Search results for: organisational learning
4146 Implementing Effective Strategies to Improve Teaching and Learning in Higher Education: Balancing the Engagement Acts between Lecturers And Students
Authors: Jeffrey Siphiwe Mkhize
Abstract:
Twelve years of schooling for most South African children, particularly those children from disadvantaged past, are confronted with numerous and diverse challenges. These challenges range from infrastructural limitations, language of teaching, poor resources and varying family backgrounds. Likewise, schools are categorized to signify schools’ geographic location, poverty lines, societal class and type of students that the school are likely to enroll. Such categorization perpetuates particular lines of identities that are indirectly reinforced by the same system that seeks to redress. South African universities prefer point systems to determine students’ suitability to gain access to their programmes. Once students are admitted based on the qualifying points there is an assumed equity in the manner in which they receive tuition. They are assumed as equal; noting the widened access to South African universities as means to redress past inequalities. Given the challenges, inequalities, it is necessary to view higher education as a site for knowledge construction that is accessible to all students. Epistemological access is key to all students irrespective of their socio-economic status. This paper seeks to contribute to the discourse of student engagement using lecturer-student relationship as a lens to understand this phenomenon. Data were generated using South African Survey of Student Engagement, focus group interviews, semi-structured one-on-one-interviews as well as document analysis. The focus was on students registered for the first year of a Bachelor of Education degree as well as lecturers that teach high risk modules in this qualification at the same level. The findings suggest that lecturers are challenged by overcrowded classrooms and over-enrolled modules; this challenge hampers their good intentions to become more efficient and innovative in their teaching. Students lack confidence in approaching lecturers for assistance. Collaborative learning has stronger results and students believe in self-support to deal with their challenges based on their individual strengths. Collaborative learning is key to student academic performance.Keywords: collaborative learning, consultations, student engagement, student performance
Procedia PDF Downloads 1134145 The Applications of Aritificial Intelligence to the Predictions of Processing-Microstructure-Property Relationships
Authors: Fei Peng, Hai Xiao, Rajendra K. Bordia, Jianhua Tong, Dongsheng Li
Abstract:
the report high-throughput, ultra-fast laser sintering of alumina sample array and characterization of sample units’ microstructure and hardness, as a fast exploration of laser processing parameters, microstructure, and property. These experimental data were used to train machine-learning (ML) models. Accurate ML predictions were demonstrated for the processing-microstructure-property relationship, specifically in (1) prediction of the microstructure of alumina under arbitrary laser power and (2) prediction of the expected microstructure from the desired hardness. An independent neural network was developed and showed that ML-predicted microstructure had less than 10% error from real ones, in terms of projected hardness. To monitor the microstructure during laser sintering, we demonstrated an ML model that can instantaneously predict ceramic’s microstructure at the laser spot, based on the laser spot brightness. The ML model can generate more than 10 predictions per second, and the error in average grain size was less than 5% from the experimental observations.Keywords: machine learning, additive manufacturing, ceramics, microstructure, hardness
Procedia PDF Downloads 04144 Design Analysis for Declining Admission Trend in Canada Public Diploma Programs
Authors: Zulfiqar Ali
Abstract:
The current survey reports and data demonstrate a declining trend of admissions in instructor-led synchronous diploma programs in Canadian public higher education institutes. A significant impact can also be seen on various Information Technology (IT) related diploma programs in prominent Canadian higher education institutes across the country. The significant external factors that impact the students’ interests in admission in instructor-led synchronous Information Technology related diploma programs include but not limited to easy access to online learning materials provided by external competitors. The high involvement of the IT giants like Microsoft, Cisco, Google, AWS, Linux in training and certification programs through their Learning Management Systems (LMS) came with their academy’s establishment. They offer and provide very scientific advanced kind of learning and teaching resources embedded with cloud and artificial Intelligence (AI) tools, techniques and design. The other external factor is the best fit of rate of change of technology (velocity) in business vis-à-vis the rate of change of adoption and transformation of could-based Artificial Intelligence (AI) in Canadian public higher education institutes for diploma programs. The significant internal factors may include but are not limited to the legacy type of curriculum design, tools, techniques, style, and delivery. The other major contribution in declining admission trend in Canadian public higher education institute’s IT related programs.is the diversity of learning and teaching styles comes from existing hiring and immigration processes. The proposed research addresses the major contribution of both internal and external factors in declining admission trend in instructor-led synchronous diploma programs in Canadian public higher education institutes. The research approaches to be adopted for the proposed work include collecting data, filtering data, quantitative analysis, qualitative analysis and mixed approach. The focal point of this research is the contribution of major internal factors in declining admission trend including curriculum design, delivery methods, academic integrity, velocity, cloud-based AI tools, techniques and integration with existing learning management system. Finally, the research results come up with analysis-based recommendations and design to cope with challenge of declining admission trend in Canadian public higher education institutes diploma programs vis-à-vis internal and external factors.Keywords: advanced curriculum design, analysis of internal educational factors, analysis of external educational factors, educational technology
Procedia PDF Downloads 84143 An Investigation into Libyan Teachers’ Views of Children’s Emotional and Behavioral Difficulties
Authors: Abdelbasit Gadour
Abstract:
A great number of children in mainstream schools across Libya are currently living with emotional, behavioral difficulties. This study aims to explore teachers’ perceptions of children’s emotional and behavioral difficulties (EBD) and their attributions of the causes of EBD. The relevance of this area of study to current educational practice is illustrated in the fact that primary school teachers in Libya find classroom behavior problems one of the major difficulties they face. The information presented in this study was gathered from 182 teachers that responded back to the survey, of whom 27 teachers were later interviewed. In general, teachers’ perceptions of EBD reflect personal experience, training, and attitudes. Teachers appear from this study to use words such as indifferent, frightened, withdrawn, aggressive, disobedient, hyperactive, less ambitious, lacking concentration, and academically weak to describe pupils with emotional and behavioral difficulties (EBD). The implications of this study are envisaged as being extremely important to support teachers addressing children’s EBD and shed light on the contributing factors to EBD for a successful teaching-learning process in Libyan primary schools.Keywords: children, emotional and behavior difficulties, learning, teachers'
Procedia PDF Downloads 1474142 The Pedagogical Integration of Digital Technologies in Initial Teacher Training
Authors: Vânia Graça, Paula Quadros-Flores, Altina Ramos
Abstract:
The use of Digital Technologies in teaching and learning processes is currently a reality, namely in initial teacher training. This study aims at knowing the digital reality of students in initial teacher training in order to improve training in the educational use of ICT and to promote digital technology integration strategies in an educational context. It is part of the IFITIC Project "Innovate with ICT in Initial Teacher Training to Promote Methodological Renewal in Pre-school Education and in the 1st and 2nd Basic Education Cycle" which involves the School of Education, Polytechnic of Porto and Institute of Education, University of Minho. The Project aims at rethinking educational practice with ICT in the initial training of future teachers in order to promote methodological innovation in Pre-school Education and in the 1st and 2nd Cycles of Basic Education. A qualitative methodology was used, in which a questionnaire survey was applied to teachers in initial training. For data analysis, the techniques of content analysis with the support of NVivo software were used. The results point to the following aspects: a) future teachers recognize that they have more technical knowledge about ICT than pedagogical knowledge. This result makes sense if we consider the objective of Basic Education, so that the gaps can be filled in the Master's Course by students who wish to follow the teaching; b) the respondents are aware that the integration of digital resources contributes positively to students' learning and to the life of children and young people, which also promotes preparation in life; c) to be a teacher in the digital age there is a need for the development of digital literacy, lifelong learning and the adoption of new ways of teaching how to learn. Thus, this study aims to contribute to a reflection on the teaching profession in the digital age.Keywords: digital technologies, initial teacher training, pedagogical use of ICT, skills
Procedia PDF Downloads 1264141 Intelligent Software Architecture and Automatic Re-Architecting Based on Machine Learning
Authors: Gebremeskel Hagos Gebremedhin, Feng Chong, Heyan Huang
Abstract:
Software system is the combination of architecture and organized components to accomplish a specific function or set of functions. A good software architecture facilitates application system development, promotes achievement of functional requirements, and supports system reconfiguration. We describe three studies demonstrating the utility of our architecture in the subdomain of mobile office robots and identify software engineering principles embodied in the architecture. The main aim of this paper is to analyze prove architecture design and automatic re-architecting using machine learning. Intelligence software architecture and automatic re-architecting process is reorganizing in to more suitable one of the software organizational structure system using the user access dataset for creating relationship among the components of the system. The 3-step approach of data mining was used to analyze effective recovery, transformation and implantation with the use of clustering algorithm. Therefore, automatic re-architecting without changing the source code is possible to solve the software complexity problem and system software reuse.Keywords: intelligence, software architecture, re-architecting, software reuse, High level design
Procedia PDF Downloads 1244140 The Association between Psychosocial Characteristics, Training Variables and Well-Being: An Exploratory Study among Organizational Workers
Authors: Norshaffika I. Zaiedy Nor, Andrew P. Smith
Abstract:
Background: Training is essential to develop individuals’ expertise to meet current and future job demands and to improve work performance. At the same time, individuals’ well-being is crucial to ensure that they can fully and positively carry out their daily duties. In addition to the studies that have examined what constitutes well-being and the factors behind it, many researchers have investigated the predictors of training effectiveness and transfer of training. However, there has been very little integration between them. This study was an attempt to bridge the gap between training effectiveness predictors and well-being. Purpose: This research paper aimed to investigate the association between well-being among employees and psychosocial characteristics, together with training variables. Training variables consist of motivation to learn; learning; implementation intention; and cognitive dissonance. Methodology: In total, 210 workers who had undergone various training programs completed an online survey measuring various psychosocial characteristics, four training variables, and level of well-being. Findings: The results showed that certain types of positive psychosocial characteristics (e.g., positive personality, positive work behaviors, positive work and resources) predict motivation to learn, learning and implementation intention. Meanwhile, negative psychosocial characteristics (e.g. negative work demands and resources, negative coping) predict cognitive dissonance. Also, all the training variables had a moderate to high correlation with well-being. However, after controlling other variables (age, gender, education and psychosocial characteristics), none of the training variables predicted well-being. Self-determination theory, cognitive dissonance theory, and the DRIVE model were used to explain these findings. Conclusion: As there is limited research on the integration of training variables with well-being, this study gives a new perspective in the field of both training and well-being. Further investigations are needed to examine the relationships between them.Keywords: cognitive dissonance, implementation intention, learning, motivation to learn, psychosocial characteristics, well-being
Procedia PDF Downloads 2184139 Employing Visual Culture to Enhance Initial Adult Maltese Language Acquisition
Authors: Jacqueline Żammit
Abstract:
Recent research indicates that the utilization of right-brain strategies holds significant implications for the acquisition of language skills. Nevertheless, the utilization of visual culture as a means to stimulate these strategies and amplify language retention among adults engaging in second language (L2) learning remains a relatively unexplored area. This investigation delves into the impact of visual culture on activating right-brain processes during the initial stages of language acquisition, particularly in the context of teaching Maltese as a second language (ML2) to adult learners. By employing a qualitative research approach, this study convenes a focus group comprising twenty-seven educators to delve into a range of visual culture techniques integrated within language instruction. The collected data is subjected to thematic analysis using NVivo software. The findings underscore a variety of impactful visual culture techniques, encompassing activities such as drawing, sketching, interactive matching games, orthographic mapping, memory palace strategies, wordless picture books, picture-centered learning methodologies, infographics, Face Memory Game, Spot the Difference, Word Search Puzzles, the Hidden Object Game, educational videos, the Shadow Matching technique, Find the Differences exercises, and color-coded methodologies. These identified techniques hold potential for application within ML2 classes for adult learners. Consequently, this study not only provides insights into optimizing language learning through specific visual culture strategies but also furnishes practical recommendations for enhancing language competencies and skills.Keywords: visual culture, right-brain strategies, second language acquisition, maltese as a second language, visual aids, language-based activities
Procedia PDF Downloads 664138 Analyzing Classroom Interaction Patterns across Disciplines in Nigerian Universities: Insights from the Teaching Dimension Observation Protocol
Authors: Edidiong Enyeneokpon Ukoh, Olutayo Toyin Omole
Abstract:
This study investigates classroom interaction patterns across various academic disciplines in Nigerian universities, utilizing the Teaching Dimension Observation Protocol (TDOP) as a primary instrument for data collection. A survey-type non-experimental research design was employed, incorporating a multi-stage sampling approach to ensure representation from diverse faculties, including agriculture, education, engineering, medicine, science, social sciences, and humanities. The findings reveal significant differences in teaching methods, with traditional lectures dominating in technical fields such as science and engineering, while non-technical fields like social sciences and arts exhibit greater engagement with interactive teaching strategies. The results highlight a concerning trend of passive learning environments that may hinder the development of critical skills necessary for graduates' employability. This study underscores the urgent need for Nigerian universities to reassess their pedagogical approaches and adopt more interactive methods that foster active learning. Recommendations include promoting discipline-specific training for educators, implementing regular assessments of teaching practices, and strengthening partnerships with industry stakeholders to align educational outcomes with workforce demands. By embracing these changes, universities can enhance student engagement and contribute effectively to national development through the cultivation of a skilled workforce.Keywords: classroom interaction patterns, Nigerian universities, teaching dimension observation protocol, active learning, pedagogical approaches
Procedia PDF Downloads 114137 Perceived Physical Exercise Benefits among Staff of Tertiary Institutions in Adamawa State
Authors: Salihu Mohammed Umar
Abstract:
Perceived physical exercise benefits among staff of tertiary institutions in Adamawa State was investigated as a basis for formulating proper exercise intervention strategies. The study utilized descriptive survey design. The purpose of the study was to determine perceived exercise benefits among staff of tertiary institutions in Adamawa state, Nigeria. The instrument used for data collection was a questionnaire adapted from Exercise Benefit/Barrier Scale (EBBS) developed by Sechrist, Walker and Pender (1985) which was validated by five experts. Three hundred and thirty (330) copies of the questionnaire were distributed among study participants in six institutions of higher learning in Adamawa state. The scale comprised two components; Benefits and Barriers dimensions. To achieve this purpose, three research questions were posed. The instrument had a four response forced-choice Likert-type format with responses ranging from 4 = strongly agree (SA), 3 = Agree (A), 2 = Disagree (D) and 1 = Strongly Disagree (SD). The findings of the study revealed that both male and female staff in institutions of higher learning in Adamawa state perceived exercise as highly beneficial. However, male staff had higher perceived benefits score than their female counterparts. (Male: x̄ = 95.02. SD = 3.08) > female: x̄ = 94.04, SD = 4.35. There was also no significant difference in perceived exercise barriers between staff and students of tertiary institutions in Adamawa state. Based on the finding of the study, it was concluded that staff of tertiary institutions perceived exercise as highly beneficial. It was recommended that since staff of institutions of higher learning in Adamawa State irrespective of gender and religious affiliations have basic knowledge of perceived benefits of exercise, there is the need to explore programmes that will enable staff across the sub-groups to overcome barriers that could discourage physical exercise participation.Keywords: perception, physical exercise, staff, benefits
Procedia PDF Downloads 3214136 The Relevance of Shared Cultural Leadership in the Survival of the Language and of the Francophone Culture in a Minority Language Environment
Authors: Lyne Chantal Boudreau, Claudine Auger, Arline Laforest
Abstract:
As an English-speaking country, Canada faces challenges in French-language education. During both editions of a provincial congress on education planned and conducted under shared cultural leadership, three organizers created a Francophone space where, for the first time in the province of New Brunswick (the only officially bilingual province in Canada), a group of stakeholders from the school, post-secondary and community sectors have succeeded in contributing to reflections on specific topics by sharing winning practices to meet the challenges of learning in a minority Francophone environment. Shared cultural leadership is a hybrid between theories of leadership styles in minority communities and theories of shared leadership. Through shared cultural leadership, the goal is simply to guide leadership and to set up all minority leaderships in minority context through shared leadership. This leadership style requires leaders to transition from a hierarchical to a horizontal approach, that is, to an approach where each individual is at the same level. In this exploratory research, it has been demonstrated that shared leadership exercised under the T-learning model best fosters the mobilization of all partners in advancing in-depth knowledge in a particular field while simultaneously allowing learning of the elements related to the domain in question. This session will present how it is possible to mobilize the whole community through leaders who continually develop their knowledge and skills in their specific field but also in related fields. Leaders in this style of management associated to shared cultural leadership acquire the ability to consider solutions to problems from a holistic perspective and to develop a collective power derived from the leadership of each and everyone in a space where all are rallied to promote the ultimate advancement of society.Keywords: education, minority context, shared leadership, t-leaning
Procedia PDF Downloads 2514135 Municipal-Level Gender Norms: Measurement and Effects on Women in Politics
Authors: Luisa Carrer, Lorenzo De Masi
Abstract:
In this paper, we exploit the massive amount of information from Facebook to build a measure of gender attitudes in Italy at a previously impossible resolution—the municipal level. We construct our index via a machine learning method to replicate a benchmark region-level measure. Interestingly, we find that most of the variation in our Gender Norms Index (GNI) is across towns within narrowly defined geographical areas rather than across regions or provinces. In a second step, we show how this local variation in norms can be leveraged for identification purposes. In particular, we use our index to investigate whether these differences in norms carry over to the policy activity of politicians elected in the Italian Parliament. We document that females are more likely to sit in parliamentary committees focused on gender-sensitive matters, labor, and social issues, but not if they come from a relatively conservative town. These effects are robust to conditioning the legislative term and electoral district, suggesting the importance of social norms in shaping legislators’ policy activity.Keywords: gender equality, gender norms index, Facebook, machine learning, politics
Procedia PDF Downloads 834134 Automatic Classification of the Stand-to-Sit Phase in the TUG Test Using Machine Learning
Authors: Yasmine Abu Adla, Racha Soubra, Milana Kasab, Mohamad O. Diab, Aly Chkeir
Abstract:
Over the past several years, researchers have shown a great interest in assessing the mobility of elderly people to measure their functional status. Usually, such an assessment is done by conducting tests that require the subject to walk a certain distance, turn around, and finally sit back down. Consequently, this study aims to provide an at home monitoring system to assess the patient’s status continuously. Thus, we proposed a technique to automatically detect when a subject sits down while walking at home. In this study, we utilized a Doppler radar system to capture the motion of the subjects. More than 20 features were extracted from the radar signals, out of which 11 were chosen based on their intraclass correlation coefficient (ICC > 0.75). Accordingly, the sequential floating forward selection wrapper was applied to further narrow down the final feature vector. Finally, 5 features were introduced to the linear discriminant analysis classifier, and an accuracy of 93.75% was achieved as well as a precision and recall of 95% and 90%, respectively.Keywords: Doppler radar system, stand-to-sit phase, TUG test, machine learning, classification
Procedia PDF Downloads 1644133 Developing Early Intervention Tools: Predicting Academic Dishonesty in University Students Using Psychological Traits and Machine Learning
Authors: Pinzhe Zhao
Abstract:
This study focuses on predicting university students' cheating tendencies using psychological traits and machine learning techniques. Academic dishonesty is a significant issue that compromises the integrity and fairness of educational institutions. While much research has been dedicated to detecting cheating behaviors after they have occurred, there is limited work on predicting such tendencies before they manifest. The aim of this research is to develop a model that can identify students who are at higher risk of engaging in academic misconduct, allowing for earlier interventions to prevent such behavior. Psychological factors are known to influence students' likelihood of cheating. Research shows that traits such as test anxiety, moral reasoning, self-efficacy, and achievement motivation are strongly linked to academic dishonesty. High levels of anxiety may lead students to cheat as a way to cope with pressure. Those with lower self-efficacy are less confident in their academic abilities, which can push them toward dishonest behaviors to secure better outcomes. Students with weaker moral judgment may also justify cheating more easily, believing it to be less wrong under certain conditions. Achievement motivation also plays a role, as students driven primarily by external rewards, such as grades, are more likely to cheat compared to those motivated by intrinsic learning goals. In this study, data on students’ psychological traits is collected through validated assessments, including scales for anxiety, moral reasoning, self-efficacy, and motivation. Additional data on academic performance, attendance, and engagement in class are also gathered to create a more comprehensive profile. Using machine learning algorithms such as Random Forest, Support Vector Machines (SVM), and Long Short-Term Memory (LSTM) networks, the research builds models that can predict students’ cheating tendencies. These models are trained and evaluated using metrics like accuracy, precision, recall, and F1 scores to ensure they provide reliable predictions. The findings demonstrate that combining psychological traits with machine learning provides a powerful method for identifying students at risk of cheating. This approach allows for early detection and intervention, enabling educational institutions to take proactive steps in promoting academic integrity. The predictive model can be used to inform targeted interventions, such as counseling for students with high test anxiety or workshops aimed at strengthening moral reasoning. By addressing the underlying factors that contribute to cheating behavior, educational institutions can reduce the occurrence of academic dishonesty and foster a culture of integrity. In conclusion, this research contributes to the growing body of literature on predictive analytics in education. It offers a approach by integrating psychological assessments with machine learning to predict cheating tendencies. This method has the potential to significantly improve how academic institutions address academic dishonesty, shifting the focus from punishment after the fact to prevention before it occurs. By identifying high-risk students and providing them with the necessary support, educators can help maintain the fairness and integrity of the academic environment.Keywords: academic dishonesty, cheating prediction, intervention strategies, machine learning, psychological traits, academic integrity
Procedia PDF Downloads 274132 Climbing up to Safety and Security: The Facilitation of an NGO Awareness Culture
Authors: Mirad Böhm, Diede De Kok
Abstract:
It goes without saying that for many NGOs a high level of safety and security are crucial issues, which often necessitates the support of military personnel to varying degrees. The relationship between military and NGO personnel is usually a difficult one and while there has been progress, clashes naturally still occur owing to different interpretations of mission objectives amongst many other challenges. NGOs tend to view safety and security as necessary steps towards their goal instead of fundamental pillars of their core ‘business’. The military perspective, however, considers them primary objectives; thus, frequently creating a different vision of how joint operations should be conducted. This paper will argue that internalizing safety and security into the NGO organizational culture is compelling in order to ensure a more effective cooperation with military partners and, ultimately, to achieve their goals. This can be accomplished through a change in perception of safety and security concepts as a fixed and major point on the everyday agenda. Nowadays, there are several training programmes on offer addressing such issues but they primarily focus on the individual level. True internalization of these concepts should reach further by encompassing a wide range of NGO activities, beginning with daily proceedings in office facilities far from conflict zones including logistical and administrative tasks such as budgeting, and leading all the way to actual and potentially hazardous missions in the field. In order to effectuate this change, a tool is required to help NGOs realize, firstly, how they perceive and define safety and security, and secondly, how they can adjust this perception to their benefit. The ‘safety culture ladder’ is a concept that suggests what organizations can and should do to advance their safety. While usually applied to private industrial scenarios, this work will present the concept as a useful instrument to visualize and facilitate the internalization process NGOs ought to go through. The ‘ladder’ allows them to become more aware of the level of their safety and security measures, and moreover, cautions them to take these measures proactively rather than reactively. This in turn will contribute to a rapprochement between military and NGO priority setting in regard to what constitutes a safe working environment.Keywords: NGO-military cooperation, organisational culture, safety and security awareness, safety culture ladder
Procedia PDF Downloads 3344131 Screening Diversity: Artificial Intelligence and Virtual Reality Strategies for Elevating Endangered African Languages in the Film and Television Industry
Authors: Samuel Ntsanwisi
Abstract:
This study investigates the transformative role of Artificial Intelligence (AI) and Virtual Reality (VR) in the preservation of endangered African languages. The study is contextualized within the film and television industry, highlighting disparities in screen representation for certain languages in South Africa, underscoring the need for increased visibility and preservation efforts; with globalization and cultural shifts posing significant threats to linguistic diversity, this research explores approaches to language preservation. By leveraging AI technologies, such as speech recognition, translation, and adaptive learning applications, and integrating VR for immersive and interactive experiences, the study aims to create a framework for teaching and passing on endangered African languages. Through digital documentation, interactive language learning applications, storytelling, and community engagement, the research demonstrates how these technologies can empower communities to revitalize their linguistic heritage. This study employs a dual-method approach, combining a rigorous literature review to analyse existing research on the convergence of AI, VR, and language preservation with primary data collection through interviews and surveys with ten filmmakers. The literature review establishes a solid foundation for understanding the current landscape, while interviews with filmmakers provide crucial real-world insights, enriching the study's depth. This balanced methodology ensures a comprehensive exploration of the intersection between AI, VR, and language preservation, offering both theoretical insights and practical perspectives from industry professionals.Keywords: language preservation, endangered languages, artificial intelligence, virtual reality, interactive learning
Procedia PDF Downloads 654130 Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network
Authors: Ziying Wu, Danfeng Yan
Abstract:
Multi-Access Edge Computing (MEC) is one of the key technologies of the future 5G network. By deploying edge computing centers at the edge of wireless access network, the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios. Meanwhile, with the development of IOV (Internet of Vehicles) technology, various delay-sensitive and compute-intensive in-vehicle applications continue to appear. Compared with traditional internet business, these computation tasks have higher processing priority and lower delay requirements. In this paper, we design a 5G-based Vehicle-Aware Multi-Access Edge Computing Network (VAMECN) and propose a joint optimization problem of minimizing total system cost. In view of the problem, a deep reinforcement learning-based joint computation offloading and task migration optimization (JCOTM) algorithm is proposed, considering the influences of multiple factors such as concurrent multiple computation tasks, system computing resources distribution, and network communication bandwidth. And, the mixed integer nonlinear programming problem is described as a Markov Decision Process. Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption, optimize computing offloading and resource allocation schemes, and improve system resource utilization, compared with other computing offloading policies.Keywords: multi-access edge computing, computation offloading, 5th generation, vehicle-aware, deep reinforcement learning, deep q-network
Procedia PDF Downloads 1234129 Agricultural Extension Workers’ Education in Indonesia - Roles of Distance Education
Authors: Adhi Susilo
Abstract:
This paper addresses the roles of distance education in the agricultural extension workers’ education. Agriculture plays an important role in both poverty reduction and economic growth. The technology of agriculture in the developing world should change continuously to keep pace with rising populations and rapidly changing social, economic, and environmental conditions. Therefore, agricultural extension workers should have several competencies in order to carry out their duties properly. One of the essential competencies that they must possess is the professional competency that is directly related to their duties in carrying out extension activities. Such competency can be acquired through studying at Universitas Terbuka (UT). With its distance learning system, agricultural extension workers can study at UT without leaving their duties. This paper presenting sociological analysis and lessons learnt from the specific context of Indonesia. Diversities in geographic, demographic, social cultural and economic conditions of the country provide specific challenges for its distance education practice and the process of social transformation to which distance education can contribute. Extension officers used distance education for personal benefits and increased professional productivity. An increase in awareness is important for the further adoption of distance learning for extension purposes. Organizations in both the public and private sector must work to increase knowledge of ICTs for the benefit of stakeholders. The use of ICTs can increase productivity for extensions officers and expand educational opportunities for learners. The use of distance education by extension to disseminate educational materials around the world is widespread. Increasing awareness and use of distance learning can lead to more productive relationships between extension officers and agricultural stakeholders.Keywords: agricultural extension, demographic and geographic condition, distance education, ICTs
Procedia PDF Downloads 5224128 Design and Implementation of a Software Platform Based on Artificial Intelligence for Product Recommendation
Authors: Giuseppina Settanni, Antonio Panarese, Raffaele Vaira, Maurizio Galiano
Abstract:
Nowdays, artificial intelligence is used successfully in academia and industry for its ability to learn from a large amount of data. In particular, in recent years the use of machine learning algorithms in the field of e-commerce has spread worldwide. In this research study, a prototype software platform was designed and implemented in order to suggest to users the most suitable products for their needs. The platform includes a chatbot and a recommender system based on artificial intelligence algorithms that provide suggestions and decision support to the customer. The recommendation systems perform the important function of automatically filtering and personalizing information, thus allowing to manage with the IT overload to which the user is exposed on a daily basis. Recently, international research has experimented with the use of machine learning technologies with the aim to increase the potential of traditional recommendation systems. Specifically, support vector machine algorithms have been implemented combined with natural language processing techniques that allow the user to interact with the system, express their requests and receive suggestions. The interested user can access the web platform on the internet using a computer, tablet or mobile phone, register, provide the necessary information and view the products that the system deems them most appropriate. The platform also integrates a dashboard that allows the use of the various functions, which the platform is equipped with, in an intuitive and simple way. Artificial intelligence algorithms have been implemented and trained on historical data collected from user browsing. Finally, the testing phase allowed to validate the implemented model, which will be further tested by letting customers use it.Keywords: machine learning, recommender system, software platform, support vector machine
Procedia PDF Downloads 1414127 Using Machine Learning to Predict Answers to Big-Five Personality Questions
Authors: Aadityaa Singla
Abstract:
The big five personality traits are as follows: openness, conscientiousness, extraversion, agreeableness, and neuroticism. In order to get an insight into their personality, many flocks to these categories, which each have different meanings/characteristics. This information is important not only to individuals but also to career professionals and psychologists who can use this information for candidate assessment or job recruitment. The links between AI and psychology have been well studied in cognitive science, but it is still a rather novel development. It is possible for various AI classification models to accurately predict a personality question via ten input questions. This would contrast with the hundred questions that normal humans have to answer to gain a complete picture of their five personality traits. In order to approach this problem, various AI classification models were used on a dataset to predict what a user may answer. From there, the model's prediction was compared to its actual response. Normally, there are five answer choices (a 20% chance of correct guess), and the models exceed that value to different degrees, proving their significance. By utilizing an MLP classifier, decision tree, linear model, and K-nearest neighbors, they were able to obtain a test accuracy of 86.643, 54.625, 47.875, and 52.125, respectively. These approaches display that there is potential in the future for more nuanced predictions to be made regarding personality.Keywords: machine learning, personally, big five personality traits, cognitive science
Procedia PDF Downloads 1494126 Early Requirement Engineering for Design of Learner Centric Dynamic LMS
Authors: Kausik Halder, Nabendu Chaki, Ranjan Dasgupta
Abstract:
We present a modelling framework that supports the engineering of early requirements specifications for design of learner centric dynamic Learning Management System. The framework is based on i* modelling tool and Means End Analysis, that adopts primitive concepts for modelling early requirements (such as actor, goal, and strategic dependency). We show how pedagogical and computational requirements for designing a learner centric Learning Management system can be adapted for the automatic early requirement engineering specifications. Finally, we presented a model on a Learner Quanta based adaptive Courseware. Our early requirement analysis shows that how means end analysis reveals gaps and inconsistencies in early requirements specifications that are by no means trivial to discover without the help of formal analysis tool.Keywords: adaptive courseware, early requirement engineering, means end analysis, organizational modelling, requirement modelling
Procedia PDF Downloads 5044125 Using AI Based Software as an Assessment Aid for University Engineering Assignments
Authors: Waleed Al-Nuaimy, Luke Anastassiou, Manjinder Kainth
Abstract:
As the process of teaching has evolved with the advent of new technologies over the ages, so has the process of learning. Educators have perpetually found themselves on the lookout for new technology-enhanced methods of teaching in order to increase learning efficiency and decrease ever expanding workloads. Shortly after the invention of the internet, web-based learning started to pick up in the late 1990s and educators quickly found that the process of providing learning material and marking assignments could change thanks to the connectivity offered by the internet. With the creation of early web-based virtual learning environments (VLEs) such as SPIDER and Blackboard, it soon became apparent that VLEs resulted in higher reported computer self-efficacy among students, but at the cost of students being less satisfied with the learning process . It may be argued that the impersonal nature of VLEs, and their limited functionality may have been the leading factors contributing to this reported dissatisfaction. To this day, often faced with the prospects of assigning colossal engineering cohorts their homework and assessments, educators may frequently choose optimally curated assessment formats, such as multiple-choice quizzes and numerical answer input boxes, so that automated grading software embedded in the VLEs can save time and mark student submissions instantaneously. A crucial skill that is meant to be learnt during most science and engineering undergraduate degrees is gaining the confidence in using, solving and deriving mathematical equations. Equations underpin a significant portion of the topics taught in many STEM subjects, and it is in homework assignments and assessments that this understanding is tested. It is not hard to see that this can become challenging if the majority of assignment formats students are engaging with are multiple-choice questions, and educators end up with a reduced perspective of their students’ ability to manipulate equations. Artificial intelligence (AI) has in recent times been shown to be an important consideration for many technologies. In our paper, we explore the use of new AI based software designed to work in conjunction with current VLEs. Using our experience with the software, we discuss its potential to solve a selection of problems ranging from impersonality to the reduction of educator workloads by speeding up the marking process. We examine the software’s potential to increase learning efficiency through its features which claim to allow more customized and higher-quality feedback. We investigate the usability of features allowing students to input equation derivations in a range of different forms, and discuss relevant observations associated with these input methods. Furthermore, we make ethical considerations and discuss potential drawbacks to the software, including the extent to which optical character recognition (OCR) could play a part in the perpetuation of errors and create disagreements between student intent and their submitted assignment answers. It is the intention of the authors that this study will be useful as an example of the implementation of AI in a practical assessment scenario insofar as serving as a springboard for further considerations and studies that utilise AI in the setting and marking of science and engineering assignments.Keywords: engineering education, assessment, artificial intelligence, optical character recognition (OCR)
Procedia PDF Downloads 1274124 The Phenomena of False Cognates and Deceptive Cognates: Issues to Foreign Language Learning and Teaching Methodology Based on Set Theory
Authors: Marilei Amadeu Sabino
Abstract:
The aim of this study is to establish differences between the terms ‘false cognates’, ‘false friends’ and ‘deceptive cognates’, usually considered to be synonyms. It will be shown they are not synonyms, since they do not designate the same linguistic process or phenomenon. Despite their differences in meaning, many pairs of formally similar words in two (or more) different languages are true cognates, although they are usually known as ‘false’ cognates – such as, for instance, the English and Italian lexical items ‘assist x assistere’; ‘attend x attendere’; ‘argument x argomento’; ‘apology x apologia’; ‘camera x camera’; ‘cucumber x cocomero’; ‘fabric x fabbrica’; ‘factory x fattoria’; ‘firm x firma’; ‘journal x giornale’; ‘library x libreria’; ‘magazine x magazzino’; ‘parent x parente’; ‘preservative x preservativo’; ‘pretend x pretendere’; ‘vacancy x vacanza’, to name but a few examples. Thus, one of the theoretical objectives of this paper is firstly to elaborate definitions establishing a distinction between the words that are definitely ‘false cognates’ (derived from different etyma) and those that are just ‘deceptive cognates’ (derived from the same etymon). Secondly, based on Set Theory and on the concepts of equal sets, subsets, intersection of sets and disjoint sets, this study is intended to elaborate some theoretical and practical questions that will be useful in identifying more precisely similarities and differences between cognate words of different languages, and according to graphic interpretation of sets it will be possible to classify them and provide discernment about the processes of semantic changes. Therefore, these issues might be helpful not only to the Learning of Second and Foreign Languages, but they could also give insights into Foreign and Second Language Teaching Methodology. Acknowledgements: FAPESP – São Paulo State Research Support Foundation – the financial support offered (proc. n° 2017/02064-7).Keywords: deceptive cognates, false cognates, foreign language learning, teaching methodology
Procedia PDF Downloads 3404123 A Machine Learning-Based Analysis of Autism Prevalence Rates across US States against Multiple Potential Explanatory Variables
Authors: Ronit Chakraborty, Sugata Banerji
Abstract:
There has been a marked increase in the reported prevalence of Autism Spectrum Disorder (ASD) among children in the US over the past two decades. This research has analyzed the growth in state-level ASD prevalence against 45 different potentially explanatory factors, including socio-economic, demographic, healthcare, public policy, and political factors. The goal was to understand if these factors have adequate predictive power in modeling the differential growth in ASD prevalence across various states and if they do, which factors are the most influential. The key findings of this study include (1) the confirmation that the chosen feature set has considerable power in predicting the growth in ASD prevalence, (2) the identification of the most influential predictive factors, (3) given the nature of the most influential predictive variables, an indication that a considerable portion of the reported ASD prevalence differentials across states could be attributable to over and under diagnosis, and (4) identification of Florida as a key outlier state pointing to a potential under-diagnosis of ASD there.Keywords: autism spectrum disorder, clustering, machine learning, predictive modeling
Procedia PDF Downloads 1074122 The Surgical Trainee Perception of the Operating Room Educational Environment
Authors: Neal Rupani
Abstract:
Background: A surgical trainee has limited learning opportunities in the operating room in order to gain an ever-increasing standard of surgical skill, competency, and proficiency. These opportunities continue to decline due to numerous factors such as the European Working Time Directive and increasing requirement for service provision. It is therefore imperative to obtain the highest educational value from each educational opportunity. A measure that has yet to be validated in England on surgical trainees called the Operating Room Educational Environment Measure (OREEM) has been developed to identify and evaluate each component of the educational environment with a view to steer future change in optimising educational events in theatre. Aims: The aims of the study are to assess the reliability of the OREEM within England and to evaluate the surgical trainee’s objective perspective of the current operating room educational environment within one region within England. Methods: Using a quantitative study approach, data was collected over one month from surgical trainees within Health Education Thames Valley (Oxford) using an online questionnaire consisting of demographic data, the OREEM, a global satisfaction score. Results: 140 surgical trainees were invited to the study, with an online response of 54 participants (response rate = 38.6%). The OREEM was shown to have good internal consistency (α = 0.906, variables = 40) and unidimensionality, along with all four of its subgroups. The mean OREEM score was 79.16%. The areas highlighted for improvement predominantly focused on improving learning opportunities (average subscale score = 72.9%) and conducting pre- and post-operative teaching (average score = 70.4%). The trainee perception is most satisfactory for the level of supervision and workload (average subscale score = 82.87%). There was no differences found between gender (U = 191.5, p = 0.535) or type of hospital (U = 258.0, p = 0.099), but the learning environment was favoured towards senior trainees (U = 223.5, p = 0.017). There was strong correlation between OREEM and the global satisfaction score (r = 0.755, p<0.001). Conclusions: The OREEM was shown to be reliable in measuring the educational environment in the operating room. This can be used to identify potentially modifiable components for improvement and as an audit tool to ensure high standards are being met. The current perception of the education environment in Health Education Thames Valley is satisfactory, and modifiable internal and external factors such as reducing service provision requirements, empowering trainees to plan lists, creating a team-working ethic between all personnel, and using tools that maximise learning from each operation have been identified to improve learning in the future. There is a favourable attitude to use of such improvement tools, especially for those currently dissatisfied.Keywords: education environment, surgery, post-graduate education, OREEM
Procedia PDF Downloads 1884121 Performance Comparison of Deep Convolutional Neural Networks for Binary Classification of Fine-Grained Leaf Images
Authors: Kamal KC, Zhendong Yin, Dasen Li, Zhilu Wu
Abstract:
Intra-plant disease classification based on leaf images is a challenging computer vision task due to similarities in texture, color, and shape of leaves with a slight variation of leaf spot; and external environmental changes such as lighting and background noises. Deep convolutional neural network (DCNN) has proven to be an effective tool for binary classification. In this paper, two methods for binary classification of diseased plant leaves using DCNN are presented; model created from scratch and transfer learning. Our main contribution is a thorough evaluation of 4 networks created from scratch and transfer learning of 5 pre-trained models. Training and testing of these models were performed on a plant leaf images dataset belonging to 16 distinct classes, containing a total of 22,265 images from 8 different plants, consisting of a pair of healthy and diseased leaves. We introduce a deep CNN model, Optimized MobileNet. This model with depthwise separable CNN as a building block attained an average test accuracy of 99.77%. We also present a fine-tuning method by introducing the concept of a convolutional block, which is a collection of different deep neural layers. Fine-tuned models proved to be efficient in terms of accuracy and computational cost. Fine-tuned MobileNet achieved an average test accuracy of 99.89% on 8 pairs of [healthy, diseased] leaf ImageSet.Keywords: deep convolution neural network, depthwise separable convolution, fine-grained classification, MobileNet, plant disease, transfer learning
Procedia PDF Downloads 1914120 Effects of Unfamiliar Orthography on the Lexical Encoding of Novel Phonological Features
Authors: Asmaa Shehata
Abstract:
Prior research indicates that second language (L2) learners encounter difficulty in the distinguishing novel L2 contrasting sounds that are not contrastive in their native languages. L2 orthographic information, however, is found to play a positive role in the acquisition of non-native phoneme contrasts. While most studies have mainly involved a familiar written script (i.e., the Roman script), the influence of a foreign, unfamiliar script is still unknown. Therefore, the present study asks: Does unfamiliar L2 script play a role in creating distinct phonological representations of novel contrasting phonemes? It is predicted that subjects’ performance in the unfamiliar orthography group will outperform their counterparts’ performance in the control group. Thus, training that entails orthographic inputs can yield a significant improvement in L2 adult learners’ identification and lexical encoding of novel L2 consonant contrasts. Results are discussed in terms of their implications for the type of input introduced to L2 learners to improve their language learning.Keywords: Arabic, consonant contrasts, foreign script, lexical encoding, orthography, word learning
Procedia PDF Downloads 2624119 Applying the View of Cognitive Linguistics on Teaching and Learning English at UFLS - UDN
Authors: Tran Thi Thuy Oanh, Nguyen Ngoc Bao Tran
Abstract:
In the view of Cognitive Linguistics (CL), knowledge and experience of things and events are used by human beings in expressing concepts, especially in their daily life. The human conceptual system is considered to be fundamentally metaphorical in nature. It is also said that the way we think, what we experience, and what we do everyday is very much a matter of language. In fact, language is an integral factor of cognition in that CL is a family of broadly compatible theoretical approaches sharing the fundamental assumption. The relationship between language and thought, of course, has been addressed by many scholars. CL, however, strongly emphasizes specific features of this relation. By experiencing, we receive knowledge of lives. The partial things are ideal domains, we make use of all aspects of this domain in metaphorically understanding abstract targets. The paper refered to applying this theory on pragmatics lessons for major English students at University of Foreign Language Studies - The University of Da Nang, Viet Nam. We conducted the study with two third – year students groups studying English pragmatics lessons. To clarify this study, the data from these two classes were collected for analyzing linguistic perspectives in the view of CL and traditional concepts. Descriptive, analytic, synthetic, comparative, and contrastive methods were employed to analyze data from 50 students undergoing English pragmatics lessons. The two groups were taught how to transfer the meanings of expressions in daily life with the view of CL and one group used the traditional view for that. The research indicated that both ways had a significant influence on students' English translating and interpreting abilities. However, the traditional way had little effect on students' understanding, but the CL view had a considerable impact. The study compared CL and traditional teaching approaches to identify benefits and challenges associated with incorporating CL into the curriculum. It seeks to extend CL concepts by analyzing metaphorical expressions in daily conversations, offering insights into how CL can enhance language learning. The findings shed light on the effectiveness of applying CL in teaching and learning English pragmatics. They highlight the advantages of using metaphorical expressions from daily life to facilitate understanding and explore how CL can enhance cognitive processes in language learning in general and teaching English pragmatics to third-year students at the UFLS - UDN, Vietnam in personal. The study contributes to the theoretical understanding of the relationship between language, cognition, and learning. By emphasizing the metaphorical nature of human conceptual systems, it offers insights into how CL can enrich language teaching practices and enhance students' comprehension of abstract concepts.Keywords: cognitive linguisitcs, lakoff and johnson, pragmatics, UFLS
Procedia PDF Downloads 404118 Prediction of Alzheimer's Disease Based on Blood Biomarkers and Machine Learning Algorithms
Authors: Man-Yun Liu, Emily Chia-Yu Su
Abstract:
Alzheimer's disease (AD) is the public health crisis of the 21st century. AD is a degenerative brain disease and the most common cause of dementia, a costly disease on the healthcare system. Unfortunately, the cause of AD is poorly understood, furthermore; the treatments of AD so far can only alleviate symptoms rather cure or stop the progress of the disease. Currently, there are several ways to diagnose AD; medical imaging can be used to distinguish between AD, other dementias, and early onset AD, and cerebrospinal fluid (CSF). Compared with other diagnostic tools, blood (plasma) test has advantages as an approach to population-based disease screening because it is simpler, less invasive also cost effective. In our study, we used blood biomarkers dataset of The Alzheimer’s disease Neuroimaging Initiative (ADNI) which was funded by National Institutes of Health (NIH) to do data analysis and develop a prediction model. We used independent analysis of datasets to identify plasma protein biomarkers predicting early onset AD. Firstly, to compare the basic demographic statistics between the cohorts, we used SAS Enterprise Guide to do data preprocessing and statistical analysis. Secondly, we used logistic regression, neural network, decision tree to validate biomarkers by SAS Enterprise Miner. This study generated data from ADNI, contained 146 blood biomarkers from 566 participants. Participants include cognitive normal (healthy), mild cognitive impairment (MCI), and patient suffered Alzheimer’s disease (AD). Participants’ samples were separated into two groups, healthy and MCI, healthy and AD, respectively. We used the two groups to compare important biomarkers of AD and MCI. In preprocessing, we used a t-test to filter 41/47 features between the two groups (healthy and AD, healthy and MCI) before using machine learning algorithms. Then we have built model with 4 machine learning methods, the best AUC of two groups separately are 0.991/0.709. We want to stress the importance that the simple, less invasive, common blood (plasma) test may also early diagnose AD. As our opinion, the result will provide evidence that blood-based biomarkers might be an alternative diagnostics tool before further examination with CSF and medical imaging. A comprehensive study on the differences in blood-based biomarkers between AD patients and healthy subjects is warranted. Early detection of AD progression will allow physicians the opportunity for early intervention and treatment.Keywords: Alzheimer's disease, blood-based biomarkers, diagnostics, early detection, machine learning
Procedia PDF Downloads 3294117 Text-to-Speech in Azerbaijani Language via Transfer Learning in a Low Resource Environment
Authors: Dzhavidan Zeinalov, Bugra Sen, Firangiz Aslanova
Abstract:
Most text-to-speech models cannot operate well in low-resource languages and require a great amount of high-quality training data to be considered good enough. Yet, with the improvements made in ASR systems, it is now much easier than ever to collect data for the design of custom text-to-speech models. In this work, our work on using the ASR model to collect data to build a viable text-to-speech system for one of the leading financial institutions of Azerbaijan will be outlined. NVIDIA’s implementation of the Tacotron 2 model was utilized along with the HiFiGAN vocoder. As for the training, the model was first trained with high-quality audio data collected from the Internet, then fine-tuned on the bank’s single speaker call center data. The results were then evaluated by 50 different listeners and got a mean opinion score of 4.17, displaying that our method is indeed viable. With this, we have successfully designed the first text-to-speech model in Azerbaijani and publicly shared 12 hours of audiobook data for everyone to use.Keywords: Azerbaijani language, HiFiGAN, Tacotron 2, text-to-speech, transfer learning, whisper
Procedia PDF Downloads 51