Search results for: vision impaired
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1437

Search results for: vision impaired

1137 Integrated Risk Management as a Framework for Organisational Success

Authors: Olakunle Felix Adekunle

Abstract:

Risk management is recognised as an essential tool to tackle the inevitable uncertainty associated with business and projects at all levels. But it frequently fails to meet expectations, with projects continuing to run late, over budget or under performing, and business is not gaining the expected benefits. The evident disconnect which often occurs between strategic vision and tactical project delivery typically arises from poorly defined project objectives and inadequate attention to the proactive management of risks that could affect those objectives. One of the main failings in the traditional approach to risk management arises from a narrow focus on the downside, restricted to the technical or operational field, addressing tactical threats to processes, performance or people. This shortcoming can be overcome by widening the scope of risk management to encompass both strategic risks and upside opportunities, creating an integrated approach which can bridge the gap between strategy and tactics. Integrated risk management addresses risk across a variety of levels in the organisation, including strategy and tactics, and covering both opportunity and threat. Effective implementation of integrated risk management can produce a number of benefits to the organisation which are not available from the typical limited-scope risk process. This paper explores how to expand risk management to deliver strategic advantage while retaining its use as a tactical tool.

Keywords: risk management, success, organization, strategy, project, tactis, vision

Procedia PDF Downloads 397
1136 Generation of Mesoporous Silica Shell onto SSZ-13 and Its Effects on Methanol to Olefins

Authors: Ying Weiyong

Abstract:

The micro/mesoporous core-shell composites compromising SSZ-13 cores and mesoporous silica shells were synthesized successfully with the soft template of cetytrimethylammonium. The shell thickness could be tuned from 25 nm to 100 nm by varying the TEOS/SSZ-13 ratio. The BET and SEM results show the core-shell composites possessing the tunable surface area (544.7-811.0 m2/g) with plenty of mesopores (2.7 nm). The acidity intensity of the strong acid sites on SSZ-13 was remarkably impaired with the decoration of the mesoporous silica shell, which leads to the suppression of the hydrogen transfer reaction in MTO reaction. The micro/mesoporous core-shell composites exhibit better methanol to olefins reaction performance with a prolonged lifetime and the improvement of light olefins selectivity.

Keywords: core-shell, mesoporous silica, methanol to olefins, SSZ-13

Procedia PDF Downloads 163
1135 Design and Development of Multi-Functional Intelligent Robot Arm Gripper

Authors: W. T. Asheber, L. Chyi-Yeu

Abstract:

An intelligent robot arm is expected to recognize the desired object, grasp it with appropriate force without dropping or damaging it, and also manipulate and deliver the object to the desired destination safely. This paper presents an intelligent multi-finger robot arm gripper design along with vision, proximity, and tactile sensor for efficient grasping and manipulation tasks. The generic design of the gripper makes it convenient for improved parts manipulation, multi-tasking and ease for components assembly. The proposed design emulates the human’s hand fingers structure using linkages and direct drive through power screw like transmission. The actuation and transmission mechanism is designed in such a way that it has non-back-drivable capability, which makes the fingers hold their position when even unpowered. The structural elements are optimized for a finest performance in motion and force transmissivity of the gripper fingers. The actuation mechanisms is designed specially to drive each finger and also rotate two of the fingers about the palm to form appropriate configuration to grasp various size and shape objects. The gripper has an automatic tool set fixture incorporated into its palm, which will reduce time wastage and do assembling in one go. It is equipped with camera-in-hand integrated into its palm; subsequently an image based visual-servoing control scheme is employed.

Keywords: gripper, intelligent gripper, transmissivity, vision sensor

Procedia PDF Downloads 355
1134 Automatic Identification and Monitoring of Wildlife via Computer Vision and IoT

Authors: Bilal Arshad, Johan Barthelemy, Elliott Pilton, Pascal Perez

Abstract:

Getting reliable, informative, and up-to-date information about the location, mobility, and behavioural patterns of animals will enhance our ability to research and preserve biodiversity. The fusion of infra-red sensors and camera traps offers an inexpensive way to collect wildlife data in the form of images. However, extracting useful data from these images, such as the identification and counting of animals remains a manual, time-consuming, and costly process. In this paper, we demonstrate that such information can be automatically retrieved by using state-of-the-art deep learning methods. Another major challenge that ecologists are facing is the recounting of one single animal multiple times due to that animal reappearing in other images taken by the same or other camera traps. Nonetheless, such information can be extremely useful for tracking wildlife and understanding its behaviour. To tackle the multiple count problem, we have designed a meshed network of camera traps, so they can share the captured images along with timestamps, cumulative counts, and dimensions of the animal. The proposed method takes leverage of edge computing to support real-time tracking and monitoring of wildlife. This method has been validated in the field and can be easily extended to other applications focusing on wildlife monitoring and management, where the traditional way of monitoring is expensive and time-consuming.

Keywords: computer vision, ecology, internet of things, invasive species management, wildlife management

Procedia PDF Downloads 138
1133 Sinhala Sign Language to Grammatically Correct Sentences using NLP

Authors: Anjalika Fernando, Banuka Athuraliya

Abstract:

This paper presents a comprehensive approach for converting Sinhala Sign Language (SSL) into grammatically correct sentences using Natural Language Processing (NLP) techniques in real-time. While previous studies have explored various aspects of SSL translation, the research gap lies in the absence of grammar checking for SSL. This work aims to bridge this gap by proposing a two-stage methodology that leverages deep learning models to detect signs and translate them into coherent sentences, ensuring grammatical accuracy. The first stage of the approach involves the utilization of a Long Short-Term Memory (LSTM) deep learning model to recognize and interpret SSL signs. By training the LSTM model on a dataset of SSL gestures, it learns to accurately classify and translate these signs into textual representations. The LSTM model achieves a commendable accuracy rate of 94%, demonstrating its effectiveness in accurately recognizing and translating SSL gestures. Building upon the successful recognition and translation of SSL signs, the second stage of the methodology focuses on improving the grammatical correctness of the translated sentences. The project employs a Neural Machine Translation (NMT) architecture, consisting of an encoder and decoder with LSTM components, to enhance the syntactical structure of the generated sentences. By training the NMT model on a parallel corpus of Sinhala wrong sentences and their corresponding grammatically correct translations, it learns to generate coherent and grammatically accurate sentences. The NMT model achieves an impressive accuracy rate of 98%, affirming its capability to produce linguistically sound translations. The proposed approach offers significant contributions to the field of SSL translation and grammar correction. Addressing the critical issue of grammar checking, it enhances the usability and reliability of SSL translation systems, facilitating effective communication between hearing-impaired and non-sign language users. Furthermore, the integration of deep learning techniques, such as LSTM and NMT, ensures the accuracy and robustness of the translation process. This research holds great potential for practical applications, including educational platforms, accessibility tools, and communication aids for the hearing-impaired. Furthermore, it lays the foundation for future advancements in SSL translation systems, fostering inclusive and equal opportunities for the deaf community. Future work includes expanding the existing datasets to further improve the accuracy and generalization of the SSL translation system. Additionally, the development of a dedicated mobile application would enhance the accessibility and convenience of SSL translation on handheld devices. Furthermore, efforts will be made to enhance the current application for educational purposes, enabling individuals to learn and practice SSL more effectively. Another area of future exploration involves enabling two-way communication, allowing seamless interaction between sign-language users and non-sign-language users.In conclusion, this paper presents a novel approach for converting Sinhala Sign Language gestures into grammatically correct sentences using NLP techniques in real time. The two-stage methodology, comprising an LSTM model for sign detection and translation and an NMT model for grammar correction, achieves high accuracy rates of 94% and 98%, respectively. By addressing the lack of grammar checking in existing SSL translation research, this work contributes significantly to the development of more accurate and reliable SSL translation systems, thereby fostering effective communication and inclusivity for the hearing-impaired community

Keywords: Sinhala sign language, sign Language, NLP, LSTM, NMT

Procedia PDF Downloads 104
1132 Nutritional Value of Rabbit Meat after Contamination with 1,1-Dimethylhydrazine

Authors: Balgabay Sadepovich Maikanov, Laura Tyulegenovna Auteleyeva, Seidenova Simbat Polatbekovna

Abstract:

In this article reduced nutritional value of the rabbits’ meat at 1, 1 dimethylhydrazine experimental toxicosis is shown. The assay was performed on liquid chromatograph SHIMADZU LC-20 Prominence (Japan) with fluorometric and spectrophotometric detector. This research has revealed that samples of rabbit meat of the experimental group had significant differences from the control group:in amino acids concentration from 1.2% to 9.1%; vitamin concentration from 11.2% to 60.5%, macro – minerals concentration from 17.4% to 78.1% and saturated fatty acids concentration from 17,1% to 34.5%, respectively. The decrease in the chemical composition of rabbits’ meat at 1,1 dimethylhydrazine toxicosis may be due to changes in the internal processes associated with impaired metabolic homeostasis of animals.

Keywords: 1, 1-dimethylhydrazine, metabolic homeostasis, nutritional value, rabbit meat

Procedia PDF Downloads 215
1131 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping

Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting

Abstract:

Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.

Keywords: deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator

Procedia PDF Downloads 250
1130 Innate Immune Dysfunction in Niemann Pick Disease Type C

Authors: Stephanie Newman

Abstract:

Niemann-Pick Type C disease is a rare, usually fatal lysosomal storage disorder. Although clinically characterized by progressive neurodegeneration, there is also evidence of altered innate immune responses such as neuroinflammation that promote disease progression. We have initiated an investigation into whether phagocytosis, an important innate immune activity and the process by which particles are ingested is defective in NPC. Using an in vitro assay, we have shown that NPC macrophages have a deficiency in the phagocytosis of different particles. We plan to investigate the mechanistic basis for impaired phagocytosis, the contribution that this deficiency makes to disease pathology, and whether therapies that have shown in vivo benefit are able to restore phagocytic activity.

Keywords: Niemann Pick Disease C, phagocytosis, innate immunity, lysosomal storage disorder

Procedia PDF Downloads 392
1129 Floodnet: Classification for Post Flood Scene with a High-Resolution Aerial Imaginary Dataset

Authors: Molakala Mourya Vardhan Reddy, Kandimala Revanth, Koduru Sumanth, Beena B. M.

Abstract:

Emergency response and recovery operations are severely hampered by natural catastrophes, especially floods. Understanding post-flood scenarios is essential to disaster management because it facilitates quick evaluation and decision-making. To this end, we introduce FloodNet, a brand-new high-resolution aerial picture collection created especially for comprehending post-flood scenes. A varied collection of excellent aerial photos taken during and after flood occurrences make up FloodNet, which offers comprehensive representations of flooded landscapes, damaged infrastructure, and changed topographies. The dataset provides a thorough resource for training and assessing computer vision models designed to handle the complexity of post-flood scenarios, including a variety of environmental conditions and geographic regions. Pixel-level semantic segmentation masks are used to label the pictures in FloodNet, allowing for a more detailed examination of flood-related characteristics, including debris, water bodies, and damaged structures. Furthermore, temporal and positional metadata improve the dataset's usefulness for longitudinal research and spatiotemporal analysis. For activities like flood extent mapping, damage assessment, and infrastructure recovery projection, we provide baseline standards and evaluation metrics to promote research and development in the field of post-flood scene comprehension. By integrating FloodNet into machine learning pipelines, it will be easier to create reliable algorithms that will help politicians, urban planners, and first responders make choices both before and after floods. The goal of the FloodNet dataset is to support advances in computer vision, remote sensing, and disaster response technologies by providing a useful resource for researchers. FloodNet helps to create creative solutions for boosting communities' resilience in the face of natural catastrophes by tackling the particular problems presented by post-flood situations.

Keywords: image classification, segmentation, computer vision, nature disaster, unmanned arial vehicle(UAV), machine learning.

Procedia PDF Downloads 78
1128 Analyzing the Causes of Amblyopia among Patients in Tertiary Care Center: Retrospective Study in King Faisal Specialist Hospital and Research Center

Authors: Hebah M. Musalem, Jeylan El-Mansoury, Lin M. Tuleimat, Selwa Alhazza, Abdul-Aziz A. Al Zoba

Abstract:

Background: Amblyopia is a condition that affects the visual system triggering a decrease in visual acuity without a known underlying pathology. It is due to abnormal vision development in childhood or infancy. Most importantly, vision loss is preventable or reversible with the right kind of intervention in most of the cases. Strabismus, sensory defects, and anisometropia are all well-known causes of amblyopia. However, ocular misalignment in Strabismus is considered the most common form of amblyopia worldwide. The risk of developing amblyopia increases in premature children, developmentally delayed or children who had brain lesions affecting the visual pathway. The prevalence of amblyopia varies between 2 to 5 % in the world according to the literature. Objective: To determine the different causes of Amblyopia in pediatric patients seen in ophthalmology clinic of a tertiary care center, i.e. King Faisal Specialist Hospital and Research Center (KFSH&RC). Methods: This is a hospital based, random retrospective, based on reviewing patient’s files in the Ophthalmology Department of KFSH&RC in Riyadh city, Kingdom of Saudi Arabia. Inclusion criteria: amblyopic pediatric patients who attended the clinic from 2015 to 2016, who are between 6 months and 18 years old. Exclusion Criteria: patients above 18 years of age and any patient who is uncooperative to obtain an accurate vision or a proper refraction. Detailed ocular and medical history are recorded. The examination protocol includes a full ocular exam, full cycloplegic refraction, visual acuity measurement, ocular motility and strabismus evaluation. All data were organized in tables and graphs and analyzed by statistician. Results: Our preliminary results will be discussed on spot by our corresponding author. Conclusions: We focused on this study on utilizing various examination techniques which enhanced our results and highlighted a distinguished correlation between amblyopia and its’ causes. This paper recommendation emphasizes on critical testing protocols to be followed among amblyopic patient, especially in tertiary care centers.

Keywords: amblyopia, amblyopia causes, amblyopia diagnostic criterion, amblyopia prevalence, Saudi Arabia

Procedia PDF Downloads 159
1127 Machine Learning and Deep Learning Approach for People Recognition and Tracking in Crowd for Safety Monitoring

Authors: A. Degale Desta, Cheng Jian

Abstract:

Deep learning application in computer vision is rapidly advancing, giving it the ability to monitor the public and quickly identify potentially anomalous behaviour from crowd scenes. Therefore, the purpose of the current work is to improve the performance of safety of people in crowd events from panic behaviour through introducing the innovative idea of Aggregation of Ensembles (AOE), which makes use of the pre-trained ConvNets and a pool of classifiers to find anomalies in video data with packed scenes. According to the theory of algorithms that applied K-means, KNN, CNN, SVD, and Faster-CNN, YOLOv5 architectures learn different levels of semantic representation from crowd videos; the proposed approach leverages an ensemble of various fine-tuned convolutional neural networks (CNN), allowing for the extraction of enriched feature sets. In addition to the above algorithms, a long short-term memory neural network to forecast future feature values and a handmade feature that takes into consideration the peculiarities of the crowd to understand human behavior. On well-known datasets of panic situations, experiments are run to assess the effectiveness and precision of the suggested method. Results reveal that, compared to state-of-the-art methodologies, the system produces better and more promising results in terms of accuracy and processing speed.

Keywords: action recognition, computer vision, crowd detecting and tracking, deep learning

Procedia PDF Downloads 161
1126 Health Literacy: Collaboration between Clinician and Patient

Authors: Cathy Basterfield

Abstract:

Issue: To engage in one’s own health care, health professionals need to be aware of an individual’s specific skills and abilities for best communication. One of the most discussed is health literacy. One of the assumed skills and abilities for adults is an individuals’ health literacy. Background: A review of publicly available health content appears to assume all adult readers will have a broad and full capacity to read at a high level of literacy, often at a post-school education level. Health information writers and clinicians need to recognise one critical area for why there may be little or no change in a person’s behaviour, or no-shows to appointments. Perhaps unintentionally, they are miscommunicating with the majority of the adult population. Health information contains many literacy domains. It usually includes technical medical terms or jargon. Many fact sheets and other information require scientific literacy with or without specific numerical literacy. It may include graphs, percentages, timing, distance, or weights. Each additional word or concept in these domains decreases the readers' ability to meaningfully read, understand and know what to do with the information. An attempt to begin to read the heading where long or unfamiliar words are used will reduce the readers' motivation to attempt to read. Critically people who have low literacy are overwhelmed when pages are covered with lots of words. People attending a health environment may be unwell or anxious about a diagnosis. These make it harder to read, understand and know what to do with the information. But access to health information must consider an even wider range of adults, including those with poor school attainment, migrants, and refugees. It is also homeless people, people with mental health illnesses, or people who are ageing. People with low literacy also may include people with lifelong disabilities, people with acquired disabilities, people who read English as a second (or third) language, people who are Deaf, or people who are vision impaired. Outcome: This paper will discuss Easy English, which is developed for adults. It uses the audiences’ everyday words, short sentences, short words, and no jargon. It uses concrete language and concrete, specific images to support the text. It has been developed in Australia since the mid-2000s. This paper will showcase various projects in the health domain which use Easy English to improve the understanding and functional use of written information for the large numbers of adults in our communities who do not have the health literacy to manage a range of day to day reading tasks. See examples from consent forms, fact sheets and choice options, instructions, and other functional documents, where Easy English has been developed. This paper will ask individuals to reflect on their own work practice and consider what written information must be available in Easy English. It does not matter how cutting-edge a new treatment is; when adults can not read or understand what it is about and the positive and negative outcomes, they are less likely to be engaged in their own health journey.

Keywords: health literacy, inclusion, Easy English, communication

Procedia PDF Downloads 125
1125 Refined Edge Detection Network

Authors: Omar Elharrouss, Youssef Hmamouche, Assia Kamal Idrissi, Btissam El Khamlichi, Amal El Fallah-Seghrouchni

Abstract:

Edge detection is represented as one of the most challenging tasks in computer vision, due to the complexity of detecting the edges or boundaries in real-world images that contains objects of different types and scales like trees, building as well as various backgrounds. Edge detection is represented also as a key task for many computer vision applications. Using a set of backbones as well as attention modules, deep-learning-based methods improved the detection of edges compared with the traditional methods like Sobel and Canny. However, images of complex scenes still represent a challenge for these methods. Also, the detected edges using the existing approaches suffer from non-refined results while the image output contains many erroneous edges. To overcome this, n this paper, by using the mechanism of residual learning, a refined edge detection network is proposed (RED-Net). By maintaining the high resolution of edges during the training process, and conserving the resolution of the edge image during the network stage, we make the pooling outputs at each stage connected with the output of the previous layer. Also, after each layer, we use an affined batch normalization layer as an erosion operation for the homogeneous region in the image. The proposed methods are evaluated using the most challenging datasets including BSDS500, NYUD, and Multicue. The obtained results outperform the designed edge detection networks in terms of performance metrics and quality of output images.

Keywords: edge detection, convolutional neural networks, deep learning, scale-representation, backbone

Procedia PDF Downloads 102
1124 Machine Learning Strategies for Data Extraction from Unstructured Documents in Financial Services

Authors: Delphine Vendryes, Dushyanth Sekhar, Baojia Tong, Matthew Theisen, Chester Curme

Abstract:

Much of the data that inform the decisions of governments, corporations and individuals are harvested from unstructured documents. Data extraction is defined here as a process that turns non-machine-readable information into a machine-readable format that can be stored, for instance, in a database. In financial services, introducing more automation in data extraction pipelines is a major challenge. Information sought by financial data consumers is often buried within vast bodies of unstructured documents, which have historically required thorough manual extraction. Automated solutions provide faster access to non-machine-readable datasets, in a context where untimely information quickly becomes irrelevant. Data quality standards cannot be compromised, so automation requires high data integrity. This multifaceted task is broken down into smaller steps: ingestion, table parsing (detection and structure recognition), text analysis (entity detection and disambiguation), schema-based record extraction, user feedback incorporation. Selected intermediary steps are phrased as machine learning problems. Solutions leveraging cutting-edge approaches from the fields of computer vision (e.g. table detection) and natural language processing (e.g. entity detection and disambiguation) are proposed.

Keywords: computer vision, entity recognition, finance, information retrieval, machine learning, natural language processing

Procedia PDF Downloads 111
1123 Innovative Technology to Sustain Food Security in Qatar

Authors: Sana Abusin

Abstract:

Food security in Qatar is a research priority of Qatar University (2021-2025) and all national strategies, including the Qatar National Vision 2030 and food security strategy (2018-2023). Achieving food security requires three actions: 1) transforming surplus food to those who are insecure; 2) reducing food loss and waste by recycling food into valuable resources such as compost (“green fertilizer”) that can be used in growing food; and, finally, 3) establishing strong enforcement agencies to protect consumers from outdated food and promote healthy food. Currently, these objectives are approached separately and not in a sustainable fashion. Food security in Qatar is a research priority of Qatar University (2021-2025) and all national strategies, including the Qatar National Vision 2030 and food security strategy (2018-2023). The study aims to develop an innovative mobile application that supports a sustainable solution to food insecurity and food waste in Qatar. The application will provide a common solution for many different users. For producers, it will facilitate easy disposal of excess food. For charities, it will notify them about surplus food ready for redistribution. The application will also benefit the second layer of end-users in the form of food recycling companies, who will receive information about available food waste that is unable to be consumed. We will use self-exoplanetary diagrams and digital pictures to show all the steps to the final stage. The aim is to motivate the young generation toward innovation and creation, and to encourage public-private collaboration in this sector.

Keywords: food security, innovative technology, sustainability, food waste, Qatar

Procedia PDF Downloads 122
1122 Optimization of Fused Deposition Modeling 3D Printing Process via Preprocess Calibration Routine Using Low-Cost Thermal Sensing

Authors: Raz Flieshman, Adam Michael Altenbuchner, Jörg Krüger

Abstract:

This paper presents an approach to optimizing the Fused Deposition Modeling (FDM) 3D printing process through a preprocess calibration routine of printing parameters. The core of this method involves the use of a low-cost thermal sensor capable of measuring tempera-tures within the range of -20 to 500 degrees Celsius for detailed process observation. The calibration process is conducted by printing a predetermined path while varying the process parameters through machine instructions (g-code). This enables the extraction of critical thermal, dimensional, and surface properties along the printed path. The calibration routine utilizes computer vision models to extract features and metrics from the thermal images, in-cluding temperature distribution, layer adhesion quality, surface roughness, and dimension-al accuracy and consistency. These extracted properties are then analyzed to optimize the process parameters to achieve the desired qualities of the printed material. A significant benefit of this calibration method is its potential to create printing parameter profiles for new polymer and composite materials, thereby enhancing the versatility and application range of FDM 3D printing. The proposed method demonstrates significant potential in enhancing the precision and reliability of FDM 3D printing, making it a valuable contribution to the field of additive manufacturing.

Keywords: FDM 3D printing, preprocess calibration, thermal sensor, process optimization, additive manufacturing, computer vision, material profiles

Procedia PDF Downloads 40
1121 Contemporary Vision of Islamic Motifs in Decorating Products

Authors: Shuruq Ghazi Nahhas

Abstract:

Islamic art is a decorative art that depends on repeating motifs in various shapes to cover different surfaces. Each motif has its own characteristics and style that may reflect different Islamic periods, such as Umayyad, Abbasid, Fatimid, Seljuk, Nasrid, Ottoman, and Safavid. These periods were the most powerful periods which played an important role in developing the Islamic motifs. Most of these motifs of the Islamic heritage were not used in new applications. This research focused on reviving the vegetal Islamic motifs found on Islamic heritage and redesign them in a new format to decorate various products, including scarfs, cushions, coasters, wallpaper, wall art, and boxes. The scarf is chosen as one element of these decorative products because it is used as accessories to add aesthetic value to fashion. A descriptive-analytical method is used for this research. The process started with extracting and analyzing the original motifs. Then, creating the new motifs by simplifying, deleting, or adding elements based on the original structure. Then, creating repeated patterns and applying them to decorative products. The findings of this research indicated: repeating patterns based on different structures creates unlimited patterns. Also, changing the elements of the motifs of a pattern adds new characteristics to the pattern. Also, creating frames using elements from the repeated motifs adds aesthetic and contemporary value to decorative products. Finally, using various methods of combining colors creates unlimited variations of each pattern. At the end, reviving the Islamic motifs in contemporary vision enriches decorative products with aesthetic, artistic, and historical values of different Islamic periods. This makes the decorative products valuable that adds uniqueness to their surroundings.

Keywords: Islamic motifs, contemporary patterns, scarfs, decorative products

Procedia PDF Downloads 159
1120 Robotic Arm-Automated Spray Painting with One-Shot Object Detection and Region-Based Path Optimization

Authors: Iqraq Kamal, Akmal Razif, Sivadas Chandra Sekaran, Ahmad Syazwan Hisaburi

Abstract:

Painting plays a crucial role in the aerospace manufacturing industry, serving both protective and cosmetic purposes for components. However, the traditional manual painting method is time-consuming and labor-intensive, posing challenges for the sector in achieving higher efficiency. Additionally, the current automated robot path planning has been a bottleneck for spray painting processes, as typical manual teaching methods are time-consuming, error-prone, and skill-dependent. Therefore, it is essential to develop automated tool path planning methods to replace manual ones, reducing costs and improving product quality. Focusing on flat panel painting in aerospace manufacturing, this study aims to address issues related to unreliable part identification techniques caused by the high-mixture, low-volume nature of the industry. The proposed solution involves using a spray gun and a UR10 robotic arm with a vision system that utilizes one-shot object detection (OS2D) to identify parts accurately. Additionally, the research optimizes path planning by concentrating on the region of interest—specifically, the identified part, rather than uniformly covering the entire painting tray.

Keywords: aerospace manufacturing, one-shot object detection, automated spray painting, vision-based path optimization, deep learning, automation, robotic arm

Procedia PDF Downloads 81
1119 The Effect of Pixelation on Face Detection: Evidence from Eye Movements

Authors: Kaewmart Pongakkasira

Abstract:

This study investigated how different levels of pixelation affect face detection in natural scenes. Eye movements and reaction times, while observers searched for faces in natural scenes rendered in different ranges of pixels, were recorded. Detection performance for coarse visual detail at lower pixel size (3 x 3) was better than with very blurred detail carried by higher pixel size (9 x 9). The result is consistent with the notion that face detection relies on gross detail information of face-shape template, containing crude shape structure and features. In contrast, detection was impaired when face shape and features are obscured. However, it was considered that the degradation of scenic information might also contribute to the effect. In the next experiment, a more direct measurement of the effect of pixelation on face detection, only the embedded face photographs, but not the scene background, will be filtered.

Keywords: eye movements, face detection, face-shape information, pixelation

Procedia PDF Downloads 317
1118 Application of Improved Semantic Communication Technology in Remote Sensing Data Transmission

Authors: Tingwei Shu, Dong Zhou, Chengjun Guo

Abstract:

Semantic communication is an emerging form of communication that realize intelligent communication by extracting semantic information of data at the source and transmitting it, and recovering the data at the receiving end. It can effectively solve the problem of data transmission under the situation of large data volume, low SNR and restricted bandwidth. With the development of Deep Learning, semantic communication further matures and is gradually applied in the fields of the Internet of Things, Uumanned Air Vehicle cluster communication, remote sensing scenarios, etc. We propose an improved semantic communication system for the situation where the data volume is huge and the spectrum resources are limited during the transmission of remote sensing images. At the transmitting, we need to extract the semantic information of remote sensing images, but there are some problems. The traditional semantic communication system based on Convolutional Neural Network cannot take into account the global semantic information and local semantic information of the image, which results in less-than-ideal image recovery at the receiving end. Therefore, we adopt the improved vision-Transformer-based structure as the semantic encoder instead of the mainstream one using CNN to extract the image semantic features. In this paper, we first perform pre-processing operations on remote sensing images to improve the resolution of the images in order to obtain images with more semantic information. We use wavelet transform to decompose the image into high-frequency and low-frequency components, perform bilinear interpolation on the high-frequency components and bicubic interpolation on the low-frequency components, and finally perform wavelet inverse transform to obtain the preprocessed image. We adopt the improved Vision-Transformer structure as the semantic coder to extract and transmit the semantic information of remote sensing images. The Vision-Transformer structure can better train the huge data volume and extract better image semantic features, and adopt the multi-layer self-attention mechanism to better capture the correlation between semantic features and reduce redundant features. Secondly, to improve the coding efficiency, we reduce the quadratic complexity of the self-attentive mechanism itself to linear so as to improve the image data processing speed of the model. We conducted experimental simulations on the RSOD dataset and compared the designed system with a semantic communication system based on CNN and image coding methods such as BGP and JPEG to verify that the method can effectively alleviate the problem of excessive data volume and improve the performance of image data communication.

Keywords: semantic communication, transformer, wavelet transform, data processing

Procedia PDF Downloads 78
1117 Innovative Food Related Modification of the Day-Night Task Demonstrates Impaired Inhibitory Control among Patients with Binge-Purge Eating Disorder

Authors: Sigal Gat-Lazer, Ronny Geva, Dan Ramon, Eitan Gur, Daniel Stein

Abstract:

Introduction: Eating disorders (ED) are common psychopathologies which involve distorted body image and eating disturbances. Binge-purge eating disorders (B/P ED) are characterized by repetitive events of binge eating followed by purges. Patients with B/P ED behavior may be seen as impulsive especially when relate to food stimulation and affective conditions. The current study included innovative modification of the day-night task targeted to assess inhibitory control among patients with B/P ED. Methods: This prospective study included 50 patients with B/P ED during acute phase of illness (T1) upon their admission to specialized ED department in tertiary center. 34 patients repeated the study towards discharge to ambulatory care (T2). Treatment effect was evaluated by BMI and emotional questionnaires regarding depression and anxiety by the Beck Depression Inventory and State Trait Anxiety Inventory questionnaires. Control group included 36 healthy controls with matched demographic parameters who performed both T1 and T2 assessments. The current modification is based on the emotional day-night task (EDNT) which involves five emotional stimulation added to the sun and moon pictures presented to participants. In the current study, we designed the food-emotional modification day night task (F-EDNT) food stimulations of egg and banana which resemble the sun and moon, respectively, in five emotional states (angry, sad, happy, scrambled and neutral). During this computerized task, participants were instructed to push on “day” bottom in response to moon and banana stimulations and on “night” bottom when sun and egg were presented. Accuracy (A) and reaction time (RT) were evaluated and compared between EDNT and F-EDNT as a reflection of participants’ inhibitory control. Results: Patients with B/P ED had significantly improved BMI, depression and anxiety scores on T2 compared to T1 (all p<0.001). Task performance was similar among patients and controls in the EDNT without significant A or RT differences in both T1 and T2. On F-EDNT during T1, B/P ED patients had significantly reduced accuracy in 4/5 emotional stimulation compared to controls: angry (73±25% vs. 84±15%, respectively), sad (69±25% vs. 80±18%, respectively), happy (73±24% vs. 82±18%, respectively) and scrambled (74±24% vs. 84±13%, respectively, all p<0.05). Additionally, patients’ RT to food stimuli was significantly faster compared to neutral ones, in both cry and neutral emotional stimulations (356±146 vs. 400±141 and 378±124 vs. 412±116 msec, respectively, p<0.05). These significant differences between groups as a function of stimulus type were diminished on T2. Conclusion: Having to process food related content, in particular in emotional context seems to be impaired in patients with B/P ED during the acute phase of their illness and elicits greater impulsivity. Innovative modification using such procedures seem to be sensitive to patients’ illness phase and thus may be implemented during screening and follow up through the clinical management of these patients.

Keywords: binge purge eating disorders, day night task modification, eating disorders, food related stimulations

Procedia PDF Downloads 380
1116 Enhancing Plant Throughput in Mineral Processing Through Multimodal Artificial Intelligence

Authors: Muhammad Bilal Shaikh

Abstract:

Mineral processing plants play a pivotal role in extracting valuable minerals from raw ores, contributing significantly to various industries. However, the optimization of plant throughput remains a complex challenge, necessitating innovative approaches for increased efficiency and productivity. This research paper investigates the application of Multimodal Artificial Intelligence (MAI) techniques to address this challenge, aiming to improve overall plant throughput in mineral processing operations. The integration of multimodal AI leverages a combination of diverse data sources, including sensor data, images, and textual information, to provide a holistic understanding of the complex processes involved in mineral extraction. The paper explores the synergies between various AI modalities, such as machine learning, computer vision, and natural language processing, to create a comprehensive and adaptive system for optimizing mineral processing plants. The primary focus of the research is on developing advanced predictive models that can accurately forecast various parameters affecting plant throughput. Utilizing historical process data, machine learning algorithms are trained to identify patterns, correlations, and dependencies within the intricate network of mineral processing operations. This enables real-time decision-making and process optimization, ultimately leading to enhanced plant throughput. Incorporating computer vision into the multimodal AI framework allows for the analysis of visual data from sensors and cameras positioned throughout the plant. This visual input aids in monitoring equipment conditions, identifying anomalies, and optimizing the flow of raw materials. The combination of machine learning and computer vision enables the creation of predictive maintenance strategies, reducing downtime and improving the overall reliability of mineral processing plants. Furthermore, the integration of natural language processing facilitates the extraction of valuable insights from unstructured textual data, such as maintenance logs, research papers, and operator reports. By understanding and analyzing this textual information, the multimodal AI system can identify trends, potential bottlenecks, and areas for improvement in plant operations. This comprehensive approach enables a more nuanced understanding of the factors influencing throughput and allows for targeted interventions. The research also explores the challenges associated with implementing multimodal AI in mineral processing plants, including data integration, model interpretability, and scalability. Addressing these challenges is crucial for the successful deployment of AI solutions in real-world industrial settings. To validate the effectiveness of the proposed multimodal AI framework, the research conducts case studies in collaboration with mineral processing plants. The results demonstrate tangible improvements in plant throughput, efficiency, and cost-effectiveness. The paper concludes with insights into the broader implications of implementing multimodal AI in mineral processing and its potential to revolutionize the industry by providing a robust, adaptive, and data-driven approach to optimizing plant operations. In summary, this research contributes to the evolving field of mineral processing by showcasing the transformative potential of multimodal artificial intelligence in enhancing plant throughput. The proposed framework offers a holistic solution that integrates machine learning, computer vision, and natural language processing to address the intricacies of mineral extraction processes, paving the way for a more efficient and sustainable future in the mineral processing industry.

Keywords: multimodal AI, computer vision, NLP, mineral processing, mining

Procedia PDF Downloads 68
1115 Higher Education for Knowledge and Technology Transfer in Egypt

Authors: M. A. Zaki Ewiss, S. Afifi

Abstract:

Nahda University (NUB) believes that internationalisation of higher educational is able to provide global society with an education that meets current needs and that can respond efficiently to contemporary demands and challenges, which are characterized by globalisation, interdependence, and multiculturalism. In this paper, we will discuss the the challenges of the Egyptian Higher Education system and the future vision to improve this system> In this report, the following issues will be considered: Increasing knowledge on the development of specialized programs of study at the university. Developing international cooperation programs, which focus on the development of the students and staff skills, and providing academic culture and learning opportunities. Increasing the opportunities for student mobility, and research projects for faculty members. Increased opportunities for staff, faculty and students to continue to learn foreign universities, and to benefit from scholarships in various disciplines. Taking the advantage of the educational experience and modern teaching methods; Providing the opportunities to study abroad without increasing the period of time required for graduation, and through greater integration in the curricula and programs; More cultural interaction through student exchanges.Improving and providing job opportunities for graduates through participation in the global labor market. This document sets out NUB strategy to move towards that vision. We are confident that greater explicit differentiation, greater freedom and greater collaboration are the keys to delivering the further improvement in quality we shall need to retain and strengthen our position as one of the world’s leading higher education systems.

Keywords: technology transfer higher education, knowledge transfer, internationalisation, mobility

Procedia PDF Downloads 437
1114 Real-Time Generative Architecture for Mesh and Texture

Authors: Xi Liu, Fan Yuan

Abstract:

In the evolving landscape of physics-based machine learning (PBML), particularly within fluid dynamics and its applications in electromechanical engineering, robot vision, and robot learning, achieving precision and alignment with researchers' specific needs presents a formidable challenge. In response, this work proposes a methodology that integrates neural transformation with a modified smoothed particle hydrodynamics model for generating transformed 3D fluid simulations. This approach is useful for nanoscale science, where the unique and complex behaviors of viscoelastic medium demand accurate neurally-transformed simulations for materials understanding and manipulation. In electromechanical engineering, the method enhances the design and functionality of fluid-operated systems, particularly microfluidic devices, contributing to advancements in nanomaterial design, drug delivery systems, and more. The proposed approach also aligns with the principles of PBML, offering advantages such as multi-fluid stylization and consistent particle attribute transfer. This capability is valuable in various fields where the interaction of multiple fluid components is significant. Moreover, the application of neurally-transformed hydrodynamical models extends to manufacturing processes, such as the production of microelectromechanical systems, enhancing efficiency and cost-effectiveness. The system's ability to perform neural transfer on 3D fluid scenes using a deep learning algorithm alongside physical models further adds a layer of flexibility, allowing researchers to tailor simulations to specific needs across scientific and engineering disciplines.

Keywords: physics-based machine learning, robot vision, robot learning, hydrodynamics

Procedia PDF Downloads 66
1113 A Deep Learning Approach to Detect Complete Safety Equipment for Construction Workers Based on YOLOv7

Authors: Shariful Islam, Sharun Akter Khushbu, S. M. Shaqib, Shahriar Sultan Ramit

Abstract:

In the construction sector, ensuring worker safety is of the utmost significance. In this study, a deep learning-based technique is presented for identifying safety gear worn by construction workers, such as helmets, goggles, jackets, gloves, and footwear. The suggested method precisely locates these safety items by using the YOLO v7 (You Only Look Once) object detection algorithm. The dataset utilized in this work consists of labeled images split into training, testing and validation sets. Each image has bounding box labels that indicate where the safety equipment is located within the image. The model is trained to identify and categorize the safety equipment based on the labeled dataset through an iterative training approach. We used custom dataset to train this model. Our trained model performed admirably well, with good precision, recall, and F1-score for safety equipment recognition. Also, the model's evaluation produced encouraging results, with a [email protected] score of 87.7%. The model performs effectively, making it possible to quickly identify safety equipment violations on building sites. A thorough evaluation of the outcomes reveals the model's advantages and points up potential areas for development. By offering an automatic and trustworthy method for safety equipment detection, this research contributes to the fields of computer vision and workplace safety. The proposed deep learning-based approach will increase safety compliance and reduce the risk of accidents in the construction industry.

Keywords: deep learning, safety equipment detection, YOLOv7, computer vision, workplace safety

Procedia PDF Downloads 68
1112 Sustainable Agriculture of Tribal Farmers: An Analysis in Koraput and Malkangiri Districts of Odisha, India

Authors: Amrita Mishra, Tushar Kanti Das

Abstract:

Agriculture is the backbone of the economy of Odisha. Sustainability of agriculture holds the key for the development of Odisha. The Sustainable Development Goals are a framework of 17 goals and 169 targets across social, economical and environmental areas of sustainable development. Among all the seventeen goals the second goal is focusing on the promotion of Sustainable Agriculture. In this research our main aim is also to contribute an understanding of effectiveness of sustainable agriculture as a tool for rural development in the selected tribal district (i.e. Koraput and Malkangiri) of Odisha. These two districts are comes under KBK districts of Odisha which are identified as most backward districts of Odisha. The objectives of our study are to investigate the effect of sustainable agriculture on the lives of tribal farmers, to study whether the farmers are empowered by their participation in sustainable agriculture initiatives to move towards their own vision of development and to study the investment and profit ratio in sustainable agriculture. This research will help in filling the major gaps in sociological studies of sustainable agriculture. This information will helpful for farmers, development organisations, donors and policy makers in formulating the development of effective initiatives and policies to support the development of sustainable agriculture. In this study, we have taken 210 respondents and used various statistical techniques like chi-square test, one-way ANOVA and percentage analysis. This research shows that sustainable agriculture is an effective development strategy that benefits the tribal farmers to move towards their own vision of Good Fortune. The poor farmers who struggle to feed their families and maintain viable livelihoods on shrinking land for them sustainable agriculture are really benefited. The farmers are using homemade pesticides, manure and also getting the seeds from different development organisations and Government. So the investment in Sustainable Agriculture is very less. All farmers said their lives are now better than before. The creation of farmers groups for training and marketing for the produces was shown to be very important for empowerment.

Keywords: sustainable, agriculture, tribal farmers, development, empowerment

Procedia PDF Downloads 174
1111 The Importance of Visual Communication in Artificial Intelligence

Authors: Manjitsingh Rajput

Abstract:

Visual communication plays an important role in artificial intelligence (AI) because it enables machines to understand and interpret visual information, similar to how humans do. This abstract explores the importance of visual communication in AI and emphasizes the importance of various applications such as computer vision, object emphasis recognition, image classification and autonomous systems. In going deeper, with deep learning techniques and neural networks that modify visual understanding, In addition to AI programming, the abstract discusses challenges facing visual interfaces for AI, such as data scarcity, domain optimization, and interpretability. Visual communication and other approaches, such as natural language processing and speech recognition, have also been explored. Overall, this abstract highlights the critical role that visual communication plays in advancing AI capabilities and enabling machines to perceive and understand the world around them. The abstract also explores the integration of visual communication with other modalities like natural language processing and speech recognition, emphasizing the critical role of visual communication in AI capabilities. This methodology explores the importance of visual communication in AI development and implementation, highlighting its potential to enhance the effectiveness and accessibility of AI systems. It provides a comprehensive approach to integrating visual elements into AI systems, making them more user-friendly and efficient. In conclusion, Visual communication is crucial in AI systems for object recognition, facial analysis, and augmented reality, but challenges like data quality, interpretability, and ethics must be addressed. Visual communication enhances user experience, decision-making, accessibility, and collaboration. Developers can integrate visual elements for efficient and accessible AI systems.

Keywords: visual communication AI, computer vision, visual aid in communication, essence of visual communication.

Procedia PDF Downloads 95
1110 Impact of Adolescent Smoking on the Behaviour, Academic and Health Aspects in Qatar

Authors: Abdelsalam Gomaa, Mahjabeen Ramzan, Tooba Ali Akbar, Huma Nadeem

Abstract:

The use of tobacco and the health risks linked to it are well known in this day and age due to the presence of easily available information through the internet. The media is a powerful platform that is used by many anti-smoking awareness campaigns to reach their target audience; yet, it has been found that adolescents are taking up smoking every passing day. Half of this smoking population of youngsters resides in Asia alone, which includes Qatar, the focus country of this study. As smoking happens to be one of the largest avoidable causes of serious diseases like cancers and heart problems, children are taking up smoking at an alarming rate everywhere including Qatar. Importance of the health of the citizens of Qatar is one of the pillars of the Qatar vision 2030, which is to ensure a healthy population, both physically and mentally. Since the youth makes up a significant percentage of the population and in order to achieve the health objectives of the Qatar vision 2030, it is essential to ensure the health and well-being of this part of the population of the country as they are the future of Qatar. Children, especially boys who tend to be more aggressive by nature, are highly likely to develop behavioral and health issues due to smoking at an early age. Research conducted around the world has also emphasized on this association between the smokers developing a bad behaviour as well as poor social communication skills. However, due to lack of research into this association, very little is known about the extent to which smoking impacts the children’s academics, health and behaviour. Moreover, a study of this nature has not yet been conducted in Qatar previously as most of the studies focus on adult smokers and ways to minimize the number of smoking habits in universities and workplaces. This study solely focuses on identifying a relationship between smoking and its impacts on the adolescents by conducting a research on different schools across Qatar.

Keywords: adolescents, modelling techniques, Qatar, smoking

Procedia PDF Downloads 246
1109 Vehicle Speed Estimation Using Image Processing

Authors: Prodipta Bhowmik, Poulami Saha, Preety Mehra, Yogesh Soni, Triloki Nath Jha

Abstract:

In India, the smart city concept is growing day by day. So, for smart city development, a better traffic management and monitoring system is a very important requirement. Nowadays, road accidents increase due to more vehicles on the road. Reckless driving is mainly responsible for a huge number of accidents. So, an efficient traffic management system is required for all kinds of roads to control the traffic speed. The speed limit varies from road to road basis. Previously, there was a radar system but due to high cost and less precision, the radar system is unable to become favorable in a traffic management system. Traffic management system faces different types of problems every day and it has become a researchable topic on how to solve this problem. This paper proposed a computer vision and machine learning-based automated system for multiple vehicle detection, tracking, and speed estimation of vehicles using image processing. Detection of vehicles and estimating their speed from a real-time video is tough work to do. The objective of this paper is to detect vehicles and estimate their speed as accurately as possible. So for this, a real-time video is first captured, then the frames are extracted from that video, then from that frames, the vehicles are detected, and thereafter, the tracking of vehicles starts, and finally, the speed of the moving vehicles is estimated. The goal of this method is to develop a cost-friendly system that can able to detect multiple types of vehicles at the same time.

Keywords: OpenCV, Haar Cascade classifier, DLIB, YOLOV3, centroid tracker, vehicle detection, vehicle tracking, vehicle speed estimation, computer vision

Procedia PDF Downloads 84
1108 Vision Zero for the Caribbean Using the Systemic Approach for Road Safety: A Case Study Analyzing Jamaican Road Crash Data (Ongoing)

Authors: Rachelle McFarlane

Abstract:

The Second Decade of Action Road Safety has begun with increased focus on countries who are disproportionately affected by road fatalities. Researchers highlight the low effectiveness of road safety campaigns in Latin America and the Caribbean (LAC) still reporting approximately 130,000 deaths and six million injuries annually. The regional fatality rate 19.2 per 100,000 with heightened concern for persons 15 to 44 years. In 2021, 483 Jamaicans died in 435 crashes, with 33% of these fatalities occurring during Covid-19 curfew hours. The study objective is to conduct a systemic safety review of Jamaican road crashes and provide a framework for its use in complementing traditional methods. The methodology involves the use of the FHWA Systemic Safety Project Selection Tool for analysis. This tool reviews systemwide data in order to identify risk factors across the network associated with severe and fatal crashes, rather that only hotspots. A total of 10,379 crashes with 745 fatalities and serious injuries were reviewed. Of the focus crash types listed, 50% of ‘Pedestrian Accidents’ resulted in fatalities and serious injuries, followed by 32% ‘Bicycle’, 24% ‘Single’ and 12% of ‘Head-on’. This study seeks to understand the associated risk factors with these priority crash types across the network and recommend cost-effective countermeasures across common sites. As we press towards Vision Zero, the inclusion of the systemic safety review method, complementing traditional methods, may create a wider impact in reducing road fatalities and serious injury by targeting issues across network with similarities; focus crash types and contributing factors.

Keywords: systemic safety review, risk factors, road crashes, crash types

Procedia PDF Downloads 89