Search results for: open source energy modeling system (OSeMOSYS)
27204 Co-Alignment of Comfort and Energy Saving Objectives for U.S. Office Buildings and Restaurants
Authors: Lourdes Gutierrez, Eric Williams
Abstract:
Post-occupancy research shows that only 11% of commercial buildings met the ASHRAE thermal comfort standard. Many buildings are too warm in winter and/or too cool in summer, wasting energy and not providing comfort. In this paper, potential energy savings in U.S. offices and restaurants if thermostat settings are calculated according the updated ASHRAE 55-2013 comfort model that accounts for outdoor temperature and clothing choice for different climate zones. eQUEST building models are calibrated to reproduce aggregate energy consumption as reported in the U.S. Commercial Building Energy Consumption Survey. Changes in energy consumption due to the new settings are analyzed for 14 cities in different climate zones and then the results are extrapolated to estimate potential national savings. It is found that, depending on the climate zone, each degree increase in the summer saves 0.6 to 1.0% of total building electricity consumption. Each degree the winter setting is lowered saves 1.2% to 8.7% of total building natural gas consumption. With new thermostat settings, national savings are 2.5% of the total consumed in all office buildings and restaurants, summing up to national savings of 69.6 million GJ annually, comparable to all 2015 total solar PV generation in US. The goals of improved comfort and energy/economic savings are thus co-aligned, raising the importance of thermostat management as an energy efficiency strategy.Keywords: energy savings quantifications, commercial building stocks, dynamic clothing insulation model, operation-focused interventions, energy management, thermal comfort, thermostat settings
Procedia PDF Downloads 30227203 Pioneering Technology of Night Photo-Stimulation of the Brain Lymphatic System: Therapy of Brain Diseases during Sleep
Authors: Semyachkina-Glushkovskaya Oxana, Fedosov Ivan, Blokhina Inna, Terskov Andrey, Evsukova Arina, Elovenko Daria, Adushkina Viktoria, Dubrovsky Alexander, Jürgen Kurths
Abstract:
In modern neurobiology, sleep is considered a novel biomarker and a promising therapeutic target for brain diseases. This is due to recent discoveries of the nighttime activation of the brain lymphatic system (BLS), playing an important role in the removal of wastes and toxins from the brain and contributes neuroprotection of the central nervous system (CNS). In our review, we discuss that night stimulation of BLS might be a breakthrough strategy in a new treatment of Alzheimer’s and Parkinson’s disease, stroke, brain trauma, and oncology. Although this research is in its infancy, however, there are pioneering and promising results suggesting that night transcranial photostimulation (tPBM) stimulates more effectively lymphatic removal of amyloid-beta from mouse brain than daily tPBM that is associated with a greater improvement of the neurological status and recognition memory of animals. In our previous study, we discovered that tPBM modulates the tone and permeability of the lymphatic endothelium by stimulating NO formation, promoting lymphatic clearance of wastes and toxins from the brain tissues. We also demonstrate that tPBM can also lead to angio- and lymphangiogenesis, which is another mechanism underlying tPBM-mediated stimulation of BLS. Thus, photo-augmentation of BLS might be a promising therapeutic target for preventing or delaying brain diseases associated with BLS dysfunction. Here we present pioneering technology for simultaneous tPBM in humans and sleep monitoring for stimulation of BLS to remove toxins from CNS and modulation of brain immunity. The wireless-controlled gadget includes a flexible organic light-emitting diode (LED) source that is controlled directly by a sleep-tracking device via a mobile application. The designed autonomous LED source is capable of providing the required therapeutic dose of light radiation at a certain region of the patient’s head without disturbing of sleeping patient. To minimize patients' discomfort, advanced materials like flexible organic LEDs were used. Acknowledgment: This study was supported by RSF project No. 23-75-30001.Keywords: brain diseases, brain lymphatic system, phototherapy, sleep
Procedia PDF Downloads 7227202 Design of IMC-PID Controller Cascaded Filter for Simplified Decoupling Control System
Authors: Le Linh, Truong Nguyen Luan Vu, Le Hieu Giang
Abstract:
In this work, the IMC-PID controller cascaded filter based on Internal Model Control (IMC) scheme is systematically proposed for the simplified decoupling control system. The simplified decoupling is firstly introduced for multivariable processes by using coefficient matching to obtain a stable, proper, and causal simplified decoupler. Accordingly, transfer functions of decoupled apparent processes can be expressed as a set of n equivalent independent processes and then derived as a ratio of the original open-loop transfer function to the diagonal element of the dynamic relative gain array. The IMC-PID controller in series with filter is then directly employed to enhance the overall performance of the decoupling control system while avoiding difficulties arising from properties inherent to simplified decoupling. Some simulation studies are considered to demonstrate the simplicity and effectiveness of the proposed method. Simulations were conducted by tuning various controllers of the multivariate processes with multiple time delays. The results indicate that the proposed method consistently performs well with fast and well-balanced closed-loop time responses.Keywords: coefficient matching method, internal model control (IMC) scheme, PID controller cascaded filter, simplified decoupler
Procedia PDF Downloads 44227201 Mathematical Modeling to Reach Stability Condition within Rosetta River Mouth, Egypt
Authors: Ali Masria , Abdelazim Negm, Moheb Iskander, Oliver C. Saavedra
Abstract:
Estuaries play an important role in exchanging water and providing a navigational pathway for ships. These zones are very sensitive and vulnerable to any interventions in coastal dynamics. Almost major of these inlets experience coastal problems such as severe erosion, and accretion. Rosetta promontory, Egypt is an example of this environment. It suffers from many coastal problems as erosion problem along the coastline and siltation problem inside the inlet. It is due to lack of water and sediment resources as a side effect of constructing the Aswan High dam. The shoaling of the inlet leads to hindering the navigation process of fishing boats, negative impacts to estuarine and salt marsh habitat and decrease the efficiency of the cross section to transfer the flow during emergencies to the sea. This paper aims to reach a new condition of stability of Rosetta Promontory by using coastal measures to control the sediment entering, and causes shoaling inside the inlet. These coastal measures include modifying the inlet cross section by using centered jetties, eliminate the coastal dynamic in the entrance using boundary jetties. This target is achieved by using a hydrodynamic model Coastal Modeling System (CMS). Extensive field data collection (hydrographic surveys, wave data, tide data, and bed morphology) is used to build and calibrate the model. About 20 scenarios were tested to reach a suitable solution that mitigate the coastal problems at the inlet. The results show that 360 m jetty in the eastern bank with system of sand bypass from the leeside of the jetty can stabilize the estuary.Keywords: Rosetta promontory, erosion, sedimentation, inlet stability
Procedia PDF Downloads 58727200 Sea-Spray Calculations Using the MESO-NH Model
Authors: Alix Limoges, William Bruch, Christophe Yohia, Jacques Piazzola
Abstract:
A number of questions arise concerning the long-term impact of the contribution of marine aerosol fluxes generated at the air-sea interface on the occurrence of intense events (storms, floods, etc.) in the coastal environment. To this end, knowledge is needed on sea-spray emission rates and the atmospheric dynamics of the corresponding particles. Our aim is to implement the mesoscale model MESO-NH on the study area using an accurate sea-spray source function to estimate heat fluxes and impact on the precipitations. Based on an original and complete sea-spray source function, which covers a large size spectrum since taking into consideration the sea-spray produced by both bubble bursting and surface tearing process, we propose a comparison between model simulations and experimental data obtained during an oceanic scientific cruise on board the navy ship Atalante. The results show the relevance of the sea-spray flux calculations as well as their impact on the heat fluxes and AOD.Keywords: atmospheric models, sea-spray source, sea-spray dynamics, aerosols
Procedia PDF Downloads 14927199 The Structural System Concept of Reinforced Concrete Pier Accompanied with Friction Device plus Gap in Numerical Analysis
Authors: Angga S. Fajar, Y. Takahashi, J. Kiyono, S. Sawada
Abstract:
The problem of medium span bridge bearing support in the extreme temperatures fluctuation region is deterioration in case the suppression of superstructure that sustains temperature expansion. The other hand, the behavior and the parameter of RC column accompanied with friction damping mechanism were determined successfully based on the experiment and numerical analysis. This study proposes the structural system of RC pier accompanied with multi sliding friction damping mechanism to substitute the conventional system of pier together with bearing support. In this system, the pier has monolith behavior to the superstructure with flexible small deformation to accommodate thermal expansion of the superstructure. The flexible small deformation behavior is realized by adding the gap mechanism in the multi sliding friction devices form. The important performances of this system are sufficient lateral flexibility in small deformation, sufficient elastic deformation capacity, sufficient lateral force resistance, and sufficient energy dissipation. Numerical analysis performed for this system with fiber element model. It shows that the structural system has good performance not only under small deformation due to thermal expansion of the superstructure but also under seismic load.Keywords: RC Pier, thermal expansion, multi sliding friction device, flexible small deformation
Procedia PDF Downloads 30827198 Effect of Plasticizer Additives on the Mechanical Properties of Cement Composite: A Molecular Dynamics Analysis
Authors: R. Mohan, V. Jadhav, A. Ahmed, J. Rivas, A. Kelkar
Abstract:
Cementitious materials are an excellent example of a composite material with complex hierarchical features and random features that range from nanometer (nm) to millimeter (mm) scale. Multi-scale modeling of complex material systems requires starting from fundamental building blocks to capture the scale relevant features through associated computational models. In this paper, molecular dynamics (MD) modeling is employed to predict the effect of plasticizer additive on the mechanical properties of key hydrated cement constituent calcium-silicate-hydrate (CSH) at the molecular, nanometer scale level. Due to complexity, still unknown molecular configuration of CSH, a representative configuration widely accepted in the field of mineral Jennite is employed. The effectiveness of the Molecular Dynamics modeling to understand the predictive influence of material chemistry changes based on molecular/nanoscale models is demonstrated.Keywords: cement composite, mechanical properties, molecular dynamics, plasticizer additives
Procedia PDF Downloads 45427197 Unlocking Green Hydrogen Potential: A Machine Learning-Based Assessment
Authors: Said Alshukri, Mazhar Hussain Malik
Abstract:
Green hydrogen is hydrogen produced using renewable energy sources. In the last few years, Oman aimed to reduce its dependency on fossil fuels. Recently, the hydrogen economy has become a global trend, and many countries have started to investigate the feasibility of implementing this sector. Oman created an alliance to establish the policy and rules for this sector. With motivation coming from both global and local interest in green hydrogen, this paper investigates the potential of producing hydrogen from wind and solar energies in three different locations in Oman, namely Duqm, Salalah, and Sohar. By using machine learning-based software “WEKA” and local metrological data, the project was designed to figure out which location has the highest wind and solar energy potential. First, various supervised models were tested to obtain their prediction accuracy, and it was found that the Random Forest (RF) model has the best prediction performance. The RF model was applied to 2021 metrological data for each location, and the results indicated that Duqm has the highest wind and solar energy potential. The system of one wind turbine in Duqm can produce 8335 MWh/year, which could be utilized in the water electrolysis process to produce 88847 kg of hydrogen mass, while a solar system consisting of 2820 solar cells is estimated to produce 1666.223 MWh/ year which is capable of producing 177591 kg of hydrogen mass.Keywords: green hydrogen, machine learning, wind and solar energies, WEKA, supervised models, random forest
Procedia PDF Downloads 7927196 AI Software Algorithms for Drivers Monitoring within Vehicles Traffic - SiaMOTO
Authors: Ioan Corneliu Salisteanu, Valentin Dogaru Ulieru, Mihaita Nicolae Ardeleanu, Alin Pohoata, Bogdan Salisteanu, Stefan Broscareanu
Abstract:
Creating a personalized statistic for an individual within the population using IT systems, based on the searches and intercepted spheres of interest they manifest, is just one 'atom' of the artificial intelligence analysis network. However, having the ability to generate statistics based on individual data intercepted from large demographic areas leads to reasoning like that issued by a human mind with global strategic ambitions. The DiaMOTO device is a technical sensory system that allows the interception of car events caused by a driver, positioning them in time and space. The device's connection to the vehicle allows the creation of a source of data whose analysis can create psychological, behavioural profiles of the drivers involved. The SiaMOTO system collects data from many vehicles equipped with DiaMOTO, driven by many different drivers with a unique fingerprint in their approach to driving. In this paper, we aimed to explain the software infrastructure of the SiaMOTO system, a system designed to monitor and improve driver driving behaviour, as well as the criteria and algorithms underlying the intelligent analysis process.Keywords: artificial intelligence, data processing, driver behaviour, driver monitoring, SiaMOTO
Procedia PDF Downloads 9127195 A Comparison between the Results of Hormuz Strait Wave Simulations Using WAVEWATCH-III and MIKE21-SW and Satellite Altimetry Observations
Authors: Fatemeh Sadat Sharifi
Abstract:
In the present study, the capabilities of WAVEWATCH-III and MIKE21-SW for predicting the characteristics of wind waves in Hormuz Strait are evaluated. The GFS wind data (Global Forecast System) were derived. The bathymetry of gride with 2 arc-minute resolution, also were extracted from the ETOPO1. WAVEWATCH-III findings illustrate more valid prediction of wave features comparing to the MIKE-21 SW in deep water. Apparently, in shallow area, the MIKE-21 provides more uniformities with altimetry measurements. This may be due to the merits of the unstructured grid which are used in MIKE-21, leading to better representations of the coastal area. The findings on the direction of waves generated by wind in the modeling area indicate that in some regions, despite the increase in wind speed, significant wave height stays nearly unchanged. This is fundamental because of swift changes in wind track over the Strait of Hormuz. After discussing wind-induced waves in the region, the impact of instability of the surface layer on wave growth has been considered. For this purpose, the average monthly mean air temperature has been used. The results in cold months, when the surface layer is unstable, indicates an acceptable increase in the accuracy of prediction of the indicator wave height.Keywords: numerical modeling, WAVEWATCH-III, Strait of Hormuz, MIKE21-SW
Procedia PDF Downloads 20727194 The Influence of Contact Models on Discrete Element Modeling of the Ballast Layer Subjected to Cyclic Loading
Authors: Peyman Aela, Lu Zong, Guoqing Jing
Abstract:
Recently, there has been growing interest in numerical modeling of ballast railway tracks. A commonly used mechanistic modeling approach for ballast is the discrete element method (DEM). Up to now, the effects of the contact model on ballast particle behavior have not been precisely examined. In this regard, selecting the appropriate contact model is mainly associated with the particle characteristics and the loading condition. Since ballast is cohesionless material, different contact models, including the linear spring, Hertz-Mindlin, and Hysteretic models, could be used to calculate particle-particle or wall-particle contact forces. Moreover, the simulation of a dynamic test is vital to investigate the effect of damping parameters on the ballast deformation. In this study, ballast box tests were simulated by DEM to examine the influence of different contact models on the mechanical behavior of the ballast layer under cyclic loading. This paper shows how the contact model can affect the deformation and damping of a ballast layer subjected to cyclic loading in a ballast box.Keywords: ballast, contact model, cyclic loading, DEM
Procedia PDF Downloads 19727193 Study of Energy Efficient and Quality of Service Based Routing Protocols in Wireless Sensor Networking
Authors: Sachin Sharma
Abstract:
A wireless sensor network (WSN) consists of a large number of sensor nodes which are deployed over an area to perform local computations based on information gathered from the surroundings. With the increasing demand for real-time applications in WSN, real-time critical events anticipate an efficient quality-of-service (QoS) based routing for data delivery from the network infrastructure. Hence, maximizing the lifetime of the network through minimizing the energy is an important challenge in WSN; sensors cannot be easily replaced or recharged due to their ad-hoc deployment in a hazardous environment. Considerable research has been focused on developing robust energy efficient QoS based routing protocols. The main focus of this article is primarily on periodical cycling schemes which represent the most compatible technique for energy saving and we also focus on the data-driven approaches that can be used to improve the energy efficiency. Finally, we will make a review on some communication protocols proposed for sensor networks.Keywords: energy efficient, quality of service, wireless sensor networks, MAC
Procedia PDF Downloads 34827192 Pump-as-Turbine: Testing and Characterization as an Energy Recovery Device, for Use within the Water Distribution Network
Authors: T. Lydon, A. McNabola, P. Coughlan
Abstract:
Energy consumption in the water distribution network (WDN) is a well established problem equating to the industry contributing heavily to carbon emissions, with 0.9 kg CO2 emitted per m3 of water supplied. It is indicated that 85% of energy wasted in the WDN can be recovered by installing turbines. Existing potential in networks is present at small capacity sites (5-10 kW), numerous and dispersed across networks. However, traditional turbine technology cannot be scaled down to this size in an economically viable fashion, thus alternative approaches are needed. This research aims to enable energy recovery potential within the WDN by exploring the potential of pumps-as-turbines (PATs), to realise this potential. PATs are estimated to be ten times cheaper than traditional micro-hydro turbines, presenting potential to contribute to an economically viable solution. However, a number of technical constraints currently prohibit their widespread use, including the inability of a PAT to control pressure, difficulty in the selection of PATs due to lack of performance data and a lack of understanding on how PATs can cater for fluctuations as extreme as +/- 50% of the average daily flow, characteristic of the WDN. A PAT prototype is undergoing testing in order to identify the capabilities of the technology. Results of preliminary testing, which involved testing the efficiency and power potential of the PAT for varying flow and pressure conditions, in order to develop characteristic and efficiency curves for the PAT and a baseline understanding of the technologies capabilities, are presented here: •The limitations of existing selection methods which convert BEP from pump operation to BEP in turbine operation was highlighted by the failure of such methods to reflect the conditions of maximum efficiency of the PAT. A generalised selection method for the WDN may need to be informed by an understanding of impact of flow variations and pressure control on system power potential capital cost, maintenance costs, payback period. •A clear relationship between flow and efficiency rate of the PAT has been established. The rate of efficiency reductions for flows +/- 50% BEP is significant and more extreme for deviations in flow above the BEP than below, but not dissimilar to the reaction of efficiency of other turbines. •PAT alone is not sufficient to regulate pressure, yet the relationship of pressure across the PAT is foundational in exploring ways which PAT energy recovery systems can maintain required pressure level within the WDN. Efficiencies of systems of PAT energy recovery systems operating conditions of pressure regulation, which have been conceptualise in current literature, need to be established. Initial results guide the focus of forthcoming testing and exploration of PAT technology towards how PATs can form part of an efficiency energy recovery system.Keywords: energy recovery, pump-as-turbine, water distribution network, water distribution network
Procedia PDF Downloads 26027191 Knowledge Representation and Inconsistency Reasoning of Class Diagram Maintenance in Big Data
Authors: Chi-Lun Liu
Abstract:
Requirements modeling and analysis are important in successful information systems' maintenance. Unified Modeling Language (UML) class diagrams are useful standards for modeling information systems. To our best knowledge, there is a lack of a systems development methodology described by the organism metaphor. The core concept of this metaphor is adaptation. Using the knowledge representation and reasoning approach and ontologies to adopt new requirements are emergent in recent years. This paper proposes an organic methodology which is based on constructivism theory. This methodology is a knowledge representation and reasoning approach to analyze new requirements in the class diagrams maintenance. The process and rules in the proposed methodology automatically analyze inconsistencies in the class diagram. In the big data era, developing an automatic tool based on the proposed methodology to analyze large amounts of class diagram data is an important research topic in the future.Keywords: knowledge representation, reasoning, ontology, class diagram, software engineering
Procedia PDF Downloads 24127190 Electrochemical Performance of Femtosecond Laser Structured Commercial Solid Oxide Fuel Cells Electrolyte
Authors: Mohamed A. Baba, Gazy Rodowan, Brigita Abakevičienė, Sigitas Tamulevičius, Bartlomiej Lemieszek, Sebastian Molin, Tomas Tamulevičius
Abstract:
Solid oxide fuel cells (SOFC) efficiently convert hydrogen to energy without producing any disturbances or contaminants. The core of the cell is electrolyte. For improving the performance of electrolyte-supported cells, it is desirable to extend the available exchange surface area by micro-structuring of the electrolyte with laser-based micromachining. This study investigated the electrochemical performance of cells micro machined using a femtosecond laser. Commercial ceramic SOFC (Elcogen, AS) with a total thickness of 400 μm was structured by 1030 nm wavelength Yb: KGW fs-laser Pharos (Light Conversion) using 100 kHz repetition frequency and 290 fs pulse length light by scanning with the galvanometer scanner (ScanLab) and focused with a f-Theta telecentric lens (SillOptics). The sample height was positioned using a motorized z-stage. The microstructures were formed using a laser spiral trepanning in Ni/YSZ anode supported membrane at the central part of the ceramic piece of 5.5 mm diameter at active area of the cell. All surface was drilled with 275 µm diameter holes spaced by 275 µm. The machining processes were carried out under ambient conditions. The microstructural effects of the femtosecond laser treatment on the electrolyte surface were investigated prior to the electrochemical characterisation using a scanning electron microscope (SEM) Quanta 200 FEG (FEI). The Novo control Alpha-A was used for electrochemical impedance spectroscopy on a symmetrical cell configuration with an excitation amplitude of 25 mV and a frequency range of 1 MHz to 0.1 Hz. The fuel cell characterization of the cell was examined on open flanges test setup by Fiaxell. Using nickel mesh on the anode side and au mesh on the cathode side, the cell was electrically linked. The cell was placed in a Kittec furnace with a Process IDentifier temperature controller. The wires were connected to a Solartron 1260/1287 frequency analyzer for the impedance and current-voltage characterization. In order to determine the impact of the anode's microstructure on the performance of the commercial cells, the acquired results were compared to cells with unstructured anode. Geometrical studies verified that the depth of the -holes increased linearly according to laser energy and scanning times. On the other hand, it reduced as the scanning speed increased. The electrochemical analysis demonstrates that the open circuit voltage OCV values of the two cells are equal. Further, the modified cell's initial slope reduces to 0.209 from 0.253 of the unmodified cell, revealing that the surface modification considerably decreases energy loss. Plus, the maximum power density for the cell with the microstructure and the reference cell respectively, are 1.45 and 1.16 Wcm⁻².Keywords: electrochemical performance, electrolyte-supported cells, laser micro-structuring, solid oxide fuel cells
Procedia PDF Downloads 6927189 Energy Harvesting with Zinc Oxide Based Nanogenerator: Design and Simulation Using Comsol-4.3 Software
Authors: Akanksha Rohit, Ujjwala Godavarthi, Anshua Mukherjee
Abstract:
Nanotechnology is one of the promising sustainable solutions in the era of miniaturization due to its multidisciplinary nature. The most interesting aspect about nanotechnology is its wide ranging applications from electronics to military and biomedical. It tries to connect individuals more closely to the environment. In this paper, concept of parasitic energy harvesting is used in designing nanogenerators using COMSOL 4.3 software. The output of the nanogenerator is optimized using following constraints: ease of availability of the material, fabrication process and cost of the material. The nanogenerator is optimized using ZnO based nanowires, PMMA as insulator and aluminum and silicon as metal electrodes. The energy harvested from the model can be used to power nanobots, several other biomedical sensors and eventually to replace batteries. Thus, advancements in this field can be very challenging but it is the future of the nano era.Keywords: zinc oxide, piezoelectric, PMMA, parasitic energy harvesting, renewable energy engineering
Procedia PDF Downloads 36427188 Low-Cost Wireless Power Transfer System for Smart Recycling Containers
Authors: Juan Luis Leal, Rafael Maestre, Ovidio López
Abstract:
As innovation progresses, more possibilities are made available to increase the efficiency and reach of solutions for Smart Cities, most of which require the data provided by the Internet of Things (IoT) devices and may even have higher power requirements such as motors or actuators. A reliable power supply with the lowest maintenance is a requirement for the success of these solutions in the long term. Energy harvesting, mainly solar, becomes the solution of choice in most cases, but only if there is enough power to be harvested, which may depend on the device location (e.g., outdoors vs. indoor). This is the case of Smart Waste Containers with compaction systems, which have moderately high-power requirements, and may be installed in places with little sunlight for solar generation. It should be noted that waste is unloaded from the containers with cranes, so sudden and irregular movements may happen, making wired power unviable. In these cases, a wireless power supply may be a great alternative. This paper proposes a cost-effective two coil resonant wireless power transfer (WPT) system and describes its implementation, which has been carried out within an R&D project and validated in real settings with smart containers. Experimental results prove that the developed system achieves wireless power transmission up to 35W in the range of 5 cm to 1 m with a peak efficiency of 78%. The circuit is operated at relatively low resonant frequencies, which combined with enough wire-to-wire separation between the coil windings, reduce the losses caused by the proximity effect and, therefore, allow the use of common stranded wire instead of Litz wire, this without reducing the efficiency significantly. All these design considerations led to a final system that achieves a high efficiency for the desired charging range, simplifying the energy supply for Smart Containers as well as other devices that may benefit from a cost-effective wireless charging system.Keywords: electromagnetic coupling, resonant wireless charging, smart recycling containers, wireless power transfer
Procedia PDF Downloads 9327187 Fast-Modulated Surface-Confined Plasma for Catalytic Nitrogen Fixation and Energy Intensification
Authors: Pradeep Lamichhane, Nima Pourali, E. V. Rebrov, Volker Hessel
Abstract:
Nitrogen fixation is critical for plants for the biosynthesis of protein and nucleic acid. Most of our atmosphere is nitrogen, yet plants cannot directly absorb it from the air, and natural nitrogen fixation is insufficient to meet the demands. This experiment used a fast-modulated surface-confined atmospheric pressure plasma created by a 6 kV (peak-peak) sinusoidal power source with a repetition frequency of 68 kHz to fix nitrogen. Plasmas have been proposed for excitation of nitrogen gas, which quickly oxidised to NOX. With different N2/O2 input ratios, the rate of NOX generation was investigated. The rate of NOX production was shown to be optimal for mixtures of 60–70% O2 with N2. To boost NOX production in plasma, metal oxide catalysts based on TiO2 were coated over the dielectric layer of a reactor. These results demonstrate that nitrogen activation was more advantageous in surface-confined plasma sources because micro-discharges formed on the sharp edges of the electrodes, which is a primary function attributed to NOX synthesis and is further enhanced by metal oxide catalysts. The energy-efficient and sustainable NOX synthesis described in this study will offer a fresh perspective for ongoing research on green nitrogen fixation techniques.Keywords: nitrogen fixation, fast-modulated, surface-confined, sustainable
Procedia PDF Downloads 10727186 Design, Fabrication and Analysis of Molded and Direct 3D-Printed Soft Pneumatic Actuators
Authors: N. Naz, A. D. Domenico, M. N. Huda
Abstract:
Soft Robotics is a rapidly growing multidisciplinary field where robots are fabricated using highly deformable materials motivated by bioinspired designs. The high dexterity and adaptability to the external environments during contact make soft robots ideal for applications such as gripping delicate objects, locomotion, and biomedical devices. The actuation system of soft robots mainly includes fluidic, tendon-driven, and smart material actuation. Among them, Soft Pneumatic Actuator, also known as SPA, remains the most popular choice due to its flexibility, safety, easy implementation, and cost-effectiveness. However, at present, most of the fabrication of SPA is still based on traditional molding and casting techniques where the mold is 3d printed into which silicone rubber is cast and consolidated. This conventional method is time-consuming and involves intensive manual labour with the limitation of repeatability and accuracy in design. Recent advancements in direct 3d printing of different soft materials can significantly reduce the repetitive manual task with an ability to fabricate complex geometries and multicomponent designs in a single manufacturing step. The aim of this research work is to design and analyse the Soft Pneumatic Actuator (SPA) utilizing both conventional casting and modern direct 3d printing technologies. The mold of the SPA for traditional casting is 3d printed using fused deposition modeling (FDM) with the polylactic acid (PLA) thermoplastic wire. Hyperelastic soft materials such as Ecoflex-0030/0050 are cast into the mold and consolidated using a lab oven. The bending behaviour is observed experimentally with different pressures of air compressor to ensure uniform bending without any failure. For direct 3D-printing of SPA fused deposition modeling (FDM) with thermoplastic polyurethane (TPU) and stereolithography (SLA) with an elastic resin are used. The actuator is modeled using the finite element method (FEM) to analyse the nonlinear bending behaviour, stress concentration and strain distribution of different hyperelastic materials after pressurization. FEM analysis is carried out using Ansys Workbench software with a Yeon-2nd order hyperelastic material model. FEM includes long-shape deformation, contact between surfaces, and gravity influences. For mesh generation, quadratic tetrahedron, hybrid, and constant pressure mesh are used. SPA is connected to a baseplate that is in connection with the air compressor. A fixed boundary is applied on the baseplate, and static pressure is applied orthogonally to all surfaces of the internal chambers and channels with a closed continuum model. The simulated results from FEM are compared with the experimental results. The experiments are performed in a laboratory set-up where the developed SPA is connected to a compressed air source with a pressure gauge. A comparison study based on performance analysis is done between FDM and SLA printed SPA with the molded counterparts. Furthermore, the molded and 3d printed SPA has been used to develop a three-finger soft pneumatic gripper and has been tested for handling delicate objects.Keywords: finite element method, fused deposition modeling, hyperelastic, soft pneumatic actuator
Procedia PDF Downloads 9027185 [Keynote Talk]: Quest for Sustainability in the Midst of Conflict Between Climate and Energy Security
Authors: Deepak L. Waikar
Abstract:
Unprecedented natural as well as human made disasters have been responsible for loss of hundreds of thousands of lives, injury & displacement of millions of people and damages in billions of dollars in various parts of the world. Scientists, experts, associations and united nation have been warning about colossal disregard for human safety and environment in exploiting natural resources for insatiable greed for economic growth and rising lavish life style of the rich. Usual blame game is routinely played at international forums & summits by vested interests in developing and developed nations, while billions of people continue to suffer in abject energy poverty. Energy security, on the other hand, is becoming illusive with the dominance of few players in the market, poor energy governance mechanisms, volatile prices and geopolitical conflicts in supply chain. Conflicting scenarios have been cited as one of the major barriers for transformation to a low carbon economy. Policy makers, researchers, academics, businesses, industries and communities have been evaluating sustainable alternatives, albeit at snail’s pace. This presentation focuses on technologies, energy governance, policies & practices, economics and public concerns about safe, prudent & sustainable harnessing of energy resources. Current trends and potential research & development projects in power & energy sectors which students can undertake will be discussed. Speaker will highlight on how youths can be engaged in meaningful, safe, enriching, inspiring and value added self-development programmes in our quest for sustainability in the midst of conflict between climate and energy security.Keywords: clean energy, energy policy, energy security, sustainable energy
Procedia PDF Downloads 48727184 Addressing Coastal Community Vulnerabilities with Alternative Marine Energy Projects
Authors: Danielle Preziuso, Kamila Kazimierczuk, Annalise Stein, Bethel Tarekegne
Abstract:
Coastal communities experience a variety of distinct socioeconomic, technical, and environmental vulnerabilities, all of which accrue heightened risk with increasingly frequent and severe climate change impacts. Marine renewable energy (MRE) offers a potential solution for mitigating coastal community vulnerabilities, especially water-energy dependencies while delivering promising co-benefits such as increased resilience and more sustainable energy outcomes. This paper explores coastal community vulnerabilities and service dependencies based on the local drivers that create them, with attention to climate change impacts and how they catalyze water-energy unmet needs in these communities. We examine the vulnerabilities through the lens of coastal Tribal communities (i.e., the Makah Tribe, the Kenaitze Tribe, Quinault Nation), as indigenous communities often face compounded impacts of technical, economic, and environmental vulnerabilities due to their underlying socio-demographic inequalities. We offer an environmental and energy justice indicators framework to understand how these vulnerabilities disproportionately manifest and impact the most vulnerable community members, and we subsequently utilize the framework to inform a weighted decision matrix tool that compares the viability of MRE-based alternative energy futures in addressing these vulnerabilities. The framework and complementary tool highlight opportunities for future MRE research and pilot demonstrations that directly respond to the vulnerabilities of coastal communities.Keywords: coastal communities, decision matrix, energy equity, energy vulnerability, marine energy, service dependency
Procedia PDF Downloads 7827183 Sustainable Engineering: Synergy of BIM and Environmental Assessment Tools in Hong Kong Construction Industry
Authors: Kwok Tak Kit
Abstract:
The construction industry plays an important role in environmental and carbon emissions as it consumes a huge amount of natural resources and energy. Sustainable engineering involves the process of planning, design, procurement, construction and delivery in which the whole building and construction process resulting from building and construction can be effectively and sustainability managed to achieve the use of natural resources. Implementation of sustainable technology development and innovation, adoption of the advanced construction process and facilitate the facilities management to implement the energy and waste control more accurately and effectively. Study and research in the relationship of BIM and environment assessment tools lack a clear discussion. In this paper, we will focus on the synergy of BIM technology and sustainable engineering in the AEC industry and outline the key factors which enhance the use of advanced innovation, technology and method and define the role of stakeholders to achieve zero-carbon emission toward the Paris Agreement to limit global warming to well below 2ᵒC above pre-industrial levels. A case study of the adoption of Building Information Modeling (BIM) and environmental assessment tools in Hong Kong will be discussed in this paper.Keywords: sustainability, sustainable engineering, BIM, LEED
Procedia PDF Downloads 15027182 Useful Effects of Silica Nanoparticles in Ionic Liquid Electrolyte for Energy Storage
Authors: Dong Won Kim, Hye Ji Kim, Hyun Young Jung
Abstract:
Improved energy storage is inevitably needed to improve energy efficiency and to be environmentally friendly to chemical processes. Ionic liquids (ILs) can play a crucial role in addressing these needs due to inherent adjustable properties including low volatility, low flammability, inherent conductivity, wide liquid range, broad electrochemical window, high thermal stability, and recyclability. Here, binary mixtures of ILs were prepared with fumed silica nanoparticles and characterized to obtain ILs with conductivity and electrochemical properties optimized for use in energy storage devices. The solutes were prepared by varying the size and the weight percent concentration of the nanoparticles and made up 10 % of the binary mixture by weight. We report on the physical and electrochemical properties of the individual ILs and their binary mixtures.Keywords: ionic liquid, silica nanoparticle, energy storage, electrochemical properties
Procedia PDF Downloads 21827181 Municipal Solid Waste Management Using Life Cycle Assessment Approach: Case Study of Maku City, Iran
Authors: L. Heidari, M. Jalili Ghazizade
Abstract:
This paper aims to determine the best environmental and economic scenario for Municipal Solid Waste (MSW) management of the Maku city by using Life Cycle Assessment (LCA) approach. The functional elements of this study are collection, transportation, and disposal of MSW in Maku city. Waste composition and density, as two key parameters of MSW, have been determined by field sampling, and then, the other important specifications of MSW like chemical formula, thermal energy and water content were calculated. These data beside other information related to collection and disposal facilities are used as a reliable source of data to assess the environmental impacts of different waste management options, including landfills, composting, recycling and energy recovery. The environmental impact of MSW management options has been investigated in 15 different scenarios by Integrated Waste Management (IWM) software. The photochemical smog, greenhouse gases, acid gases, toxic emissions, and energy consumption of each scenario are measured. Then, the environmental indices of each scenario are specified by weighting these parameters. Economic costs of scenarios have been also compared with each other based on literature. As final result, since the organic materials make more than 80% of the waste, compost can be a suitable method. Although the major part of the remaining 20% of waste can be recycled, due to the high cost of necessary equipment, the landfill option has been suggested. Therefore, the scenario with 80% composting and 20% landfilling is selected as superior environmental and economic scenario. This study shows that, to select a scenario with practical applications, simultaneously environmental and economic aspects of different scenarios must be considered.Keywords: IWM software, life cycle assessment, Maku, municipal solid waste management
Procedia PDF Downloads 23827180 Electric Power Generation by Thermoelectric Cells and Parabolic Solar Concentrators
Authors: A. Kianifar, M. Afzali, I. Pishbin
Abstract:
In this paper, design details, theoretical analysis and thermal performance analysis of a solar energy concentrator suited to combined heat and thermoelectric power generation are presented. The thermoelectric device is attached to the absorber plate to convert concentrated solar energy directly into electric energy at the focus of the concentrator. A cooling channel (water cooled heat sink) is fitted to the cold side of the thermoelectric device to remove the waste heat and maintain a high temperature gradient across the device to improve conversion efficiency.Keywords: concentrator thermoelectric generator, CTEG, solar energy, thermoelectric cells
Procedia PDF Downloads 30527179 Mesoporous BiVO4 Thin Films as Efficient Visible Light Driven Photocatalyst
Authors: Karolina Ordon, Sandrine Coste, Malgorzata Makowska-Janusik, Abdelhadi Kassiba
Abstract:
Photocatalytic processes play key role in the production of a new source of energy (as hydrogen), design of self-cleaning surfaces or for the environment preservation. The most challenging task deals with the purification of water distinguished by high efficiency. In the mentioned process, organic pollutants in solutions are decomposed to the simple, non-toxic compounds as H2O and CO2. The most known photocatalytic materials are ZnO, CdS and TiO2 semiconductors with a particular involvement of TiO2 as an efficient photocatalysts even with a high band gap equal to 3.2 eV which exploit only UV radiation from solar emitted spectrum. However, promising material with visible light induced photoactivity was searched through the monoclinic polytype of BiVO4 which has energy gap about 2.4 eV. As required in heterogeneous photocatalysis, the high contact surface is required. Also, BiVO4 as photocatalyst can be optimized by increasing its surface area by achieving the mesoporous structure synthesize. The main goal of the present work consists in the synthesis and characterization of BiVO4 mesoporous thin film. The synthesis method based on sol-gel was carried out using a standard surfactants such as P123 and F127. The thin film was deposited by spin and dip coating method. Then, the structural analysis of the obtained material was performed thanks to X-ray diffraction (XRD) and Raman spectroscopy. The surface of resulting structure was investigated using a scanning electron microscopy (SEM). The computer simulations based on modeling the optical and electronic properties of bulk BiVO4 by using DFT (density functional theory) methodology were carried out. The semiempirical parameterized method PM6 was used to compute the physical properties of BiVO4 nanostructures. The Raman and IR absorption spectra were also measured for synthesized mesoporous material, and the results were compared with the theoretical predictions. The simulations of nanostructured BiVO4 have pointed out the occurrence of quantum confinement for nanosized clusters leading to widening of the band gap. This result overcame the relevance of nanosized objects to harvest wide part of the solar spectrum. Also, a balance was searched experimentally through the mesoporous nature of the films devoted to enhancing the contact surface as required for heterogeneous catalysis without to lower the nanocrystallite size under some critical sizes inducing an increased band gap. The present contribution will discuss the relevant features of the mesoporous films with respect to their photocatalytic responses.Keywords: bismuth vanadate, photocatalysis, thin film, quantum-chemical calculations
Procedia PDF Downloads 32427178 A Strategic Water and Energy Project as a Climate Change Adaptation Tool for Israel, Jordan and the Middle East
Authors: Doron Markel
Abstract:
Water availability in most of the Middle East (especially in Jordan) is among the lowest in the world and has been even further exacerbated by the regional climatic change and the reduced rainfall. The Araba Valley in Israel is disconnected from the national water system. On the other hand, the Araba Valley, both in Israel and Jordan, is an excellent area for solar energy gaining. The Dead Sea (Israel and Jordan) is a hypersaline lake which its level declines at a rate of more than 1 m/y. The decline stems from the increasing use of all available freshwater resources that discharge into the Dead Sea and decreasing natural precipitation due to climate change in the Middle East. As an adaptation tool for this humanmade and Climate Change results, a comprehensive water-energy and environmental project were suggested: The Red Sea-Dead Sea Conveyance. It is planned to desalinate the Red Sea water, supply the desalinated water to both Israel and Jordan, and convey the desalination brine to the Dead Sea to stabilize its water level. Therefore, the World Bank had led a multi-discipline feasibility study between 2008 and 2013, that had mainly dealt with the mixing of seawater and Dead Sea Water. The possible consequences of such mixing were precipitation and possible suspension of secondary Gypsum, as well as blooming of Dunaliella red algae. Using a comprehensive hydrodynamic-geochemical model for the Dead Sea, it was predicted that while conveying up to 400 Million Cubic Meters per year of seawater or desalination brine to the Dead Sea, the latter would not be stratified as it was until 1979; hence Gypsum precipitation and algal blooms would be neglecting. Using another hydrodynamic-biological model for the Red Sea, it was predicted the Seawater pump from the Gulf of Eilat would not harm the ecological system of the gulf (including the sensitive coral reef), giving a pump depth of 120-160 m. Based on these studies, a pipeline conveyance was recommended to convey desalination brine to the Dead Sea with the use of a hydropower plant, utilizing the elevation difference of 400 m between the Red Sea and the Dead Sea. The complementary energy would come from solar panels coupled with innovative storage technology, needed to produce a continuous energy production for an appropriate function of the desalination plant. The paper will describe the proposed project as well as the feasibility study results. The possibility to utilize this water-energy-environmental project as a climate change adaptation strategy for both Israel and Jordan will also be discussed.Keywords: Red Sea, Dead Sea, water supply, hydro-power, Gypsum, algae
Procedia PDF Downloads 11327177 Birds of a Feather Flock Together: Exploring Effects of Internet Celebrity Endorsement in Advertising
Authors: Shiu-Wan Hung, Che-Wei Chang, Han-Yu Lin
Abstract:
Internet celebrities possess high visibility and a great number of fans on the Internet and are the targets that various companies are keen to collaborate with. This study investigated the para-social interaction and its antecedents among internet celebrities and their fans. The effects of Internet celebrity advertising from the perspectives of source credibility and endorser suitability were studied. This study gathered 283 valid questionnaires from people who regularly follow internet celebrities for analysis. The experimental results suggest that expertise has the most significant and direct influence on advertising. Additionally, Internet celebrities with high attractiveness can better influence the thinking of their fans and enhance homophily. However, when considering the construction of source credibility, the direct influence of attractiveness is the least significant, suggesting that the attractiveness of internet celebrities can only promote advertising via the mediating effect of homophily.Keywords: celebrity, para-social interaction, homophily, source credibility
Procedia PDF Downloads 7827176 The Primitive Code-Level Design Patterns for Distributed Programming
Authors: Bing Li
Abstract:
The primitive code-level design patterns (PDP) are the rudimentary programming elements to develop any distributed systems in the generic distributed programming environment, GreatFree. The PDP works with the primitive distributed application programming interfaces (PDA), the distributed modeling, and the distributed concurrency for scaling-up. They not only hide developers from underlying technical details but also support sufficient adaptability to a variety of distributed computing environments. Programming with them, the simplest distributed system, the lightweight messaging two-node client/server (TNCS) system, is constructed rapidly with straightforward and repeatable behaviors, copy-paste-replace (CPR). As any distributed systems are made up of the simplest ones, those PDAs, as well as the PDP, are generic for distributed programming.Keywords: primitive APIs, primitive code-level design patterns, generic distributed programming, distributed systems, highly patterned development environment, messaging
Procedia PDF Downloads 19127175 Application of New Sprouted Wheat Brine for Delicatessen Products From Horse Meat, Beef and Pork
Authors: Gulmira Kenenbay, Urishbay Chomanov, Aruzhan Shoman, Rabiga Kassimbek
Abstract:
The main task of the meat-processing industry is the production of meat products as the main source of animal protein, ensuring the vital activity of the human body, in the required volumes, high quality, diverse assortment. Providing the population with high-quality food products what are biologically full, balanced in composition of basic nutrients and enriched by targeted physiologically active components, is one of the highest priority scientific and technical problems to be solved. In this regard, the formulation of a new brine from sprouted wheat for meat delicacies from horse meat, beef and pork has been developed. The new brine contains flavored aromatic ingredients, juice of the germinated wheat and vegetable juice. The viscosity of meat of horse meat, beef and pork were studied during massaging. Thermodynamic indices, water activity and binding energy of horse meat, beef and pork with application of new brine are investigated. A recipe for meat products with vegetable additives has been developed. Organoleptic evaluation of meat products was carried out. Physicochemical parameters of meat products with vegetable additives are carried out. Analysis of the obtained data shows that the values of the index aw (water activity) and the binding energy of moisture in the experimental samples of meat products are higher than in the control samples. It has been established by investigations that with increasing water activity and the binding energy of moisture, the tenderness of ready meat delicacies increases with the use of a new brine.Keywords: compounding, functional products, delicatessen products, brine, vegetable additives
Procedia PDF Downloads 178