Search results for: normalized Laplacian eigenvalues
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 486

Search results for: normalized Laplacian eigenvalues

186 Kannada HandWritten Character Recognition by Edge Hinge and Edge Distribution Techniques Using Manhatan and Minimum Distance Classifiers

Authors: C. V. Aravinda, H. N. Prakash

Abstract:

In this paper, we tried to convey fusion and state of art pertaining to SIL character recognition systems. In the first step, the text is preprocessed and normalized to perform the text identification correctly. The second step involves extracting relevant and informative features. The third step implements the classification decision. The three stages which involved are Data acquisition and preprocessing, Feature extraction, and Classification. Here we concentrated on two techniques to obtain features, Feature Extraction & Feature Selection. Edge-hinge distribution is a feature that characterizes the changes in direction of a script stroke in handwritten text. The edge-hinge distribution is extracted by means of a windowpane that is slid over an edge-detected binary handwriting image. Whenever the mid pixel of the window is on, the two edge fragments (i.e. connected sequences of pixels) emerging from this mid pixel are measured. Their directions are measured and stored as pairs. A joint probability distribution is obtained from a large sample of such pairs. Despite continuous effort, handwriting identification remains a challenging issue, due to different approaches use different varieties of features, having different. Therefore, our study will focus on handwriting recognition based on feature selection to simplify features extracting task, optimize classification system complexity, reduce running time and improve the classification accuracy.

Keywords: word segmentation and recognition, character recognition, optical character recognition, hand written character recognition, South Indian languages

Procedia PDF Downloads 494
185 Correlation between Clinical Measurements of Static Foot Posture in Young Adults

Authors: Phornchanok Motantasut, Torkamol Hunsawong, Lugkana Mato, Wanida Donpunha

Abstract:

Identifying abnormal foot posture is important for prescribing appropriate management in patients with lower limb disorders and chronic non-specific low back pain. The normalized navicular height truncated (NNHt) and the foot posture index-6 (FPI-6) have been recommended as the common, simple, valid, and reliable static measures for clinical application. The NNHt is a single plane measure while the FPI-6 is a triple plane measure. At present, there is inadequate information about the correlation between the NNHt and the FPI-6 for categorizing foot posture that leads to a difficulty of choosing the appropriate assessment. Therefore, the present study aimed to determine the correlation between the NNHt and the FPI-6 measures in adult participants with asymptomatic feet. Methods: A cross-sectional descriptive study was conducted in 47 asymptomatic individuals (23 males and 24 females) aged 28.89 ± 7.67 years with body mass index 21.73 ± 1.76 kg/m². The right foot was measured twice by the experienced rater using the NNHt and the FPI-6. A sequence of the measures was randomly arranged for each participant with a 10-minute rest between the tests. The Pearson’s correlation coefficient (r) was used to determine the relationship between the measures. Results: The mean NNHt score was 0.23 ± 0.04 (ranged from 0.15 to 0.36) and the mean FPI-6 score was 4.42 ± 4.36 (ranged from -6 to +11). The Pearson’s correlation coefficient among the NNHt score and the FPI-6 score was -0.872 (p < 0.01). Conclusion: The present finding demonstrates the strong correlation between the NNHt and FPI-6 in adult feet and implies that both measures could be substituted for each other in identifying foot posture.

Keywords: foot posture index, foot type, measurement of foot posture, navicular height

Procedia PDF Downloads 138
184 Decision Making System for Clinical Datasets

Authors: P. Bharathiraja

Abstract:

Computer Aided decision making system is used to enhance diagnosis and prognosis of diseases and also to assist clinicians and junior doctors in clinical decision making. Medical Data used for decision making should be definite and consistent. Data Mining and soft computing techniques are used for cleaning the data and for incorporating human reasoning in decision making systems. Fuzzy rule based inference technique can be used for classification in order to incorporate human reasoning in the decision making process. In this work, missing values are imputed using the mean or mode of the attribute. The data are normalized using min-ma normalization to improve the design and efficiency of the fuzzy inference system. The fuzzy inference system is used to handle the uncertainties that exist in the medical data. Equal-width-partitioning is used to partition the attribute values into appropriate fuzzy intervals. Fuzzy rules are generated using Class Based Associative rule mining algorithm. The system is trained and tested using heart disease data set from the University of California at Irvine (UCI) Machine Learning Repository. The data was split using a hold out approach into training and testing data. From the experimental results it can be inferred that classification using fuzzy inference system performs better than trivial IF-THEN rule based classification approaches. Furthermore it is observed that the use of fuzzy logic and fuzzy inference mechanism handles uncertainty and also resembles human decision making. The system can be used in the absence of a clinical expert to assist junior doctors and clinicians in clinical decision making.

Keywords: decision making, data mining, normalization, fuzzy rule, classification

Procedia PDF Downloads 517
183 Electromyographic Analysis of Trunk Muscle Activity of Healthy Individuals While Catching a Ball on Three Different Seating Surfaces

Authors: Hanan H. ALQahtani, Karen Jones

Abstract:

Catching a ball during sitting is a functional exercise commonly used in rehabilitation to enhance trunk muscle activity. To progress this exercise, physiotherapists incorporate a Swiss ball or change seat height. However, no study has assessed the effect of different seating surfaces on trunk muscle activity while catching a ball. Objective: To investigate the effect of catching a ball during sitting on a Swiss ball, a low seat and a high seat on trunk muscle activity. Method: A repeated-measures, counterbalanced design was used. A total of 26 healthy participants (15 female and 11 male) performed three repetitions of catching a ball on each seating surface. Using surface electromyography (sEMG), the activity of the bilateral transversus abdominis/internal oblique (TrA/IO), rectus abdominis (RA), erector spinae (ES) and lumbar multifidus (MF) was recorded. Trunk muscle activity was normalized using maximum voluntary isometric contraction and analyzed. Statistical significance was set at p ≤ .05. Results: No significant differences were observed in the activity of RA, TrA/IO, ES or MF between a low seat and a Swiss ball. However, the activity of the right and left ES on a low seat was significantly greater than on a high seat (p = .017 and p = .017, respectively). Conversely, the activity of the right and left RA on a high seat was significantly greater than on a low seat (p = .007 and p = .004, respectively). Conclusion: This study suggests that replacing a low seat with a Swiss ball while catching a ball is insufficient to increase trunk muscle activity, whereas changing the seat height could induce different trunk muscle activities. However, research conducted on patients is needed before translating these results into clinical settings.

Keywords: catching, electromyography, seating, trunk

Procedia PDF Downloads 290
182 Estimation of Soil Moisture at High Resolution through Integration of Optical and Microwave Remote Sensing and Applications in Drought Analyses

Authors: Donglian Sun, Yu Li, Paul Houser, Xiwu Zhan

Abstract:

California experienced severe drought conditions in the past years. In this study, the drought conditions in California are analyzed using soil moisture anomalies derived from integrated optical and microwave satellite observations along with auxiliary land surface data. Based on the U.S. Drought Monitor (USDM) classifications, three typical drought conditions were selected for the analysis: extreme drought conditions in 2007 and 2013, severe drought conditions in 2004 and 2009, and normal conditions in 2005 and 2006. Drought is defined as negative soil moisture anomaly. To estimate soil moisture at high spatial resolutions, three approaches are explored in this study: the universal triangle model that estimates soil moisture from Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST); the basic model that estimates soil moisture under different conditions with auxiliary data like precipitation, soil texture, topography, and surface types; and the refined model that uses accumulated precipitation and its lagging effects. It is found that the basic model shows better agreements with the USDM classifications than the universal triangle model, while the refined model using precipitation accumulated from the previous summer to current time demonstrated the closest agreements with the USDM patterns.

Keywords: soil moisture, high resolution, regional drought, analysis and monitoring

Procedia PDF Downloads 136
181 Study of the Anti-Diabetic Activity of the Common Fig in the Region of the El Amra (Ain Defla), Algeria

Authors: Meliani Samiha, Hassaine Sarah

Abstract:

Figs are so much consumed in the Mediterranean region; they present a high nutritional value and also multiple therapeutic virtues. Our work contributes to the study of the antidiabetic activity of the common fig of the region of El Amra (AinDefla) Algeria. To do this, 20 Wistar rats female, divided into 4 lots, were used: Lot 1: 5 normal controls; Lot 2: 5 normal controls treated with dry fig juice at 20%; Lot 3: 5 diabetic controls; Lot 4: 5 diabetic controls treated with dry fig juice at 20%. The rats are rendered diabetic by intra-peritoneal injection of a streptozotocin solution. The blood glucose is measured after 1 hour, 2 hours, 3 hours and after 4 hours of the administration of the fig juice; it’s measured also on the 5th day, 8th day and 9th day of the beginning of the experiment. The determination of cholesterol and triglycerides blood is carried out at the beginning and the end of the study. On the 9th day, we recorded a very significant decrease of the blood sugar level of diabetic rats treated with dry fig juice. This blood glucose level normalized for 3 rats/5rats, we also recorded a decrease, but not significant, of cholesterol and triglycerides blood levels. In the short term (for 4 hours), an increase of blood sugar level, one hour after administration, for normal and diabetic rats. This increase is probably due to the high level of sugar content in the preparation. The blood glucose level is then corrected, four hours later. This may be the result of anti hyperglycemic effect of the active ingredients contained in the figs.

Keywords: antidiabetic, figs, hypoglycemia, streptozotocin

Procedia PDF Downloads 218
180 Path Planning for Unmanned Aerial Vehicles in Constrained Environments for Locust Elimination

Authors: Aadiv Shah, Hari Nair, Vedant Mittal, Alice Cheeran

Abstract:

Present-day agricultural practices such as blanket spraying not only lead to excessive usage of pesticides but also harm the overall crop yield. This paper introduces an algorithm to optimize the traversal of an unmanned aerial vehicle (UAV) in constrained environments. The proposed system focuses on the agricultural application of targeted spraying for locust elimination. Given a satellite image of a farm, target zones that are prone to locust swarm formation are detected through the calculation of the normalized difference vegetation index (NDVI). This is followed by determining the optimal path for traversal of a UAV through these target zones using the proposed algorithm in order to perform pesticide spraying in the most efficient manner possible. Unlike the classic travelling salesman problem involving point-to-point optimization, the proposed algorithm determines an optimal path for multiple regions, independent of its geometry. Finally, the paper explores the idea of implementing reinforcement learning to model complex environmental behaviour and make the path planning mechanism for UAVs agnostic to external environment changes. This system not only presents a solution to the enormous losses incurred due to locust attacks but also an efficient way to automate agricultural practices across the globe in order to improve farmer ergonomics.

Keywords: locust, NDVI, optimization, path planning, reinforcement learning, UAV

Procedia PDF Downloads 248
179 Efficacy of Remote Sensing Application in Monitoring the Effectiveness of Afforestation Project in Northern Nigeria

Authors: T. Garba, Y. Y. Babanyara, K. G. Ilellah, M. A. Modibbo, T. O. Quddus, M. J. Sani

Abstract:

After the United Nation Convention on Desertification (UNCD) in 1977 which was preceded by extensive, regional, and local studies, and consultations with numerous scientists, decision-makers, and relevant institutions. Global Plan of Action to Combat Desertification (PACD) was formulated, endorsed by member Countries. The role of implementing PACD was vested with Governments of countries affected by desertification. The Federal Government of Nigeria as a signatory and World Bank funded and implement afforestation project aimed at combating desertification between 1988 and 1999. This research, therefore, applied remote sensing techniques to assess the effectiveness of the project. To achieve that a small portion of about 143,609 hectares was curved out from the project area. Normalized Difference of the Vegetative Index (NDVI) and Land Use Land Cover were derived from Landsat TM 1986, Landsat ETM 1999 and Nigeria Sat 1, 2007 of the project area. The findings show that there was an increase in cultivated area due to the project from 1986 through 1999 and 2007. This is further buttressed by the three NDVI imageries due to their high positive pixel value from 0.04 in 1986 to 0.22 in 1999 and to 0.32 in 2007 These signifies the gradual physical development of Afforestation project in the area. In addition, it was also verified by histograms of changes in vegetation which indicated an increased vegetative cover from 60,192 in 1986, to 102,476 in 1999 and then to 88,343 in 2007. The study concluded that Remote Sensing approach has actually confirmed that the project was indeed successful and effective.

Keywords: afforestation, desertification, landsat, vegetative index, remote sensing

Procedia PDF Downloads 316
178 Multi-Temporal Urban Land Cover Mapping Using Spectral Indices

Authors: Mst Ilme Faridatul, Bo Wu

Abstract:

Multi-temporal urban land cover mapping is of paramount importance for monitoring urban sprawl and managing the ecological environment. For diversified urban activities, it is challenging to map land covers in a complex urban environment. Spectral indices have proved to be effective for mapping urban land covers. To improve multi-temporal urban land cover classification and mapping, we evaluate the performance of three spectral indices, e.g. modified normalized difference bare-land index (MNDBI), tasseled cap water and vegetation index (TCWVI) and shadow index (ShDI). The MNDBI is developed to evaluate its performance of enhancing urban impervious areas by separating bare lands. A tasseled cap index, TCWVI is developed to evaluate its competence to detect vegetation and water simultaneously. The ShDI is developed to maximize the spectral difference between shadows of skyscrapers and water and enhance water detection. First, this paper presents a comparative analysis of three spectral indices using Landsat Enhanced Thematic Mapper (ETM), Thematic Mapper (TM) and Operational Land Imager (OLI) data. Second, optimized thresholds of the spectral indices are imputed to classify land covers, and finally, their performance of enhancing multi-temporal urban land cover mapping is assessed. The results indicate that the spectral indices are competent to enhance multi-temporal urban land cover mapping and achieves an overall classification accuracy of 93-96%.

Keywords: land cover, mapping, multi-temporal, spectral indices

Procedia PDF Downloads 153
177 Landslide Vulnerability Assessment in Context with Indian Himalayan

Authors: Neha Gupta

Abstract:

Landslide vulnerability is considered as the crucial parameter for the assessment of landslide risk. The term vulnerability defined as the damage or degree of elements at risk of different dimensions, i.e., physical, social, economic, and environmental dimensions. Himalaya region is very prone to multi-hazard such as floods, forest fires, earthquakes, and landslides. With the increases in fatalities rates, loss of infrastructure, and economy due to landslide in the Himalaya region, leads to the assessment of vulnerability. In this study, a methodology to measure the combination of vulnerability dimension, i.e., social vulnerability, physical vulnerability, and environmental vulnerability in one framework. A combined result of these vulnerabilities has rarely been carried out. But no such approach was applied in the Indian Scenario. The methodology was applied in an area of east Sikkim Himalaya, India. The physical vulnerability comprises of building footprint layer extracted from remote sensing data and Google Earth imaginary. The social vulnerability was assessed by using population density based on land use. The land use map was derived from a high-resolution satellite image, and for environment vulnerability assessment NDVI, forest, agriculture land, distance from the river were assessed from remote sensing and DEM. The classes of social vulnerability, physical vulnerability, and environment vulnerability were normalized at the scale of 0 (no loss) to 1 (loss) to get the homogenous dataset. Then the Multi-Criteria Analysis (MCA) was used to assign individual weights to each dimension and then integrate it into one frame. The final vulnerability was further classified into four classes from very low to very high.

Keywords: landslide, multi-criteria analysis, MCA, physical vulnerability, social vulnerability

Procedia PDF Downloads 301
176 Identification of Phenolic Compounds with Antibacterial Activity in Raisin Extract

Authors: Yousef M. Abouzeed A. Elfahem, F. Zgheel, M. A. Saad, Mohamed O. Ahmed

Abstract:

The bioactive properties of phytochemicals indicate their potential as natural drug products to prevent and treat human disease; in particular, compounds with antioxidant and antimicrobial activities may represent a novel class of safe and effective drugs. Following desiccation, grapes (Vitis vinifera) become more resistant to microbial-based degradation, suggesting that raisins may be a source of antimicrobial compounds. To investigate this hypothesis, total phenolic extracts were obtained from common raisins, local market-sourced. The acetone extract was tested for antibacterial activity against four prevalent bacterial pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella spp. and Escherichia coli). Antibiotic sensitivity and the Minimum Inhibitory Concentration (MIC) were determined for each bacterium. High performance liquid chromatography was used to identify compounds in the total phenolic extract. The raisin phenolic extract inhibited growth of all the tested bacteria; the greatest inhibitive effect (normalized to cefotaxime sodium control antibiotic) occurred against P. aeruginosa, followed by S. aureus > Salmonella spp.= E. coli. The phenolic extracts contained the bioactive compounds catechin, quercetin, and rutin. Thus, phytochemicals in raisin extract have antibacterial properties; this plant-based extract, or its bioactive constituents, may represent a promising natural preservative or antimicrobial agent for the food industry or anti-infective drug.

Keywords: Vitis vinifera raisin, extraction, phenolic compounds, antibacterial activity

Procedia PDF Downloads 606
175 Impacts of Aquaculture Farms on the Mangroves Forests of Sundarbans, India (2010-2018): Temporal Changes of NDVI

Authors: Sandeep Thakur, Ismail Mondal, Phani Bhusan Ghosh, Papita Das, Tarun Kumar De

Abstract:

Sundarbans Reserve forest of India has been undergoing major transformations in the recent past owing to population pressure and related changes. This has brought about major changes in the spatial landscape of the region especially in the western parts. This study attempts to assess the impacts of the Landcover changes on the mangrove habitats. Time series imageries of Landsat were used to analyze the Normalized Differential Vegetation Index (NDVI) patterns over the western parts of Indian Sundarbans forest in order to assess the heath of the mangroves in the region. The images were subjected to Land use Land cover (LULC) classification using sub-pixel classification techniques in ERDAS Imagine software and the changes were mapped. The spatial proliferation of aquaculture farms during the study period was also mapped. A multivariate regression analysis was carried out between the obtained NDVI values and the LULC classes. Similarly, the observed meteorological data sets (time series rainfall and minimum and maximum temperature) were also statistically correlated for regression. The study demonstrated the application of NDVI in assessing the environmental status of mangroves as the relationship between the changes in the environmental variables and the remote sensing based indices felicitate an efficient evaluation of environmental variables, which can be used in the coastal zone monitoring and development processes.

Keywords: aquaculture farms, LULC, Mangrove, NDVI

Procedia PDF Downloads 181
174 Automatic Classification of Lung Diseases from CT Images

Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari

Abstract:

Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.

Keywords: CT scan, Covid-19, deep learning, image processing, lung disease classification

Procedia PDF Downloads 154
173 A Method to Estimate Wheat Yield Using Landsat Data

Authors: Zama Mahmood

Abstract:

The increasing demand of food management, monitoring of the crop growth and forecasting its yield well before harvest is very important. These days, yield assessment together with monitoring of crop development and its growth are being identified with the help of satellite and remote sensing images. Studies using remote sensing data along with field survey validation reported high correlation between vegetation indices and yield. With the development of remote sensing technique, the detection of crop and its mechanism using remote sensing data on regional or global scales have become popular topics in remote sensing applications. Punjab, specially the southern Punjab region is extremely favourable for wheat production. But measuring the exact amount of wheat production is a tedious job for the farmers and workers using traditional ground based measurements. However, remote sensing can provide the most real time information. In this study, using the Normalized Differentiate Vegetation Index (NDVI) indicator developed from Landsat satellite images, the yield of wheat has been estimated during the season of 2013-2014 for the agricultural area around Bahawalpur. The average yield of the wheat was found 35 kg/acre by analysing field survey data. The field survey data is in fair agreement with the NDVI values extracted from Landsat images. A correlation between wheat production (ton) and number of wheat pixels has also been calculated which is in proportional pattern with each other. Also a strong correlation between the NDVI and wheat area was found (R2=0.71) which represents the effectiveness of the remote sensing tools for crop monitoring and production estimation.

Keywords: landsat, NDVI, remote sensing, satellite images, yield

Procedia PDF Downloads 334
172 Indicator-Based Approach for Assessing Socio Economic Vulnerability of Dairy Farmers to Impacts of Climate Variability and Change in India

Authors: Aparna Radhakrishnan, Jancy Gupta, R. Dileepkumar

Abstract:

This paper aims at assessing the Socio Economic Vulnerability (SEV) of dairy farmers to Climate Variability and Change (CVC) in 3 states of Western Ghat region in India. For this purpose, a composite SEV index has been developed on the basis of functional relationships amongst sensitivity, exposure and adaptive capacity using 30 indicators related to dairy farming underlying the principles of Intergovernmental Panel on Climate Change and Fussel framework for nomenclature of vulnerable situation. Household level data were collected through Participatory Rural Appraisal and personal interviews of 540 dairy farmers of nine taluks, three each from a district selected from Kerala, Karnataka and Maharashtra, complemented by thirty years of gridded weather data. The data were normalized and then combined into three indices for sensitivity, exposure and adaptive capacity, which were then averaged with weights given using principal component analysis, to obtain the overall SEV index. Results indicated that the taluks of Western Ghats are vulnerable to CVC. The dairy farmers of Pulpally taluka were most vulnerable having the SEV score +1.24 and 42.66% farmers under high-level vulnerability category. Even though the taluks are geographically closer, there is wide variation in SEV components. Policies for incentivizing the ‘climate risk adaptation’ costs for small and marginal farmers and livelihood infrastructure for mitigating risks and promoting grass root level innovations are necessary to sustain dairy farming of the region.

Keywords: climate change, dairy, vulnerability, livelihoods, adaptation strategies

Procedia PDF Downloads 418
171 A Fast Community Detection Algorithm

Authors: Chung-Yuan Huang, Yu-Hsiang Fu, Chuen-Tsai Sun

Abstract:

Community detection represents an important data-mining tool for analyzing and understanding real-world complex network structures and functions. We believe that at least four criteria determine the appropriateness of a community detection algorithm: (a) it produces useable normalized mutual information (NMI) and modularity results for social networks, (b) it overcomes resolution limitation problems associated with synthetic networks, (c) it produces good NMI results and performance efficiency for Lancichinetti-Fortunato-Radicchi (LFR) benchmark networks, and (d) it produces good modularity and performance efficiency for large-scale real-world complex networks. To our knowledge, no existing community detection algorithm meets all four criteria. In this paper, we describe a simple hierarchical arc-merging (HAM) algorithm that uses network topologies and rule-based arc-merging strategies to identify community structures that satisfy the criteria. We used five well-studied social network datasets and eight sets of LFR benchmark networks to validate the ground-truth community correctness of HAM, eight large-scale real-world complex networks to measure its performance efficiency, and two synthetic networks to determine its susceptibility to resolution limitation problems. Our results indicate that the proposed HAM algorithm is capable of providing satisfactory performance efficiency and that HAM-identified communities were close to ground-truth communities in social and LFR benchmark networks while overcoming resolution limitation problems.

Keywords: complex network, social network, community detection, network hierarchy

Procedia PDF Downloads 227
170 ACTN3 Genotype Association with Motoric Performance of Roma Children

Authors: J. Bernasovska, I. Boronova, J. Poracova, M. Mydlarova Blascakova, V. Szabadosova, P. Ruzbarsky, E. Petrejcikova, I. Bernasovsky

Abstract:

The paper presents the results of the molecular genetics analysis in sports research, with special emphasis to use genetic information in diagnosing of motoric predispositions in Roma boys from East Slovakia. The ability and move are the basic characteristics of all living organisms. The phenotypes are influenced by a combination of genetic and environmental factors. Genetic tests differ in principle from the traditional motoric tests, because the DNA of an individual does not change during life. The aim of the presented study was to examine motion abilities and to determine the frequency of ACTN3 (R577X) gene in Roma children. Genotype data were obtained from 138 Roma and 155 Slovak boys from 7 to 15 years old. Children were investigated on physical performance level in association with their genotype. Biological material for genetic analyses comprised samples of buccal swabs. Genotypes were determined using Real Time High resolution melting PCR method (Rotor-Gene 6000 Corbett and Light Cycler 480 Roche). The software allows creating reports of any analysis, where information of the specific analysis, normalized and differential graphs and many information of the samples are shown. Roma children of analyzed group legged to non-Romany children at the same age in all the compared tests. The % distribution of R and X alleles in Roma children was different from controls. The frequency of XX genotype was 9.26%, RX 46.33% and RR was 44.41%. The frequency of XX genotype was 9.26% which is comparable to a frequency of an Indian population. Data were analyzed with the ANOVA test.

Keywords: ACTN3 gene, R577X polymorphism, Roma children, sport performance, Slovakia

Procedia PDF Downloads 334
169 Assessment of Urban Heat Island through Remote Sensing in Nagpur Urban Area Using Landsat 7 ETM+ Satellite Images

Authors: Meenal Surawar, Rajashree Kotharkar

Abstract:

Urban Heat Island (UHI) is found more pronounced as a prominent urban environmental concern in developing cities. To study the UHI effect in the Indian context, the Nagpur urban area has been explored in this paper using Landsat 7 ETM+ satellite images through Remote Sensing and GIS techniques. This paper intends to study the effect of LU/LC pattern on daytime Land Surface Temperature (LST) variation, contributing UHI formation within the Nagpur Urban area. Supervised LU/LC area classification was carried to study urban Change detection using ENVI 5. Change detection has been studied by carrying Normalized Difference Vegetation Index (NDVI) to understand the proportion of vegetative cover with respect to built-up ratio. Detection of spectral radiance from the thermal band of satellite images was processed to calibrate LST. Specific representative areas on the basis of urban built-up and vegetation classification were selected for observation of point LST. The entire Nagpur urban area shows that, as building density increases with decrease in vegetation cover, LST increases, thereby causing the UHI effect. UHI intensity has gradually increased by 0.7°C from 2000 to 2006; however, a drastic increase has been observed with difference of 1.8°C during the period 2006 to 2013. Within the Nagpur urban area, the UHI effect was formed due to increase in building density and decrease in vegetative cover.

Keywords: land use/land cover, land surface temperature, remote sensing, urban heat island

Procedia PDF Downloads 282
168 Geochemistry and Petrogenesis of Anorogenic Acid Plutonic Rocks of Khanak and Devsar of Southwestern Haryana

Authors: Naresh Kumar, Radhika Sharma, A. K. Singh

Abstract:

Acid plutonic rocks from the Khanak and Devsar areas of southwestern Haryana were investigated to understand their geochemical and petrogenetic characteristics and tectonic environments. Three dominant rock types (grey, grayish green and pink granites) are the principal geochemical features of Khanak and Devsar areas which reflect the dependencies of their composition on varied geological environment during the anorogenic magmatism. These rocks are enriched in SiO₂, Na₂O+K₂O, Fe/Mg, Rb, Zr, Y, Th, U, REE (Rare Earth Elements) enriched and depleted in MgO, CaO, Sr, P, Ti, Ni, Cr, V and Eu and exhibit a clear affinity to the within-plate granites that were emplaced in an extensional tectonic environment. Chondrite-normalized REE patterns show enriched LREE (Light Rare Earth Elements), moderate to strong negative Eu anomalies and flat heavy REE and grey and grayish green is different from pink granite which is enriched by Rb, Ga, Nb, Th, U, Y and HREE (Heavy Rare Earth Elements) concentrations. The composition of parental magma of both areas corresponds to mafic source contaminated with crustal materials. Petrogenetic modelling suggest that the acid plutonic rocks might have been generated from a basaltic source by partial melting (15-25%) leaving a residue with 35% plagioclase, 25% alkali feldspar, 25% quartz, 7% orthopyroxene, 5% biotite and 3% hornblende. Granites from both areas might be formed from different sources with different degree of melting for grey, grayish green and pink granites.

Keywords: A-type granite, anorogenic, Malani igneous suite, Khanak and Devsar

Procedia PDF Downloads 176
167 Multicriteria for Optimal Land Use after Mining

Authors: Carla Idely Palencia-Aguilar

Abstract:

Mining in Colombia represents around 2% of the GDP (USD 8 billion in 2018), with main productions represented by coal, nickel, gold, silver, emeralds, iron, limestone, gypsum, among others. Sand and Gravel had been decreasing its participation of the GDP with a reduction of 33.2 million m3 in 2015, to 27.4 in 2016, 22.7 in 2017 and 15.8 in 2018, with a consumption of approximately 3 tons/inhabitant. However, with the new government policies it is expected to increase in the following years. Mining causes temporary environmental impacts, once restoration and rehabilitation takes place, social, environmental and economic benefits are higher than the initial state. A way to demonstrate how the mining interventions had contributed to improve the characteristics of the region after sand and gravel mining, the NDVI (Normalized Difference Vegetation Index) from MODIS and ASTER were employed. The histograms show not only increments of vegetation in the area (8 times higher), but also topographies similar to the ones before the intervention, according to the application for sustainable development selected: either agriculture, forestry, cattle raising, artificial wetlands or do nothing. The decision was based upon a Multicriteria analysis for optimal land use, with three main variables: geostatistics, evapotranspiration and groundwater characteristics. The use of remote sensing, meteorological stations, piezometers, sunphotometers, geoelectric analysis among others; provide the information required for the multicriteria decision. For cattle raising and agricultural applications (where various crops were implemented), conservation of products were tested by means of nanotechnology. The results showed a duration of 2 years with no chemicals added for preservation and concentration of vitamins of the tested products.

Keywords: ASTER, Geostatistics, MODIS, Multicriteria

Procedia PDF Downloads 125
166 Land Suitability Prediction Modelling for Agricultural Crops Using Machine Learning Approach: A Case Study of Khuzestan Province, Iran

Authors: Saba Gachpaz, Hamid Reza Heidari

Abstract:

The sharp increase in population growth leads to more pressure on agricultural areas to satisfy the food supply. To achieve this, more resources should be consumed and, besides other environmental concerns, highlight sustainable agricultural development. Land-use management is a crucial factor in obtaining optimum productivity. Machine learning is a widely used technique in the agricultural sector, from yield prediction to customer behavior. This method focuses on learning and provides patterns and correlations from our data set. In this study, nine physical control factors, namely, soil classification, electrical conductivity, normalized difference water index (NDWI), groundwater level, elevation, annual precipitation, pH of water, annual mean temperature, and slope in the alluvial plain in Khuzestan (an agricultural hotspot in Iran) are used to decide the best agricultural land use for both rainfed and irrigated agriculture for ten different crops. For this purpose, each variable was imported into Arc GIS, and a raster layer was obtained. In the next level, by using training samples, all layers were imported into the python environment. A random forest model was applied, and the weight of each variable was specified. In the final step, results were visualized using a digital elevation model, and the importance of all factors for each one of the crops was obtained. Our results show that despite 62% of the study area being allocated to agricultural purposes, only 42.9% of these areas can be defined as a suitable class for cultivation purposes.

Keywords: land suitability, machine learning, random forest, sustainable agriculture

Procedia PDF Downloads 84
165 Analyzing the Impact of Spatio-Temporal Climate Variations on the Rice Crop Calendar in Pakistan

Authors: Muhammad Imran, Iqra Basit, Mobushir Riaz Khan, Sajid Rasheed Ahmad

Abstract:

The present study investigates the space-time impact of climate change on the rice crop calendar in tropical Gujranwala, Pakistan. The climate change impact was quantified through the climatic variables, whereas the existing calendar of the rice crop was compared with the phonological stages of the crop, depicted through the time series of the Normalized Difference Vegetation Index (NDVI) derived from Landsat data for the decade 2005-2015. Local maxima were applied on the time series of NDVI to compute the rice phonological stages. Panel models with fixed and cross-section fixed effects were used to establish the relation between the climatic parameters and the time-series of NDVI across villages and across rice growing periods. Results show that the climatic parameters have significant impact on the rice crop calendar. Moreover, the fixed effect model is a significant improvement over cross-sectional fixed effect models (R-squared equal to 0.673 vs. 0.0338). We conclude that high inter-annual variability of climatic variables cause high variability of NDVI, and thus, a shift in the rice crop calendar. Moreover, inter-annual (temporal) variability of the rice crop calendar is high compared to the inter-village (spatial) variability. We suggest the local rice farmers to adapt this change in the rice crop calendar.

Keywords: Landsat NDVI, panel models, temperature, rainfall

Procedia PDF Downloads 205
164 The Role of Phase Morphology on the Corrosion Fatigue Mechanism in Marine Steel

Authors: Victor Igwemezie, Ali Mehmanparast

Abstract:

The correct knowledge of corrosion fatigue mechanism in marine steel is very important. This is because it enables the design, selection, and use of steels for offshore applications. It also supports realistic corrosion fatigue life prediction of marine structures. A study has been conducted to increase the understanding of corrosion fatigue mechanism in marine steels. The materials investigated are normalized and advanced S355 Thermomechanical control process (TMCP) steels commonly used in the design of offshore wind turbine support structures. The experimental study was carried out by conducting corrosion fatigue tests under conditions pertinent to offshore wind turbine operations, using the state of the art facilities. A careful microstructural study of the crack growth path was conducted using metallurgical optical microscope (OM), scanning electron microscope (SEM) and Energy Dispersive X-Ray Spectroscopy (EDX). The test was conducted on three subgrades of S355 steel: S355J2+N, S355G8+M and S355G10+M and the data compared with similar studies in the literature. The result shows that the ferrite-pearlite morphology primarily controls the corrosion-fatigue crack growth path in marine steels. A corrosion fatigue mechanism which relies on the hydrogen embrittlement of the grain boundaries and pearlite phase is used to explain the crack propagation behaviour. The crack growth trend in the Paris region of the da/dN vs. ΔK curve is used to explain the dependency of the corrosion-fatigue crack growth rate on the ferrite-pearlite morphology.

Keywords: corrosion-fatigue mechanism, fatigue crack growth rate, ferritic-pearlitic steel, microstructure, phase morphology

Procedia PDF Downloads 160
163 Calculation of the Normalized Difference Vegetation Index and the Spectral Signature of Coffee Crops: Benefits of Image Filtering on Mixed Crops

Authors: Catalina Albornoz, Giacomo Barbieri

Abstract:

Crop monitoring has shown to reduce vulnerability to spreading plagues and pathologies in crops. Remote sensing with Unmanned Aerial Vehicles (UAVs) has made crop monitoring more precise, cost-efficient and accessible. Nowadays, remote monitoring involves calculating maps of vegetation indices by using different software that takes either Truecolor (RGB) or multispectral images as an input. These maps are then used to segment the crop into management zones. Finally, knowing the spectral signature of a crop (the reflected radiation as a function of wavelength) can be used as an input for decision-making and crop characterization. The calculation of vegetation indices using software such as Pix4D has high precision for monoculture plantations. However, this paper shows that using this software on mixed crops may lead to errors resulting in an incorrect segmentation of the field. Within this work, authors propose to filter all the elements different from the main crop before the calculation of vegetation indices and the spectral signature. A filter based on the Sobel method for border detection is used for filtering a coffee crop. Results show that segmentation into management zones changes with respect to the traditional situation in which a filter is not applied. In particular, it is shown how the values of the spectral signature change in up to 17% per spectral band. Future work will quantify the benefits of filtering through the comparison between in situ measurements and the calculated vegetation indices obtained through remote sensing.

Keywords: coffee, filtering, mixed crop, precision agriculture, remote sensing, spectral signature

Procedia PDF Downloads 388
162 Urban Change Detection and Pattern Analysis Using Satellite Data

Authors: Shivani Jha, Klaus Baier, Rafiq Azzam, Ramakar Jha

Abstract:

In India, generally people migrate from rural area to the urban area for better infra-structural facilities, high standard of living, good job opportunities and advanced transport/communication availability. In fact, unplanned urban development due to migration of people causes seriou damage to the land use, water pollution and available water resources. In the present work, an attempt has been made to use satellite data of different years for urban change detection of Chennai metropolitan city along with pattern analysis to generate future scenario of urban development using buffer zoning in GIS environment. In the analysis, SRTM (30m) elevation data and IRS-1C satellite data for the years 1990, 2000, and 2014, are used. The flow accumulation, aspect, flow direction and slope maps developed using SRTM 30 m data are very useful for finding suitable urban locations for industrial setup and urban settlements. Normalized difference vegetation index (NDVI) and Principal Component Analysis (PCA) have been used in ERDAS imagine software for change detection in land use of Chennai metropolitan city. It has been observed that the urban area has increased exponentially in Chennai metropolitan city with significant decrease in agriculture and barren lands. However, the water bodies located in the study regions are protected and being used as freshwater for drinking purposes. Using buffer zone analysis in GIS environment, it has been observed that the development has taken place in south west direction significantly and will do so in future.

Keywords: urban change, satellite data, the Chennai metropolis, change detection

Procedia PDF Downloads 408
161 Hybrid Approach for Face Recognition Combining Gabor Wavelet and Linear Discriminant Analysis

Authors: A: Annis Fathima, V. Vaidehi, S. Ajitha

Abstract:

Face recognition system finds many applications in surveillance and human computer interaction systems. As the applications using face recognition systems are of much importance and demand more accuracy, more robustness in the face recognition system is expected with less computation time. In this paper, a hybrid approach for face recognition combining Gabor Wavelet and Linear Discriminant Analysis (HGWLDA) is proposed. The normalized input grayscale image is approximated and reduced in dimension to lower the processing overhead for Gabor filters. This image is convolved with bank of Gabor filters with varying scales and orientations. LDA, a subspace analysis techniques are used to reduce the intra-class space and maximize the inter-class space. The techniques used are 2-dimensional Linear Discriminant Analysis (2D-LDA), 2-dimensional bidirectional LDA ((2D)2LDA), Weighted 2-dimensional bidirectional Linear Discriminant Analysis (Wt (2D)2 LDA). LDA reduces the feature dimension by extracting the features with greater variance. k-Nearest Neighbour (k-NN) classifier is used to classify and recognize the test image by comparing its feature with each of the training set features. The HGWLDA approach is robust against illumination conditions as the Gabor features are illumination invariant. This approach also aims at a better recognition rate using less number of features for varying expressions. The performance of the proposed HGWLDA approaches is evaluated using AT&T database, MIT-India face database and faces94 database. It is found that the proposed HGWLDA approach provides better results than the existing Gabor approach.

Keywords: face recognition, Gabor wavelet, LDA, k-NN classifier

Procedia PDF Downloads 467
160 Construction of Submerged Aquatic Vegetation Index through Global Sensitivity Analysis of Radiative Transfer Model

Authors: Guanhua Zhou, Zhongqi Ma

Abstract:

Submerged aquatic vegetation (SAV) in wetlands can absorb nitrogen and phosphorus effectively to prevent the eutrophication of water. It is feasible to monitor the distribution of SAV through remote sensing, but for the reason of weak vegetation signals affected by water body, traditional terrestrial vegetation indices are not applicable. This paper aims at constructing SAV index to enhance the vegetation signals and distinguish SAV from water body. The methodology is as follows: (1) select the bands sensitive to the vegetation parameters based on global sensitivity analysis of SAV canopy radiative transfer model; (2) take the soil line concept as reference, analyze the distribution of SAV and water reflectance simulated by SAV canopy model and semi-analytical water model in the two-dimensional space built by different sensitive bands; (3)select the band combinations which have better separation performance between SAV and water, and use them to build the SAVI indices in the form of normalized difference vegetation index(NDVI); (4)analyze the sensitivity of indices to the water and vegetation parameters, choose the one more sensitive to vegetation parameters. It is proved that index formed of the bands with central wavelengths in 705nm and 842nm has high sensitivity to chlorophyll content in leaves while it is less affected by water constituents. The model simulation shows a general negative, little correlation of SAV index with increasing water depth. Moreover, the index enhances capabilities in separating SAV from water compared to NDVI. The SAV index is expected to have potential in parameter inversion of wetland remote sensing.

Keywords: global sensitivity analysis, radiative transfer model, submerged aquatic vegetation, vegetation indices

Procedia PDF Downloads 262
159 Development of a Web-Based Application for Intelligent Fertilizer Management in Rice Cultivation

Authors: Hao-Wei Fu, Chung-Feng Kao

Abstract:

In the era of rapid technological advancement, information technology (IT) has become integral to modern life, exerting significant influence across diverse sectors and serving as a catalyst for development in various industries. Within agriculture, the integration of IT offers substantial benefits, notably enhancing operational efficiency. Real-time monitoring systems, for instance, have been widely embraced in agriculture, effectively improving crop management practices. This study specifically addresses the management of rice panicle fertilizer, presenting the development of a web application tailored to handle data associated with rice panicle fertilizer management. Leveraging the normalized difference red edge index, this application optimizes the quantity of rice panicle fertilizer used, providing recommendations to agricultural stakeholders and service providers in the agricultural information sector. The overarching objective is to minimize costs while maximizing yields. Furthermore, a robust database system has been established to store and manage relevant data for future reference in rice cultivation management. Additionally, the study utilizes the Representational State Transfer software architectural style to construct an application programming interface (API), facilitating data creation, retrieval, updating, and deletion for users via the HyperText Transfer Protocol methods. Future plans involve integrating this API with third-party services to incorporate it into larger frameworks, thus catering to the diverse requirements of various third-party services.

Keywords: application programming interface, HyperText Transfer Protocol, nitrogen fertilizer intelligent management, web-based application

Procedia PDF Downloads 61
158 Deprivation of Visual Information Affects Differently the Gait Cycle in Children with Different Level of Motor Competence

Authors: Miriam Palomo-Nieto, Adrian Agricola, Rudolf Psotta, Reza Abdollahipour, Ludvik Valtr

Abstract:

The importance of vision and the visual control of movement have been labeled in the literature related to motor control and many studies have demonstrated that children with low motor competence may rely more heavily on vision to perform movements than their typically developing peers. The aim of the study was to highlight the effects of different visual conditions on motor performance during walking in children with different levels of motor coordination. Participants (n = 32, mean age = 8.5 years sd. ± 0.5) were divided into two groups: typical development (TD) and low motor coordination (LMC) based on the scores of the Movement Assessment Battery for Children (MABC-2). They were asked to walk along a 10 meters walkway where the Optojump-Next instrument was installed in a portable laboratory (15 x 3 m), which allows that all participants had the same visual information. They walked in self-selected speed under four visual conditions: full vision (FV), limited vision 100 ms (LV-100), limited vision 150 ms (LV-150) and non-vision (NV). For visual occlusion participants were equipped with Plato Goggles that shut for 100 and 150 ms, respectively, within each 2 sec. Data were analyzed in a two-way mixed-effect ANOVA including 2 (TD vs. LMC) x 4 (FV, LV-100, LV-150 & NV) with repeated-measures on the last factor (p ≤.05). Results indicated that TD children walked faster and with longer normalized steps length and strides than LMC children. For TD children the percentage of the single support and swing time were higher than for low motor competence children. However, the percentage of load response and pre swing was higher in the low motor competence children rather than the TD children. These findings indicated that through walking we could be able to identify different levels of motor coordination in children. Likewise, LMC children showed shorter percentages in those parameters regarding only one leg support, supporting the idea of balance problems.

Keywords: visual information, motor performance, walking pattern, optojump

Procedia PDF Downloads 574
157 Research Analysis of Urban Area Expansion Based on Remote Sensing

Authors: Sheheryar Khan, Weidong Li, Fanqian Meng

Abstract:

The Urban Heat Island (UHI) effect is one of the foremost problems out of other ecological and socioeconomic issues in urbanization. Due to this phenomenon that human-made urban areas have replaced the rural landscape with the surface that increases thermal conductivity and urban warmth; as a result, the temperature in the city is higher than in the surrounding rural areas. To affect the evidence of this phenomenon in the Zhengzhou city area, an observation of the temperature variations in the urban area is done through a scientific method that has been followed. Landsat 8 satellite images were taken from 2013 to 2015 to calculate the effect of Urban Heat Island (UHI) along with the NPP-VRRIS night-time remote sensing data to analyze the result for a better understanding of the center of the built-up area. To further support the evidence, the correlation between land surface temperatures and the normalized difference vegetation index (NDVI) was calculated using the Red band 4 and Near-infrared band 5 of the Landsat 8 data. Mono-window algorithm was applied to retrieve the land surface temperature (LST) distribution from the Landsat 8 data using Band 10 and 11 accordingly to convert the top-of-atmosphere radiance (TOA) and to convert the satellite brightness temperature. Along with Landsat 8 data, NPP-VIIRS night-light data is preprocessed to get the research area data. The analysis between Landsat 8 data and NPP night-light data was taken to compare the output center of the Built-up area of Zhengzhou city.

Keywords: built-up area, land surface temperature, mono-window algorithm, NDVI, remote sensing, threshold method, Zhengzhou

Procedia PDF Downloads 139