Search results for: soil liquefaction
2752 Investigating the Contribution of Road Construction on Soil Erosion, a Case Study of Engcobo Local Municipality, Chris Hani District, South Africa
Authors: Yamkela Zitwana
Abstract:
Soil erosion along the roads and/or road riparian areas has become a norm in the Eastern Cape. Soil erosion refers to the detachment and transportation of soil from one area (onsite) to another (offsite). This displacement or removal of soil can be caused by water, air and sometimes gravity. This will focus on accelerated soil erosion which is the result of human interference with the environment. Engcobo local municipality falls within the Eastern Cape Province in the eastern side of CHRIS HANI District municipality. The focus road is R61 protruding from the Engcobo town outskirts along the Nyanga SSS on the way to Umtata although it will cover few Kilometers away from Engcobo. This research aims at looking at the contribution made by road construction to soil erosion. Steps to achieve the result will involve revisiting the phases of road construction through unstructured interviews, identifying the types of soil erosion evident in the area by doing a checklist, checking the material, utensils and equipment used for road construction and the contribution of road construction through stratified random sampling checking the soil color and texture. This research will use a pragmatic approach which combines related methods and consider the flaws of each method so as to ensure validity, precision and accuracy. Both qualitative and quantitative methods will be used. Statistical methods and GIS analysis will be used to analyze the collected data.Keywords: soil erosion, road riparian, accelerated soil erosion, road construction, sampling, universal soil loss model, GIS analysis, focus groups, qualitative, quantitative method, research, checklist questionnaires, unstructured interviews, pragmatic approach
Procedia PDF Downloads 3932751 Effect of Soil and Material Characteristics on Safety of Concrete Structures Including SSI
Authors: A. E. Kurtoglu, A. Cevik, M. Bilgehan
Abstract:
In this parametric study, effect of soil and material characteristics on safety of structures is investigated. The soil parameters such as shear strength, unit weight; geometrical parameters of the structure such as foundation depth and height of building; and material properties such as weight of concrete were selected as input parameters. A real accelerogram of 1989 El-Centro earthquake recorded by the USGS in Imperial Valley is used for this study. It is contained in the standard Strong Motion CD-ROM (SMC) format, which can be recognized and interpreted by FEM software used. The soil-structure interaction model subjected to above-mentioned earthquake was analyzed for 729 cases. Effect of input parameters on safety factor of the soil-structure system was then investigated and the interaction between the input and output parameters is presented in graphical form. Findings showed that all input parameters have significant effects on factor of safety results.Keywords: factor of safety, finite element method, safety of structures, soil structure interaction
Procedia PDF Downloads 5062750 Soil Penetration Resistance and Water Content Spatial Distribution Following Different Tillage and Crop Rotation in a Chinese Mollisol
Authors: Xuewen Chen, Aizhen Liang, Xiaoping Zhang
Abstract:
To better understand the spatial variability of soil penetration resistance (SPR) and soil water content (SWC) induced by different tillage and crop rotation in a Mollisol of Northeast China, the soil was sampled from the tillage experiment which was established in Dehui County, Jilin Province, Northeast China, in 2001. Effect of no-tillage (NT), moldboard plow (MP) and ridge tillage (RT) under corn-soybean rotation (C-S) and continuous corn (C-C) system on SPR and SWC were compared with horizontal and vertical variations. The results showed that SPR and SWC spatially varied across the ridge. SPR in the rows was higher than inter-rows, especially in topsoil (2.5-15 cm) of NT and RT plots. SPR of MP changed in the trend with the curve-shaped ridge. In contrast to MP, NT, and RT resulted in average increment of 166.3% and 152.3% at a depth of 2.5-17.5 cm in the row positions, respectively. The mean SPR in topsoil in the rows means soil compaction is not the main factor limiting plant growth and crop yield. SPR in the row of RT soil was lower than NT at a depth of 2.5-12.5 cm. The SWC in NT and RT soil was highest in the inter-rows and least in the rows or shoulders, respectively. However, the lateral variation trend of MP was opposite to NT. From the profile view of SWC, MP was greater than NT and RT in 0-20 cm of the rows. SWC in RT soil was higher than NT in the row of 0-20 cm. Crop rotation did not have a marked impact on SPR and SWC. In addition to the tillage practices, the factor which affects SPR greatly was depth but not position. These two factors have significant effects on SWC. These results indicated that the adoption of RT was a more suitable conservation tillage practices than NT in the black soil of Northeast China.Keywords: row, soil penetration resistance, spatial variability, tillage practice
Procedia PDF Downloads 1332749 Using Complete Soil Particle Size Distributions for More Precise Predictions of Soil Physical and Hydraulic Properties
Authors: Habib Khodaverdiloo, Fatemeh Afrasiabi, Farrokh Asadzadeh, Martinus Th. Van Genuchten
Abstract:
The soil particle-size distribution (PSD) is known to affect a broad range of soil physical, mechanical and hydraulic properties. Complete descriptions of a PSD curve should provide more information about these properties as opposed to having only information about soil textural class or the soil sand, silt and clay (SSC) fractions. We compared the accuracy of 19 different models of the cumulative PSD in terms of fitting observed data from a large number of Iranian soils. Parameters of the six most promising models were correlated with measured values of the field saturated hydraulic conductivity (Kfs), the mean weight diameter of soil aggregates (MWD), bulk density (ρb), and porosity (∅). These same soil properties were correlated also with conventional PSD parameters (SSC fractions), selected geometric PSD parameters (notably the mean diameter dg and its standard deviation σg), and several other PSD parameters (D50 and D60). The objective was to find the best predictions of several soil physical quality indices and the soil hydraulic properties. Neither SSC nor dg, σg, D50 and D60 were found to have a significant correlation with both Kfs or logKfs, However, the parameters of several cumulative PSD models showed statistically significant correlation with Kfs and/or logKfs (|r| = 0.42 to 0.65; p ≤ 0.05). The correlation between MWD and the model parameters was generally also higher than either with SSC fraction and dg, or with D50 and D60. Porosity (∅) and the bulk density (ρb) also showed significant correlation with several PSD model parameters, with ρb additionally correlating significantly with various geometric (dg), mechanical (D50 and D60), and agronomic (clay and sand) representations of the PSD. The fitted parameters of selected PSD models furthermore showed statistically significant correlations with Kfs,, MWD and soil porosity, which may be viewed as soil quality indices. Results of this study are promising for developing more accurate pedotransfer functions.Keywords: particle size distribution, soil texture, hydraulic conductivity, pedotransfer functions
Procedia PDF Downloads 2792748 Sustainable Development: Soil Conservation with Cultivation of Cassava (Manihot esculenta) Based on Local Wisdom
Authors: Adiyasa Muda Zannatan
Abstract:
Cassava (Manihot esculenta) is a plant originating from Brazil. Cassava plants categorized as sixth major food in the world after wheat, rice, corn and potatoes. It has been cultivated on hilly land for 97 years since 1918 at Cireundeu village, West Java Province, Indonesia. Cireundeu traditional village located in the mountain valleys and has a hilly slope up to 38%. Cassava is used as the primary food in that area. Uniquely, Cassava productivity is stable and continues until now. The assessment of soil quality is taking soil samples in the area and analysis the soil in laboratory. The result of analysis that soil in the area is not degraded because it has optimum nutrient, organic matter, and high value of cation exchange capacity in soil even though it has been cultivated in scarp with high slope. Commonly, soil on scarp with high slope has a high rate erosion and poor nutrient. It proved that cassava is able to be an alternative technique of soil conservation in the areas that have a high slope. Beside that, cassava can be utilized as a plant food, feed, fertilizer, and energy. With the utilization of Cassava, the target of Sustainable Development Goals (SDG's) will be achieved with consideration three important components include economy, social, and environment. In economy, Cassava can to be the commercial product like processed food, feed, and alternative energy. In social, it will increase social welfare and will be hereditary. And for environment, Cassava prevents soil from erosion and keeps soil quality.Keywords: Cassava, local wisdom, conservation, soil quality, sustainable
Procedia PDF Downloads 2972747 Neutral Sugars in Two-Step Hydrolysis of Laurel-Leaved and Cryptomeria japonica Forests
Authors: Ayuko Itsuki, Sachiyo Aburatani
Abstract:
Soil neutral sugar contents in Kasuga-yama Hill Primeval Forest, which is a World Heritage Site in Nara, Japan consisting of lowland laurel-leaved forest where natural conditions have been preserved for more than 1,000 years, were examined using the two-step hydrolysis to clarify the source of the neutral sugar and relations with the neutral sugar constituted the soil organic matter and the microbial biomass. Samples were selected from the soil (L, F, H and A horizons) surrounding laurel-leaved (BB-1) and Carpinus japonica (BB-2 and PW) trees for analysis. The neutral sugars were one factor of increasing the fungal and bacterial biomass in the laurel-leaved forest soil (BB-1). The more neutral sugar contents in the Cryptomeria japonica forest soil (PW) contributed to the growth of the bacteria and fungi than those of in the Cryptomeria japonica forest soil (BB-2). The neutral sugars had higher correlation with the numbers of bacteria and fungi counted by the dilution plate count method than by the direct microscopic count method. The numbers of fungi had higher correlation with those of bacteria by the dilution plate method.Keywords: forest soil, neutral sugars, soil organic matter, two-step hydrolysis
Procedia PDF Downloads 2712746 Acid Soil Amelioration Using Coal Bio-Briquette Ash and Waste Concrete in China
Abstract:
The decrease in agricultural production due to soil deterioration has been an urgent task. Soil acidification is a potentially serious land degradation issue and it will have a major impact on agricultural productivity and sustainable farming systems. In China, acid soil is mainly distributed in the southern part, the decrease in agricultural production and heavy metal contamination are serious problems. In addition, not only environmental and health problems due to the exhaust gas such as mainly sulfur dioxide (SO₂) but also the generation of a huge amount of construction and demolition wastes with the accelerating urbanization has emerged as a social problem in China. Therefore, the need for the recycling and reuse of both desulfurization waste and waste concrete is very urgent and necessary. So we have investigated the effectiveness as acid soil amendments of both coal bio-briquette ash and waste concrete. In this paper, acid soil (AS1) in Nanjing (pH=6.0, EC=1.6dSm-1) and acid soil (AS2) in Guangzhou (pH=4.1, EC=0.2dSm-1) were investigated in soil amelioration test. Soil amendments were three coal bio-briquette ashes (BBA1, BBA2 and BBA3), the waste cement fine powders (CFP) ( < 200µm (particle diameter)), waste concrete particles (WCP) ( < 4.75mm ( < 0.6mm, 0.6-1.0mm, 1.0-2.0mm, 2.0-4.75mm)), and six mixtures with two coal bio-briquette ashes (BBA2 and BBA3), CFP, WCP( < 0.6mm) and WCP(2.0-4.75mm). In acid soil amelioration test, the three BBAs, CFP and various WCPs based on exchangeable calcium concentration were added to two acid soils. The application rates were from 0 wt% to 3.5 wt% in AS1 test and from 0 wt% to 6.0 wt% in AS2 test, respectively. Soil chemical properties (pH, EC, exchangeable and soluble ions (Na, Ca, Mg, K)) before and after mixing with soil amendments were measured. In addition, Al toxicity and the balance of salts (CaO, K₂O, MgO) in soil after amelioration was evaluated. The order of pH and exchangeable Ca concentration that is effective for acid soil amelioration was WCP(0.6mm) > CFP > WCP(2.0-4.25mm) > BB1 > BB2 > BB3. In all AS 1 and AS 2 amelioration tests using three BBAs, the pH and EC increased slightly with the increase of application rate and reached to the appropriate value range of both pH and EC in BBA1 only. Because BBA1 was higher value in pH and exchangeable Ca. After that, soil pH and EC with the increase in the application rate of BBA2, BBA3 and by using CFP, WC( < 0.6mm), WC(2.0-4.75mm) as soil amendment reached to each appropriate value range, respectively. In addition, the mixture amendments with BBA2, BBA3 CFP, WC( < 0.6mm), and WC(2.0-4.75mm) could ameliorate at a smaller amount of application rate in case of BBA only. And the exchangeable Al concentration decreased drastically with the increase in pH due to soil amelioration and was under the standard value. Lastly, the heavy metal (Cd, As, Se, Ni, Cr, Pb, Mo, B, Cu, Zn) contents in new soil amendments were under control standard values for agricultural use in China. Thus we could propose a new acid soil amelioration method using coal bio-briquette ash and waste concrete in China.Keywords: acid soil, coal bio-briquette ash, soil amelioration, waste concrete
Procedia PDF Downloads 1812745 Electrical Conductivity as Pedotransfer Function in the Determination of Sodium Adsorption Ratio in Soil System in Managing Micro Level Farming Practices in India: An Effective Low Cost Technology
Authors: Usha Loganathan, Haresh Pandya
Abstract:
Analysis and correlation of soil properties represent an important outset for precision agriculture and is currently promoted and implemented in the developed world. Establishing relationships among indices of soil salinity has always been a challenging task in salt affected soils necessitating unique approaches for their reclamation and management to sustain long term productivity of Soil. Soil salinity indices like Electrical Conductivity (EC) and Sodium Adsorption Ratio (SAR) are normally used to characterize soils as either sodic or saline sodic. Currently, Determination of Soil sodium adsorption ratio is a more accepted and reliable measure of soil salinity. However, it involves arduous and protracted laboratory investigations which demand evolving new and economical methods to determine SAR based on simple soil salinity index. A linear regression model to predict soil SAR from soil electrical conductivity has been developed and presented in this paper as per which, soil SAR could very well be worked out as a pedotransfer function of soil EC. The present study was carried out in Orathupalayam (11.09-11.11 N latitude and 74.54-77.59 E longitude) in the vicinity of Orathupalayam Reservoir of Noyyal River Basin, India, over a period of 3 consecutive years from September 2013 through February 2016 in different locations chosen randomly through different seasons. The research findings are discussed in the light of micro level farming practices in India and recommend determination of SAR as a low cost technology aiding in the effective management of salt affected agricultural land.Keywords: electrical conductivity, orathupalayam, pedotranfer function, sodium adsorption ratio
Procedia PDF Downloads 2542744 Soil Degradati̇on Mapping Using Geographic Information System, Remote Sensing and Laboratory Analysis in the Oum Er Rbia High Basin, Middle Atlas, Morocco
Authors: Aafaf El Jazouli, Ahmed Barakat, Rida Khellouk
Abstract:
Mapping of soil degradation is derived from field observations, laboratory measurements, and remote sensing data, integrated quantitative methods to map the spatial characteristics of soil properties at different spatial and temporal scales to provide up-to-date information on the field. Since soil salinity, texture and organic matter play a vital role in assessing topsoil characteristics and soil quality, remote sensing can be considered an effective method for studying these properties. The main objective of this research is to asses soil degradation by combining remote sensing data and laboratory analysis. In order to achieve this goal, the required study of soil samples was taken at 50 locations in the upper basin of Oum Er Rbia in the Middle Atlas in Morocco. These samples were dried, sieved to 2 mm and analyzed in the laboratory. Landsat 8 OLI imagery was analyzed using physical or empirical methods to derive soil properties. In addition, remote sensing can serve as a supporting data source. Deterministic potential (Spline and Inverse Distance weighting) and probabilistic interpolation methods (ordinary kriging and universal kriging) were used to produce maps of each grain size class and soil properties using GIS software. As a result, a correlation was found between soil texture and soil organic matter content. This approach developed in ongoing research will improve the prospects for the use of remote sensing data for mapping soil degradation in arid and semi-arid environments.Keywords: Soil degradation, GIS, interpolation methods (spline, IDW, kriging), Landsat 8 OLI, Oum Er Rbia high basin
Procedia PDF Downloads 1652743 Determination of Carbofuran Residue in Brinjal (Solanum melongena L.) and Soil of Brinjal Field
Authors: R. Islam, M. A. Haque, K. H. Kabir
Abstract:
A supervised trail was set with brinjal at research field, Entomology Division, Bangladesh Agricultural Research Institute, Joydebpur, Gazipur to determine the residue of Carbofuran in soil and fruit samples at different days after application (DAA) of Furadan 5 G @ 2 kg AI/ ha. Field collected samples were analyzed by GCMS-EI. Results of the experiment indicated the presence of Carbofuran residue up to 60 DAA in soil samples and 25 DAA in brinjal fruit samples. In case of soil samples, the detected residues were 7.04, 2.78, 0.79, 0.43, 0.12, 0.06 and 0.05 ppm at 0, 2, 5, 10, 20, 30 and 60 DAA respectively. On the other hand, in brinjal fruit samples Carbofuran residues were 0.005 ppm, 0.095 ppm, 0.084 ppm, 0.065 ppm, 0.063 ppm, 0.056 ppm, 0.050 ppm, 0.030 ppm and 0.016 ppm at 0, 2, 4, 6, 8, 10, 12, 15 and 25-DAA, respectively. None of this amount was above the recommended MRL (0.1 mg / kg crop) of Carborufan for agricultural crops.Keywords: brinjal, carbofuran, MRL, residue
Procedia PDF Downloads 5112742 Central Composite Design for the Optimization of Fenton Process Parameters in Treatment of Hydrocarbon Contaminated Soil using Nanoscale Zero-Valent Iron
Authors: Ali Gharaee, Mohammad Reza Khosravi Nikou, Bagher Anvaripour, Ali Asghar Mahjoobi
Abstract:
Soil contamination by petroleum hydrocarbon (PHC) is a major concern facing the oil and gas industry. Particularly, condensate liquids have been found to contaminate soil at gas production sites. The remediation of PHCs is a difficult challenge due to the complex interaction between contaminant and soil. A study has been conducted to enhance degradation of PHCs by Fenton oxidation and using Nanoscale Zero-Valent Iron as catalyst. The various operating conditions such as initial H2O2 concentration, nZVI dosage, reaction time, and initial contamination dose were investigated. Central composite design was employed to optimize and analyze the effect of operational parameters on the PHC removal efficiency. It was found that optimal molar ratio of H2O2/Fe0 was 58 with maximum TPH removal of 84% and 3hr reaction time and initial contaminant concentration was 15g oil /kg soil. Based on the results, combination of Nanoscale ZVI and Fenton has proved to be a promising remedy for contaminated soil.Keywords: oil contaminated Soil, fenton oxidation, zero valent iron nano-particles
Procedia PDF Downloads 2902741 The Effect of Geogrid Reinforcement Pre-Stressing on the Performance of Sand Bed Supporting a Strip Foundation
Authors: Ahmed M. Eltohamy
Abstract:
In this paper, an experimental and numerical study was adopted to investigate the effect geogrid soil reinforcement pre-stressing on the pressure settlement relation of sand bed supporting a strip foundation. The studied parameters include foundation depth and pre-stress ratio for the cases of one and two pre-stressed reinforcement layers. The study reflected that pre-stressing of soil reinforcement resulted in a marked enhancement in reinforced bed soil stiffness compared to the reinforced soil without pre-stress. The best benefit of pre-stressing reinforcement was obtained as the overburden pressure and pre-straining ratio increase. Pre-stressing of double reinforcement topmost layers results in further enhancement of stress strain relation of bed soil.Keywords: geogrid reinforcement, prestress, strip footing, bearing capacity
Procedia PDF Downloads 3072740 Numerical Static and Seismic Evaluation of Pile Group Settlement: A Case Study
Authors: Seyed Abolhassan Naeini, Hamed Yekehdehghan
Abstract:
Shallow foundations cannot be used when the bedding soil is soft. A suitable method for constructing foundations on soft soil is to employ pile groups to transfer the load to the bottom layers. The present research used results from tests carried out in northern Iran (Langarud) and the FLAC3D software to model a pile group for investigating the effects of various parameters on pile cap settlement under static and seismic conditions. According to the results, changes in the strength parameters of the soil, groundwater level, and the length of and distance between the piles affect settlement differently.Keywords: FLACD 3D software, pile group, settlement, soil
Procedia PDF Downloads 1282739 Soil Bearing Capacity of Shallow Foundation and Consolidation Settlement at Around the Prospective Area of Sei Gong Dam Batam
Authors: Andri Hidayat, Zufialdi Zakaria, Raden Irvan Sophian
Abstract:
Batam city within next five years are expected to experience water crisis. Sei Gong dam which is located in the Sijantung village, Galang District, Batam City, Riau Islands Province is one of 13 dams that will be built to solve the problems of raw water crisis in the Batam city. The purpose of this study are to determine the condition of engineering geology around Sei Gong Dam area, knowing the value of the soil bearing capacity and recommended pile foundation, and knowing the characteristics of the soil consolidation as one of the factors that affect the incidence of soil subsidence. Based on calculations for shallow foundation in general - soil shear condition and local - soil condition indicates that the highest value in ultimate soil bearing capacity (qu) for each depth was in the square foundations at two meters depth. The zonations of shallow foundation of the research area are divided into five zones, they are bearing capacity zone <10 ton/m2, bearing capacity zone 10-15 ton/m2, bearing capacity zone 15-20 ton/m2, bearing capacity zone 20-25 ton/m2, and bearing capacity zone >25 ton/m2. Based on the parameters of soil engineering analysis, Sei Gong Dam areas at the middle part has a higher value for land subsidence.Keywords: ultimate bearing capacity, type of foundation, consolidation, land subsidence, Batam
Procedia PDF Downloads 3762738 Analytical and Statistical Study of the Parameters of Expansive Soil
Authors: A. Medjnoun, R. Bahar
Abstract:
The disorders caused by the shrinking-swelling phenomenon are prevalent in arid and semi-arid in the presence of swelling clay. This soil has the characteristic of changing state under the effect of water solicitation (wetting and drying). A set of geotechnical parameters is necessary for the characterization of this soil type, such as state parameters, physical and chemical parameters and mechanical parameters. Some of these tests are very long and some are very expensive, hence the use or methods of predictions. The complexity of this phenomenon and the difficulty of its characterization have prompted researchers to use several identification parameters in the prediction of swelling potential. This document is an analytical and statistical study of geotechnical parameters affecting the potential of swelling clays. This work is performing on a database obtained from investigations swelling Algerian soil. The obtained observations have helped us to understand the soil swelling structure and its behavior.Keywords: analysis, estimated model, parameter identification, swelling of clay
Procedia PDF Downloads 4172737 Development of Soil Test Kits to Determine Organic Matter Available Phosphorus and Exchangeable Potassium in Thailand
Authors: Charirat Kusonwiriyawong, Supha Photichan, Wannarut Chutibutr
Abstract:
Soil test kits for rapid analysis of the organic matter, available phosphorus and exchangeable potassium were developed to drive a low-cost field testing kit to farmers. The objective was to provide a decision tool for improving soil fertility. One aspect of soil test kit development was ease of use which is a time requirement for completing organic matter, available phosphorus and exchangeable potassium test in one soil sample. This testing kit required only two extractions and utilized no filtration consuming approximately 15 minutes per sample. Organic matter was principally created by oxidizing carbon KMnO₄ using the standard color chart. In addition, modified single extractant (Mehlich I) was applied to extract available phosphorus and exchangeable potassium. Molybdenum blue method and turbidimetric method using standard color chart were adapted to analyze available phosphorus and exchangeable potassium, respectively. Modified single extractant using in soil test kits were highly significant matching with analytical laboratory results (r=0.959** and 0.945** for available phosphorus and exchangeable potassium, respectively). Linear regressions were statistically calculated between modified single extractant and standard laboratory analysis (y=0.9581x-12.973 for available phosphorus and y=0.5372x+15.283 for exchangeable potassium, respectively). These equations were calibrated to formulate a fertilizer rate recommendation for specific corps. To validate quality, soil test kits were distributed to farmers and extension workers. We found that the accuracy of soil test kits were 71.0%, 63.9% and 65.5% for organic matter, available phosphorus, and exchangeable potassium, respectively. The quantitative survey was also conducted in order to assess their satisfaction with soil test kits. The survey showed that more than 85% of respondents said these testing kits were more convenient, economical and reliable than the other commercial soil test kits. Based upon the finding of this study, soil test kits can be another alternative for providing soil analysis and fertility recommendations when a soil testing laboratory is not available.Keywords: available phosphorus, exchangeable potassium, modified single extractant, organic matter, soil test kits
Procedia PDF Downloads 1452736 Evaluation of Erodibility Status of Soils in Some Areas of Imo and Abia States of Nigeria
Authors: Andy Obinna Ibeje
Abstract:
In this study, the erodibility indices and some soil properties of some cassava farms in selected areas of Abia and Imo States were investigated. This study involves taking measurements of some soil parameters such as permeability, soil texture and particle size analysis from which the erodibility indices were compared. Results showed that soils of the areas are very sandy. The results showed that Isiukwuato with index of 72 has the highest erodibility index. The results also showed that Arondizuogu with index of 34 has the least erodibility index. The results revealed that soil erodibility (k) values varied from 34 to 72. Nkporo has the highest sand content; Inyishie has the least silt content. The result indicates that there were respectively strong inverse relationship between clay and silt contents and erodibility index. On the other hand, sand, organic matter and moisture contents as well as soil permeability has significantly high positive correlation with soil erodibility and it can be concluded that particle size distribution is a major finger print on the erodibility index of soil in the study area. It is recommended that safe cultural practices like crop rotation, matching and adoption of organic farming techniques be incorporated into farming communities of Abia and Imo States in order to stem the advances of erosion in the study area.Keywords: erodibility, indices, soil, sand
Procedia PDF Downloads 3482735 Estimation of Elastic Modulus of Soil Surrounding Buried Pipeline Using Multi-Response Surface Methodology
Authors: Won Mog Choi, Seong Kyeong Hong, Seok Young Jeong
Abstract:
The stress on the buried pipeline under pavement is significantly affected by vehicle loads and elastic modulus of the soil surrounding the pipeline. The correct elastic modulus of soil has to be applied to the finite element model to investigate the effect of the vehicle loads on the buried pipeline using finite element analysis. The purpose of this study is to establish the approach to calculating the correct elastic modulus of soil using the optimization process. The optimal elastic modulus of soil, which minimizes the difference between the strain measured from vehicle driving test at the velocity of 35km/h and the strain calculated from finite element analyses, was calculated through the optimization process using multi-response surface methodology. Three elastic moduli of soil (road layer, original soil, dense sand) surrounding the pipeline were defined as the variables for the optimization. Further analyses with the optimal elastic modulus at the velocities of 4.27km/h, 15.47km/h, 24.18km/h were performed and compared to the test results to verify the applicability of multi-response surface methodology. The results indicated that the strain of the buried pipeline was mostly affected by the elastic modulus of original soil, followed by the dense sand and the load layer, as well as the results of further analyses with optimal elastic modulus of soil show good agreement with the test.Keywords: pipeline, optimization, elastic modulus of soil, response surface methodology
Procedia PDF Downloads 3862734 Electrokinetic Remediation of Uranium Contaminated Soil by Ion Exchange Membranes
Authors: Z. H. Shi, T. J. Dou, H. Zhang, H. X. Huang, N. Zeng
Abstract:
The contamination of significant quantities of soils and sediments with uranium and other actinide elements as a result of nuclear activity poses many environmental risks. The electrokinetic process is one of the most promising remediation techniques for sludge, sediment, and saturated or unsaturated soils contaminated with heavy metals and radionuclides. However, secondary waste is a major concern for soil contaminated with nuclides. To minimize the generation of secondary wastes, this study used the anion and cation exchange membranes to improve the performance of the experimental apparatus. Remediation experiments of uranium-contaminated soil were performed with different agents. The results show that using acetic acid and EDTA as chelating agents clearly enhances the migration ability of the uranium. The ion exchange membranes (IEMs) used in the experiments not only reduce secondary wastes, but also, keep the soil pH stable.Keywords: electrokinetic remediation, ion exchange membranes, soil, uranium
Procedia PDF Downloads 3522733 Long-term Monitoring on Rangelands in Southwest Algeria and Impact of Overgrazing and Droughts on Biodiversity and Soil: Case of the Rogassa Steppe (Wilaya of El Bayadh)
Authors: Slimani Halima
Abstract:
One of the main problems of degradation of arid steppe rangelands in the southern Mediterranean is the loss of plant diversity and changes in soil properties. During the last decades, these rangelands faced two main driving forces: climate through more or less lasting and recurrent droughts and overgrazing by sheep. In the present work, the preexisting system was an arid steppe with alfa grass (Stipa tenacissima L.) as the dominant plant, which was considered to be the "keystone" species toward the whole ecosystem structure and functioning. Vegetation and soil change was monitored for 45 years along a grazing intensity gradient. Changes in species richness and diversity, in the vegetation and in the soil, enabled to better understand climate fluctuations effects in comparison to overgrazing ones. The aim is to assess the impacts of grazing and climatic variability and change on biodiversity,vegetation and soil over a period of 45 years, based on data from seven reference years.Keywords: biodiversity, desertification, droughts, el bayadh, overgrazing, soil, steppe
Procedia PDF Downloads 1062732 A Statistical Model for the Geotechnical Parameters of Cement-Stabilised Hightown’s Soft Soil: A Case Stufy of Liverpool, UK
Authors: Hassnen M. Jafer, Khalid S. Hashim, W. Atherton, Ali W. Alattabi
Abstract:
This study investigates the effect of two important parameters (length of curing period and percentage of the added binder) on the strength of soil treated with OPC. An intermediate plasticity silty clayey soil with medium organic content was used in this study. This soft soil was treated with different percentages of a commercially available cement type 32.5-N. laboratory experiments were carried out on the soil treated with 0, 1.5, 3, 6, 9, and 12% OPC by the dry weight to determine the effect of OPC on the compaction parameters, consistency limits, and the compressive strength. Unconfined compressive strength (UCS) test was carried out on cement-treated specimens after exposing them to different curing periods (1, 3, 7, 14, 28, and 90 days). The results of UCS test were used to develop a non-linear multi-regression model to find the relationship between the predicted and the measured maximum compressive strength of the treated soil (qu). The results indicated that there was a significant improvement in the index of plasticity (IP) by treating with OPC; IP was decreased from 20.2 to 14.1 by using 12% of OPC; this percentage was enough to increase the UCS of the treated soil up to 1362 kPa after 90 days of curing. With respect to the statistical model of the predicted qu, the results showed that the regression coefficients (R2) was equal to 0.8534 which indicates a good reproducibility for the constructed model.Keywords: cement admixtures, soft soil stabilisation, geotechnical parameters, multi-regression model
Procedia PDF Downloads 3662731 Study of Physico-Chimical Properties of a Silty Soil
Authors: Moulay Smaïne Ghembaza, Mokhtar Dadouch, Nour-Said Ikhlef
Abstract:
Soil treatment is to make use soil that does not have the characteristics required in a given context. We limit ourselves in this work to the field of road earthworks where we have chosen to develop a local material in the region of Sidi Bel Abbes (Algeria). This material has poor characteristics not meeting the standards used in road geo technics. To remedy this, firstly, we were trying to improve the Proctor Standard characteristics of this material by mechanical treatment increasing the compaction energy. Then, by a chemical treatment, adding some cement dosages, our results show that this material classified A1h a increase maximum dry density and a reduction in the water content of compaction. A comparative study is made on the optimal properties of the material between the two modes of treatment. On the other hand, after treatment, one finds a decrease in the plasticity index and the methylene blue value. This material exhibits a change of class. Therefore, soil class CL turned into a soil class composed CL-ML (Silt of low plasticity). This observation allows this material to be used as backfill or sub grade.Keywords: treatment of soil, cement, subgrade, Atteberg limits, classification, optimum proctor properties
Procedia PDF Downloads 4722730 Influence of Produced Water Mixed With Crude Oil on the Geotechnical Properties of Sandy Soil
Authors: Khalifa Abdunaser
Abstract:
This study investigated the effects of oil contamination due to pro-duced water leaks that created lakes decades ago, as well as the extent of its im-pact on altering the geotechnical characteristics of the soil, which could act as a barrier to groundwater access The concentration of total petroleum hydrocarbons (TPH), which is the main component in the contaminated soil, was measured using a variety of analyses. Additionally, some extensive laboratory tests were performed to examine the effects on the soil's geotechnical properties, including particle size distribution, shear strength, consistency limits, specific gravity, and permeability coefficient. A clear decrease in TPH concentration was observed with increasing depth, and it is expected to end within only a few meters. It was found that there is a signifi-cant effect of this pollutant on the size of the soil particles, which led to them be-coming coarser than the uncontaminated soil particles. Moreover, it causes a de-crease in fluid and plastic boundaries, as well as an increase in cohesion between soil particles. However, the angle of internal friction decreases with the increase in the content of petroleum hydrocarbons in the soil samples. It came to light that determining the permeability coefficient as one of the physical characteristics of the most important factors responsible for the passage of pollutants in the groundwater, as it showed an obvious reduction in the permeability, which is the main reason dealt as an obstacle to the arrival of oil pollutants to the groundwater.Keywords: TPH, specific gravity, oil lake, Libya
Procedia PDF Downloads 922729 Assessment of Soil Erosion Risk Using Soil and Water Assessment Tools Model: Case of Siliana Watershed, Northwest Tunisia
Authors: Sana Dridi, Jalel Aouissi, Rafla Attia, Taoufik Hermassi, Thouraya Sahli
Abstract:
Soil erosion is an increasing issue in Mediterranean countries. In Tunisia, the capacity of dam reservoirs continues to decrease as a consequence of soil erosion. This study aims to predict sediment yield to enrich soil management practices using Soil and Water Assessment Tools model (SWAT) in the Siliana watershed (1041.6 km²), located in the northwest of Tunisia. A database was constructed using remote sensing and Geographical Information System. Climatic and flow data were collected from water resources directorates in Tunisia. The SWAT model was built to simulate hydrological processes and sediment transport. A sensitivity analysis, calibration, and validation were performed using SWAT-CUP software. The model calibration of stream flow simulations shows a good performance with NSE and R² values of 0.77 and 0.79, respectively. The model validation shows a very good performance with values of NSE and R² for 0.8 and 0.88, respectively. After calibration and validation of stream flow simulation, the model was used to simulate the soil erosion and sediment load transport. The spatial distributions of soil loss rate for determining the critical sediment source areas show that 63 % of the study area has a low soil loss rate less than 7 t ha⁻¹y⁻¹. The annual average soil loss rate simulated with the SWAT model in the Siliana watershed is 4.62 t ha⁻¹y⁻¹.Keywords: water erosion, SWAT model, streamflow, SWATCUP, sediment yield
Procedia PDF Downloads 1012728 Krill-Herd Step-Up Approach Based Energy Efficiency Enhancement Opportunities in the Offshore Mixed Refrigerant Natural Gas Liquefaction Process
Authors: Kinza Qadeer, Muhammad Abdul Qyyum, Moonyong Lee
Abstract:
Natural gas has become an attractive energy source in comparison with other fossil fuels because of its lower CO₂ and other air pollutant emissions. Therefore, compared to the demand for coal and oil, that for natural gas is increasing rapidly world-wide. The transportation of natural gas over long distances as a liquid (LNG) preferable for several reasons, including economic, technical, political, and safety factors. However, LNG production is an energy-intensive process due to the tremendous amount of power requirements for compression of refrigerants, which provide sufficient cold energy to liquefy natural gas. Therefore, one of the major issues in the LNG industry is to improve the energy efficiency of existing LNG processes through a cost-effective approach that is 'optimization'. In this context, a bio-inspired Krill-herd (KH) step-up approach was examined to enhance the energy efficiency of a single mixed refrigerant (SMR) natural gas liquefaction (LNG) process, which is considered as a most promising candidate for offshore LNG production (FPSO). The optimal design of a natural gas liquefaction processes involves multivariable non-linear thermodynamic interactions, which lead to exergy destruction and contribute to process irreversibility. As key decision variables, the optimal values of mixed refrigerant flow rates and process operating pressures were determined based on the herding behavior of krill individuals corresponding to the minimum energy consumption for LNG production. To perform the rigorous process analysis, the SMR process was simulated in Aspen Hysys® software and the resulting model was connected with the Krill-herd approach coded in MATLAB. The optimal operating conditions found by the proposed approach significantly reduced the overall energy consumption of the SMR process by ≤ 22.5% and also improved the coefficient of performance in comparison with the base case. The proposed approach was also compared with other well-proven optimization algorithms, such as genetic and particle swarm optimization algorithms, and was found to exhibit a superior performance over these existing approaches.Keywords: energy efficiency, Krill-herd, LNG, optimization, single mixed refrigerant
Procedia PDF Downloads 1552727 Soil Quality State and Trends in New Zealand’s Largest City after Fifteen Years
Authors: Fiona Curran-Cournane
Abstract:
Soil quality monitoring is a science-based soil management tool that assesses soil ecosystem health. A soil monitoring program in Auckland, New Zealand’s largest city, extends from 1995 to the present. The objective of this study was to firstly determine changes in soil parameters (basic soil properties and heavy metals) that were assessed from rural land in 1995-2000 and repeated in 2008-2012. The second objective was to determine differences in soil parameters across various land uses including native bush, rural (horticulture, pasture and plantation forestry) and urban land uses using soil data collected in more recent years (2009-2013). Across rural land, mean concentrations of Olsen P had significantly increased in the second sampling period and was identified as the indicator of most concern, followed by soil macroporosity, particularly for horticultural and pastoral land. Mean concentrations of Cd were also greatest for pastoral and horticultural land and a positive correlation existed between these two parameters, which highlights the importance of analysing basic soil parameters in conjunction with heavy metals. In contrast, mean concentrations of As, Cr, Pb, Ni and Zn were greatest for urban sites. Native bush sites had the lowest concentrations of heavy metals and were used to calculate a ‘pollution index’ (PI). The mean PI was classified as high (PI > 3) for Cd and Ni and moderate for Pb, Zn, Cr, Cu, As, and Hg, indicating high levels of heavy metal pollution across both rural and urban soils. From a land use perspective, the mean ‘integrated pollution index’ was highest for urban sites at 2.9 followed by pasture, horticulture and plantation forests at 2.7, 2.6, and 0.9, respectively. It is recommended that soil sampling continues over time because a longer spanning record will allow further identification of where soil problems exist and where resources need to be targeted in the future. Findings from this study will also inform policy and science direction in regional councils.Keywords: heavy metals, pollution index, rural and urban land use, soil quality
Procedia PDF Downloads 3772726 The Effects of Different Agroforestry Practices on Glomalin Related Soil Protein, Soil Aggregate Stability and Organic Carbon-Association with Soil Aggregates in Southern Ethiopia
Authors: Nebiyou Masebo
Abstract:
The severities of land degradation in southern Ethiopia has been increasing due to high population density, replacement of an age-old agroforestry (AF) based agricultural system with monocropping. The consequences of these activities combined with climate change have been impaired soil biota, soil organic carbon (SOC), soil glomalin, soil aggregation and aggregate stability. The AF systems could curb these problems due it is an ecologically and economically sustainable. This study was aimed to determine the effect of agroforestry practices (AFPs) on soil glomalin, soil aggregate stability (SAS), and aggregate association with SOC. Soil samples (from two depth level: 0-30 & 30-60 cm) and woody species were collected from homegarden based agroforestry practice (HAFP), cropland based agroforestry practice (ClAFP), woodlot based agroforestry practice (WlAFP) and trees on soil and water conservation based agroforestry practice (TSWAFP) using systematic sampling. In this study, both easily extractable glomalin related soil protein (EEGRSP) and total glomalin related soil protein (TGRSP) were significantly (p<0.05) higher in HAFP compared to others, with decreasing order HAFP>WlAFP>TSWAFP>ClAFP at upper surface but in subsurface in decreasing order: WlAFP>HAFP>TSWAFP>ClAFP. On the other hand, the macroaggregate fraction of AFPs ranged from 22.64-36.51% where the lowest was in ClAFP, while the highest was in HAFP, moreover, the order for subsurface was also the same but SAS decreased with the increasing of soil depths. The micro-aggregate fraction ranged from 15.9–24.56%, where the lowest was in HAFP, but the highest was in ClAFP. Besides, the association of OC with both macro-and micro-aggregates was greatest in HAFP and followed by WlAFP. The findings also showed that both glomalin and SAS were significantly high with woody species diversity and richness. Thus, AFP with good management practice can play role on maintenance of biodiversity, glomalin content and other soil quality parameters with future implications for a stable ecosystem.Keywords: agroforestry, soil aggregate stability, glomalin, aggregate-associated carbon, HAFP, ClAFP, WlAFP, TSWAFP.
Procedia PDF Downloads 1072725 Comparison of Numerical and Laboratory Results of Pull-Out Test on Soil–Geogrid Interactions
Authors: Parisa Ahmadi Oliaei, Seyed Abolhassan Naeini
Abstract:
The knowledge of soil–reinforcement interaction parameters is particularly important in the design of reinforced soil structures. The pull-out test is one of the most widely used tests in this regard. The results of tensile tests may be very sensitive to boundary conditions, and more research is needed for a better understanding of the Pull-out response of reinforcement, so numerical analysis using the finite element method can be a useful tool for the understanding of the Pull-out response of soil-geogrid interaction. The main objective of the present study is to compare the numerical and experimental results of Pull- out a test on geogrid-reinforced sandy soils interactions. Plaxis 2D finite element software is used for simulation. In the present study, the pull-out test modeling has been done on sandy soil. The effect of geogrid hardness was also investigated by considering two different types of geogrids. The numerical results curve had a good agreement with the pull-out laboratory results.Keywords: plaxis, pull-out test, sand, soil- geogrid interaction
Procedia PDF Downloads 1702724 Experimental Investigation of The Influence of Cement on Soil-Municipal Solid Waste Incineration Fly ash Mix Properties
Authors: Gehan Aouf, Diala Tabbal, Abd El Rahim Sabsabi, Rashad Aouf
Abstract:
The aim of this study is to assess the viability of utilizing Municipal Solid Waste Incineration Fly Ash (MSWIFA) with Ordinary Portland cement as soil reinforcement materials for geotechnical engineering applications. A detailed experimental program is carried out, followed by analysis of results. Soil samples were prepared by adding Cement to MSWIFA-soil mix at different percentages. Then, a series of laboratory tests were performed, namely: Sieve analysis, Atterberg limits tests, Unconfined compression test, and Proctor tests. A parametric study is conducted to investigate the effect of adding the cement at different percentages on the unconfined compression strength, maximum dry density, and optimum moisture content of clayey soil-MSWIFA The variation of contents of admixtures were 10%, 20%, and 30% for MSWIFA by dry total weight of soil and 10%, 15%, and 20% for Portland cement by dry total weight of the mix. The test results reveal that adding MSWIFA to the soil up to 20% increased the MDD of the mixture and decreased the OMC, then an opposite trend for results were found when the percentage of MSWIFA exceeds 20%. This is due to the low specific gravity of MSWIFA and to the greater water absorption of MSWIFA. The laboratory tests also indicate that the UCS values were found to be increased for all the mixtures with curing periods of 7, 14, and 28 days. It is also observed that the cement increased the strength of the finished product of the mix of soil and MSWIFA.Keywords: clayey soil, cement, MSWIFA, unconfined compression strength
Procedia PDF Downloads 1312723 Determination of Soil Loss by Erosion in Different Land Covers Categories and Slope Classes in Bovilla Watershed, Tirana, Albania
Authors: Valmir Baloshi, Fran Gjoka, Nehat Çollaku, Elvin Toromani
Abstract:
As a sediment production mechanism, soil erosion is the main environmental threat to the Bovilla watershed, including the decline of water quality of the Bovilla reservoir that provides drinking water to Tirana city (the capital of Albania). Therefore, an experiment with 25 erosion plots for soil erosion monitoring has been set up since June 2017. The aim was to determine the soil loss on plot and watershed scale in Bovilla watershed (Tirana region) for implementation of soil and water protection measures or payments for ecosystem services (PES) programs. The results of erosion monitoring for the period June 2017 - May 2018 showed that the highest values of surface runoff were noted in bare land of 38829.91 liters on slope of 74% and the lowest values in forest land of 12840.6 liters on slope of 64% while the highest values of soil loss were found in bare land of 595.15 t/ha on slope of 62% and lowest values in forest land of 18.99 t/ha on slope of 64%. These values are much higher than the average rate of soil loss in the European Union (2.46 ton/ha/year). In the same sloping class, the soil loss was reduced from orchard or bare land to the forest land, and in the same category of land use, the soil loss increased with increasing land slope. It is necessary to conduct chemical analyses of sediments to determine the amount of chemical elements leached out of the soil and end up in the reservoir of Bovilla. It is concluded that PES programs should be implemented for rehabilitation of sub-watersheds Ranxe, Vilez and Zall-Bastar of the Bovilla watershed with valuable conservation practices.Keywords: ANOVA, Bovilla, land cover, slope, soil loss, watershed management
Procedia PDF Downloads 162