Search results for: stainless steel cylinder
1763 Optimization of Process Parameters by Using Taguchi Method for Bainitic Steel Machining
Authors: Vinay Patil, Swapnil Kekade, Ashish Supare, Vinayak Pawar, Shital Jadhav, Rajkumar Singh
Abstract:
In recent days, bainitic steel is used in automobile and non-automobile sectors due to its high strength. Bainitic steel is difficult to machine because of its high hardness, hence in this paper machinability of bainitic steel is studied by using Taguchi design of experiments (DOE) approach. Convectional turning experiments were done by using L16 orthogonal array for three input parameters viz. cutting speed, depth of cut and feed. The Taguchi method is applied to study the performance characteristics of machining parameters with surface roughness (Ra), cutting force and tool wear rate. By using Taguchi analysis, optimized process parameters for best surface finish and minimum cutting forces were analyzed.Keywords: conventional turning, Taguchi method, S/N ratio, bainitic steel machining
Procedia PDF Downloads 3311762 Development of a Thermodynamic Model for Ladle Metallurgy Steel Making Processes Using Factsage and Its Macro Facility
Authors: Prasenjit Singha, Ajay Kumar Shukla
Abstract:
To produce high-quality steel in larger volumes, dynamic control of composition and temperature throughout the process is essential. In this paper, we developed a mass transfer model based on thermodynamics to simulate the ladle metallurgy steel-making process using FactSage and its macro facility. The overall heat and mass transfer processes consist of one equilibrium chamber, two non-equilibrium chambers, and one adiabatic reactor. The flow of material, as well as heat transfer, occurs across four interconnected unit chambers and a reactor. We used the macro programming facility of FactSage™ software to understand the thermochemical model of the secondary steel making process. In our model, we varied the oxygen content during the process and studied their effect on the composition of the final hot metal and slag. The model has been validated with respect to the plant data for the steel composition, which is similar to the ladle metallurgy steel-making process in the industry. The resulting composition profile serves as a guiding tool to optimize the process of ladle metallurgy in steel-making industries.Keywords: desulphurization, degassing, factsage, reactor
Procedia PDF Downloads 2171761 Enhanced of Corrosion Resistance of Carbon Steel C1018 with Nano-Tio2 Films Using Dip-Coating Method
Authors: Mai M. Khalaf, Hany M. Abd El-Lateef
Abstract:
A new good application for the sol gel method is to improve the corrosion inhibition properties of carbon steel by the dip coating method of Nano TiO2 films and its modification with Poly Ethylene Glycol (PEG). The prepared coating samples were investigated by different techniques, X-ray diffraction, Scanning Electron Microscopy (SEM), transmission electron microscopy and Energy Dispersive X-ray Spectroscopy (EDAX). The corrosion inhibition performance of the blank carbon steel and prepared coatings samples were evaluated in 0.5 M H2SO4 by using Electrochemical Impedance Spectroscopy (EIS) and potentiodynamic polarization measurements. The results showed that corrosion resistance of carbon steel increases with increasing the number of coated layers of both nano–TiO2 films and its modification of PEG. SEM-EDAX analyses confirmed that the percentage atomic content of iron for the carbon steel in 0.5 M H2SO4 is 83% and after the deposition of the steel in nano TiO2 sol and that with PEG are 94.3% and 93.7% respectively.Keywords: dip-coatings, corrosion protection, sol gel, TiO2 films, PEG
Procedia PDF Downloads 4291760 Reliability Analysis of Steel Columns under Buckling Load in Second-Order Theory
Authors: Hamed Abshari, M. Reza Emami Azadi, Madjid Sadegh Azar
Abstract:
For studying the overall instability of members of steel structures, there are several methods in which overall buckling and geometrical imperfection effects are considered in analysis. In first section, these methods are compared and ability of software to apply these methods is studied. Buckling loads determined from theoretical methods and software is compared for 2D one bay, one and two stories steel frames. To consider actual condition, buckling loads of three steel frames that have various dimensions are calculated and compared. Also, uncertainties that exist in loading and modeling of structures such as geometrical imperfection, yield stress, and modulus of elasticity in buckling load of 2D framed steel structures have been studied. By performing these uncertainties to each reliability analysis procedures (first-order, second-order, and simulation methods of reliability), one index of reliability from each procedure is determined. These values are studied and compared.Keywords: buckling, second-order theory, reliability index, steel columns
Procedia PDF Downloads 4921759 Mechanical Behavior of CFTR Column Joint under Pull out Testing
Authors: Nasruddin Junus
Abstract:
CFTR column is one of the improvements CFT columns by inserting reinforcing steel bars into infill concrete. The presence of inserting reinforcing steel bars is increasing the excellent structural performance of the CFT column, especially on the fire-resisting performance. Investigation on the mechanical behavior of CFTR column connection is summarized in the three parts; column to column joint, column to beam connection, and column base. Experiment that reported in this paper is concerned on the mechanical behavior of CFTR column joint under pull out testing, especially on its stress transfer mechanism. A number series of the pull out test on the CFT with inserting reinforcing steel bar are conducted. Ten test specimens are designed, constructed, and tested to examine experimentally the effect of the size of square steel tube, size of the bearing plate, length of embedment steel bars, kind of steel bars, and the numbers of rib plate.Keywords: CFTR column, pull out, stress, transfer mechanism
Procedia PDF Downloads 2901758 Enhancement Effect of Electromagnetic Field on Separation of Edible Oil from Oil-Water Emulsion
Authors: Olfat A. Fadali, Mohamed S. Mahmoud, Omnia H. Abdelraheem, Shimaa G. Mohammed
Abstract:
The effect of electromagnetic field (EMF) on the removal of edible oil from oil-in-water emulsion by means of electrocoagulation was investigated in rectangular batch electrochemical cell with DC current. Iron (Fe) plate anodes and stainless steel cathodes were employed as electrodes. The effect of different magnetic field intensities (1.9, 3.9 and 5.2 tesla), three different positions of EMF (below, perpendicular and parallel to the electrocoagulation cell), as well as operating time; had been investigated. The application of electromagnetic field (5.2 tesla) raises percentage of oil removal from 72.4% for traditional electrocoagulation to 90.8% after 20 min.Keywords: electrocoagulation, electromagnetic field, Oil-water emulsion, edible oil
Procedia PDF Downloads 5321757 Poly(Butadiene-co-Acrylonitrile)-Polyaniline Dodecylbenzenesulfonate [NBR-PAni.DBSA] Blends for Corrosion Inhibition of Carbon Steel
Authors: Kok-Chong Yong
Abstract:
Poly(butadiene-co-acrylonitrile)-polyaniline Dodecylbenzenesulfonate [NBR-PAni.DBSA] blends with useful electrical conductivity (up to 0.1 S/cm) were prepared and their corrosion inhibiting behaviours for carbon steel were successfully assessed for the first time. The level of compatibility between NBR and PAni.DBSA was enhanced through the introduction of 1.0 wt % hydroquinone. As found from both total immersion and electrochemical corrosion tests, NBR-PAni.DBSA blends with 10.0-30.0 wt% of PAni.DBSA content exhibited the best corrosion inhibiting behaviour for carbon steel, either in acid or artificial brine environment. On the other hand, blends consisting of very low and very high PAni.DBSA contents (i.e. ≤ 5.0 wt % and ≥ 40.0 wt %) showed significantly poorer corrosion inhibiting behaviour for carbon steel.Keywords: conductive rubber, nitrile rubber, polyaniline, carbon steel, corrosion inhibition
Procedia PDF Downloads 4591756 Comparative Study of Concrete Filled Steel I-Girder Bridge with Conventional Type of Bridge
Authors: Waheed Ahmad Safi, Shunichi Nakamura, Abdul Habib Ghaforzai
Abstract:
Steel and concrete composite bridge with concrete filled steel I-girder (CFIG) was proposed and FEM and laboratory tests were conducted to analysis bending and shear behavior. The proposed form of structural steel I-section is mainly used at the intermediate support zone by placing infilled concrete into the top and bottom flanges of steel I-section to resist negative bending moment. The bending and shear tests were carried out to find out the significance of CFIG section. The result for test showing that the bending and shear capacity of proposed CFIG is at least 3 times and 2 times greater than conventional steel I-section (IG) respectively. Finite element study was also carried out to ensure the result for laboratory tests due to bending and shear behavior and load transfer behavior of proposed structural form. Finite element result result agreed the test result. A design example was carried out for a four-span continuous highway bridge and design method was established.Keywords: bending strength, concrete filled steel I-girder, steel I-girder, FEM, limit states design and shear strength
Procedia PDF Downloads 1281755 Evaluation of Sloshing in Process Equipment for Floating Cryogenic Application
Authors: Bo Jin
Abstract:
A variety of process equipment having flow in and out is widely used in industrial land-based cryogenic facilities. In some of this equipment, such as vapor-liquid separator, a liquid level is established during the steady operation. As the implementation of such industrial processes extends to off-shore floating facilities, it is important to investigate the effect of sea motion on the process equipment partially filled with liquid. One important aspect to consider is the occurrence of sloshing therein. The flow characteristics are different from the classical study of sloshing, where the fluid is enclosed inside a vessel (e.g., storage tank) with no flow in or out. Liquid inside process equipment continuously flows in and out of the system. To understand this key difference, a Computational Fluid Dynamics (CFD) model is developed to simulate the liquid motion inside a partially filled cylinder with and without continuous flow in and out. For a partially filled vertical cylinder without any continuous flow in and out, the CFD model is found to be able to capture the well-known sloshing behavior documented in the literature. For the cylinder with a continuous steady flow in and out, the CFD simulation results demonstrate that the continuous flow suppresses sloshing. Given typical cryogenic fluid has very low viscosity, an analysis based on potential flow theory is developed to explain why flow into and out of the cylinder changes the natural frequency of the system and thereby suppresses sloshing. This analysis further validates the CFD results.Keywords: computational fluid dynamics, CFD, cryogenic process equipment, off-shore floating processes, sloshing
Procedia PDF Downloads 1371754 Evaluating of Design Codes for Circular High Strength Concrete-Filled Steel Tube Columns
Authors: Soner Guler, Eylem Guzel, Mustafa Gülen
Abstract:
Recently, concrete-filled steel tube columns are highly popular in high-rise buildings. The main aim of this study is to evaluate the axial load capacities of circular high strength concrete-filled steel tube columns according to Eurocode 4 (EC4) and American Concrete Institute (ACI) design codes. The axial load capacities of fifteen concrete-filled steel tubes stub columns were compared with design codes EU4 and ACI. The results showed that the EC4 overestimate the axial load capacity for all the specimens.Keywords: concrete-filled steel tube column, axial load capacity, Eurocode 4, ACI design codes
Procedia PDF Downloads 3861753 The Behavior of Steel, Copper, and Aluminum vis-à-vis the Corrosion in an Aqueous Medium
Authors: Harche Rima, Laoufi Nadia Aicha
Abstract:
The present work consists of studying the behavior of steel, copper, and aluminum vis-à-vis the corrosion in an aqueous medium in the presence of the antifreeze COOLELF MDX -26°C. For this, we have studied the influence of the temperature and the different concentrations of the antifreeze on the corrosion of these three metals, this will last for two months by the polarization method and weight loss. In the end, we investigated the samples with the optic microscope to know their surface state. The aim of this work is the protection of contraptions. The use of antifreeze in ordinary water has a high efficiency against steel corrosion, as demonstrated by electrochemical tests (potential monitoring as a function of time and tracing polarization curves). The inhibition rate is greater than 99% for different volume concentrations, ranging from 40% to 60%. The speeds are in turn low in the order of 10-4 mm/year. On the other hand, the addition of antifreeze to ordinary water increases the corrosion potential of steel by more than 400 mV.Keywords: corrosion and prevention, steel, copper, aluminum, corrosion inhibitor, anti-cooling
Procedia PDF Downloads 491752 Inhibiting Effects of Zwitterionic Surfactant on the Erosion-Corrosion of API X52 Steel in Oil Sands Slurry
Authors: M. A. Deyab
Abstract:
The effect of zwitterionic surfactant (ZS) on erosion-corrosion of API X52 steel in oil sands slurry was studied using Tafel polarization and anodic polarization measurements. The surface morphology of API X52 steel was examined with scanning electron microscopy (SEM) and atomic force microscopy (AFM). ZS inhibited the erosion-corrosion of API X52 steel in oil sands' slurry, and the inhibition efficiency increased with increasing ZS concentration but decreased with increasing temperature. Polarization curves indicate that ZS act as a mixed type of inhibitor. Inhibition efficiencies of ZS in the dynamic condition are not as effective as that obtained in the static condition.Keywords: corrosion, surfactant, oil sands slurry, erosion-corrosion
Procedia PDF Downloads 1661751 A Study of Cracking Behavior in Concrete Beams Reinforced With Two Different Grades of Steel
Authors: Nihal Abdel Hamid Taha
Abstract:
Crack evaluation of flexure reinforced concrete (RC) member is considered an important step in the design process, since the formation of concrete cracks depends on the possibility of exposure to various conditions(pollution, humidity,..etc.). Because of the disparity between different grades of steel in the service load stresses, this affects the cracking behavior. This paper is concerned with the crack pattern and cracking load for concrete beams with T-section reinforced with two different grades of steel at the service load levels stages up to ultimate load. A practical program has been put up to investigate the difference between reinforced steel bars with yield strength 420 N/mm2 and 500 N/mm2 through six T-section reinforced beams. The beams were tested under static- monotonic two– point service loading up to ultimate failure under flexural stresses. The influence of parameters such as clear concrete cover and concrete compressive strength are considered for each of the two grades of steel used. Cracking load, spacing and width were determined. The experimental results demonstrated that increasing the concrete strength results in both of cracking and ultimate load increase, while no significant difference in yield load for the two steel grades used. It has also become obvious, that the number of cracks was more for the lower steel strength, which is followed by decrease in crack width and spacing.Keywords: RC beams, cracking behavior, steel stress, crack width, crack spacing
Procedia PDF Downloads 621750 Mechanical Behaviour of High Strength Steel Thin-Walled Profiles for Automated Rack Supported Warehouses
Authors: Agnese Natali, Francesco Morelli, Walter Salvatore, José Humberto Matias de Paula Filho, Patrick Pol
Abstract:
In the framework of the evaluation of the applicability of high strength steel to produce thin-walled elements to be used in Automated Rack Supported Warehouses, an experimental campaign is carried outto evaluate the structural performance of typical profile shapes adopted for such purposes and made of high strength steel. Numerical models are developed to fit the observed failure modes, stresses, and deformation patterns, and proper directions are proposed to simplify the numerical simulations to be used in further applications and to evaluate the mechanical behavior and performance of profiles.Keywords: Steel racks, Automated Rack Supported Warehouse, thin walled cold-formed elements, high strength steel.
Procedia PDF Downloads 1791749 Mechanical and Tribological Performances of (Nb: H-D: a-C) Thin Films for Biomedical Applications
Authors: Sara Khamseh, Kambiz Javanruee, Hamid Khorsand
Abstract:
Plenty of metallic materials are used for biomedical applications like hip joints and screws. Besides, it is reported that metal platforms such as stainless steel show significant deterioration because of wear and friction. The surface of metal substrates has been coated with a variety of multicomponent coatings to prevail these problems. The carbon-based multicomponent coatings such as metal-added amorphous carbon and diamond coatings are crucially important because of their remarkable tribological performance and chemical stability. In the current study, H-D contained Nb: (a-C) multicomponent coatings (H-D: hexagonal diamond, a-C: amorphous carbon) coated on A 304 steel substrates using an unbalanced magnetron (UBM) sputtering system. The effects of Nb and H-D content and ID/IG ratio on microstructure, mechanical and tribological characteristics of (Nb: H-D: a-C) composite coatings were investigated. The results of Raman spectroscopy represented that a-C phase with a Graphite-like structure (GLC with high value of sp2 carbon bonding) is formed, and its domain size increased with increasing Nb content of the coatings. Moreover, the Nb played a catalyst for the formation of the H-D phase. The nanoindentation hardness value of the coatings ranged between ~17 to ~35 GPa and (Nb: H-D: a-C) composite coatings with more H-D content represented higher hardness and plasticity index. It seems that the existence of extra-hard H-D particles straightly increased hardness. The tribological performance of the coatings was evaluated using the pin-on-disc method under the wet environment of SBF (Simulated Body Fluid). The COF value of the (Nb: H-D: a-C) coatings decreased with an increasing ID/IG ratio. The lower coefficient of friction is a result of the lamelliform array of graphitic domains. Also, the wear rate of the coatings decreased with increasing H-D content of the coatings. Based on the literature, a-C coatings with high hardness and H3/E2 ratio represent lower wear rates and better tribological performance. According to the nanoindentation analysis, hardness and H3/E2 ratio of (Nb: H-D: a-C) multicomponent coatings increased with increasing H-D content, which in turn decreased the wear rate of the coatings. The mechanical and tribological potency of (Nb: H-D: a-C) composite coatings on A 304 steel substrates paved the way for the development of innovative advanced coatings to ameliorate the performance of A 304 steel for biomedical applications.Keywords: COF, mechanical properties, (Nb: H-D: a-C) coatings, wear rate
Procedia PDF Downloads 1031748 Superficial Metrology of Organometallic Chemical Vapour Deposited Undoped ZnO Thin Films on Stainless Steel and Soda-Lime Glass Substrates
Authors: Uchenna Sydney Mbamara, Bolu Olofinjana, Ezekiel Oladele B. Ajayi
Abstract:
Elaborate surface metrology of undoped ZnO thin films, deposited by organometallic chemical vapour deposition (OMCVD) technique at different precursor flow rates, was carried out. Dicarbomethyl-zinc precursor was used. The films were deposited on AISI304L steel and soda-lime glass substrates. Ultraviolet-visible-near-infrared (UV-Vis-NIR) spectroscopy showed that all the thin films were over 80% transparent, with an average bandgap of 3.39 eV, X-ray diffraction (XRD) results showed that the thin films were crystalline with a hexagonal structure, while Rutherford backscattering spectroscopy (RBS) results identified the elements present in each thin film as zinc and oxygen in the ratio of 1:1. Microscope and contactless profilometer results gave images with characteristic colours. The profilometer also gave the surface roughness data in both 2D and 3D. The asperity distribution of the thin film surfaces was Gaussian, while the average fractal dimension Da was in the range of 2.5 ≤ Da. The metrology proved the surfaces good for ‘touch electronics’ and coating mechanical parts for low friction.Keywords: undoped ZnO, precursor flow rate, OMCVD, thin films, surface texture, tribology
Procedia PDF Downloads 621747 Effect of Heat Treatment on the Microstructural Evolution in Weld Region of X70 Pipeline Steel
Authors: K. Digheche, K. Saadi, Z. Boumerzoug
Abstract:
Welding is one of the most important technological processes used in many branches of industry such as industrial engineering, shipbuilding, pipeline fabrication among others. Generally, welding is the preferred joining method and most common steels are weldable. This investigation is a contribution to scientific work of welding of low carbon steel. This work presents the results of the isothermal heat treatment effect at 200, 400 and 600 °C on microstructural evolution in weld region of X70 pipeline steel. The welding process has been realized in three passes by industrial arc welding. We have found that the heat treatments cause grain growth reaction.Keywords: heat treatments, low carbon steel, microstructures, welding
Procedia PDF Downloads 4601746 Mesocarbon Microbeads Modification of Stainless-Steel Current Collector to Stabilize Lithium Deposition and Improve the Electrochemical Performance of Anode Solid-State Lithium Hybrid Battery
Authors: Abebe Taye
Abstract:
The interest in enhancing the performance of all-solid-state batteries featuring lithium metal anodes as a potential alternative to traditional lithium-ion batteries has prompted exploration into new avenues. A promising strategy involves transforming lithium-ion batteries into hybrid configurations by integrating lithium-ion and lithium-metal solid-state components. This study is focused on achieving stable lithium deposition and advancing the electrochemical capabilities of solid-state lithium hybrid batteries with anodes by incorporating mesocarbon microbeads (MCMBs) blended with silver nanoparticles. To achieve this, mesocarbon microbeads (MCMBs) blended with silver nanoparticles are coated on stainless-steel current collectors. These samples undergo a battery of analyses employing diverse techniques. Surface morphology is studied through scanning electron microscopy (SEM). The electrochemical behavior of the coated samples is evaluated in both half-cell and full-cell setups utilizing an argyrodite-type sulfide electrolyte. The stability of MCMBs in the electrolyte is assessed using electrochemical impedance spectroscopy (EIS). Additional insights into the composition are gleaned through X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDS). At an ultra-low N/P ratio of 0.26, stability is upheld for over 100 charge/discharge cycles in half-cells. When applied in a full-cell configuration, the hybrid anode preserves 60.1% of its capacity after 80 cycles at 0.3 C under a low N/P ratio of 0.45. In sharp contrast, the capacity retention of the cell using untreated MCMBs declines to 20.2% after a mere 60 cycles. The introduction of mesocarbon microbeads (MCMBs) combined with silver nanoparticles into the hybrid anode of solid-state lithium batteries substantially elevates their stability and electrochemical performance. This approach ensures consistent lithium deposition and removal, mitigating dendrite growth and the accumulation of inactive lithium. The findings from this investigation hold significant value in elevating the reversibility and energy density of lithium-ion batteries, thereby making noteworthy contributions to the advancement of more efficient energy storage systems.Keywords: MCMB, lithium metal, hybrid anode, silver nanoparticle, cycling stability
Procedia PDF Downloads 751745 Laminar Periodic Vortex Shedding over a Square Cylinder in Pseudoplastic Fluid Flow
Authors: Shubham Kumar, Chaitanya Goswami, Sudipto Sarkar
Abstract:
Pseudoplastic (n < 1, n being the power index) fluid flow can be found in food, pharmaceutical and process industries and has very complex flow nature. To our knowledge, inadequate research work has been done in this kind of flow even at very low Reynolds numbers. Here, in the present computation, we have considered unsteady laminar flow over a square cylinder in pseudoplastic flow environment. For Newtonian fluid flow, this laminar vortex shedding range lies between Re = 47-180. In this problem, we consider Re = 100 (Re = U∞ a/ ν, U∞ is the free stream velocity of the flow, a is the side of the cylinder and ν is the kinematic viscosity of the fluid). The pseudoplastic fluid range has been chosen from close to the Newtonian fluid (n = 0.8) to very high pseudoplasticity (n = 0.1). The flow domain is constituted using Gambit 2.2.30 and this software is also used to generate mesh and to impose the boundary conditions. For all places, the domain size is considered as 36a × 16a with 280 ×192 grid point in the streamwise and flow normal directions respectively. The domain and the grid points are selected after a thorough grid independent study at n = 1.0. Fine and equal grid spacing is used close to the square cylinder to capture the upper and lower shear layers shed from the cylinder. Away from the cylinder the grid is unequal in size and stretched out in all direction. Velocity inlet (u = U∞), pressure outlet (Neumann condition), symmetry (free-slip boundary condition du/dy = 0, v = 0) at upper and lower domain boundary conditions are used for this simulation. Wall boundary (u = v = 0) is considered on the square cylinder surface. Fully conservative 2-D unsteady Navier-Stokes equations are discretized and then solved by Ansys Fluent 14.5 to understand the flow nature. SIMPLE algorithm written in finite volume method is selected for this purpose which is the default solver in scripted in Fluent. The result obtained for Newtonian fluid flow agrees well with previous work supporting Fluent’s usefulness in academic research. A minute analysis of instantaneous and time averaged flow field is obtained both for Newtonian and pseudoplastic fluid flow. It has been observed that drag coefficient increases continuously with the reduced value of n. Also, the vortex shedding phenomenon changes at n = 0.4 due to flow instability. These are some of the remarkable findings for laminar periodic vortex shedding regime in pseudoplastic flow environment.Keywords: Ansys Fluent, CFD, periodic vortex shedding, pseudoplastic fluid flow
Procedia PDF Downloads 2031744 Study the Impact of Welding Poles Type on the Tensile Strength Steel of Low Alloys and High Resistance
Authors: Abdulmagid A. Khattabi, Abdul Fatah M. Emhamed
Abstract:
The steel alloy Introduced after becoming carbon-steel does not meet the requirements of engineering industry; and it cannot be obtained tensile strength from carbon-steel higher than (700MPa), the low alloy steel enters in a lot of heavy engineering equipment parts, molds, agricultural equipment and other industry. In addition, that may be exposed to in-service failure, which may require returned to work, to do the repairs or maintenance by one of the welding methods available. The ability of steel weld determined through palpation of the cracks, which can reduce by many ways. These ways are often expensive and difficult to implement, perhaps the control to choose the type of electrode welding user is one of the easiest and least expensive applications. It has been welding the steel low alloys high resistance by manual metal arc (MMA), and by using a set of welding electrodes which varying in chemical composition and in their prices as well and test their effect on tensile strength. Results showed that using the poles of welding, which have a high proportion of iron powder and low hydrogen. The Tensile resistance is (484MPa) and the weld joint efficiency was (56.9%), but when (OK 47.04) electrode was used the tensile strength increased to (720MPa) and the weld joint efficiency to (84.7%). Using the cheapest electrode (OK 45.00) the weld joint efficiency did not exceed (24.2%), but when using the most expensive electrode (OK 91.28) the weld joint efficiency is (38.1%).Keywords: steel low alloys high resistance, electrodes welding, tensile test
Procedia PDF Downloads 3181743 High Temperature Behavior of a 75Cr3C2–25NiCr Coated T91 Boiler Steel in an Actual Industrial Environment of a Coal Fired Boiler
Authors: Buta Singh Sidhu, Sukhpal Singh Chatha, Hazoor Singh Sidhu
Abstract:
In the present investigation, 75Cr3C2-25NiCr coating was deposited on T91 boiler tube steel substrate by high velocity oxy-fuel (HVOF) process to enhance high-temperature corrosion resistance. High-temperature performance of bare, as well as HVOF-coated steel specimens was evaluated for 1500 h under cyclic conditions in the platen superheater zone coal-fired boiler, where the temperature was around 900 °C. Experiments were carried out for 15 cycles each of 100 h duration followed by 1 h cooling at ambient temperature. The performance of the bare and coated specimens was assessed via metal thickness loss corresponding to the corrosion scale formation and the depth of internal corrosion attack. 75Cr3C2-25NiCr coating deposited on T91 steel imparted better hot corrosion resistance than the uncoated steel. Inferior resistance of bare T91 steel is attributed to the formation of pores and loosely bounded oxide scale rich in Fe2O3.Keywords: 75Cr3C2-25NiCr, HVOF process, boiler steel, coal fired boilers
Procedia PDF Downloads 6081742 Steel Bridge Coating Inspection Using Image Processing with Neural Network Approach
Authors: Ahmed Elbeheri, Tarek Zayed
Abstract:
Steel bridges deterioration has been one of the problems in North America for the last years. Steel bridges deterioration mainly attributed to the difficult weather conditions. Steel bridges suffer fatigue cracks and corrosion, which necessitate immediate inspection. Visual inspection is the most common technique for steel bridges inspection, but it depends on the inspector experience, conditions, and work environment. So many Non-destructive Evaluation (NDE) models have been developed use Non-destructive technologies to be more accurate, reliable and non-human dependent. Non-destructive techniques such as The Eddy Current Method, The Radiographic Method (RT), Ultra-Sonic Method (UT), Infra-red thermography and Laser technology have been used. Digital Image processing will be used for Corrosion detection as an Alternative for visual inspection. Different models had used grey-level and colored digital image for processing. However, color image proved to be better as it uses the color of the rust to distinguish it from the different backgrounds. The detection of the rust is an important process as it’s the first warning for the corrosion and a sign of coating erosion. To decide which is the steel element to be repainted and how urgent it is the percentage of rust should be calculated. In this paper, an image processing approach will be developed to detect corrosion and its severity. Two models were developed 1st to detect rust and 2nd to detect rust percentage.Keywords: steel bridge, bridge inspection, steel corrosion, image processing
Procedia PDF Downloads 3061741 Seismic Response of Viscoelastic Dampers for Steel Structures
Authors: Ali Khoshraftar, S. A. Hashemi
Abstract:
This paper is focused on the advantages of Viscoelastic Dampers (VED) to be used as energy-absorbing devices in buildings. The properties of VED are briefly described. The analytical studies of the model structures exhibiting the structural response reduction due to these viscoelastic devices are presented. Computer simulation of the damped response of a multi-storey steel frame structure shows significant reduction in floor displacement levels.Keywords: dampers, seismic evaluation, steel frames, viscoelastic
Procedia PDF Downloads 4831740 Modeling of Combustion Process in the Piston Aircraft Engine Using a MCFM-3Z Model
Authors: Marcin Szlachetka, Konrad Pietrykowski
Abstract:
Modeling of a combustion process in a 9-cylinder aircraft engine is presented. The simulations of the combustion process in the IC engine have provided the information on the spatial and time distributions of selected quantities within the combustion chamber of the engine. The numerical analysis results have been compared with the results of indication process of the engine on the test stand. Modeling of combustion process an auto-ignited IC engine in the AVL Fire was carried out within the study. For the calculations, a ECFM-3Z model was used. Verification of simulation results was carried out by comparison of the pressure in the cylinder. The courses of indicated pressure, obtained from the simulations and during the engine tests mounted on a test stand were compared. The engine was braked by the propeller, which results in an adequate external power characteristics. The test object is a modified ASz-62IR engine with the injection system. The engine was running at take-off power. To check the optimum ignition timing regarding power, calculations, tests were performed for 7 different moments of ignition. The analyses of temperature distribution in the cylinder depending on the moments of ignition were carried out. Additional the course of pressure in the cylinder at different angles of ignition delays of the second spark plug were examined. The swirling of the mixture in the combustion chamber was also analysed. It has been shown that the largest vortexes occur in the middle of the chamber, and gets smaller, closer to the combustion chamber walls. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.Keywords: CFD, combustion, internal combustion engine, aircraft engine
Procedia PDF Downloads 3721739 Gas Metal Arc Welding of Clad Plates API 5L X-60/316L Applying External Magnetic Fields during Welding
Authors: Blanca A. Pichardo, Victor H. Lopez, Melchor Salazar, Rafael Garcia, Alberto Ruiz
Abstract:
Clad pipes in comparison to plain carbon steel pipes offer the oil and gas industry high corrosion resistance, reduction in economic losses due to pipeline failures and maintenance, lower labor risk, prevent pollution and environmental damage due to hydrocarbons spills caused by deteriorated pipelines. In this context, it is paramount to establish reliable welding procedures to join bimetallic plates or pipes. Thus, the aim of this work is to study the microstructure and mechanical behavior of clad plates welded by the gas metal arc welding (GMAW) process. A clad of 316L stainless steel was deposited onto API 5L X-60 plates by overlay welding with the GMAW process. Welding parameters were, 22.5 V, 271 A, heat input 1,25 kJ/mm, shielding gas 98% Ar + 2% O₂, reverse polarity, torch displacement speed 3.6 mm/s, feed rate 120 mm/s, electrode diameter 1.2 mm and application of an electromagnetic field of 3.5 mT. The overlay welds were subjected to macro-structural and microstructural characterization. After manufacturing the clad plates, a single V groove joint was machined with a 60° bevel and 1 mm root face. GMA welding of the bimetallic plates was performed in four passes with ER316L-Si filler for the root pass and an ER70s-6 electrode for the subsequent welding passes. For joining the clad plates, an electromagnetic field was applied with 2 purposes; to improve the microstructural characteristics and to assist the stability of the electric arc during welding in order to avoid magnetic arc blow. The welds were macro and microstructurally characterized and the mechanical properties were also evaluated. Vickers microhardness (100 g load for 10 s) measurements were made across the welded joints at three levels. The first profile, at the 316L stainless steel cladding, was quite even with a value of approximately 230 HV. The second microhardness profile showed high values in the weld metal, ~400 HV, this was due to the formation of a martensitic microstructure by dilution of the first welding pass with the second. The third profile crossed the third and fourth welding passes and an average value of 240 HV was measured. In the tensile tests, yield strength was between 400 to 450 MPa with a tensile strength of ~512 MPa. In the Charpy impact tests, the results were 86 and 96 J for specimens with the notch in the face and in the root of the weld bead, respectively. The results of the mechanical properties were in the range of the API 5L X-60 base material. The overlap welding process used for cladding is not suitable for large components, however, it guarantees a metallurgical bond, unlike the most commonly used processes such as thermal expansion. For welding bimetallic plates, control of the temperature gradients is key to avoid distortions. Besides, the dissimilar nature of the bimetallic plates gives rise to the formation of a martensitic microstructure during welding.Keywords: clad pipe, dissimilar welding, gas metal arc welding, magnetic fields
Procedia PDF Downloads 1521738 Evaluation of Corrosion by Impedance Spectroscopy of Embedded Steel in an Alternative Concrete Exposed a Chloride Ion
Authors: E. Ruíz, W. Aperador
Abstract:
In this article evaluates the protective effect of the concrete alternative obtained from the fly ash and iron and steel slag mixed in binary form and were placed on structural steel ASTM A 706. The study was conducted comparatively with specimens exposed to natural conditions free of chloride ion. The effect of chloride ion on the specimens was generated of form accelerated under controlled conditions (3.5% NaCl and 25 ° C temperature). The Impedance data were acquired over a range of 1 mHz to 100 kHz. At frequencies high is found the response of the interface means of the exposure-concrete and to frequency low the response of the interface corresponding to concrete-steel.Keywords: alternative concrete, corrosion, alkaline activation, impedance spectroscopy
Procedia PDF Downloads 3591737 Shear Behavior of Steel-Fiber-Reinforced Precast/Prestressed Concrete Hollow Core Slabs
Authors: Thi Nguyet Hang Nguyen, Kang Hai Tan
Abstract:
Precast/prestressed concrete hollow core (PCHC) slabs, especially ones with depth more than 300 mm, are susceptible to web-shear failure. The reasons lie on the fact that the production process of PCHC slabs, i.e., the extrusion method (the most common method to cast PCHC slabs nowadays), does not allow them to contain any shear reinforcement. Moreover, due to the presence of the longitudinal voids, cross sections of PCHC slabs are reduced. Therefore, the shear capacity of the slabs depends solely on the tensile strength of concrete which is relatively low. Given that shear is a major concern in using hollow-core slabs, this paper investigates the possibility of adopting steel fibers in PCHC slabs produced by the extrusion method to enhance the shear capacity of the slabs. Three full-scale PCHC slabs with and without hooked-steel fibers were cast and tested until failure. Three different volumetric fiber contents of 0, 0.51 and 0.89% were investigated. The test results showed that there were substantial increases in shear capacity and ductility with the use of hooked-steel fibers. Ultimate shear strength increased with fiber content. In addition, while the specimen without steel fibers and the one with the steel-fiber volume fraction of 0.51% failed in web-shear mode, the specimen with the higher fiber content (0.89%) collapsed in flexural-shear mode. However, as the hooked-steel fibers with the fiber content of 0.89% were used, difficulties in concrete consolidation were observed while concrete was being cast. This could lead to a lower ultimate shear capacity due to a poorer bond between the concrete and the steel fibers.Keywords: hollow-core slabs, shear strength, steel fibers, web-shear failure
Procedia PDF Downloads 1711736 Nonlinear Finite Element Analysis of Composite Cantilever Beam with External Prestressing
Authors: R. I. Liban, N. Tayşi
Abstract:
This paper deals with a nonlinear finite element analysis to examine the behavior up to failure of cantilever composite steel-concrete beams which are prestressed externally. 'Pre-' means stressing the high strength external tendons in the steel beam section before the concrete slab is added. The composite beam contains a concrete slab which is connected together with steel I-beam by means of perfect shear connectors between the concrete slab and the steel beam which is subjected to static loading. A finite element analysis will be done to study the effects of external prestressed tendons on the composite steel-concrete beams by locating the tendons in different locations (profiles). ANSYS version 12.1 computer program is being used to analyze the represented three-dimensional model of the cantilever composite beam. This model gives all these outputs, mainly load-displacement behavior of the cantilever end and in the middle span of the simple support part.Keywords: composite steel-concrete beams, external prestressing, finite element analysis, ANSYS
Procedia PDF Downloads 3151735 Zamzam Water as Corrosion Inhibitor for Steel Rebar in Rainwater and Simulated Acid Rain
Authors: Ahmed A. Elshami, Stephanie Bonnet, Abdelhafid Khelidj
Abstract:
Corrosion inhibitors are widely used in concrete industry to reduce the corrosion rate of steel rebar which is present in contact with aggressive environments. The present work aims to using Zamzam water from well located within the Masjid al-Haram in Mecca, Saudi Arabia 20 m (66 ft) east of the Kaaba, the holiest place in Islam as corrosion inhibitor for steel in rain water and simulated acid rain. The effect of Zamzam water was investigated by electrochemical impedance spectroscopy (EIS) and Potentiodynamic polarization techniques in Department of Civil Engineering - IUT Saint-Nazaire, Nantes University, France. Zamzam water is considered to be one of the most important steel corrosion inhibitor which is frequently used in different industrial applications. Results showed that zamzam water gave a very good inhibition for steel corrosion in rain water and simulated acid rain.Keywords: Zamzam water, corrosion inhibitor, rain water, simulated acid rain
Procedia PDF Downloads 3941734 High Temperature Oxidation Behavior of Aluminized Steel by Arc Spray and Cementation Techniques
Authors: Minoo Tavakoli, Alireza Kiani Rashid, Abbas Afrasiabi
Abstract:
An aluminum coating deposited on mild steel substrate by electric arc spray and diffused to the base steel material by diffusion treatment at 800 and 900°C for 1 and 3 hours in a static air. Alloy layers formed by diffusion at both temperatures were investigated, and their features were compared with those of pack cementation aluminized steel. High-temperature oxidation tests were carried out in air at 600 °C for 145 hours. Results indicated that the aluminide coatings obtained from this process have significantly improved the high-temperature oxidation resistance in both methods due to the Al2O3 scale formation. Furthermore, it showed that the isothermal oxidation resistance of arc spray technique is better than pack cementation method. This can be attributed to voids that formed at the intermetallic layer /Al layer interface which is increased in the pack cementation method.Keywords: electric arc spray, pack cementation, oxidation resistance, aluminized steel
Procedia PDF Downloads 468