Search results for: mean invasive gradient
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1425

Search results for: mean invasive gradient

1125 Gradient-Based Reliability Optimization of Integrated Energy Systems Under Extreme Weather Conditions: A Case Study in Ningbo, China

Authors: Da LI, Peng Xu

Abstract:

Recent extreme weather events, such as the 2021 European floods and North American heatwaves, have exposed the vulnerability of energy systems to both extreme demand scenarios and potential physical damage. Current integrated energy system designs often overlook performance under these challenging conditions. This research, focusing on a regional integrated energy system in Ningbo, China, proposes a distinct design method to optimize system reliability during extreme events. A multi-scenario model was developed, encompassing various extreme load conditions and potential system damages caused by severe weather. Based on this model, a comprehensive reliability improvement scheme was designed, incorporating a gradient approach to address different levels of disaster severity through the integration of advanced technologies like distributed energy storage. The scheme's effectiveness was validated through Monte Carlo simulations. Results demonstrate significant enhancements in energy supply reliability and peak load reduction capability under extreme scenarios. The findings provide several insights for improving energy system adaptability in the face of climate-induced challenges, offering valuable references for building reliable energy infrastructure capable of withstanding both extreme demands and physical threats across a spectrum of disaster intensities.

Keywords: extreme weather events, integrated energy systems, reliability improvement, climate change adaptation

Procedia PDF Downloads 25
1124 An Insight into the Paddy Soil Denitrifying Bacteria and Their Relation with Soil Phospholipid Fatty Acid Profile

Authors: Meenakshi Srivastava, A. K. Mishra

Abstract:

This study characterizes the metabolic versatility of denitrifying bacterial communities residing in the paddy soil using the GC-MS based Phospholipid Fatty Acid (PLFA) analyses simultaneously with nosZ gene based PCR-DGGE (Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis) and real time Q-PCR analysis. We have analyzed the abundance of nitrous oxide reductase (nosZ) genes, which was subsequently related to soil PLFA profile and DGGE based denitrifier community structure. Soil denitrifying bacterial community comprised majority or dominance of Ochrobactrum sp. following Cupriavidus and uncultured bacteria strains in paddy soil of selected sites. Initially, we have analyzed the abundance of the nitrous oxide reductase gene (nosZ), which was found to be related with PLFA based lipid profile. Chandauli of Eastern UP, India represented greater amount of lipid content (C18-C20) and denitrifier’s diversity. This study suggests the positive co-relation between soil PLFA profiles, DGGE, and Q-PCR data. Thus, a close networking among metabolic abilities and taxonomic composition of soil microbial communities existed, and subsequently, such work at greater extent could be helpful in managing nutrient dynamics as well as microbial dynamics of paddy soil ecosystem.

Keywords: denaturing gradient gel electrophoresis, DGGE, nitrifying and denitrifying bacteria, PLFA, Q-PCR

Procedia PDF Downloads 124
1123 Endoscopic Treatment of Esophageal Injuries Using Vacuum Therapy

Authors: Murad Gasanov, Shagen Danielyan, Ali Gasanov, Yuri Teterin, Peter Yartsev

Abstract:

Background: Despite the advances made in modern surgery, the treatment of patients with esophageal injuries remains one of the most topical and complex issues. In recent years, high-technology minimally invasive methods, such as endoscopic vacuum therapy (EVT) in the treatment of esophageal injuries. The effectiveness of EVT has been sufficiently studied in case of failure of esophageal anastomoses, however the application of this method in case of mechanical esophageal injuries is limited by a small series of observations, indicating the necessity of additional study. Aim: The aim was to аnalyzed of own experience in the use of endoscopic vacuum therapy (EVT) in a comprehensive examination of patients with esophageal injuries. Methods: We analyzed the results of treatment of 24 patients with mechanical injuries of the esophagus for the period 2019-2021. Complex treatment of patients included the use of minimally invasive technologies, including percutaneous endoscopic gastrostomy (PEG), EVT and video-assisted thoracoscopic debridement. Evaluation of the effectiveness of treatment was carried out using multislice computed tomography (MSCT), endoscopy and laboratory tests. The duration of inpatient treatment and the duration of EVT, the number of system replacements, complications and mortality were taken into account. Result: EVT in patients with mechanical injuries of the esophagus allowed to achieve epithelialization of the esophageal defect in 21 patients (87.5%) in the form of linear scar on the site of perforation or pseudodiverticulum. Complications were noted in 4 patients (16.6%), including bleeding (2) and and esophageal stenosis in the perforation area (2). Lethal outcome was in one observation (4.2%). Conclusion. EVT may be the method of choice in complex treatment in patients with esophageal lesions.

Keywords: esophagus injuries, damage to the esophagus, perforation of the esophagus, spontaneous perforation of the esophagus, mediastinitis, endoscopic vacuum therapy

Procedia PDF Downloads 105
1122 A Systematic Review of Efficacy and Safety of Radiofrequency Ablation in Patients with Spinal Metastases

Authors: Pascale Brasseur, Binu Gurung, Nicholas Halfpenny, James Eaton

Abstract:

Development of minimally invasive treatments in recent years provides a potential alternative to invasive surgical interventions which are of limited value to patients with spinal metastases due to short life expectancy. A systematic review was conducted to explore the efficacy and safety of radiofrequency ablation (RFA), a minimally invasive treatment in patients with spinal metastases. EMBASE, Medline and CENTRAL were searched from database inception to March 2017 for randomised controlled trials (RCTs) and non-randomised studies. Conference proceedings for ASCO and ESMO published in 2015 and 2016 were also searched. Fourteen studies were included: three prospective interventional studies, four prospective case series and seven retrospective case series. No RCTs or studies comparing RFA with another treatment were identified. RFA was followed by cement augmentation in all patients in seven studies and some patients (40-96%) in the remaining seven studies. Efficacy was assessed as pain relief in 13/14 studies with the use of a numerical rating scale (NRS) or a visual analogue scale (VAS) at various time points. Ten of the 13 studies reported a significant decrease in pain outcome, post-RFA compared to baseline. NRS scores improved significantly at 1 week (5.9 to 3.5, p < 0.0001; 8 to 4.3, p < 0.02 and 8 to 3.9, p < 0.0001) and this improvement was maintained at 1 month post-RFA compared to baseline (5.9 to 2.6, p < 0.0001; 8 to 2.9, p < 0.0003; 8 to 2.9, p < 0.0001). Similarly, VAS scores decreased significantly at 1 week (7.5 to 2.7, p=0.00005; 7.51 to 1.73, p < 0.0001; 7.82 to 2.82, p < 0.001) and this pattern was maintained at 1 month post-RFA compared to baseline (7.51 to 2.25, p < 0.0001; 7.82 to 3.3; p < 0.001). A significant pain relief was achieved regardless of whether patients had cement augmentation in two studies assessing the impact of RFA with or without cement augmentation on VAS pain scores. In these two studies, a significant decrease in pain scores was reported for patients receiving RFA alone and RFA+cement at 1 week (4.3 to 1.7. p=0.0004 and 6.6 to 1.7, p=0.003 respectively) and 15-36 months (7.9 to 4, p=0.008 and 7.6 to 3.5, p=0.005 respectively) after therapy. Few minor complications were reported and these included neural damage, radicular pain, vertebroplasty leakage and lower limb pain/numbness. In conclusion, the efficacy and safety of RFA were consistently positive between prospective and retrospective studies with reductions in pain and few procedural complications. However, the lack of control groups in the identified studies indicates the possibility of selection bias inherent in single arm studies. Controlled trials exploring efficacy and safety of RFA in patients with spinal metastases are warranted to provide robust evidence. The identified studies provide an initial foundation for such future trials.

Keywords: pain relief, radiofrequency ablation, spinal metastases, systematic review

Procedia PDF Downloads 173
1121 Approximation of a Wanted Flow via Topological Sensitivity Analysis

Authors: Mohamed Abdelwahed

Abstract:

We propose an optimization algorithm for the geometric control of fluid flow. The used approach is based on the topological sensitivity analysis method. It consists in studying the variation of a cost function with respect to the insertion of a small obstacle in the domain. Some theoretical and numerical results are presented in 2D and 3D.

Keywords: sensitivity analysis, topological gradient, shape optimization, stokes equations

Procedia PDF Downloads 537
1120 Mitochondrial DNA Copy Number in Egyptian Patients with Hepatitis C Virus Related Hepatocellular Carcinoma

Authors: Doaa Hashad, Amany Elyamany, Perihan Salem

Abstract:

Introduction: Hepatitis C virus infection (HCV) constitutes a serious dilemma that has an impact on the health of millions of Egyptians. Hepatitis C virus related hepatocellular carcinoma (HCV-HCC) is a crucial consequence of HCV that represents the third cause of cancer-related deaths worldwide. Aim of the study: assess the use of mitochondrial DNA (mtDNA) content as a non-invasive molecular biomarker in hepatitis c virus related hepatocellular carcinoma (HCV-HCC). Methods: A total of 135 participants were enrolled in the study. Volunteers were assigned to one of three groups equally; a group of HCV related cirrhosis (HCV-cirrhosis), a group of HCV-HCC and a control group of age- and sex- matched healthy volunteers with no evidence of liver disease. mtDNA was determined using a quantitative real-time PCR technique. Results: mtDNA content was lowest in HCV-HCC cases. No statistically significant difference was observed between the group of HCV-cirrhosis and the control group as regards mtDNA level. HCC patients with multi-centric hepatic lesions had significantly lower mtDNA content. On using receiver operating characteristic curve analysis, a cutoff of 34 was assigned for mtDNA content to distinguish between HCV-HCC and HCV-cirrhosis patients who are not yet complicated by malignancy. Lower mtDNA was associated with greater HCC risk on using healthy controls, HCV-cirrhosis, or combining both groups as a reference group. Conclusions: mtDNA content might constitute a non-invasive molecular biomarker that reflects tumor burden in HCV-HCC cases and could be used as a predictor of HCC risk in patients of HCV-cirrhosis. In addition, the non significant difference of mtDNA level between HCV-cirrhosis patients and healthy controls could eliminate the grey zone created by the use of AFP in some cirrhotic patients.

Keywords: DNA copy number, HCC, HCV, mitochondrial

Procedia PDF Downloads 326
1119 Investigating the Influence of Activation Functions on Image Classification Accuracy via Deep Convolutional Neural Network

Authors: Gulfam Haider, sana danish

Abstract:

Convolutional Neural Networks (CNNs) have emerged as powerful tools for image classification, and the choice of optimizers profoundly affects their performance. The study of optimizers and their adaptations remains a topic of significant importance in machine learning research. While numerous studies have explored and advocated for various optimizers, the efficacy of these optimization techniques is still subject to scrutiny. This work aims to address the challenges surrounding the effectiveness of optimizers by conducting a comprehensive analysis and evaluation. The primary focus of this investigation lies in examining the performance of different optimizers when employed in conjunction with the popular activation function, Rectified Linear Unit (ReLU). By incorporating ReLU, known for its favorable properties in prior research, the aim is to bolster the effectiveness of the optimizers under scrutiny. Specifically, we evaluate the adjustment of these optimizers with both the original Softmax activation function and the modified ReLU activation function, carefully assessing their impact on overall performance. To achieve this, a series of experiments are conducted using a well-established benchmark dataset for image classification tasks, namely the Canadian Institute for Advanced Research dataset (CIFAR-10). The selected optimizers for investigation encompass a range of prominent algorithms, including Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad), and Stochastic Gradient Descent (SGD). The performance analysis encompasses a comprehensive evaluation of the classification accuracy, convergence speed, and robustness of the CNN models trained with each optimizer. Through rigorous experimentation and meticulous assessment, we discern the strengths and weaknesses of the different optimization techniques, providing valuable insights into their suitability for image classification tasks. By conducting this in-depth study, we contribute to the existing body of knowledge surrounding optimizers in CNNs, shedding light on their performance characteristics for image classification. The findings gleaned from this research serve to guide researchers and practitioners in making informed decisions when selecting optimizers and activation functions, thus advancing the state-of-the-art in the field of image classification with convolutional neural networks.

Keywords: deep neural network, optimizers, RMsprop, ReLU, stochastic gradient descent

Procedia PDF Downloads 125
1118 Efficient Human Motion Detection Feature Set by Using Local Phase Quantization Method

Authors: Arwa Alzughaibi

Abstract:

Human Motion detection is a challenging task due to a number of factors including variable appearance, posture and a wide range of illumination conditions and background. So, the first need of such a model is a reliable feature set that can discriminate between a human and a non-human form with a fair amount of confidence even under difficult conditions. By having richer representations, the classification task becomes easier and improved results can be achieved. The Aim of this paper is to investigate the reliable and accurate human motion detection models that are able to detect the human motions accurately under varying illumination levels and backgrounds. Different sets of features are tried and tested including Histogram of Oriented Gradients (HOG), Deformable Parts Model (DPM), Local Decorrelated Channel Feature (LDCF) and Aggregate Channel Feature (ACF). However, we propose an efficient and reliable human motion detection approach by combining Histogram of oriented gradients (HOG) and local phase quantization (LPQ) as the feature set, and implementing search pruning algorithm based on optical flow to reduce the number of false positive. Experimental results show the effectiveness of combining local phase quantization descriptor and the histogram of gradient to perform perfectly well for a large range of illumination conditions and backgrounds than the state-of-the-art human detectors. Areaunder th ROC Curve (AUC) of the proposed method achieved 0.781 for UCF dataset and 0.826 for CDW dataset which indicates that it performs comparably better than HOG, DPM, LDCF and ACF methods.

Keywords: human motion detection, histograms of oriented gradient, local phase quantization, local phase quantization

Procedia PDF Downloads 257
1117 A Study of High Viscosity Oil-Gas Slug Flow Using Gamma Densitometer

Authors: Y. Baba, A. Archibong-Eso, H. Yeung

Abstract:

Experimental study of high viscosity oil-gas flows in horizontal pipelines published in literature has indicated that hydrodynamic slug flow is the dominant flow pattern observed. Investigations have shown that hydrodynamic slugging brings about high instabilities in pressure that can damage production facilities thereby making it inherent to study high viscous slug flow regime so as to improve the understanding of its flow dynamics. Most slug flow models used in the petroleum industry for the design of pipelines together with their closure relationships were formulated based on observations of low viscosity liquid-gas flows. New experimental investigations and data are therefore required to validate these models. In cases where these models underperform, improving upon or building new predictive models and correlations will also depend on the new experimental dataset and further understanding of the flow dynamics in high viscous oil-gas flows. In this study conducted at the Flow laboratory, Oil and Gas Engineering Centre of Cranfield University, slug flow variables such as pressure gradient, mean liquid holdup, frequency and slug length for oil viscosity ranging from 1..0 – 5.5 Pa.s are experimentally investigated and analysed. The study was carried out in a 0.076m ID pipe, two fast sampling gamma densitometer and pressure transducers (differential and point) were used to obtain experimental measurements. Comparison of the measured slug flow parameters to the existing slug flow prediction models available in the literature showed disagreement with high viscosity experimental data thus highlighting the importance of building new predictive models and correlations.

Keywords: gamma densitometer, mean liquid holdup, pressure gradient, slug frequency and slug length

Procedia PDF Downloads 329
1116 Kinematic Gait Analysis Is a Non-Invasive, More Objective and Earlier Measurement of Impairment in the Mdx Mouse Model of Duchenne Muscular Dystrophy

Authors: P. J. Sweeney, T. Ahtoniemi, J. Puoliväli, T. Laitinen, K. Lehtimäki, A. Nurmi, D. Wells

Abstract:

Duchenne muscular dystrophy (DMD) is caused by an X linked mutation in the dystrophin gene; lack of dystrophin causes a progressive muscle necrosis which leads to a progressive decrease in mobility in those suffering from the disease. The MDX mouse, a mutant mouse model which displays a frank dystrophinopathy, is currently widely employed in pre clinical efficacy models for treatments and therapies aimed at DMD. In general the end-points examined within this model have been based on invasive histopathology of muscles and serum biochemical measures like measurement of serum creatine kinase (sCK). It is established that a “critical period” between 4 and 6 weeks exists in the MDX mouse when there is extensive muscle damage that is largely sub clinical but evident with sCK measurements and histopathological staining. However, a full characterization of the MDX model remains largely incomplete especially with respect to the ability to aggravate of the muscle damage beyond the critical period. The purpose of this study was to attempt to aggravate the muscle damage in the MDX mouse and to create a wider, more readily translatable and discernible, therapeutic window for the testing of potential therapies for DMD. The study consisted of subjecting 15 male mutant MDX mice and 15 male wild-type mice to an intense chronic exercise regime that consisted of bi-weekly (two times per week) treadmill sessions over a 12 month period. Each session was 30 minutes in duration and the treadmill speed was gradually built up to 14m/min for the entire session. Baseline plasma creatine kinase (pCK), treadmill training performance and locomotor activity were measured after the “critical period” at around 10 weeks of age and again at 14 weeks of age, 6 months, 9 months and 12 months of age. In addition, kinematic gait analysis was employed using a novel analysis algorithm in order to compare changes in gait and fine motor skills in diseased exercised MDX mice compared to exercised wild type mice and non exercised MDX mice. In addition, a morphological and metabolic profile (including lipid profile), from the muscles most severely affected, the gastrocnemius muscle and the tibialis anterior muscle, was also measured at the same time intervals. Results indicate that by aggravating or exacerbating the underlying muscle damage in the MDX mouse by exercise a more pronounced and severe phenotype in comes to light and this can be picked up earlier by kinematic gait analysis. A reduction in mobility as measured by open field is not apparent at younger ages nor during the critical period, but changes in gait are apparent in the mutant MDX mice. These gait changes coincide with pronounced morphological and metabolic changes by non-invasive anatomical MRI and proton spectroscopy (1H-MRS) we have reported elsewhere. Evidence of a progressive asymmetric pathology in imaging parameters as well as in the kinematic gait analysis was found. Taken together, the data show that chronic exercise regime exacerbates the muscle damage beyond the critical period and the ability to measure through non-invasive means are important factors to consider when performing preclinical efficacy studies in the MDX mouse.

Keywords: Gait, muscular dystrophy, Kinematic analysis, neuromuscular disease

Procedia PDF Downloads 276
1115 Processing and Modeling of High-Resolution Geophysical Data for Archaeological Prospection, Nuri Area, Northern Sudan

Authors: M. Ibrahim Ali, M. El Dawi, M. A. Mohamed Ali

Abstract:

In this study, the use of magnetic gradient survey, and the geoelectrical ground methods used together to explore archaeological features in Nuri’s pyramids area. Research methods used and the procedures and methodologies have taken full right during the study. The magnetic survey method was used to search for archaeological features using (Geoscan Fluxgate Gradiometer (FM36)). The study area was divided into a number of squares (networks) exactly equal (20 * 20 meters). These squares were collected at the end of the study to give a major network for each region. Networks also divided to take the sample using nets typically equal to (0.25 * 0.50 meter), in order to give a more specific archaeological features with some small bipolar anomalies that caused by buildings built from fired bricks. This definition is important to monitor many of the archaeological features such as rooms and others. This main network gives us an integrated map displayed for easy presentation, and it also allows for all the operations required using (Geoscan Geoplot software). The parallel traverse is the main way to take readings of the magnetic survey, to get out the high-quality data. The study area is very rich in old buildings that vary from small to very large. According to the proportion of the sand dunes and the loose soil, most of these buildings are not visible from the surface. Because of the proportion of the sandy dry soil, there is no connection between the ground surface and the electrodes. We tried to get electrical readings by adding salty water to the soil, but, unfortunately, we failed to confirm the magnetic readings with electrical readings as previously planned.

Keywords: archaeological features, independent grids, magnetic gradient, Nuri pyramid

Procedia PDF Downloads 482
1114 Role of Imaging in Predicting the Receptor Positivity Status in Lung Adenocarcinoma: A Chapter in Radiogenomics

Authors: Sonal Sethi, Mukesh Yadav, Abhimanyu Gupta

Abstract:

The upcoming field of radiogenomics has the potential to upgrade the role of imaging in lung cancer management by noninvasive characterization of tumor histology and genetic microenvironment. Receptor positivity like epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) genotyping are critical in lung adenocarcinoma for treatment. As conventional identification of receptor positivity is an invasive procedure, we analyzed the features on non-invasive computed tomography (CT), which predicts the receptor positivity in lung adenocarcinoma. Retrospectively, we did a comprehensive study from 77 proven lung adenocarcinoma patients with CT images, EGFR and ALK receptor genotyping, and clinical information. Total 22/77 patients were receptor-positive (15 had only EGFR mutation, 6 had ALK mutation, and 1 had both EGFR and ALK mutation). Various morphological characteristics and metastatic distribution on CT were analyzed along with the clinical information. Univariate and multivariable logistic regression analyses were used. On multivariable logistic regression analysis, we found spiculated margin, lymphangitic spread, air bronchogram, pleural effusion, and distant metastasis had a significant predictive value for receptor mutation status. On univariate analysis, air bronchogram and pleural effusion had significant individual predictive value. Conclusions: Receptor positive lung cancer has characteristic imaging features compared with nonreceptor positive lung adenocarcinoma. Since CT is routinely used in lung cancer diagnosis, we can predict the receptor positivity by a noninvasive technique and would follow a more aggressive algorithm for evaluation of distant metastases as well as for the treatment.

Keywords: lung cancer, multidisciplinary cancer care, oncologic imaging, radiobiology

Procedia PDF Downloads 136
1113 Evaluation of Internal Friction Angle in Overconsolidated Granular Soil Deposits Using P- and S-Wave Seismic Velocities

Authors: Ehsan Pegah, Huabei Liu

Abstract:

Determination of the internal friction angle (φ) in natural soil deposits is an important issue in geotechnical engineering. The main objective of this study was to examine the evaluation of this parameter in overconsolidated granular soil deposits by using the P-wave velocity and the anisotropic components of S-wave velocity (i.e., both the vertical component (SV) and the horizontal component (SH) of S-wave). To this end, seventeen pairs of P-wave and S-wave seismic refraction profiles were carried out at three different granular sites in Iran using non-invasive seismic wave methods. The acquired shot gathers were processed, from which the P-wave, SV-wave and SH-wave velocities were derived. The reference values of φ and overconsolidation ratio (OCR) in the soil deposits were measured through laboratory tests. By assuming cross-anisotropy of the soils, the P-wave and S-wave velocities were utilized to develop an equation for calculating the coefficient of lateral earth pressure at-rest (K₀) based on the theory of elasticity for a cross-anisotropic medium. In addition, to develop an equation for OCR estimation in granular geomaterials in terms of SH/SV velocity ratios, a general regression analysis was performed on the resulting information from this research incorporated with the respective data published in the literature. The calculated K₀ values coupled with the estimated OCR values were finally employed in the Mayne and Kulhawy formula to evaluate φ in granular soil deposits. The results showed that reliable values of φ could be estimated based on the seismic wave velocities. The findings of this study may be used as the appropriate approaches for economic and non-invasive determination of in-situ φ in granular soil deposits using the surface seismic surveys.

Keywords: angle of internal friction, overconsolidation ratio, granular soils, P-wave velocity, SV-wave velocity, SH-wave velocity

Procedia PDF Downloads 158
1112 Decoding Kinematic Characteristics of Finger Movement from Electrocorticography Using Classical Methods and Deep Convolutional Neural Networks

Authors: Ksenia Volkova, Artur Petrosyan, Ignatii Dubyshkin, Alexei Ossadtchi

Abstract:

Brain-computer interfaces are a growing research field producing many implementations that find use in different fields and are used for research and practical purposes. Despite the popularity of the implementations using non-invasive neuroimaging methods, radical improvement of the state channel bandwidth and, thus, decoding accuracy is only possible by using invasive techniques. Electrocorticography (ECoG) is a minimally invasive neuroimaging method that provides highly informative brain activity signals, effective analysis of which requires the use of machine learning methods that are able to learn representations of complex patterns. Deep learning is a family of machine learning algorithms that allow learning representations of data with multiple levels of abstraction. This study explores the potential of deep learning approaches for ECoG processing, decoding movement intentions and the perception of proprioceptive information. To obtain synchronous recording of kinematic movement characteristics and corresponding electrical brain activity, a series of experiments were carried out, during which subjects performed finger movements at their own pace. Finger movements were recorded with a three-axis accelerometer, while ECoG was synchronously registered from the electrode strips that were implanted over the contralateral sensorimotor cortex. Then, multichannel ECoG signals were used to track finger movement trajectory characterized by accelerometer signal. This process was carried out both causally and non-causally, using different position of the ECoG data segment with respect to the accelerometer data stream. The recorded data was split into training and testing sets, containing continuous non-overlapping fragments of the multichannel ECoG. A deep convolutional neural network was implemented and trained, using 1-second segments of ECoG data from the training dataset as input. To assess the decoding accuracy, correlation coefficient r between the output of the model and the accelerometer readings was computed. After optimization of hyperparameters and training, the deep learning model allowed reasonably accurate causal decoding of finger movement with correlation coefficient r = 0.8. In contrast, the classical Wiener-filter like approach was able to achieve only 0.56 in the causal decoding mode. In the noncausal case, the traditional approach reached the accuracy of r = 0.69, which may be due to the presence of additional proprioceptive information. This result demonstrates that the deep neural network was able to effectively find a representation of the complex top-down information related to the actual movement rather than proprioception. The sensitivity analysis shows physiologically plausible pictures of the extent to which individual features (channel, wavelet subband) are utilized during the decoding procedure. In conclusion, the results of this study have demonstrated that a combination of a minimally invasive neuroimaging technique such as ECoG and advanced machine learning approaches allows decoding motion with high accuracy. Such setup provides means for control of devices with a large number of degrees of freedom as well as exploratory studies of the complex neural processes underlying movement execution.

Keywords: brain-computer interface, deep learning, ECoG, movement decoding, sensorimotor cortex

Procedia PDF Downloads 177
1111 Prediction Modeling of Alzheimer’s Disease and Its Prodromal Stages from Multimodal Data with Missing Values

Authors: M. Aghili, S. Tabarestani, C. Freytes, M. Shojaie, M. Cabrerizo, A. Barreto, N. Rishe, R. E. Curiel, D. Loewenstein, R. Duara, M. Adjouadi

Abstract:

A major challenge in medical studies, especially those that are longitudinal, is the problem of missing measurements which hinders the effective application of many machine learning algorithms. Furthermore, recent Alzheimer's Disease studies have focused on the delineation of Early Mild Cognitive Impairment (EMCI) and Late Mild Cognitive Impairment (LMCI) from cognitively normal controls (CN) which is essential for developing effective and early treatment methods. To address the aforementioned challenges, this paper explores the potential of using the eXtreme Gradient Boosting (XGBoost) algorithm in handling missing values in multiclass classification. We seek a generalized classification scheme where all prodromal stages of the disease are considered simultaneously in the classification and decision-making processes. Given the large number of subjects (1631) included in this study and in the presence of almost 28% missing values, we investigated the performance of XGBoost on the classification of the four classes of AD, NC, EMCI, and LMCI. Using 10-fold cross validation technique, XGBoost is shown to outperform other state-of-the-art classification algorithms by 3% in terms of accuracy and F-score. Our model achieved an accuracy of 80.52%, a precision of 80.62% and recall of 80.51%, supporting the more natural and promising multiclass classification.

Keywords: eXtreme gradient boosting, missing data, Alzheimer disease, early mild cognitive impairment, late mild cognitive impair, multiclass classification, ADNI, support vector machine, random forest

Procedia PDF Downloads 188
1110 MRI R2* of Liver in an Animal Model

Authors: Chiung-Yun Chang, Po-Chou Chen, Jiun-Shiang Tzeng, Ka-Wai Mac, Chia-Chi Hsiao, Jo-Chi Jao

Abstract:

This study aimed to measure R2* relaxation rates in the liver of New Zealand White (NZW) rabbits. R2* relaxation rate has been widely used in various hepatic diseases for iron overload by quantifying iron contents in liver. R2* relaxation rate is defined as the reciprocal of T2* relaxation time and mainly depends on the composition of tissue. Different tissues would have different R2* relaxation rates. The signal intensity decay in Magnetic resonance imaging (MRI) may be characterized by R2* relaxation rates. In this study, a 1.5T GE Signa HDxt whole body MR scanner equipped with an 8-channel high resolution knee coil was used to observe R2* values in NZW rabbit’s liver and muscle. Eight healthy NZW rabbits weighted 2 ~ 2.5 kg were recruited. After anesthesia using Zoletil 50 and Rompun 2% mixture, the abdomen of rabbit was landmarked at the center of knee coil to perform 3-plane localizer scan using fast spoiled gradient echo (FSPGR) pulse sequence. Afterward, multi-planar fast gradient echo (MFGR) scans were performed with 8 various echo times (TEs) (2/4/6/8/10/12/14/16 ms) to acquire images for R2* calculations. Regions of interest (ROIs) at liver and muscle were measured using Advantage workstation. Finally, the R2* was obtained by a linear regression of ln(SI) on TE. The results showed that the longer the echo time, the smaller the signal intensity. The R2* values of liver and muscle were 44.8  10.9 s-1 and 37.4  9.5 s-1, respectively. It implies that the iron concentration of liver is higher than that of muscle. In conclusion, R2* is correlated with iron contents in tissue. The correlations between R2* and iron content in NZW rabbit might be valuable for further exploration.

Keywords: liver, magnetic resonance imaging, muscle, R2* relaxation rate

Procedia PDF Downloads 436
1109 Advanced Techniques in Robotic Mitral Valve Repair

Authors: Abraham J. Rizkalla, Tristan D. Yan

Abstract:

Purpose: Durable mitral valve repair is preferred to a replacement, avoiding the need for anticoagulation or re-intervention, with a reduced risk of endocarditis. Robotic mitral repair has been gaining favour globally as a safe, effective, and reproducible method of minimally invasive valve repair. In this work, we showcase the use of the Davinci© Xi robotic platform to perform several advanced techniques, working synergistically to achieve successful mitral repair in advanced mitral disease. Techniques: We present the case of a Barlow type mitral valve disease with a tall and redundant posterior leaflet resulting in severe mitral regurgitation and systolic anterior motion. Firstly, quadrangular resection of P2 is performed to remove the excess and redundant leaflet. Secondly, a sliding leaflet plasty of P1 and P3 is used to reconstruct the posterior leaflet. To anchor the newly formed posterior leaflet to the papillary muscle, CV-4 Goretex neochordae are fashioned using the innovative string, ruler, and bulldog technique. Finally, mitral valve annuloplasty and closure of a patent foramen ovale complete the repair. Results: There was no significant residual mitral regurgitation and complete resolution of the systolic anterior motion of the mitral valve on post operative transoesophageal echocardiography. Conclusion: This work highlights the robotic approach to complex repair techniques for advanced mitral valve disease. Familiarity with resection and sliding plasty, neochord implantation, and annuloplasty allows the modern cardiac surgeon to achieve a minimally-invasive and durable mitral valve repair when faced with complex mitral valve pathology.

Keywords: robotic mitral valve repair, Barlow's valve, sliding plasty, neochord, annuloplasty, quadrangular resection

Procedia PDF Downloads 86
1108 Magnetic and Optical Properties of Quaternary GaFeMnN

Authors: B. Bouadjemi, S. Bentata, A. Abbad, W.Benstaali

Abstract:

The full-potential linearized augmented plane wave method (FP-LAPW) within the Generalized Gradient Approximation (GGA) is used to calculate the magnetic and optical properties of quaternary GaFeMnN. The results show that the compound becomes magnetic and half metallic and there is an apparition of peaks at low frequencies for the optical properties.

Keywords: optical properties, DFT, Spintronic, wave

Procedia PDF Downloads 551
1107 Induced Pulsation Attack Against Kalman Filter Driven Brushless DC Motor Control System

Authors: Yuri Boiko, Iluju Kiringa, Tet Yeap

Abstract:

We use modeling and simulation tools, to introduce a novel bias injection attack, named the ’Induced Pulsation Attack’, which targets Cyber Physical Systems with closed-loop controlled Brushless DC (BLDC) motor and Kalman filter driver in the feedback loop. This attack involves engaging a linear function with a constant gradient to distort the coefficient of the injected bias, which falsifies the Kalman filter estimates of the rotor’s angular speed. As a result, this manipulation interaction inside the control system causes periodic pulsations in a form of asymmetric sine wave of both current and voltage in the circuit windings, with a high magnitude. It is shown that by varying the gradient of linear function, one can control both the frequency and structure of the induced pulsations. It is also demonstrated that terminating the attack at any point leads to additional compensating effort from the controller to restore the speed to its equilibrium value. This compensation effort produces an exponentially decaying wave, which we call the ’attack withdrawal syndrome’ wave. The conditions for maximizing or minimizing the impact of the attack withdrawal syndrome are determined. Linking the termination of the attack to the end of the full period of the induced pulsation wave has been shown to nullify the attack withdrawal syndrome wave, thereby improving the attack’s covertness.

Keywords: cyber-attack, induced pulsation, bias injection, Kalman filter, BLDC motor, control system, closed loop, P- controller, PID-controller, saw-function, cyber-physical system

Procedia PDF Downloads 71
1106 Primary Cryptococcal Pneumonia in an HIV Positive Filipino Patient

Authors: Mark Andrew Tu, Raymond Olazo, Cybele Abad

Abstract:

Cryptococcosis is an invasive infection most commonly found in patients who are immuno compromised. However, patients with this infection usually present with meningitis and rarely pulmonary infection in isolation. We present a case of a Filipino HIV patient who developed cryptococcal pneumonia without meningitis.

Keywords: Cryptococcal Pneumonia, HIV, Filipino, immune system

Procedia PDF Downloads 441
1105 Effect of Chilling on Soundness, Micro Hardness, Ultimate Tensile Strength, and Corrosion Behavior of Nickel Alloy-Fused Silica Metal Matrix Composite

Authors: G. Purushotham, Joel Hemanth

Abstract:

An investigation has been carried out to fabricate and evaluate the strength and soundness of chilled composites consisting of nickel matrix and fused silica particles (size 40–150 μm) in the matrix. The dispersoid added ranged from 3 to 12 wt. % in steps of 3%. The resulting composites cast in moulds containing metallic and non-metallic chill blocks (MS, SiC, and Cu) were tested for their microstructure and mechanical properties. The main objective of the present research is to obtain fine grain Ni/SiO2 chilled sound composite having very good mechanical properties. Results of the investigation reveal the following: (1) Strength of the composite developed is highly dependent on the location of the casting from where the test specimens are taken and also on the dispersoid content of the composite. (2) Chill thickness and chill material, however, does significantly affect the strength and soundness of the composite. (3) Soundness of the composite developed is highly dependent on the chilling rate as well as the dispersoid content. An introduction of chilling and increase in the dispersoid content of the material both result in an increase in the ultimate tensile strength (UTS) of the material. The temperature gradient developed during solidification and volumetric heat capacity (VHC) of the chill used is the important parameters controlling the soundness of the composite. (4) Thermal properties of the end chills are used to determine the magnitude of the temperature gradient developed along the length of the casting solidifying under the influence of chills.

Keywords: metal matrix composite, mechanical properties, corrosion behavior, nickel alloy, fused silica, chills

Procedia PDF Downloads 398
1104 Assessment of Arterial Stiffness through Measurement of Magnetic Flux Disturbance and Electrocardiogram Signal

Authors: Jing Niu, Jun X. Wang

Abstract:

Arterial stiffness predicts mortality and morbidity, independently of other cardiovascular risk factors. And it is a major risk factor for age-related morbidity and mortality. The non-invasive industry gold standard measurement system of arterial stiffness utilizes pulse wave velocity method. However, the desktop device is expensive and requires trained professional to operate. The main objective of this research is the proof of concept of the proposed non-invasive method which uses measurement of magnetic flux disturbance and electrocardiogram (ECG) signal for measuring arterial stiffness. The method could enable accurate and easy self-assessment of arterial stiffness at home, and to help doctors in research, diagnostic and prescription in hospitals and clinics. A platform for assessing arterial stiffness through acquisition and analysis of radial artery pulse waveform and ECG signal has been developed based on the proposed method. Radial artery pulse waveform is acquired using the magnetic based sensing technology, while ECG signal is acquired using two dry contact single arm ECG electrodes. The measurement only requires the participant to wear a wrist strap and an arm band. Participants were recruited for data collection using both the developed platform and the industry gold standard system. The results from both systems underwent correlation assessment analysis. A strong positive correlation between the results of the two systems is observed. This study presents the possibility of developing an accurate, easy to use and affordable measurement device for arterial stiffness assessment.

Keywords: arterial stiffness, electrocardiogram, pulse wave velocity, Magnetic Flux Disturbance

Procedia PDF Downloads 187
1103 An Analytical Approach of Computational Complexity for the Method of Multifluid Modelling

Authors: A. K. Borah, A. K. Singh

Abstract:

In this paper we deal building blocks of the computer simulation of the multiphase flows. Whole simulation procedure can be viewed as two super procedures; The implementation of VOF method and the solution of Navier Stoke’s Equation. Moreover, a sequential code for a Navier Stoke’s solver has been studied.

Keywords: Bi-conjugate gradient stabilized (Bi-CGSTAB), ILUT function, krylov subspace, multifluid flows preconditioner, simple algorithm

Procedia PDF Downloads 528
1102 The Role of Non-Native Plant Species in Enhancing Food Security in Sub-Saharan Africa

Authors: Thabiso Michael Mokotjomela, Jasper Knight

Abstract:

Intensification of agricultural food production in sub-Saharan Africa is of paramount importance as a means of increasing the food security of communities that are already experiencing a range of environmental and socio-economic stresses. However, achieving this aim faces several challenges including ongoing climate change, increased resistance of diseases and pests, extreme environmental degradation partly due to biological invasions, land tenure and management practices, socio-economic developments of rural populations, and national population growth. In particular, non-native plant species tend to display greater adaptation capacity to environmental stress than native species that form important food resource base for human beings, thus suggesting a potential for usage to shift accordingly. Based on review of the historical benefits of non-native plant species in food production in sub-Saharan Africa, we propose that use of non-invasive, non-native plant species and/or the genetic modification of native species might be viable options for future agricultural sustainability in this region. Coupled with strategic foresight planning (e.g. use of biological control agents that suppress plant species’ invasions), the consumptive use of already-introduced non-native species might help in containment and control of possible negative environmental impacts of non-native species on native species, ecosystems and biodiversity, and soil fertility and hydrology. Use of non-native species in food production should be accompanied by low cost agroecology practices (e.g. conservation agriculture and agrobiodiversity) that may promote the gradual recovery of natural capital, ecosystem services, and promote conservation of the natural environment as well as enhance food security.

Keywords: food security, invasive species, agroecology, agrobiodiversity, socio-economic stresses

Procedia PDF Downloads 369
1101 Fabrication and Characterization of Transdermal Spray Using Film Forming Polymer

Authors: Paresh Patel, Harshit Patel

Abstract:

Superficial fungal skin infection is among the most common skin disease. The drug administration through skin has received attention due to several advantages: Avoidance of significant pre-systemic metabolism, drug levels within the therapeutic window, drugs with short biological half-lives, decreased side effects, the non-invasive character, and very high acceptance.

Keywords: transdermal spray, ketoconazole, Eudragit® RLPO, therapeutic window

Procedia PDF Downloads 399
1100 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector

Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh

Abstract:

A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.

Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score

Procedia PDF Downloads 134
1099 A 3D Cell-Based Biosensor for Real-Time and Non-Invasive Monitoring of 3D Cell Viability and Drug Screening

Authors: Yuxiang Pan, Yong Qiu, Chenlei Gu, Ping Wang

Abstract:

In the past decade, three-dimensional (3D) tumor cell models have attracted increasing interest in the field of drug screening due to their great advantages in simulating more accurately the heterogeneous tumor behavior in vivo. Drug sensitivity testing based on 3D tumor cell models can provide more reliable in vivo efficacy prediction. The gold standard fluorescence staining is hard to achieve the real-time and label-free monitoring of the viability of 3D tumor cell models. In this study, micro-groove impedance sensor (MGIS) was specially developed for dynamic and non-invasive monitoring of 3D cell viability. 3D tumor cells were trapped in the micro-grooves with opposite gold electrodes for the in-situ impedance measurement. The change of live cell number would cause inversely proportional change to the impedance magnitude of the entire cell/matrigel to construct and reflect the proliferation and apoptosis of 3D cells. It was confirmed that 3D cell viability detected by the MGIS platform is highly consistent with the standard live/dead staining. Furthermore, the accuracy of MGIS platform was demonstrated quantitatively using 3D lung cancer model and sophisticated drug sensitivity testing. In addition, the parameters of micro-groove impedance chip processing and measurement experiments were optimized in details. The results demonstrated that the MGIS and 3D cell-based biosensor and would be a promising platform to improve the efficiency and accuracy of cell-based anti-cancer drug screening in vitro.

Keywords: micro-groove impedance sensor, 3D cell-based biosensors, 3D cell viability, micro-electromechanical systems

Procedia PDF Downloads 128
1098 Machine Learning Prediction of Diabetes Prevalence in the U.S. Using Demographic, Physical, and Lifestyle Indicators: A Study Based on NHANES 2009-2018

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

To develop a machine learning model to predict diabetes (DM) prevalence in the U.S. population using demographic characteristics, physical indicators, and lifestyle habits, and to analyze how these factors contribute to the likelihood of diabetes. We analyzed data from 23,546 participants aged 20 and older, who were non-pregnant, from the 2009-2018 National Health and Nutrition Examination Survey (NHANES). The dataset included key demographic (age, sex, ethnicity), physical (BMI, leg length, total cholesterol [TCHOL], fasting plasma glucose), and lifestyle indicators (smoking habits). A weighted sample was used to account for NHANES survey design features such as stratification and clustering. A classification machine learning model was trained to predict diabetes status. The target variable was binary (diabetes or non-diabetes) based on fasting plasma glucose measurements. The following models were evaluated: Logistic Regression (baseline), Random Forest Classifier, Gradient Boosting Machine (GBM), Support Vector Machine (SVM). Model performance was assessed using accuracy, F1-score, AUC-ROC, and precision-recall metrics. Feature importance was analyzed using SHAP values to interpret the contributions of variables such as age, BMI, ethnicity, and smoking status. The Gradient Boosting Machine (GBM) model outperformed other classifiers with an AUC-ROC score of 0.85. Feature importance analysis revealed the following key predictors: Age: The most significant predictor, with diabetes prevalence increasing with age, peaking around the 60s for males and 70s for females. BMI: Higher BMI was strongly associated with a higher risk of diabetes. Ethnicity: Black participants had the highest predicted prevalence of diabetes (14.6%), followed by Mexican-Americans (13.5%) and Whites (10.6%). TCHOL: Diabetics had lower total cholesterol levels, particularly among White participants (mean decline of 23.6 mg/dL). Smoking: Smoking showed a slight increase in diabetes risk among Whites (0.2%) but had a limited effect in other ethnic groups. Using machine learning models, we identified key demographic, physical, and lifestyle predictors of diabetes in the U.S. population. The results confirm that diabetes prevalence varies significantly across age, BMI, and ethnic groups, with lifestyle factors such as smoking contributing differently by ethnicity. These findings provide a basis for more targeted public health interventions and resource allocation for diabetes management.

Keywords: diabetes, NHANES, random forest, gradient boosting machine, support vector machine

Procedia PDF Downloads 7
1097 Analysis of Non-Coding Genome in Streptococcus pneumoniae for Molecular Epidemiology Typing

Authors: Martynova Alina, Lyubov Buzoleva

Abstract:

Streptococcus pneumoniae is the causative agent of pneumonias and meningitids throught all the world. Having high genetic diversity, this microorganism can cause different clinical forms of pneumococcal infections and microbiologically it is really difficult diagnosed by routine methods. Also, epidemiological surveillance requires more developed methods of molecular typing because the recent method of serotyping doesn't allow to distinguish invasive and non-invasive isolates properly. Non-coding genome of bacteria seems to be the interesting source for seeking of highly distinguishable markers to discriminate the subspecies of such a variable bacteria as Streptococcus pneumoniae. Technically, we proposed scheme of discrimination of S.pneumoniae strains with amplification of non-coding region (SP_1932) with the following restriction with 2 types of enzymes of Alu1 and Mn1. Aim: This research aimed to compare different methods of typing and their application for molecular epidemiology purposes. Methods: we analyzed population of 100 strains of S.pneumoniae isolated from different patients by different molecular epidemiology methods such as pulse-field gel electophoresis (PFGE), restriction polymorphism analysis (RFLP) and multilolocus sequence typing (MLST), and all of them were compared with classic typing method as serotyping. The discriminative power was estimated with Simpson Index (SI). Results: We revealed that the most discriminative typing method is RFLP (SI=0,97, there were distinguished 42 genotypes).PFGE was slightly less discriminative (SI=0,95, we identified 35 genotypes). MLST is still the best reference method (SI=1.0). Classic method of serotyping showed quite weak discriminative power (SI=0,93, 24 genotypes). In addition, sensivity of RFLP was 100%, specificity was 97,09%. Conclusion: the most appropriate method for routine epidemiology surveillance is RFLP with non-coding region of Streptococcsu pneumoniae, then PFGE, though in some cases these results should be obligatory confirmed by MLST.

Keywords: molecular epidemiology typing, non-coding genome, Streptococcus pneumoniae, MLST

Procedia PDF Downloads 399
1096 Comparison of Different Machine Learning Algorithms for Solubility Prediction

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.

Keywords: random forest, machine learning, comparison, feature extraction

Procedia PDF Downloads 40