Search results for: curriculum design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13293

Search results for: curriculum design

9963 Opioid Administration on Patients Hospitalized in the Emergency Department

Authors: Mani Mofidi, Neda Valizadeh, Ali Hashemaghaee, Mona Hashemaghaee, Soudabeh Shafiee Ardestani

Abstract:

Background: Acute pain and its management remained the most complaint of emergency service admission. Diagnostic and therapeutic procedures add to patients’ pain. Diminishing the pain increases the quality of patient’s feeling and improves the patient-physician relationship. Aim: The aim of this study was to evaluate the outcomes and side effects of opioid administration in emergency patients. Material and Methods: patients admitted to ward II emergency service of Imam Khomeini hospital, who received one of the opioids: morphine, pethidine, methadone or fentanyl as an analgesic were evaluated. Their vital signs and general condition were examined before and after drug injection. Also, patient’s pain experience were recorded as numerical rating score (NRS) before and after analgesic administration. Results: 268 patients were studied. 34 patients were addicted to opioid drugs. Morphine had the highest rate of prescription (86.2%), followed by pethidine (8.5%), methadone (3.3%) and fentanyl (1.68). While initial NRS did not show significant difference between addicted patients and non-addicted ones, NRS decline and its score after drug injection were significantly lower in addicted patients. All patients had slight but statistically significant lower respiratory rate, heart rate, blood pressure and O2 saturation. There was no significant difference between different kind of opioid prescription and its outcomes or side effects. Conclusion: Pain management should be always in physicians’ mind during emergency admissions. It should not be assumed that an addicted patient complaining of pain is malingering to receive drug. Titration of drug and close monitoring must be in the curriculum to prevent any hazardous side effects.

Keywords: numerical rating score, opioid, pain, emergency department

Procedia PDF Downloads 426
9962 Design of Reconfigurable Supernumerary Robotic Limb Based on Differential Actuated Joints

Authors: Qinghua Zhang, Yanhe Zhu, Xiang Zhao, Yeqin Yang, Hongwei Jing, Guoan Zhang, Jie Zhao

Abstract:

This paper presents a wearable reconfigurable supernumerary robotic limb with differential actuated joints, which is lightweight, compact and comfortable for the wearers. Compared to the existing supernumerary robotic limbs which mostly adopted series structure with large movement space but poor carrying capacity, a prototype with the series-parallel configuration to better adapt to different task requirements has been developed in this design. To achieve a compact structure, two kinds of cable-driven mechanical structures based on guide pulleys and differential actuated joints were designed. Moreover, two different tension devices were also designed to ensure the reliability and accuracy of the cable-driven transmission. The proposed device also employed self-designed bearings which greatly simplified the structure and reduced the cost.

Keywords: cable-driven, differential actuated joints, reconfigurable, supernumerary robotic limb

Procedia PDF Downloads 221
9961 Design and Construction Validation of Pile Performance through High Strain Pile Dynamic Tests for both Contiguous Flight Auger and Drilled Displacement Piles

Authors: S. Pirrello

Abstract:

Sydney’s booming real estate market has pushed property developers to invest in historically “no-go” areas, which were previously too expensive to develop. These areas are usually near rivers where the sites are underlain by deep alluvial and estuarine sediments. In these ground conditions, conventional bored pile techniques are often not competitive. Contiguous Flight Auger (CFA) and Drilled Displacement (DD) Piles techniques are on the other hand suitable for these ground conditions. This paper deals with the design and construction challenges encountered with these piling techniques for a series of high-rise towers in Sydney’s West. The advantages of DD over CFA piles such as reduced overall spoil with substantial cost savings and achievable rock sockets in medium strength bedrock are discussed. Design performances were assessed with PIGLET. Pile performances are validated in two stages, during constructions with the interpretation of real-time data from the piling rigs’ on-board computer data, and after construction with analyses of results from high strain pile dynamic testing (PDA). Results are then presented and discussed. High Strain testing data are presented as Case Pile Wave Analysis Program (CAPWAP) analyses.

Keywords: contiguous flight auger (CFA) , DEFPIG, case pile wave analysis program (CAPWAP), drilled displacement piles (DD), pile dynamic testing (PDA), PIGLET, PLAXIS, repute, pile performance

Procedia PDF Downloads 283
9960 Design of the Compliant Mechanism of a Biomechanical Assistive Device for the Knee

Authors: Kevin Giraldo, Juan A. Gallego, Uriel Zapata, Fanny L. Casado

Abstract:

Compliant mechanisms are designed to deform in a controlled manner in response to external forces, utilizing the flexibility of their components to store potential elastic energy during deformation, gradually releasing it upon returning to its original form. This article explores the design of a knee orthosis intended to assist users during stand-up motion. The orthosis makes use of a compliant mechanism to balance the user’s weight, thereby minimizing the strain on leg muscles during standup motion. The primary function of the compliant mechanism is to store and exchange potential energy, so when coupled with the gravitational potential of the user, the total potential energy variation is minimized. The design process for the semi-rigid knee orthosis involved material selection and the development of a numerical model for the compliant mechanism seen as a spring. Geometric properties are obtained through the numerical modeling of the spring once the desired stiffness and safety factor values have been attained. Subsequently, a 3D finite element analysis was conducted. The study demonstrates a strong correlation between the maximum stress in the mathematical model (250.22 MPa) and the simulation (239.8 MPa), with a 4.16% error. Both analyses safety factors: 1.02 for the mathematical approach and 1.1 for the simulation, with a consistent 7.84% margin of error. The spring’s stiffness, calculated at 90.82 Nm/rad analytically and 85.71 Nm/rad in the simulation, exhibits a 5.62% difference. These results suggest significant potential for the proposed device in assisting patients with knee orthopedic restrictions, contributing to ongoing efforts in advancing the understanding and treatment of knee osteoarthritis.

Keywords: biomechanics, complaint mechanisms, gonarthrosis, orthoses

Procedia PDF Downloads 36
9959 Elitist Self-Adaptive Step-Size Search in Optimum Sizing of Steel Structures

Authors: Oğuzhan Hasançebi, Saeid Kazemzadeh Azad

Abstract:

This paper covers application of an elitist selfadaptive
step-size search (ESASS) to optimum design of steel
skeletal structures. In the ESASS two approaches are considered for
improving the convergence accuracy as well as the computational
efficiency of the original technique namely the so called selfadaptive
step-size search (SASS). Firstly, an additional randomness
is incorporated into the sampling step of the technique to preserve
exploration capability of the algorithm during the optimization.
Moreover, an adaptive sampling scheme is introduced to improve the
quality of final solutions. Secondly, computational efficiency of the
technique is accelerated via avoiding unnecessary analyses during the
optimization process using an upper bound strategy. The numerical
results demonstrate the usefulness of the ESASS in the sizing
optimization problems of steel truss and frame structures.

Keywords: structural design optimization, optimal sizing, metaheuristics, self-adaptive step-size search, steel trusses, steel frames

Procedia PDF Downloads 375
9958 Automated Buffer Box Assembly Cell Concept for the Canadian Used Fuel Packing Plant

Authors: Dimitrie Marinceu, Alan Murchison

Abstract:

The Canadian Used Fuel Container (UFC) is a mid-size hemispherical headed copper coated steel container measuring 2.5 meters in length and 0.5 meters in diameter containing 48 used fuel bundles. The contained used fuel produces significant gamma radiation requiring automated assembly processes to complete the assembly. The design throughput of 2,500 UFCs per year places constraints on equipment and hot cell design for repeatability, speed of processing, robustness and recovery from upset conditions. After UFC assembly, the UFC is inserted into a Buffer Box (BB). The BB is made from adequately pre-shaped blocks (lower and upper block) and Highly Compacted Bentonite (HCB) material. The blocks are practically ‘sandwiching’ the UFC between them after assembly. This paper identifies one possible approach for the BB automatic assembly cell and processes. Automation of the BB assembly will have a significant positive impact on nuclear safety, quality, productivity, and reliability.

Keywords: used fuel packing plant, automatic assembly cell, used fuel container, buffer box, deep geological repository

Procedia PDF Downloads 275
9957 Design Ultra Fast Gate Drive Board for Silicon Carbide MOSFET Applications

Authors: Syakirin O. Yong, Nasrudin A. Rahim, Bilal M. Eid, Buray Tankut

Abstract:

The aim of this paper is to develop an ultra-fast gate driver for Silicon Carbide (SiC) based switching device applications such as AC/DC DC/AC converters. Wide bandgap semiconductors such as SiC switches are growing rapidly nowadays due to their numerous capabilities such as faster switching, higher power density and higher voltage level. Wide band-gap switches can work properly on high frequencies such 50-250 kHz which is very useful for many power electronic applications such as solar inverters. Increasing the frequency minimizes the output filter size and system complexity however, this causes huge spike between MOSFET’s drain and source leg which leads to the failure of MOSFET if the voltage rating is exceeded. This paper investigates and concludes the optimum design for a gate drive board for SiC MOSFET switches without causing spikes and noises.

Keywords: PV system, lithium-ion, charger, constant current, constant voltage, renewable energy

Procedia PDF Downloads 156
9956 Visual Thinking Routines: A Mixed Methods Approach Applied to Student Teachers at the American University in Dubai

Authors: Alain Gholam

Abstract:

Visual thinking routines are principles based on several theories, approaches, and strategies. Such routines promote thinking skills, call for collaboration and sharing of ideas, and above all, make thinking and learning visible. Visual thinking routines were implemented in the teaching methodology graduate course at the American University in Dubai. The study used mixed methods. It was guided by the following two research questions: 1). To what extent do visual thinking inspire learning in the classroom, and make time for students’ questions, contributions, and thinking? 2). How do visual thinking routines inspire learning in the classroom and make time for students’ questions, contributions, and thinking? Eight student teachers enrolled in the teaching methodology course at the American University in Dubai (Spring 2017) participated in the following study. First, they completed a survey that measured to what degree they believed visual thinking routines inspired learning in the classroom and made time for students’ questions, contributions, and thinking. In order to build on the results from the quantitative phase, the student teachers were next involved in a qualitative data collection phase, where they had to answer the question: How do visual thinking routines inspire learning in the classroom and make time for students’ questions, contributions, and thinking? Results revealed that the implementation of visual thinking routines in the classroom strongly inspire learning in the classroom and make time for students’ questions, contributions, and thinking. In addition, student teachers explained how visual thinking routines allow for organization, variety, thinking, and documentation. As with all original, new, and unique resources, visual thinking routines are not free of challenges. To make the most of this useful and valued resource, educators, need to comprehend, model and spread an awareness of the effective ways of using such routines in the classroom. It is crucial that such routines become part of the curriculum to allow for and document students’ questions, contributions, and thinking.

Keywords: classroom display, student engagement, thinking classroom, visual thinking routines

Procedia PDF Downloads 227
9955 Modernism’s Influence on Architect-Client Relationship: Comparative Case Studies of Schroder and Farnsworth Houses

Authors: Omneya Messallam, Sara S. Fouad

Abstract:

The Modernist Movement initially flourished in France, Holland, Germany and the Soviet Union. Many architects and designers were inspired and followed its principles. Two of its most important architects (Gerrit Rietveld and Ludwig Mies van de Rohe) were introduced in this paper. Each did not follow the other’s principles and had their own particular rules; however, they shared the same features of the Modernist International Style, such as Anti-historicism, Abstraction, Technology, Function and Internationalism/ Universality. Key Modernist principles translated into high expectations, which sometimes did not meet the inhabitants’ aspirations of living comfortably; consequently, leading to a conflict and misunderstanding between the designer and their clients’ needs. Therefore, historical case studies (the Schroder and the Farnsworth houses) involving two Modernist pioneer architects have been chosen. This paper is an attempt to explore some of the influential factors affecting buildings design such as: needs, gender, and question concerning commonalities between both designers and their clients. The three aspects and two designers explored here have been chosen because they have been influenced the researchers to understand the impact of those factors on the design process, building’s performance, and the dweller’s satisfaction. This is a descriptive/ analytical research based on two historical comparative case studies that involve several steps such as: key evaluation questions (KEQs), observations, document analysis, etc. The methodology is based on data collation and finding validations. The research aims to state a manifest to regulate the relation between architects and their clients to reach the optimum building performance and functional interior design that suits their clients’ needs, reflects the architects’ character, and the school they belong to. At the end, through the investigation in this paper, the different needs between both the designers and the clients have been seen not only in the building itself but also it could convert the inhabitant’s life in various ways. Moreover, a successful relationship between the architect and their clients could play a significant role in the success of projects. In contrast, not every good design or celebrated building could end up with a successful relationship between the designer and their client or full-fill the inhabitant’s aspirations.

Keywords: architect’s character, building’s performance, commonalities, client’s character, gender, modernist movement, needs

Procedia PDF Downloads 149
9954 A Full Factorial Analysis of Microhardness Variation in Bead Welds Deposited by the Process Cold Wire Gas Metal Arc Welding (CW-GMAW)

Authors: R. A. Ribeiro, P. D. Angelo Assunção, E. M. Braga

Abstract:

The microhardness in weld beads is a function of the microstructure obtained in the welding process, and this by its time is dependent of the input variables established at the outset of the process. In this study the influence of angle between the plate and the cold wire, the position in which the cold wire is introduced and the rate in which this introduction is made are assessed as input parameters in CW-GMAW process. This paper looks to show that ordinary changes in the frame of CW-GMAW can improve microhardness, which is expected to vary as the input parameters change. To properly correlate the changes in the input parameters to consequent changes in microhardness of the weld bead, a full factorial design was employed. In fact, changes in the operational parameters improved the overall microhardness of the weld bead, which in turns can be an indication of improvement in the resistance to abrasive wear, constituting a cheap way to augment the abrasion wear resistance of welds used for cladding.

Keywords: abrasion, CW-GMAW, full factorial design, microhardness

Procedia PDF Downloads 547
9953 Application of Computational Chemistry for Searching Anticancer Derivatives of 2-Phenazinamines as Bcr-Abl Tyrosine Kinase Inhibitors

Authors: Gajanan M. Sonwane

Abstract:

The computational studies on 2-phenazinamines with their protein targets have been carried out to design compounds with potential anticancer activity. This strategy of designing compounds possessing selectivity over specific tyrosine kinase has been achieved through G-QSAR and molecular docking studies. The objective of this research has been to design newer 2-phenazinamine derivatives as Bcr-Abl tyrosine kinase inhibitors by G-QSAR, molecular docking studies followed by wet-lab studies along with evaluation of their anticancer potential. Computational chemistry was done by using VLife MDS 4.3 and Autodock 4.2 followed by wet-lab experiments for synthesizing 2-phenazinamine derivatives. The chemical structures of ligands in 2D were drawn by employing Chemdraw 2D Ultra 8.0 and were converted into 3D. These were optimized by using a semi-empirical method called MOPAC. The protein structure was retrieved from RCSC protein data bank as a PDB file. The binding interactions of protein and ligands were done by using PYMOL. The molecular properties of the designed compounds were predicted in silico by using Osiris property explorer. The parent compound 2-phenazinamine was synthesized by reduction of 2, 4-dinitro-N-phenyl-benzenamine in the presence of tin chloride followed by cyclization in the presence of nitrobenzene and magnesium sulfate. The derivatization at the amino function of 2-phenazinamine was performed by treating parent compound with various aldehydes in the presence of dicyclohexylcarbodiimide (DCC) and urea to afford 2-(2-chlorophenyl)-3-(phenazine-2-yl) thiazolidine-4-one. Synthesized 39 novel derivatives of 2-phenazinamine and performed antioxidant activity, anti antiproliferative on the bulb of onion and anticancer activity on cell line showing significant competition with marked blockbuster drug imatinib.

Keywords: computer-aided drug design, tyrosin kinases, anticancer, docking

Procedia PDF Downloads 140
9952 Modeling, Topology Optimization and Experimental Validation of Glass-Transition-Based 4D-Printed Polymeric Structures

Authors: Sara A. Pakvis, Giulia Scalet, Stefania Marconi, Ferdinando Auricchio, Matthijs Langelaar

Abstract:

In recent developments in the field of multi-material additive manufacturing, differences in material properties are exploited to create printed shape-memory structures, which are referred to as 4D-printed structures. New printing techniques allow for the deliberate introduction of prestresses in the specimen during manufacturing, and, in combination with the right design, this enables new functionalities. This research focuses on bi-polymer 4D-printed structures, where the transformation process is based on a heat-induced glass transition in one material lowering its Young’s modulus, combined with an initial prestress in the other material. Upon the decrease in stiffness, the prestress is released, which results in the realization of an essentially pre-programmed deformation. As the design of such functional multi-material structures is crucial but far from trivial, a systematic methodology to find the design of 4D-printed structures is developed, where a finite element model is combined with a density-based topology optimization method to describe the material layout. This modeling approach is verified by a convergence analysis and validated by comparing its numerical results to analytical and published data. Specific aspects that are addressed include the interplay between the definition of the prestress and the material interpolation function used in the density-based topology description, the inclusion of a temperature-dependent stiffness relationship to simulate the glass transition effect, and the importance of the consideration of geometric nonlinearity in the finite element modeling. The efficacy of topology optimization to design 4D-printed structures is explored by applying the methodology to a variety of design problems, both in 2D and 3D settings. Bi-layer designs composed of thermoplastic polymers are printed by means of the fused deposition modeling (FDM) technology. Acrylonitrile butadiene styrene (ABS) polymer undergoes the glass transition transformation, while polyurethane (TPU) polymer is prestressed by means of the 3D-printing process itself. Tests inducing shape transformation in the printed samples through heating are performed to calibrate the prestress and validate the modeling approach by comparing the numerical results to the experimental findings. Using the experimentally obtained prestress values, more complex designs have been generated through topology optimization, and samples have been printed and tested to evaluate their performance. This study demonstrates that by combining topology optimization and 4D-printing concepts, stimuli-responsive structures with specific properties can be designed and realized.

Keywords: 4D-printing, glass transition, shape memory polymer, topology optimization

Procedia PDF Downloads 208
9951 Coupled Field Formulation – A Unified Method for Formulating Structural Mechanics Problems

Authors: Ramprasad Srinivasan

Abstract:

Engineers create inventions and put their ideas in concrete terms to design new products. Design drivers must be established, which requires, among other things, a complete understanding of the product design, load paths, etc. For Aerospace Vehicles, weight/strength ratio, strength, stiffness and stability are the important design drivers. A complex built-up structure is made up of an assemblage of primitive structural forms of arbitrary shape, which include 1D structures like beams and frames, 2D structures like membranes, plate and shell structures, and 3D solid structures. Justification through simulation involves a check for all the quantities of interest, namely stresses, deformation, frequencies, and buckling loads and is normally achieved through the finite element (FE) method. Over the past few decades, Fiber-reinforced composites are fast replacing the traditional metallic structures in the weight-sensitive aerospace and aircraft industries due to their high specific strength, high specific stiffness, anisotropic properties, design freedom for tailoring etc. Composite panel constructions are used in aircraft to design primary structure components like wings, empennage, ailerons, etc., while thin-walled composite beams (TWCB) are used to model slender structures like stiffened panels, helicopter, and wind turbine rotor blades, etc. The TWCB demonstrates many non-classical effects like torsional and constrained warping, transverse shear, coupling effects, heterogeneity, etc., which makes the analysis of composite structures far more complex. Conventional FE formulations to model 1D structures suffer from many limitations like shear locking, particularly in slender beams, lower convergence rates due to material coupling in composites, inability to satisfy, equilibrium in the domain and natural boundary conditions (NBC) etc. For 2D structures, the limitations of conventional displacement-based FE formulations include the inability to satisfy NBC explicitly and many pathological problems such as shear and membrane locking, spurious modes, stress oscillations, lower convergence due to mesh distortion etc. This mandates frequent re-meshing to even achieve an acceptable mesh (satisfy stringent quality metrics) for analysis leading to significant cycle time. Besides, currently, there is a need for separate formulations (u/p) to model incompressible materials, and a single unified formulation is missing in the literature. Hence coupled field formulation (CFF) is a unified formulation proposed by the author for the solution of complex 1D and 2D structures addressing the gaps in the literature mentioned above. The salient features of CFF and its many advantages over other conventional methods shall be presented in this paper.

Keywords: coupled field formulation, kinematic and material coupling, natural boundary condition, locking free formulation

Procedia PDF Downloads 66
9950 The Effectiveness of Using Picture Storybooks on Young English as a Foreign Language Learners for English Vocabulary Acquisition and Moral Education: A Case Study

Authors: Tiffany Yung Hsuan Ma

Abstract:

The Whole Language Approach, which gained prominence in the 1980s, and the increasing emphasis on multimodal resources in educational research have elevated the utilization of picture books in English as a foreign language (EFL) instruction. This approach underscores real-world language application, providing EFL learners with a range of sensory stimuli, including visual elements. Additionally, the substantial impact of picture books on fostering prosocial behaviors in children has garnered recognition. These narratives offer opportunities to impart essential values such as kindness, fairness, and respect. Examining how picture books enhance vocabulary acquisition can offer valuable insights for educators in devising engaging language activities conducive to a positive learning environment. This research entails a case study involving two kindergarten-aged EFL learners and employs qualitative methods, including worksheets, observations, and interviews with parents. It centers on three pivotal inquiries: (1) The extent of young learners' acquisition of essential vocabulary, (2) The influence of these books on their behavior at home, and (3) Effective teaching strategies for the seamless integration of picture storybooks into EFL instruction for young learners. The findings can provide guidance to parents, educators, curriculum developers, and policymakers regarding the advantages and optimal approaches to incorporating picture books into language instruction. Ultimately, this research has the potential to enhance English language learning outcomes and promote moral education within the Taiwanese EFL context.

Keywords: EFL, vocabulary acquisition, young learners, picture book, moral education

Procedia PDF Downloads 70
9949 Diagnostics of Existing Steel Structures of Winter Sport Halls

Authors: Marcela Karmazínová, Jindrich Melcher, Lubomír Vítek, Petr Cikrle

Abstract:

The paper deals with the diagnostics of steel roof structure of the winter sports stadiums built in 1970 year. The necessity of the diagnostics has been given by the requirement to the evaluation design of this structure, which has been caused by the new situation in the field of the loadings given by the validity of the European Standards in the Czech Republic from 2010 year. Due to these changes in the normative rules, in practice, existing structures are gradually subjected to the evaluation design and depending on its results to the strengthening or reconstruction, respectively. The steel roof is composed of plane truss main girders, purlins and bracings and the roof structure is supported by two arch main girders with the span of L=84 m. The in situ diagnostics of the roof structure was oriented to the following parts: (i) determination and evaluation of the actual material properties of used steel and (ii) verification of the actual dimensions of the structural members. For the solution, the non-destructive methods have been used for in situ measurement. For the indicative determination of steel strengths the modified method based on the determination of Rockwell’s hardness has been used. For the verification of the member’s dimensions (thickness of hollow sections) the ultrasound method has been used. This paper presents the results obtained using these testing methods and their evaluation, from the viewpoint of the usage for the subsequent static assessment and design evaluation of the existing structure. For the comparison, the examples of the similar evaluations realized for steel structures of the stadiums in Olomouc and Jihlava cities are briefly illustrated, too.

Keywords: actual dimensions, destructive methods, diagnostics, existing steel structure, indirect non-destructive methods, Rockwel’s hardness, sport hall, steel strength, ultrasound method.

Procedia PDF Downloads 341
9948 Clean Sky 2 Project LiBAT: Light Battery Pack for High Power Applications in Aviation – Simulation Methods in Early Stage Design

Authors: Jan Dahlhaus, Alejandro Cardenas Miranda, Frederik Scholer, Maximilian Leonhardt, Matthias Moullion, Frank Beutenmuller, Julia Eckhardt, Josef Wasner, Frank Nittel, Sebastian Stoll, Devin Atukalp, Daniel Folgmann, Tobias Mayer, Obrad Dordevic, Paul Riley, Jean-Marc Le Peuvedic

Abstract:

Electrical and hybrid aerospace technologies pose very challenging demands on the battery pack – especially with respect to weight and power. In the Clean Sky 2 research project LiBAT (funded by the EU), the consortium is currently building an ambitious prototype with state-of-the art cells that shows the potential of an intelligent pack design with a high level of integration, especially with respect to thermal management and power electronics. For the latter, innovative multi-level-inverter technology is used to realize the required power converting functions with reduced equipment. In this talk the key approaches and methods of the LiBat project will be presented and central results shown. Special focus will be set on the simulative methods used to support the early design and development stages from an overall system perspective. The applied methods can efficiently handle multiple domains and deal with different time and length scales, thus allowing the analysis and optimization of overall- or sub-system behavior. It will be shown how these simulations provide valuable information and insights for the efficient evaluation of concepts. As a result, the construction and iteration of hardware prototypes has been reduced and development cycles shortened.

Keywords: electric aircraft, battery, Li-ion, multi-level-inverter, Novec

Procedia PDF Downloads 166
9947 Teachers’ Reactions, Learning, Organizational Support, and Use of Lesson Study for Transformative Assessment

Authors: Melaku Takele Abate, Abbi Lemma Wodajo, Adula Bekele Hunde

Abstract:

This study aimed at exploring mathematics teachers' reactions, learning, school leaders’ support, and use of the Lesson Study for Transformative Assessment (LSforTA) program ideas in practice. The LSforTA program was new, and therefore, a local and grounded approach was needed to examine teachers’ knowledge and skills acquired using LSforTA. So, a design-based research approach was selected to evaluate and refine the LSforTA approach. The results showed that LSforTA increased teachers' knowledge and use of different levels of mathematics assessment tasks. The program positively affected teachers' practices of transformative assessment and enhanced their knowledge and skills in assessing students in a transformative way. The paper concludes how the LSforTA procedures were adapted in response to this evaluation and provides suggestions for future development and research.

Keywords: classroom assessment, feedback practices, lesson study, mathematics, design-based research

Procedia PDF Downloads 55
9946 A Review of Fused Deposition Modeling Process: Parameter Optimization, Materials and Design

Authors: Elisaveta Doncheva, Jelena Djokikj, Ognen Tuteski, Bojana Hadjieva

Abstract:

In the past decade, additive manufacturing technology or 3D printing has been promoted as an efficient method for fabricating hybrid composite materials and structures with superior mechanical properties and complex shape and geometry. Fused deposition modeling (FDM) process is commonly used additive manufacturing technique for production of polymer products. Therefore, many studies and experiments are focused on investigating the possibilities for improving the obtained results on product properties as a key factor for expanding the spectrum of their application. This article provides an extensive review on recent research advances in FDM and reports on studies that cover the effects of process parameters, material, and design of the product properties. The paper conclusions provide a clear up-to date information for optimum efficiency and enhancement of the mechanical properties of 3D printed samples and recommends further research work and investigations.

Keywords: additive manufacturing, critical parameters, filament, print orientation, 3D printing

Procedia PDF Downloads 193
9945 Optimum Dewatering Network Design Using Firefly Optimization Algorithm

Authors: S. M. Javad Davoodi, Mojtaba Shourian

Abstract:

Groundwater table close to the ground surface causes major problems in construction and mining operation. One of the methods to control groundwater in such cases is using pumping wells. These pumping wells remove excess water from the site project and lower the water table to a desirable value. Although the efficiency of this method is acceptable, it needs high expenses to apply. It means even small improvement in a design of pumping wells can lead to substantial cost savings. In order to minimize the total cost in the method of pumping wells, a simulation-optimization approach is applied. The proposed model integrates MODFLOW as the simulation model with Firefly as the optimization algorithm. In fact, MODFLOW computes the drawdown due to pumping in an aquifer and the Firefly algorithm defines the optimum value of design parameters which are numbers, pumping rates and layout of the designing wells. The developed Firefly-MODFLOW model is applied to minimize the cost of the dewatering project for the ancient mosque of Kerman city in Iran. Repetitive runs of the Firefly-MODFLOW model indicates that drilling two wells with the total rate of pumping 5503 m3/day is the result of the minimization problem. Results show that implementing the proposed solution leads to at least 1.5 m drawdown in the aquifer beneath mosque region. Also, the subsidence due to groundwater depletion is less than 80 mm. Sensitivity analyses indicate that desirable groundwater depletion has an enormous impact on total cost of the project. Besides, in a hypothetical aquifer decreasing the hydraulic conductivity contributes to decrease in total water extraction for dewatering.

Keywords: groundwater dewatering, pumping wells, simulation-optimization, MODFLOW, firefly algorithm

Procedia PDF Downloads 294
9944 Design of a Telemetry, Tracking, and Command Radio-Frequency Receiver for Small Satellites Based on Commercial Off-The-Shelf Components

Authors: A. Lovascio, A. D’Orazio, V. Centonze

Abstract:

From several years till now the aerospace industry is developing more and more small satellites for Low-Earth Orbit (LEO) missions. Such satellites have a low cost of making and launching since they have a size and weight smaller than other types of satellites. However, because of size limitations, small satellites need integrated electronic equipment based on digital logic. Moreover, the LEOs require telecommunication modules with high throughput to transmit to earth a big amount of data in a short time. In order to meet such requirements, in this paper we propose a Telemetry, Tracking & Command module optimized through the use of the Commercial Off-The-Shelf components. The proposed approach exploits the major flexibility offered by these components in reducing costs and optimizing the performance. The method has been applied in detail for the design of the front-end receiver, which has a low noise figure (1.5 dB) and DC power consumption (smaller than 2 W). Such a performance is particularly attractive since it allows fulfilling the energy budget stringent constraints that are typical for LEO small platforms.

Keywords: COTS, LEO, small-satellite, TT&C

Procedia PDF Downloads 131
9943 Noise Barrier Technique as a Way to Improve the Sonic Urban Environment along Existing Roadways Assessment: El-Gish Road Street, Alexandria, Egypt

Authors: Nihal Atif Salim

Abstract:

To improve the quality of life in cities, a variety of interventions are used. Noise is a substantial and important sort of pollution that has a negative impact on the urban environment and human health. According to the complaint survey, it ranks second among environmental contamination complaints (conducted by EEAA in 2019). The most significant source of noise in the city is traffic noise. In order to improve the sound urban environment, many physical techniques are applied. In the local area, noise barriers are considered as one of the most appropriate physical techniques along existing traffic routes. Alexandria is Egypt's second-largest city after Cairo. It is located along the Mediterranean Sea, and El- Gish Road is one of the city's main arteries. It impacts the waterfront promenade that extends along with the city by a high level of traffic noise. The purpose of this paper is to clarify the design considerations for the most appropriate noise barrier type along with the promenade, with the goal of improving the Quality of Life (QOL) and the sonic urban environment specifically. The proposed methodology focuses on how noise affects human perception and the environment. Then it delves into the various physical noise control approaches. After that, the paper discusses sustainable design decisions making. Finally, look into the importance of incorporating sustainability into design decisions making. Three stages will be followed in the case study. The first stage involves doing a site inspection and using specific sound measurement equipment (a noise level meter) to measure the noise level along the promenade at many sites, and the findings will be shown on a noise map. The second step is to inquire about the site's user experience. The third step is to investigate the various types of noise barriers and their effects on QOL along existing routes in order to select the most appropriate type. The goal of this research is to evaluate the suitable design of noise barriers that fulfill environmental and social perceptions while maintaining a balanced approach to the noise issue in order to improve QOL along existing roadways in the local area.

Keywords: noise pollution, sonic urban environment, traffic noise, noise barrier, acoustic sustainability, noise reduction techniques

Procedia PDF Downloads 138
9942 Waste Heat Recovery Using Spiral Heat Exchanger

Authors: Parthiban S. R.

Abstract:

Spiral heat exchangers are known as excellent heat exchanger because of far compact and high heat transfer efficiency. An innovative spiral heat exchanger based on polymer materials is designed for waste heat recovery process. Such a design based on polymer film technology provides better corrosion and chemical resistance compared to conventional metal heat exchangers. Due to the smooth surface of polymer film fouling is reduced. A new arrangement for flow of hot flue gas and cold fluid is employed for design, flue gas flows in axial path while the cold fluid flows in a spiral path. Heat load recovery achieved with the presented heat exchanger is in the range of 1.5 kW thermic but potential heat recovery about 3.5 kW might be achievable. To measure the performance of the spiral tube heat exchanger, its model is suitably designed and fabricated so as to perform experimental tests. The paper gives analysis of spiral tube heat exchanger.

Keywords: spiral heat exchanger, polymer based materials, fouling factor, heat load

Procedia PDF Downloads 391
9941 Moving from Computer Assisted Learning Language to Mobile Assisted Learning Language Edutainment: A Trend for Teaching and Learning

Authors: Ahmad Almohana

Abstract:

Technology has led to rapid changes in the world, and most importantly to education, particularly in the 21st century. Technology has enhanced teachers’ potential and has resulted in the provision of greater interaction and choices for learners. In addition, technology is helping to improve individuals’ learning experiences and building their capacity to read, listen, speak, search, analyse, memorise and encode languages, as well as bringing learners together and creating a sense of greater involvement. This paper has been organised in the following way: the first section provides a review of the literature related to the implementation of CALL (computer assisted learning language), and it explains CALL and its phases, as well as attempting to highlight and analyse Warschauer’s article. The second section is an attempt to describe the move from CALL to mobilised systems of edutainment, which challenge existing forms of teaching and learning. It also addresses the role of the teacher and the curriculum content, and how this is affected by the computerisation of learning that is taking place. Finally, an empirical study has been conducted to collect data from teachers in Saudi Arabia using quantitive and qualitative method tools. Connections are made between the area of study and the personal experience of the researcher carrying out the study with a methodological reflection on the challenges faced by the teachers of this same system. The major findings were that it is worth spelling out here that despite the circumstances in which students and lecturers are currently working, the participants revealed themselves to be highly intelligent and articulate individuals who were constrained from revealing this criticality and creativity by the system of learning and teaching operant in most schools.

Keywords: CALL, computer assisted learning language, EFL, English as a foreign language, ELT, English language teaching, ETL, enhanced technology learning, MALL, mobile assisted learning language

Procedia PDF Downloads 170
9940 The Effect of Phase Development on Micro-Climate Change of Urban Area

Authors: Tommy Lo

Abstract:

This paper presented the changes in temperature and air ventilation of an inner urban area at different development stages during 2002 to 2012 and the high-rise buildings to be built in 2018. 3D simulation models ENVI-met and Autodesk Falcon were used. The results indicated that replacement of old residence buildings or open space with high-rise buildings will increase the air temperature of inner urban area; the air temperature at the pedestrian level will increase more than that at the upper levels. The temperature of the inner street in future will get higher than that in 2002, 2008 and 2012. It is attributed that heat is trapped in the street canyons as the air permeability at the pedestrian levels is lower. High-rise buildings with massive podium will further reduce the air ventilation in that area. In addition, sufficient separations among buildings is essential in design. High-rise buildings aligned along the waterfront will obstruct the wind flowing into the inner urban area and accelerate the temperature increase both in daytime and night time.

Keywords: micro-climate change, urban design, ENVI-met, construction engineering

Procedia PDF Downloads 282
9939 Ten Minutes Neighbourhood as a Basic PlanningUnit for Happiness in Egypt

Authors: Abeer Elshater

Abstract:

This paper pursues the relationship between the inhabitants’ happiness and the right to the city in an Egyptian neighbourhood status quo. Although the optimum of getting the services comes from ten mints walking in a suitable ambiance, the happiness is not acquired. The research objective is, first, to review the literature that get a guideline of 10 minutes neighbourhoods. Second make a comparative content analysis to recent online articles to the right to the city. Third is to test the concluded principles in Egyptian neighbourhood settings. The idea of ten minutes neighbourhood is manageable. The hypothesis concerns a compliant design. The logic of people who live close to within ten minutes’ walk to essential settings in their area can minimize several problems and maximize a healthy lifestyle. The supposed issue makes the right to the city affect the relationship between ten minutes neighbourhood and citizen happiness. This assumption can be intervention through site observation and oriented questionnaire. The contribution comes from presenting new planning units in away suits the current context of the old cities in MENA region based on ten-minute walking or less distance with a reference to the right to the city. This planning unit can find it way to citizens' happiness.

Keywords: happiness, ten-minute neighbourhood, urban design, well-being

Procedia PDF Downloads 402
9938 Design of an Innovative Geothermal Heat Pump with a PCM Thermal Storage

Authors: Emanuele Bonamente, Andrea Aquino

Abstract:

This study presents an innovative design for geothermal heat pumps with the goal of maximizing the system efficiency (COP - Coefficient of Performance), reducing the soil use (e.g. length/depth of geothermal boreholes) and initial investment costs. Based on experimental data obtained from a two-year monitoring of a working prototype implemented for a commercial building in the city of Perugia, Italy, an upgrade of the system is proposed and the performance is evaluated via CFD simulations. The prototype was designed to include a thermal heat storage (i.e. water), positioned between the boreholes and the heat pump, acting as a flywheel. Results from the monitoring campaign show that the system is still capable of providing the required heating and cooling energy with a reduced geothermal installation (approx. 30% of the standard length). In this paper, an optimization of the system is proposed, re-designing the heat storage to include phase change materials (PCMs). Two stacks of PCMs, characterized by melting temperatures equal to those needed to maximize the system COP for heating and cooling, are disposed within the storage. During the working cycle, the latent heat of the PCMs is used to heat (cool) the water used by the heat pump while the boreholes independently cool (heat) the storage. The new storage is approximately 10 times smaller and can be easily placed close to the heat pump in the technical room. First, a validation of the CFD simulation of the storage is performed against experimental data. The simulation is then used to test possible alternatives of the original design and it is finally exploited to evaluate the PCM-storage performance for two different configurations (i.e. single- and double-loop systems).

Keywords: geothermal heat pump, phase change materials (PCM), energy storage, renewable energies

Procedia PDF Downloads 314
9937 Application of the Standard Deviation in Regulating Design Variation of Urban Solutions Generated through Evolutionary Computation

Authors: Mohammed Makki, Milad Showkatbakhsh, Aiman Tabony

Abstract:

Computational applications of natural evolutionary processes as problem-solving tools have been well established since the mid-20th century. However, their application within architecture and design has only gained ground in recent years, with an increasing number of academics and professionals in the field electing to utilize evolutionary computation to address problems comprised from multiple conflicting objectives with no clear optimal solution. Recent advances in computer science and its consequent constructive influence on the architectural discourse has led to the emergence of multiple algorithmic processes capable of simulating the evolutionary process in nature within an efficient timescale. Many of the developed processes of generating a population of candidate solutions to a design problem through an evolutionary based stochastic search process are often driven through the application of both environmental and architectural parameters. These methods allow for conflicting objectives to be simultaneously, independently, and objectively optimized. This is an essential approach in design problems with a final product that must address the demand of a multitude of individuals with various requirements. However, one of the main challenges encountered through the application of an evolutionary process as a design tool is the ability for the simulation to maintain variation amongst design solutions in the population while simultaneously increasing in fitness. This is most commonly known as the ‘golden rule’ of balancing exploration and exploitation over time; the difficulty of achieving this balance in the simulation is due to the tendency of either variation or optimization being favored as the simulation progresses. In such cases, the generated population of candidate solutions has either optimized very early in the simulation, or has continued to maintain high levels of variation to which an optimal set could not be discerned; thus, providing the user with a solution set that has not evolved efficiently to the objectives outlined in the problem at hand. As such, the experiments presented in this paper seek to achieve the ‘golden rule’ by incorporating a mathematical fitness criterion for the development of an urban tissue comprised from the superblock as its primary architectural element. The mathematical value investigated in the experiments is the standard deviation factor. Traditionally, the standard deviation factor has been used as an analytical value rather than a generative one, conventionally used to measure the distribution of variation within a population by calculating the degree by which the majority of the population deviates from the mean. A higher standard deviation value delineates a higher number of the population is clustered around the mean and thus limited variation within the population, while a lower standard deviation value is due to greater variation within the population and a lack of convergence towards an optimal solution. The results presented will aim to clarify the extent to which the utilization of the standard deviation factor as a fitness criterion can be advantageous to generating fitter individuals in a more efficient timeframe when compared to conventional simulations that only incorporate architectural and environmental parameters.

Keywords: architecture, computation, evolution, standard deviation, urban

Procedia PDF Downloads 133
9936 Unknown Groundwater Pollution Source Characterization in Contaminated Mine Sites Using Optimal Monitoring Network Design

Authors: H. K. Esfahani, B. Datta

Abstract:

Groundwater is one of the most important natural resources in many parts of the world; however it is widely polluted due to human activities. Currently, effective and reliable groundwater management and remediation strategies are obtained using characterization of groundwater pollution sources, where the measured data in monitoring locations are utilized to estimate the unknown pollutant source location and magnitude. However, accurately identifying characteristics of contaminant sources is a challenging task due to uncertainties in terms of predicting source flux injection, hydro-geological and geo-chemical parameters, and the concentration field measurement. Reactive transport of chemical species in contaminated groundwater systems, especially with multiple species, is a complex and highly non-linear geochemical process. Although sufficient concentration measurement data is essential to accurately identify sources characteristics, available data are often sparse and limited in quantity. Therefore, this inverse problem-solving method for characterizing unknown groundwater pollution sources is often considered ill-posed, complex and non- unique. Different methods have been utilized to identify pollution sources; however, the linked simulation-optimization approach is one effective method to obtain acceptable results under uncertainties in complex real life scenarios. With this approach, the numerical flow and contaminant transport simulation models are externally linked to an optimization algorithm, with the objective of minimizing the difference between measured concentration and estimated pollutant concentration at observation locations. Concentration measurement data are very important to accurately estimate pollution source properties; therefore, optimal design of the monitoring network is essential to gather adequate measured data at desired times and locations. Due to budget and physical restrictions, an efficient and effective approach for groundwater pollutant source characterization is to design an optimal monitoring network, especially when only inadequate and arbitrary concentration measurement data are initially available. In this approach, preliminary concentration observation data are utilized for preliminary source location, magnitude and duration of source activity identification, and these results are utilized for monitoring network design. Further, feedback information from the monitoring network is used as inputs for sequential monitoring network design, to improve the identification of unknown source characteristics. To design an effective monitoring network of observation wells, optimization and interpolation techniques are used. A simulation model should be utilized to accurately describe the aquifer properties in terms of hydro-geochemical parameters and boundary conditions. However, the simulation of the transport processes becomes complex when the pollutants are chemically reactive. Three dimensional transient flow and reactive contaminant transport process is considered. The proposed methodology uses HYDROGEOCHEM 5.0 (HGCH) as the simulation model for flow and transport processes with chemically multiple reactive species. Adaptive Simulated Annealing (ASA) is used as optimization algorithm in linked simulation-optimization methodology to identify the unknown source characteristics. Therefore, the aim of the present study is to develop a methodology to optimally design an effective monitoring network for pollution source characterization with reactive species in polluted aquifers. The performance of the developed methodology will be evaluated for an illustrative polluted aquifer sites, for example an abandoned mine site in Queensland, Australia.

Keywords: monitoring network design, source characterization, chemical reactive transport process, contaminated mine site

Procedia PDF Downloads 231
9935 Acoustic and Thermal Compliance from the Execution Theory

Authors: Saou Mohamed Amine

Abstract:

The construction industry has been identified as a user of substantial amount of materials and energy resources that has an enormous impact on environment. The energy efficient in refurbishment project is being considered as one of the approaches to achieve sustainability in construction industry. The increasing concern for environment has made building owners and designers to incorporate the energy efficiency features into their building projects. However, an overwhelming issue of existing non-energy efficient buildings which exceeds the number of new building could be ineffective if the buildings are not refurbished through the energy efficient measures. Thus, energy efficient in refurbishment project is being considered as one of the approaches to achieve sustainability that offers significant opportunities for reducing global energy consumption and greenhouse gas emissions. However, the quality of design team attributes and the characteristics of the refurbishment building projects have been argued to be the main factors that determine the energy efficiency performance of the building.

Keywords: construction industry, design team attributes, energy efficient performance, refurbishment projects characteristics

Procedia PDF Downloads 366
9934 Towards Sustainable African Urban Design Concepts

Authors: Gerald Steyn

Abstract:

Sub-Saharan Africa is the world's fastest urbanizing region, but approximately 60 to 70 percent of urban African households are poor and living in slums. Although influential global institutions such as the World Bank propagate a new approach to housing and land policies, sustainable African urban concepts have yet to be applied significantly or even convincingly conceptualized. Most African city planners, urban designers, architects, policymakers, and developers have been trained in Western curriculums and continue to practice and plan according to such formal paradigms. Only a few activists promote Post-Colonial Afrocentric urbanism, recognizing the imperative of foregrounding the needs of low-income people. There is a vast body of authoritative literature on analyzing poverty and slums in sub-Saharan Africa and on promoting the need for land and city planning reform. However, of the latter, only a few venture beyond advising and sometimes outlining policy changes. The current study moves beyond a purely theoretical discourse into the realm of practice by designing replicable diagrammatic concepts at different urban scales. The guiding philosophy was that land-use concepts and urban requirements favoring low-income households must be fully integrated into the larger conurbation. Information was derived from intensive research over two decades, involving literature surveys and observations during regular travels into East and Southern Africa. Appropriate existing urban patterns, particularly vernacular and informal, were subsequently analyzed and reimagined as precedents to inform and underpin the represented design concepts. Five interrelated concepts are proposed, ranging in scale from (1) regional to (2) cities and (3) urban villages to (4) neighborhoods and (5) streets. Each concept is described, first in terms of its context and associated issues of concern, followed by a discussion of the patterns available to inform a possible solution, and finally, an explanation and graphic illustration of the proposal. Since each of the five concepts is unfolded from existing informal and vernacular practices studied in situ, the approach is entirely bottom-up. Contrary to an idealized vision of the African city, this study proposes actual concepts for critical assessment by peers in the tradition of architectural research in design.

Keywords: african urban concepts, post-colonial afrocentric urbanism, sub-saharan africa, sustainable african urban design

Procedia PDF Downloads 50