Language Education Policy in Arab Schools in Israel
Authors: Fatin Mansour Daas
Abstract:
Language education responds to and is reflective of emerging social and political trends. Language policies and practices are shaped by political, economic, social and cultural considerations. Following this, Israeli language education policy as implemented in Arab schools in Israel is influenced by the particular political and social situation of Arab-Palestinian citizens of Israel. This national group remained in their homeland following the war in 1948 between Israel and its Arab neighbors and became Israeli citizens following the establishment of the State of Israel. This study examines language policy in Arab schools in Israel from 1948 until the present time in light of the unique experience of the Palestinian Arab homeland minority in Israel with a particular focus on questions of politics and identity. The establishment of the State of Israel triggered far-reaching political, social and educational transformations within Arab Palestinian society in Israel, including in the area of language and language studies. Since 1948, the linguistic repertoire of Palestinian Arabs in Israel has become more complex and diverse, while the place and status of different languages have changed. Following the establishment of the State of Israel, only Hebrew and Arabic were retained as the official languages, and Israeli policy reflected this in schools as well: with the advent of the Jewish state, Hebrew language education among Palestinians in Israel has increased. Similarly, in Arab Palestinian schools in Israel, English is taught as a third language, Hebrew as a second language, and Arabic as a first language – even though it has become less important to native Arabic speakers. This research focuses on language studies and language policy in the Arab school system in Israel from 1948 onwards. It will analyze the relative focus of language education between the different languages, the rationale of various language education policies, and the pedagogic approach used to teach each language and student achievements vis-à-vis language skills. This study seeks to understand the extent to which Arab schools in Israel are multi-lingual by examining successes, challenges and difficulties in acquiring the respective languages. This qualitative study will analyze five different components of language education policy: (1) curriculum, (2) learning materials; (3) assessment; (4) interviews and (5) archives. Firstly, it consists of an analysis examining language education curricula, learning materials and assessments used in Arab schools in Israel from 1948-2018 including a selection of language textbooks for the compulsory years of study and the final matriculation (Bagrut) examinations. The findings will also be based on archival material which traces the evolution of language education policy in Arabic schools in Israel from the years 1948-2018. This archival research, furthermore, will reveal power relations and general decision-making in the field of the Arabic education system in Israel. The research will also include interviews with Ministry of Education staff who provide instructional oversight in the instruction of the three languages in the Arabic education system in Israel. These interviews will shed light on the goals of language education as understood by those who are in charge of implementing policy.Keywords: language education policy, languages, multilingualism, language education, educational policy, identity, Palestinian-Arabs, Arabs in Israel, educational school system
Procedia PDF Downloads 933131 Effect of Plasma Treatment on UV Protection Properties of Fabrics
Authors: Sheila Shahidi
Abstract:
UV protection by fabrics has recently become a focus of great interest, particularly in connection with environmental degradation or ozone layer depletion. Fabrics provide simple and convenient protection against UV radiation (UVR), but not all fabrics offer sufficient UV protection. To describe the degree of UVR protection offered by clothing materials, the ultraviolet protection factor (UPF) is commonly used. UV-protective fabric can be generated by application of a chemical finish using normal wet-processing methodologies. However, traditional wet-processing techniques are known to consume large quantities of water and energy and may lead to adverse alterations of the bulk properties of the substrate. Recently, usage of plasmas to generate physicochemical surface modifications of textile substrates has become an intriguing approach to replace or enhance conventional wet-processing techniques. In this research work the effect of plasma treatment on UV protection properties of fabrics was investigated. DC magnetron sputtering was used and the parameters of plasma such as gas type, electrodes, time of exposure, power and, etc. were studied. The morphological and chemical properties of samples were analyzed using Scanning Electron Microscope (SEM) and Furrier Transform Infrared Spectroscopy (FTIR), respectively. The transmittance and UPF values of the original and plasma-treated samples were measured using a Shimadzu UV3101 PC (UV–Vis–NIR scanning spectrophotometer, 190–2, 100 nm range). It was concluded that, plasma which is an echo-friendly, cost effective and dry technique is being used in different branches of the industries, and will conquer textile industry in the near future. Also it is promising method for preparation of UV protection textile.Keywords: fabric, plasma, textile, UV protection
Procedia PDF Downloads 5233130 Serious Gaming for Behaviour Change: A Review
Authors: Ramy Hammady, Sylvester Arnab
Abstract:
Significant attention has been directed to adopt game interventions practically to change certain behaviours in many disciplines such as health, education, psychology through many years. That’s due to the intrinsic motivation that games can cause and the substantial impact the games can leave on the player. Many review papers were induced to highlight and measure the effectiveness of the game’s interventions on changing behaviours; however, most of these studies neglected the game design process itself and the game features and elements that can stimuli changing behaviours. Therefore, this paper aims to identify the most game design mechanics and features that are the most influencing on changing behaviour during or after games interventions. This paper also sheds light on the theories of changing behaviours that clearly can led the game design process. This study gives directions to game designers to spot the most influential game features and mechanics for changing behaviour games in order to exploit it on the same manner.Keywords: behaviour change, game design, serious gaming, gamification, review
Procedia PDF Downloads 2123129 Formation of Convergence Culture in the Framework of Conventional Media and New Media
Authors: Berkay Buluş, Aytekin İşman, Kübra Yüzüncüyıl
Abstract:
Developments in media and communication technologies have changed the way we use media. The importance of convergence culture has been increasing day by day within the framework of these developments. With new media, it is possible to say that social networks are the most powerful platforms that are integrated to this digitalization process. Although social networks seem like the place that people can socialize, they can also be utilized as places of production. On the other hand, audience has become users within the framework of transformation from national to global broadcasting. User generated contents make conventional media and new media collide. In this study, these communication platforms will be examined not as platforms that replace one another but mediums that unify each other. In the light of this information, information that is produced by users regarding new media platforms and all new media use practices are called convergence culture. In other words, convergence culture means intersections of conventional and new media. In this study, examples of convergence culture will be analyzed in detail.Keywords: new media, convergence culture, convergence, use of new media, user generated content
Procedia PDF Downloads 2753128 Enhancing Cellulose Acetate Films: Impact of Glycerol and Ionic Liquid Plasticizers
Authors: Rezzouq Asiya, Bouftou Abderrahim, Belfadil Doha, Taoufyk Azzeddine, El Bouchti Mehdi, Zyade Souad, Cherkaoui Omar, Majid Sanaa
Abstract:
Plastic packaging is widely used, but its pollution is a major environmental problem. Solutions require new sustainable technologies, environmental management, and the use of bio-based polymers as sustainable packaging. Cellulose acetate (CA) is a biobased polymer used in a variety of applications such as the manufacture of plastic films, textiles, and filters. However, it has limitations in terms of thermal stability and rigidity, which necessitates the addition of plasticizers to optimize its use in packaging. Plasticizers are molecules that increase the flexibility of polymers, but their influence on the chemical and physical properties of films (CA) has not been studied in detail. Some studies have focused on mechanical and thermal properties. However, an in-depth analysis is needed to understand the interactions between the additives and the polymer matrix. In this study, the aim is to examine the effect of two types of plasticizers, glycerol (a conventional plasticizer) and an ionic liquid, on the transparency, mechanical, thermal and barrier properties of cellulose acetate (CA) films prepared by the solution-casting method . Various analytical techniques were used to characterize these films, including infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), water vapor permeability (WVP), oxygen permeability, scanning electron microscopy (SEM), opacity, transmission analysis and mechanical tests.Keywords: cellulose acetate, plasticizers, biopolymers, ionic liquid, glycerol.
Procedia PDF Downloads 433127 Study of Corrosion Behavior of Experimental Alloys with Different Levels of Cr and High Levels of Mo Compared to Aisi 444
Authors: Ana P. R. N. Barroso, Maurício N. Kleinberg, Frederico R. Silva, Rodrigo F. Guimarães, Marcelo M. V. Parente, Walney S. Araújo
Abstract:
The fight against accelerated wear of the equipment used in the oil and gas sector is a challenge for minimizing maintenance costs. Corrosion being one of the main agents of equipment deterioration, we seek alternative materials that exhibit improved corrosion resistance at low cost of production. This study aims to evaluate the corrosion behavior of experimental alloys containing 15% and 17% of chromium (Cr) and 5% of molybdenum (Mo) in comparison with an AISI 444 commercial alloy. Microstructural analyzes were performed on samples of the alloys before and after the electrochemical tests. Two samples of each solubilized alloy were also taken for analysis of the corrosion behavior by testing potentiodynamic polarization (PP) and Electrochemical Impedance Spectroscopy (EIS) with immersion time of 24 hours in electrolytic solution with acidic character. The graphics obtained through electrochemical tests of PP and EIS indicated that among the experimental alloys, the alloy with higher chromium content (17%) had a higher corrosion resistance, confirming the beneficial effect of adding chromium. When comparing the experimental alloys with the AISI 444 commercial alloy, it is observed that the AISI 444 commercial alloy showed superior corrosion resistance to that of the experimental alloys for both assays, PP and EIS. The microstructural analyzes performed after the PP and EIS tests confirmed the results previously described. These results suggest that the addition of these levels of molybdenum did not favor the electrochemical behavior of experimental ferritic alloys for the electrolytic medium studied.Keywords: corrosion, molybdenum, electrochemical tests, experimental alloys
Procedia PDF Downloads 5753126 [Keynote Talk]: Determination of Metal Content in the Surface Sediments of the Istanbul Bosphorus Strait
Authors: Durata Haciu, Elif Sena Tekin, Gokce Ozturk, Patricia Ramey Balcı
Abstract:
Coastal zones are under increasing threat due to anthropogenic activities that introduce considerable pollutants such as heavy metals into marine ecosystems. As part of a larger experimental study examining species responses to contaminated marine sediments, surface sediments (top 5cm) were analysed for major trace elements at three locations in Istanbul Straight. Samples were randomly collected by divers (May 2018) using hand-corers from Istinye (n=4), Garipce (n=10) and Poyrazköy (n=6), at water depths of 4-8m. Twelve metals were examined: As, arsenic; Pb, lead; Cd, cadmium; Cr, chromium; Cu, Copper; Fe, Iron; Ni, Nickel; Zn, Zinc; V, vanadium; Mn, Manganese; Ba, Barium; and Ag, silver by wavelength-dispersive X-ray fluorescence spectrometry (WDXRF) and Inductively Coupled Plasma/Mass Spectroscopy (ICP/MS). Preliminary results indicate that the average concentrations of metals (mg kg⁻¹) varied considerably among locations. In general, concentrations were relatively lower at Garipce compared to either Istinye or Poyrazköy. For most metals mean concentrations were highest at Poyrazköy and Ag and Cd were below detection limits (exception= Ag in a few samples). While Cd and As were undetected in all stations, the concentrations of Fe and Ni fall in the criteria of moderately polluted range and the rest of the metals in the range of low polluted range as compared to Effects Range Low (ERL) and Effects Range median (ERM) values determined by US Environmental Protection Agency (EPA).Keywords: effect-range classification, ICP/MS, marine sediments, XRF
Procedia PDF Downloads 1333125 Synthesis, Structural, Magnetic, Optical, and Dielectric Characterization of Nickel-Substituted Cobalt Ferrite Nanoparticles and Potential Antibacterial Applications
Authors: Tesfay Gebremicheal Reda, K. Samatha, Paul Douglas Sanasi, D. Parajuli
Abstract:
Nanoparticle technology is fast progressing and is being employed in innumerable medical applications. At this time, the public's health is seriously threatened by the rise of bacterial strains resistant to several medications. Metal nanoparticles are a potential alternate approach for tackling this global concern, and this is the main focus of this study. The citrate precursor sol-gel synthesis method was used to synthesize the Niₓ Co₁₋ₓ Fe₂ O₄, (where x = 0.0:0.2:1.0) nanoparticle. XRD identified the development of the cubic crystal structure to have a preferential orientation along (311), and the average particle size was found to be 29-38 nm. The average crystallizes assessed with ImageJ software and origin 22 of the SEM are nearly identical to the XRD results. In the created NCF NPs, the FT-IR spectroscopy reveals structural examinations and the redistribution of cations between octahedral (505-428 cm⁻¹) and tetrahedral (653-603 cm⁻¹) locales. As the Co²⁺ cation is substituted with Ni²⁺, the coercive fields HC decrease from 2384 Oe to 241.93 Oe. Band gap energy rises as Ni concentration increases, which may be attributed to the fact that the ionic radii of Ni²⁺ ions are smaller than that of Co²⁺ ions, which results in a strong electrostatic interaction. On the contrary, except at x = 0.4, the dielectric constant decreases as the nickel concentration increases. According to the findings of this research work, nanoparticles are composed of Ni₀.₄ Co₀.₆ Fe₂ O₄ have demonstrated a promising value against S. aureus and E. coli, and it suggests a proposed model for their potential use as a source of antibacterial agent.Keywords: antimicrobial, band gap, citrate precursor, dielectric, nanoparticle
Procedia PDF Downloads 773124 Governance Framework for an Emerging Trust Ecosystem with a Blockchain-Based Supply Chain
Authors: Ismael Ávila, José Reynaldo F. Filho, Vasco Varanda Picchi
Abstract:
The ever-growing consumer awareness of food provenance in Brazil is driving the creation of a trusted ecosystem around the animal protein supply chain. The traceability and accountability requirements of such an ecosystem demand a blockchain layer to strengthen the weak links in that chain. For that, direct involvement of the companies in the blockchain transactions, including as validator nodes of the network, implies formalizing a partnership with the consortium behind the ecosystem. Yet, their compliance standards usually require that a formal governance structure is in place before they agree with any membership terms. In light of such a strategic role of blockchain governance, the paper discusses a framework for tailoring a governance model for a blockchain-based solution aimed at the meat supply chain and evaluates principles and attributes in terms of their relevance to the development of a robust trust ecosystem.Keywords: blockchain, governance, trust ecosystem, supply chain, traceability
Procedia PDF Downloads 1233123 Nano-Structured Hydrophobic Silica Membrane for Gas Separation
Authors: Sajid Shah, Yoshimitsu Uemura, Katsuki Kusakabe
Abstract:
Sol-gel derived hydrophobic silica membranes with pore sizes less than 1 nm are quite attractive for gas separation in a wide range of temperatures. A nano-structured hydrophobic membrane was prepared by sol-gel technique on a porous α–Al₂O₃ tubular support with yttria stabilized zirconia (YSZ) as an intermediate layer. Bistriethoxysilylethane (BTESE) derived sol was modified by adding phenyltriethoxysilylethane (PhTES) as an organic template. Six times dip coated modified silica membrane having a thickness of about 782 nm was characterized by field emission scanning electron microscopy. Thermogravimetric analysis, together along contact angle and Fourier transform infrared spectroscopy, showed that hydrophobic properties were improved by increasing the PhTES content. The contact angle of water droplet increased from 37° for pure to 111.5° for the modified membrane. The permeance of single gas H₂ was higher than H₂:CO₂ ratio of 75:25 binary feed mixtures. However, the permeance of H₂ for 60:40 H₂:CO₂ was found lower than single and binary mixture 75:25 H₂:CO₂. The binary selectivity values for 75:25 H₂:CO₂ were 24.75, 44, and 57, respectively. Selectivity had an inverse relation with PhTES content. Hydrophobicity properties were improved by increasing PhTES content in the silica matrix. The system exhibits proper three layers adhesion or integration, and smoothness. Membrane system suitable in steam environment and high-temperature separation. It was concluded that the hydrophobic silica membrane is highly promising for the separation of H₂/CO₂ mixture from various H₂-containing process streams.Keywords: gas separation, hydrophobic properties, silica membrane, sol–gel method
Procedia PDF Downloads 1263122 Real-Time Nonintrusive Heart Rate Measurement: Comparative Case Study of LED Sensorics' Accuracy and Benefits in Heart Monitoring
Authors: Goran Begović
Abstract:
In recent years, many researchers are focusing on non-intrusive measuring methods when it comes to human biosignals. These methods provide solutions for everyday use, whether it’s health monitoring or finessing the workout routine. One of the biggest issues with these solutions is that the sensors’ accuracy is highly variable due to many factors, such as ambiental light, skin color diversity, etc. That is why we wanted to explore different outcomes under those kinds of circumstances in order to find the most optimal algorithm(s) for extracting heart rate (HR) information. The optimization of such algorithms can benefit the wider, cheaper, and safer application of home health monitoring, without having to visit medical professionals as often when it comes to observing heart irregularities. In this study, we explored the accuracy of infrared (IR), red, and green LED sensorics in a controlled environment and compared the results with a medically accurate ECG monitoring device.Keywords: data science, ECG, heart rate, holter monitor, LED sensors
Procedia PDF Downloads 1293121 Effects of Arcing in Air on the Microstructure, Morphology and Photoelectric Work Function of Ag-Ni (60/40) Contact Materials
Authors: Mohamed Akbi, Aissa Bouchou
Abstract:
The present work aims to throw light on the effects of arcing in air on the surface state of contact pastilles made of silver-nickel Ag-Ni (60/40). Also, the photoelectric emission from these electrical contacts has been investigated in the spectral range of 196-256 nm. In order to study the effects of arcing on the EWF, the metallic samples were subjected to electrical arcs in air, at atmospheric pressure and room temperature, after that, they have been introduced into the vacuum chamber of an experimental UHV set-up for EWF measurements. Both Fowler method of isothermal curves and linearized Fowler plots were used for the measurement of the EWF by the photoelectric effect. It has been found that the EWF varies with the number of applied arcs. Thus, after 500 arcs in air, the observed EWF increasing is probably due to progressive inclusion of oxide on alloy surface. Microscopic examination is necessary to get better understandings on EWF of silver alloys, for both virgin and arced electrical contacts.Keywords: Ag-Ni contact materials, arcing effects, electron work function, Fowler methods, photoemission
Procedia PDF Downloads 3873120 Effect of Barium Doping on Structural, Morphological, Optical and Photocatalytic Properties of Sprayed ZnO Thin Films
Authors: H. Djaaboube, I. Loucif, Y. Bouachiba, R. Aouati, A. Maameri, A. Taabouche, A. Bouabellou
Abstract:
Thin films of pure and barium-doped zinc oxide (ZnO) were prepared using a spray pyrolysis process. The films were deposited on glass substrates at 450°C. The different samples are characterized by X-ray diffraction (XRD) and UV-Vis spectroscopy. X-ray diffraction patterns reveal the formation of a single ZnO Wurtzite structure and the good crystallinity of the films. The substitution of Ba ions influences the texture of the layers and makes the (002) plane a preferential growth plane. At concentrations below 6% Ba, the hexagonal structure of ZnO undergoes compressive stresses due to barium ions which have a radius twice of the Zn ions. This result leads to the decrees of a and c parameters and, therefore, the volume of the unit cell. This result is confirmed by the decrease in the number of crystallites and the increase in the size of the crystallites. At concentrations above 6%, barium substitutes the zinc atom and modifies the structural parameters of the thin layers. The bandgap of ZnO films decreased with increasing doping; this decrease is probably due to the 4d orbitals of the Ba atom due to the sp-d spin-exchange interactions between the band electrons and the localized d-electrons of the substituted Ba ion. Although, the Urbache energy undergoes an increase which implies the creation of energy levels below the conduction band and decreases the band gap width. The photocatalytic activity of ZnO doped 9% Ba was evaluated by the photodegradation of methylene blue under UV irradiation.Keywords: barium, doping, photodegradation, spray pyrolysis, ZnO
Procedia PDF Downloads 843119 Green Synthesis of Magnetic, Silica Nanocomposite and Its Adsorptive Performance against Organochlorine Pesticides
Authors: Waleed A. El-Said, Dina M. Fouad, Mohamed H. Aly, Mohamed A. El-Gahami
Abstract:
Green synthesis of nanomaterials has received increasing attention as an eco-friendly technology in materials science. Here, we have used two types of extractions from green tea leaf (i.e. total extraction and tannin extraction) as reducing agents for a rapid, simple and one step synthesis method of mesoporous silica nanoparticles (MSNPs)/iron oxide (Fe3O4) nanocomposite based on deposition of Fe3O4 onto MSNPs. MSNPs/Fe3O4 nanocomposite were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray, vibrating sample magnetometer, N2 adsorption, and high-resolution transmission electron microscopy. The average mesoporous silica particle diameter was found to be around 30 nm with high surface area (818 m2/gm). MSNPs/Fe3O4 nanocomposite was used for removing lindane pesticide (an environmental hazard material) from aqueous solutions. Fourier transform infrared, UV-vis, High-performance liquid chromatography and gas chromatography techniques were used to confirm the high ability of MSNPs/Fe3O4 nanocomposite for sensing and capture of lindane molecules with high sorption capacity (more than 89%) that could develop a new eco-friendly strategy for detection and removing of pesticide and as a promising material for water treatment application.Keywords: green synthesis, mesoporous silica, magnetic iron oxide NPs, adsorption Lindane
Procedia PDF Downloads 4383118 Men and Feminism: Social Constructions of Masculinities in Relation to the Feminist Movement
Authors: Leonardo Dias Cruz
Abstract:
The advent of web 2.0 has enabled users to engage in translocal and transtemporal interactions in which meanings can be constantly (re)constructed. The fluidity of such interactions in the time-space spectrum makes it evident that D/discourses are always in movement and that here-and-now discursive practices are always linked to macro Discourses in social structures. Considering these assumptions, this study aims at exploring the social construction of masculinities in light of feminist D/discourses in online interactions. The data used are a series of comments from readers of articles posted in a website for (projected) male audiences. In order to approach the movable and fluid nature of such interactions, I examine the data through the lens of processes of entextualization, social positioning and indexical cues. The analysis explores the interactions as social arenas in which struggles for the control over entextualization processes are clearly noticeable. Moreover, two main stances are perceived: one that legitimates male’s participation in Feminism and one that rejects such participation.Keywords: entextualization, feminism, masculinities, positionings
Procedia PDF Downloads 4713117 Linguistic Identities of Post-Democratic South African Youth
Abstract:
Language has long been a site of struggle in South Africa with an educational language policy that favoured English and Afrikaans as high status languages and positioned other language users in deficit ways. Furthermore, a segregationist past led to individuals viewing each other as racial beings and racial categorisations still prevail in private and public life. It has been argued that it is important to explore how South African youth identities are being constructed, if past discourses still shape their identities or if they are negotiating new ways of being. The paper probes the role of language, discourse and embedded ideologies in the persistence or not of youth linguistic identities and discourses, the implications for their lived realities and for their construction of other language users and the possibilities of shifts occurring with an awareness of such discourses. It finds that past discourses continue to shape youth identities and are surging in the light of what is happening in the country today.Keywords: discourse, ideologies, language, linguistic identities
Procedia PDF Downloads 4043116 UV-Vis Spectroscopy as a Tool for Online Tar Measurements in Wood Gasification Processes
Authors: Philip Edinger, Christian Ludwig
Abstract:
The formation and control of tars remain one of the major challenges in the implementation of biomass gasification technologies. Robust, on-line analytical methods are needed to investigate the fate of tar compounds when different measures for their reduction are applied. This work establishes an on-line UV-Vis method, based on a liquid quench sampling system, to monitor tar compounds in biomass gasification processes. Recorded spectra from the liquid phase were analyzed for their tar composition by means of a classical least squares (CLS) and partial least squares (PLS) approach. This allowed for the detection of UV-Vis active tar compounds with detection limits in the low part per million by volume (ppmV) region. The developed method was then applied to two case studies. The first involved a lab-scale reactor, intended to investigate the decomposition of a limited number of tar compounds across a catalyst. The second study involved a gas scrubber as part of a pilot scale wood gasification plant. Tar compound quantification results showed good agreement with off-line based reference methods (GC-FID) when the complexity of tar composition was limited. The two case studies show that the developed method can provide rapid, qualitative information on the tar composition for the purpose of process monitoring. In cases with a limited number of tar species, quantitative information about the individual tar compound concentrations provides an additional benefit of the analytical method.Keywords: biomass gasification, on-line, tar, UV-Vis
Procedia PDF Downloads 2603115 Hot Corrosion and Oxidation Degradation Mechanism of Turbine Materials in a Water Vapor Environment at a Higher Temperature
Authors: Mairaj Ahmad, L. Paglia, F. Marra, V. Genova, G. Pulci
Abstract:
This study employed Rene N4 and FSX 414 superalloys, which are used in numerous turbine engine components due of their high strength, outstanding fatigue, creep, thermal, and corrosion-resistant properties. An in-depth examination of corrosion mechanisms with vapor present at high temperature is necessary given the industrial trend toward introducing increasing amounts of hydrogen into combustion chambers in order to boost power generation and minimize pollution in contrast to conventional fuels. These superalloys were oxidized in recent tests for 500, 1000, 2000, 3000 and 4000 hours at 982±5°C temperatures with a steady airflow at a flow rate of 10L/min and 1.5 bar pressure. These superalloys were also examined for wet corrosion for 500, 1000, 2000, 3000, and 4000 hours in a combination of air and water vapor flowing at a 10L/min rate. Weight gain, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray spectroscopy (EDS) were used to assess the oxidation and heat corrosion resistance capabilities of these alloys before and after 500, 1000, and 2000 hours. The oxidation/corrosion processes that accompany the formation of these oxide scales are shown in the graph of mass gain vs time. In both dry and wet oxidation, oxides like Al2O3, TiO2, NiCo2O4, Ni3Al, Ni3Ti, Cr2O3, MnCr2O4, CoCr2O4, and certain volatile compounds notably CrO2(OH)2, Cr(OH)3, Fe(OH)2, and Si(OH)4 are formed.Keywords: hot corrosion, oxidation, turbine materials, high temperature corrosion, super alloys
Procedia PDF Downloads 903114 Organic Pollution of Waters and Sediments in the Middle and Lower Valley of the Medjerda, Tunisia
Authors: Samia Khadhar, Anis Chekirbene, Nouha Khiari, Amira Mabrouki
Abstract:
The persistent organic pollutants (POPs) in aquatic environments are one of the most worrying problems for environmental sustainability and human health because of their carcinogenic and toxic characteristics. Human anthropogenic actions (wastewater discharges, agricultural and industrial activities) without prior treatment are the main cause of this organic pollution. Oued Madjerda is considered the most important river in Tunisia, hence the importance of assessing the level of organic pollution of water and sediments, taking into account the anthropogenic stress exerted on this river. Water and sediment samples were taken from the middle and lower valley of the Medjerda to determine the state of contamination by 7PCBs, priority 15PAHs, and pesticides. The analysis was performed by gas chromatography (GC) and liquid phase coupled to HPLC MS-MS mass spectroscopy. The results showed that for the waters, the total PAH and PCB contents vary respectively from 0.0023 to 7.72 mg/l and from 0.0001 to 0.179 mg/l. In surface sediments 0 to 15 cm, 7PCB levels vary from 1,112 to 110,062 µg/kg-1. In this study, we tried to determine the concentration of 96 pesticides in surface sediments; analyzes showed the presence of Buprofezin, propamocarb-HCl, hexaconazole, flutriafol, quinalphos, and tebufenpyrad with concentrations varying from 1.06 to 2.388 µg/kg-1. The pace of the spatial variation confirms the impact of wastewater discharged on the quality of water and sediments despite the perennial aspect of the river.Keywords: Wadi Madjerda, organic pollution, water and sediments surface, anthropics stress
Procedia PDF Downloads 1303113 The Conduct of Laundering Money through Transport of Cash in the Middle East and North Africa Region
Authors: Haytham Yassine
Abstract:
This article mainly aims to detect and understand how money laundering activities are executed by transport of cash, identifying the underlying factors and separating legitimate from illegitimate usage of cash and how it is being used. This research provides academics with additional literature and provides bank supervisors and practitioners with a better understanding of sources and uses of cash in criminal activities and how cash is used in the laundering mechanism. Data are gathered through survey in the Middle East and North Africa region and review of the available research. The results of the analysis will help distinguish the factors affecting preference for cash rather other payment instruments in the region, identify what causes the tendency to launder illegal proceeds through cash transportation and how illegal cash is being laundered and moved. On the other hand, this paper sheds the light on major cash generating criminal activities, its sources and main destinations.Keywords: illegitimate activities, cash, money laundering, terrorism financing
Procedia PDF Downloads 1543112 Deciphering Suitability of Rhamnolipids as Emulsifying Agent for Hydrophobic Pollutants
Authors: Asif Jamal, Samia Sakindar, Ramla Rehman
Abstract:
Biosurfactants are amphiphilic surface active compounds obtained from natural resources such as plants and microorganisms. Because of their diverse physicochemical characteristics biosurfactant are replacing synthetic compounds in various commercial applications. In present study, a strain of P. aeruginosa was isolated from crude oil contaminated soil as efficient biosurfactant producers. The biosurfactant production was analyzed as a function of surface tension reduction, oil spreading capacity, emulsification index and hemolysis assay. This bacterial strain showed excellent emulsion activity of EI24 85%, surface tension reduction up to 28.6 mNm-1 and 7.0 mm oil displacement zone. Physicochemical and biological properties of extracted rhamnolipid were also investigated in current study. The chemical composition of product from strain PSS was analyzed by FTIR spectroscopy. The results revealed that extracted biosurfactant was rhamnolipid type in nature having RL-1 and RL-2 homologues. The surface behavior of rhamnolipid in aqueous phase was investigated varying extreme pH, temperature, salt conditions and with various hydrocarbons. The results indicated that biosurfactant produced by strain PSS Which showed stability during high temperature up to 121 C, salt concentrations up to 20% and pH range between (4—14). The emulsification activity with different hydrocarbons was also remarkable. It was concluded that rhamnolipid biosurfactant produced by strain PSS has excellent potential as emulsifying/remediation agent for broad range of hydrophobic pollutants.Keywords: P. aeruginosa, bioremediation, rhamnolipid, surfactants
Procedia PDF Downloads 2833111 Demetallization of Crude Oil: Comparative Analysis of Deasphalting and Electrochemical Removal Methods of Ni and V
Authors: Nurlan Akhmetov, Abilmansur Yeshmuratov, Aliya Kurbanova, Gulnar Sugurbekova, Murat Baisariyev
Abstract:
Extraction of the vanadium and nickel compounds is complex due to the high stability of porphyrin, nickel is catalytic poison which deactivates catalysis during the catalytic cracking of the oil, while vanadyl is abrasive and valuable metal. Thus, high concentration of the Ni and V in the crude oil makes their removal relevant. Two methods of the demetallization of crude oil were tested, therefore, the present research is conducted for comparative analysis of the deasphalting with organic solvents (cyclohexane, carbon tetrachloride, chloroform) and electrochemical method. Percentage of Ni extraction reached maximum of approximately 55% by using the electrochemical method in electrolysis cell, which was developed for this research and consists of three sections: oil and protonating agent (EtOH) solution between two conducting membranes which divides it from two capsules of 10% sulfuric acid and two graphite electrodes which cover all three parts in electrical circuit. Ions of metals pass through membranes and remain in acid solutions. The best result was obtained in 60 minutes with ethanol to oil ratio 25% to 75% respectively, current fits in to the range from 0.3A to 0.4A, voltage changed from 12.8V to 17.3V. Maximum efficiency of deasphalting, with cyclohexane as the solvent, in Soxhlet extractor was 66.4% for Ni and 51.2% for V. Thus, applying the voltammetry, ICP MS (Inductively coupled plasma mass spectrometry) and AAS (atomic absorption spectroscopy), these mentioned types of metal extraction methods were compared in this paper.Keywords: electrochemistry, deasphalting of crude oil, demetallization of crude oil, petrolium engineering
Procedia PDF Downloads 236