Search results for: leakage gas monitoring
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3425

Search results for: leakage gas monitoring

3125 Distribution-Free Exponentially Weighted Moving Average Control Charts for Monitoring Process Variability

Authors: Chen-Fang Tsai, Shin-Li Lu

Abstract:

Distribution-free control chart is an oncoming area from the statistical process control charts in recent years. Some researchers have developed various nonparametric control charts and investigated the detection capability of these charts. The major advantage of nonparametric control charts is that the underlying process is not specifically considered the assumption of normality or any parametric distribution. In this paper, two nonparametric exponentially weighted moving average (EWMA) control charts based on nonparametric tests, namely NE-S and NE-M control charts, are proposed for monitoring process variability. Generally, weighted moving average (GWMA) control charts are extended by utilizing design and adjustment parameters for monitoring the changes in the process variability, namely NG-S and NG-M control charts. Statistical performance is also investigated on NG-S and NG-M control charts with run rules. Moreover, sensitivity analysis is performed to show the effects of design parameters under the nonparametric NG-S and NG-M control charts.

Keywords: Distribution-free control chart, EWMA control charts, GWMA control charts

Procedia PDF Downloads 275
3124 Prophylactic Replacement of Voice Prosthesis: A Study to Predict Prosthesis Lifetime

Authors: Anne Heirman, Vincent van der Noort, Rob van Son, Marije Petersen, Lisette van der Molen, Gyorgy Halmos, Richard Dirven, Michiel van den Brekel

Abstract:

Objective: Voice prosthesis leakage significantly impacts laryngectomies patients' quality of life, causing insecurity and frequent unplanned hospital visits and costs. In this study, the concept of prophylactic voice prosthesis replacement was explored to prevent leakages. Study Design: A retrospective cohort study. Setting: Tertiary hospital. Methods: Device lifetimes and voice prosthesis replacements of a retrospective cohort, including all patients with laryngectomies between 2000 and 2012 in the Netherlands Cancer Institute, were used to calculate the number of needed voice prostheses per patient per year when preventing 70% of the leakages by prophylactic replacement. Various strategies for the timing of prophylactic replacement were considered: Adaptive strategies based on the individual patient’s history of replacement and fixed strategies based on the results of patients with similar voice prosthesis or treatment characteristics. Results: Patients used a median of 3.4 voice prostheses per year (range 0.1-48.1). We found a high inter-and intrapatient variability in device lifetime. When applying prophylactic replacement, this would become a median of 9.4 voice prostheses per year, which means replacement every 38 days, implying more than six additional voice prostheses per patient per year. The individual adaptive model showed that preventing 70% of the leakages was impossible for most patients, and only a median of 25% can be prevented. Monte-Carlo simulations showed that prophylactic replacement is not feasible due to the high Coefficient of Variation (Standard Deviation/Mean) in device lifetime. Conclusion: Based on our simulations, prophylactic replacement of voice prostheses is not feasible due to high inter-and intrapatient variation in device lifetime.

Keywords: voice prosthesis, voice rehabilitation, total laryngectomy, prosthetic leakage, device lifetime

Procedia PDF Downloads 131
3123 Evaluation of the Analytic for Hemodynamic Instability as a Prediction Tool for Early Identification of Patient Deterioration

Authors: Bryce Benson, Sooin Lee, Ashwin Belle

Abstract:

Unrecognized or delayed identification of patient deterioration is a key cause of in-hospitals adverse events. Clinicians rely on vital signs monitoring to recognize patient deterioration. However, due to ever increasing nursing workloads and the manual effort required, vital signs tend to be measured and recorded intermittently, and inconsistently causing large gaps during patient monitoring. Additionally, during deterioration, the body’s autonomic nervous system activates compensatory mechanisms causing the vital signs to be lagging indicators of underlying hemodynamic decline. This study analyzes the predictive efficacy of the Analytic for Hemodynamic Instability (AHI) system, an automated tool that was designed to help clinicians in early identification of deteriorating patients. The lead time analysis in this retrospective observational study assesses how far in advance AHI predicted deterioration prior to the start of an episode of hemodynamic instability (HI) becoming evident through vital signs? Results indicate that of the 362 episodes of HI in this study, 308 episodes (85%) were correctly predicted by the AHI system with a median lead time of 57 minutes and an average of 4 hours (240.5 minutes). Of the 54 episodes not predicted, AHI detected 45 of them while the episode of HI was ongoing. Of the 9 undetected, 5 were not detected by AHI due to either missing or noisy input ECG data during the episode of HI. In total, AHI was able to either predict or detect 98.9% of all episodes of HI in this study. These results suggest that AHI could provide an additional ‘pair of eyes’ on patients, continuously filling the monitoring gaps and consequently giving the patient care team the ability to be far more proactive in patient monitoring and adverse event management.

Keywords: clinical deterioration prediction, decision support system, early warning system, hemodynamic status, physiologic monitoring

Procedia PDF Downloads 190
3122 Real Energy Performance Study of Large-Scale Solar Water Heater by Using Remote Monitoring

Authors: F. Sahnoune, M. Belhamel, M. Zelmat

Abstract:

Solar thermal systems available today provide reliability, efficiency and significant environmental benefits. In housing, they can satisfy the hot water demand and reduce energy bills by 60 % or more. Additionally, collective systems or large scale solar thermal systems are increasingly used in different conditions for hot water applications and space heating in hotels and multi-family homes, hospitals, nursing homes and sport halls as well as in commercial and industrial building. However, in situ real performance data for collective solar water heating systems has not been extensively outlined. This paper focuses on the study of real energy performances of a collective solar water heating system using the remote monitoring technique in Algerian climatic conditions. This is to ensure proper operation of the system at any time, determine the system performance and to check to what extent solar performance guarantee can be achieved. The measurements are performed on an active indirect heating system of 12 m2 flat plate collector’s surface installed in Algiers and equipped with a various sensors. The sensors transmit measurements to a local station which controls the pumps, valves, electrical auxiliaries, etc. The simulation of the installation was developed using the software SOLO 2000. The system provides a yearly solar yield of 6277.5 KWh for an estimated annual need of 7896 kWh; the yearly average solar cover rate amounted to 79.5%. The productivity is in the order of 523.13 kWh / m²/year. Simulation results are compared to measured results and to guaranteed solar performances. The remote monitoring shows that 90% of the expected solar results can be easy guaranteed on a long period. Furthermore, the installed remote monitoring unit was able to detect some dysfunctions. It follows that remote monitoring is an important tool in energy management of some building equipment.

Keywords: large-scale solar water heater, real energy performance, remote monitoring, solar performance guarantee, tool to promote solar water heater

Procedia PDF Downloads 243
3121 Ensuring Safe Operation by Providing an End-To-End Field Monitoring and Incident Management Approach for Autonomous Vehicle Based on ML/Dl SW Stack

Authors: Lucas Bublitz, Michael Herdrich

Abstract:

By achieving the first commercialization approval in San Francisco the Autonomous Driving (AD) industry proves the technology maturity of the SAE L4 AD systems and the corresponding software and hardware stack. This milestone reflects the upcoming phase in the industry, where the focus is now about scaling and supervising larger autonomous vehicle (AV) fleets in different operation areas. This requires an operation framework, which organizes and assigns responsibilities to the relevant AV technology and operation stakeholders from the AV system provider, the Remote Intervention Operator, the MaaS provider and regulatory & approval authority. This holistic operation framework consists of technological, processual, and organizational activities to ensure safe operation for fully automated vehicles. Regarding the supervision of large autonomous vehicle fleets, a major focus is on the continuous field monitoring. The field monitoring approach must reflect the safety and security criticality of incidents in the field during driving operation. This includes an automatic containment approach, with the overall goal to avoid safety critical incidents and reduce downtime by a malfunction of the AD software stack. An End-to-end (E2E) field monitoring approach detects critical faults in the field, uses a knowledge-based approach for evaluating the safety criticality and supports the automatic containment of these E/E faults. Applying such an approach will ensure the scalability of AV fleets, which is determined by the handling of incidents in the field and the continuous regulatory compliance of the technology after enhancing the Operational Design Domain (ODD) or the function scope by Functions on Demand (FoD) over the entire digital product lifecycle.

Keywords: field monitoring, incident management, multicompliance management for AI in AD, root cause analysis, database approach

Procedia PDF Downloads 77
3120 Assessment of Air Quality Around Western Refinery in Libya: Mobile Monitoring

Authors: A. Elmethnani, A. Jroud

Abstract:

This coastal crude oil refinery is situated north of a big city west of Tripoli; the city then could be highly prone to downwind refinery emissions where the NNE wind direction is prevailing through most seasons of the year. Furthermore, due to the absence of an air quality monitoring network and scarce emission data available for the neighboring community, nearby residents have serious worries about the impacts of the oil refining operations on local air quality. In responding to these concerns, a short term survey has performed for three consecutive days where a semi-continues mobile monitoring approach has developed effectively in this study; the monitoring station (Compact AQM 65 AeroQual) was mounted on a vehicle to move quickly between locations, measurements of 10 minutes averaging of 60 seconds then been taken at each fixed sampling point. The downwind ambient concentration of CO, H₂S, NOₓ, NO₂, SO₂, PM₁, PM₂.₅ PM₁₀, and TSP were measured at carefully chosen sampling locations, ranging from 200m nearby the fence-line passing through the city center up to 4.7 km east to attain best spatial coverage. Results showed worrying levels of PM₂.₅ PM₁₀, and TSP at one sampling location in the city center, southeast of the refinery site, with an average mean of 16.395μg/m³, 33.021μg/m³, and 42.426μg/m³ respectively, which could be attributed to road traffic. No significant concentrations have been detected for other pollutants of interest over the study area, as levels observed for CO, SO₂, H₂S, NOₓ, and NO₂ haven’t respectively exceeded 1.707 ppm, 0.021ppm, 0.134 ppm, 0.4582 ppm, and 0.0018 ppm, which was at the same sampling locations as well. Although it wasn’t possible to compare the results with the Libyan air quality standards due to the difference in the averaging time period, the technique was adequate for the baseline air quality screening procedure. Overall, findings primarily suggest modeling of dispersion of the refinery emissions to assess the likely impact and spatial-temporal distribution of air pollutants.

Keywords: air quality, mobil monitoring, oil refinery

Procedia PDF Downloads 97
3119 Energy-Efficient Clustering Protocol in Wireless Sensor Networks for Healthcare Monitoring

Authors: Ebrahim Farahmand, Ali Mahani

Abstract:

Wireless sensor networks (WSNs) can facilitate continuous monitoring of patients and increase early detection of emergency conditions and diseases. High density WSNs helps us to accurately monitor a remote environment by intelligently combining the data from the individual nodes. Due to energy capacity limitation of sensors, enhancing the lifetime and the reliability of WSNs are important factors in designing of these networks. The clustering strategies are verified as effective and practical algorithms for reducing energy consumption in WSNs and can tackle WSNs limitations. In this paper, an Energy-efficient weight-based Clustering Protocol (EWCP) is presented. Artificial retina is selected as a case study of WSNs applied in body sensors. Cluster heads’ (CHs) selection is equipped with energy efficient parameters. Moreover, cluster members are selected based on their distance to the selected CHs. Comparing with the other benchmark protocols, the lifetime of EWCP is improved significantly.

Keywords: WSN, healthcare monitoring, weighted based clustering, lifetime

Procedia PDF Downloads 311
3118 Predicting Loss of Containment in Surface Pipeline using Computational Fluid Dynamics and Supervised Machine Learning Model to Improve Process Safety in Oil and Gas Operations

Authors: Muhammmad Riandhy Anindika Yudhy, Harry Patria, Ramadhani Santoso

Abstract:

Loss of containment is the primary hazard that process safety management is concerned within the oil and gas industry. Escalation to more serious consequences all begins with the loss of containment, starting with oil and gas release from leakage or spillage from primary containment resulting in pool fire, jet fire and even explosion when reacted with various ignition sources in the operations. Therefore, the heart of process safety management is avoiding loss of containment and mitigating its impact through the implementation of safeguards. The most effective safeguard for the case is an early detection system to alert Operations to take action prior to a potential case of loss of containment. The detection system value increases when applied to a long surface pipeline that is naturally difficult to monitor at all times and is exposed to multiple causes of loss of containment, from natural corrosion to illegal tapping. Based on prior researches and studies, detecting loss of containment accurately in the surface pipeline is difficult. The trade-off between cost-effectiveness and high accuracy has been the main issue when selecting the traditional detection method. The current best-performing method, Real-Time Transient Model (RTTM), requires analysis of closely positioned pressure, flow and temperature (PVT) points in the pipeline to be accurate. Having multiple adjacent PVT sensors along the pipeline is expensive, hence generally not a viable alternative from an economic standpoint.A conceptual approach to combine mathematical modeling using computational fluid dynamics and a supervised machine learning model has shown promising results to predict leakage in the pipeline. Mathematical modeling is used to generate simulation data where this data is used to train the leak detection and localization models. Mathematical models and simulation software have also been shown to provide comparable results with experimental data with very high levels of accuracy. While the supervised machine learning model requires a large training dataset for the development of accurate models, mathematical modeling has been shown to be able to generate the required datasets to justify the application of data analytics for the development of model-based leak detection systems for petroleum pipelines. This paper presents a review of key leak detection strategies for oil and gas pipelines, with a specific focus on crude oil applications, and presents the opportunities for the use of data analytics tools and mathematical modeling for the development of robust real-time leak detection and localization system for surface pipelines. A case study is also presented.

Keywords: pipeline, leakage, detection, AI

Procedia PDF Downloads 193
3117 Contactless Attendance System along with Temperature Monitoring

Authors: Nalini C. Iyer, Shraddha H., Anagha B. Varahamurthy, Dikshith C. S., Ishwar G. Kubasad, Vinayak I. Karalatti, Pavan B. Mulimani

Abstract:

The current scenario of the pandemic due to COVID-19 has led to the awareness among the people to avoid unneces-sary contact in public places. There is a need to avoid contact with physical objects to stop the spreading of infection. The contactless feature has to be included in the systems in public places wherever possible. For example, attendance monitoring systems with fingerprint biometric can be replaced with a contactless feature. One more important protocol followed in the current situation is temperature monitoring and screening. The paper describes an attendance system with a contactless feature and temperature screening for the university. The system displays a QR code to scan, which redirects to the student login web page only if the location is valid (the location where the student scans the QR code should be the location of the display of the QR code). Once the student logs in, the temperature of the student is scanned by the contactless temperature sensor (mlx90614) with an error of 0.5°C. If the temperature falls in the range of the desired value (range of normal body temperature), then the attendance of the student is marked as present, stored in the database, and the door opens automatically. The attendance is marked as absent in the other case, alerted with the display of temperature, and the door remains closed. The door is automated with the help of a servomotor. To avoid the proxy, IR sensors are used to count the number of students in the classroom. The hardware system consisting of a contactless temperature sensor and IR sensor is implemented on the microcontroller, NodeMCU.

Keywords: NodeMCU, IR sensor, attendance monitoring, contactless, temperature

Procedia PDF Downloads 188
3116 Wearable Heart Rate Sensor Based on Wireless System for Heart Health Monitoring

Authors: Murtadha Kareem, Oliver Faust

Abstract:

Wearable biosensor systems can be designed and developed for health monitoring. There is much interest in both scientific and industrial communities established since 2007. Fundamentally, the cost of healthcare has increased dramatically and the world population is aging. That creates the need to harvest technological improvements with small bio-sensing devices, wireless-communication, microelectronics and smart textiles, that leads to non-stop developments of wearable sensor based systems. There has been a significant demand to monitor patient's health status while the patient leaves the hospital in his/her personal environment. To address this need, there are numerous system prototypes which has been launched in the medical market recently, the aim of that is to provide real time information feedback about patient's health status, either to the patient himself/herself or direct to the supervising medical centre station, while being capable to give a notification for the patient in case of possible imminent health threatening conditions. Furthermore, wearable health monitoring systems comprise new techniques to address the problem of managing and monitoring chronic heart diseases for elderly people. Wearable sensor systems for health monitoring include various types of miniature sensors, either wearable or implantable. To be specific, our proposed system able to measure essential physiological parameter, such as heart rate signal which could be transmitted through Bluetooth to the cloud server in order to store, process, analysis and visualise the data acquisition. The acquired measurements are connected through internet of things to a central node, for instance an android smart phone or tablet used for visualising the collected information on application or transmit it to a medical centre.

Keywords: Wearable sensor, Heart rate, Internet of things, Chronic heart disease

Procedia PDF Downloads 162
3115 Water Quality at a Ventilated Improved Pit Latrine Sludge Entrenchment Site

Authors: Babatunde Femi Bakare

Abstract:

Groundwater quality was evaluated at a site for three years after the site was used for entrenchment of Ventilated Improved Pit (VIP) latrine sludge. Analysis performed on the soil characteristics at the entrenchment site indicated that, the soils at the entrenchment site are predominantly sandy. Depth of the water table at the entrenchment site was found to be approximately five meters. Five monitoring boreholes were dug along the perimeter of the sludge trenches and water samples taken from these monitoring boreholes were analyzed for pH, conductivity, sodium ions, chloride ions, phosphate, nitrate, ammonia, and bacteriological analysis. The results obtained from the analysis conducted were compared with the South African Bureau of Standards for drinking water and it was found that the parameters analyzed falls below the specified range. The data obtained from this study indicate that, given the relatively high sludge loading rates, poor soil quality, and the duration of the groundwater quality monitoring, it is unlikely that contamination of groundwater at the entrenchment site will be a major concern. However, caution is advised in extrapolating these results to other locations.

Keywords: boreholes, contamination, entrenchment, groundwater quality, VIP latrines

Procedia PDF Downloads 410
3114 Use of Remote Sensing for Seasonal and Temporal Monitoring in Wetlands: A Case Study of Akyatan Lagoon

Authors: A. Cilek, S. Berberoglu, A. Akin Tanriover, C. Donmez

Abstract:

Wetlands are the areas which have important effects and functions on protecting human life, adjust to nature, and biological variety, besides being potential exploitation sources. Observing the changes in these sensitive areas is important to study for data collecting and correct planning for the future. Remote sensing and Geographic Information System are being increasingly used for environmental studies such as biotope mapping and habitat monitoring. Akyatan Lagoon, one of the most important wetlands in Turkey, has been facing serious threats from agricultural applications in recent years. In this study, seasonal and temporal monitoring in wetlands system are determined by using remotely sensed data and Geographic Information Systems (GIS) between 1985 and 2015. The research method is based on classifying and mapping biotopes in the study area. The natural biotope types were determined as coastal sand dunes, salt marshes, river beds, coastal woods, lakes, lagoons.

Keywords: biotope mapping, GIS, remote sensing, wetlands

Procedia PDF Downloads 394
3113 Detection and Tracking for the Protection of the Elderly and Socially Vulnerable People in the Video Surveillance System

Authors: Mobarok Hossain Bhuyain

Abstract:

Video surveillance processing has attracted various security fields transforming it into one of the leading research fields. Today's demand for detection and tracking of human mobility for security is very useful for human security, such as in crowded areas. Accordingly, video surveillance technology has seen a rapid advancement in recent years, with algorithms analyzing the behavior of people under surveillance automatically. The main motivation of this research focuses on the detection and tracking of the elderly and socially vulnerable people in crowded areas. Degenerate people are a major health concern, especially for elderly people and socially vulnerable people. One major disadvantage of video surveillance is the need for continuous monitoring, especially in crowded areas. To assist the security monitoring live surveillance video, image processing, and artificial intelligence methods can be used to automatically send warning signals to the monitoring officers about elderly people and socially vulnerable people.

Keywords: human detection, target tracking, neural network, particle filter

Procedia PDF Downloads 166
3112 Determination of Viscosity and Degree of Hydrogenation of Liquid Organic Hydrogen Carriers by Cavity Based Permittivity Measurement

Authors: I. Wiemann, N. Weiß, E. Schlücker, M. Wensing

Abstract:

A very promising alternative to compression or cryogenics is the chemical storage of hydrogen by liquid organic hydrogen carriers (LOHC). These carriers enable high energy density and allow, at the same time, efficient and safe storage under ambient conditions without leakage losses. Another benefit of this storage medium is the possibility of transporting it using already available infrastructure for the transport of fossil fuels. Efficient use of LOHC is related to precise process control, which requires a number of sensors in order to measure all relevant process parameters, for example, to measure the level of hydrogen loading of the carrier. The degree of loading is relevant for the energy content of the storage carrier and simultaneously represents the modification in the chemical structure of the carrier molecules. This variation can be detected in different physical properties like permittivity, viscosity, or density. E.g., each degree of loading corresponds to different viscosity values. Conventional measurements currently use invasive viscosity measurements or near-line measurements to obtain quantitative information. This study investigates permittivity changes resulting from changes in hydrogenation degree (chemical structure) and temperature. Based on calibration measurements, the degree of loading and temperature of LOHC can thus be determined by comparatively simple permittivity measurements in a cavity resonator. Subsequently, viscosity and density can be calculated. An experimental setup with a heating device and flow test bench was designed. By varying temperature in the range of 293,15 K -393,15 K and flow velocity up to 140 mm/s, corresponding changes in the resonation frequency were determined in the hundredths of the GHz range. This approach allows inline process monitoring of hydrogenation of the liquid organic hydrogen carrier (LOHC).

Keywords: hydrogen loading, LOHC, measurement, permittivity, viscosity

Procedia PDF Downloads 81
3111 Bank ATM Monitoring System Using IR Sensor

Authors: P. Saravanakumar, N. Raja, M. Rameshkumar, D. Mohankumar, R. Sateeshkumar, B. Maheshwari

Abstract:

This research work is designed using Microsoft VB. Net as front end and MySQL as back end. The project deals with secure the user transaction in the ATM system. This application contains the option for sending the failed transaction details to the particular customer by using the SMS. When the customer withdraws the amount from the Bank ATM system, sometimes the amount will not be dispatched but the amount will be debited to the particular account. This application is used to avoid this type of problems in the ATM system. In this proposed system using IR technique to detect the dispatched amount. IR Transmitter and IR Receiver are placed in the path of cash dispatch. It is connected each other through the IR signal. When the customers withdraw the amount in the ATM system then the amount will be dispatched or not is monitored by IR Receiver. If the amount will be dispatched then the signal will be interrupted between the IR Receiver and the IR Transmitter. At that time, the monitoring system will be reduced their particular withdraw amount on their account. If the cash will not be dispatched, the signal will not be interrupted, at that time the particular withdraw amount will not be reduced their account. If the transaction completed successfully, the transaction details such as withdraw amount and current balance can be sent to the customer via the SMS. If the transaction fails, the transaction failed message can be send to the customer.

Keywords: ATM system, monitoring system, IR Transmitter, IR Receiver

Procedia PDF Downloads 310
3110 Monitoring Trends of Science and Technology Policies in South Korea

Authors: Jeonghwan Jeon

Abstract:

As the science and technology(S&T) has been rapidly advanced, the national government attempts to reflect changes in the S&T for promoting public R&D activities and economic development. Amongst others, due to the rapid advances and changes of S&T, it becomes important to monitor the trends of S&T policies for formulating the new policy and investigating promising S&T fields. Thus, this paper aims to trace the national S&T policies during this decade for monitoring the change of major S&T fields in the case of South Korea. As one of the organization for S&T policy in South Korea, the National Science and Technology Council (NSTC) has been established to coordinate inter-ministerial policies and programs and to determine all of the national and public S&T policy of South Korea. In this regard, the items on national S&T policy determined by the NSTC are useful for understanding the needs for major S&T fields and adapting to the rapid change of S&T. To this end, we first gathered the data on 512 items on the S&T agenda from 1999 to 2013. Based on these items, the trend of S&T policies is monitored and the major S&T fields are derived. Differences of policy purposes between S&T fields are identified to provide guideline for policy making such as budget allocation or investment promotion as well.

Keywords: science and technology policy, trends, S&T field, monitoring

Procedia PDF Downloads 323
3109 Clustering Using Cooperative Multihop Mini-Groups in Wireless Sensor Network: A Novel Approach

Authors: Virender Ranga, Mayank Dave, Anil Kumar Verma

Abstract:

Recently wireless sensor networks (WSNs) are used in many real life applications like environmental monitoring, habitat monitoring, health monitoring etc. Due to power constraint cheaper devices used in these applications, the energy consumption of each device should be kept as low as possible such that network operates for longer period of time. One of the techniques to prolong the network lifetime is an intelligent grouping of sensor nodes such that they can perform their operation in cooperative and energy efficient manner. With this motivation, we propose a novel approach by organize the sensor nodes in cooperative multihop mini-groups so that the total global energy consumption of the network can be reduced and network lifetime can be improved. Our proposed approach also reduces the number of transmitted messages inside the WSNs, which further minimizes the energy consumption of the whole network. The experimental simulations show that our proposed approach outperforms over the state-of-the-art approach in terms of stability period and aggregated data.

Keywords: clustering, cluster-head, mini-group, stability period

Procedia PDF Downloads 358
3108 Registration of Multi-Temporal Unmanned Aerial Vehicle Images for Facility Monitoring

Authors: Dongyeob Han, Jungwon Huh, Quang Huy Tran, Choonghyun Kang

Abstract:

Unmanned Aerial Vehicles (UAVs) have been used for surveillance, monitoring, inspection, and mapping. In this paper, we present a systematic approach for automatic registration of UAV images for monitoring facilities such as building, green house, and civil structures. The two-step process is applied; 1) an image matching technique based on SURF (Speeded up Robust Feature) and RANSAC (Random Sample Consensus), 2) bundle adjustment of multi-temporal images. Image matching to find corresponding points is one of the most important steps for the precise registration of multi-temporal images. We used the SURF algorithm to find a quick and effective matching points. RANSAC algorithm was used in the process of finding matching points between images and in the bundle adjustment process. Experimental results from UAV images showed that our approach has a good accuracy to be applied to the change detection of facility.

Keywords: building, image matching, temperature, unmanned aerial vehicle

Procedia PDF Downloads 293
3107 Deep Learning-Based Object Detection on Low Quality Images: A Case Study of Real-Time Traffic Monitoring

Authors: Jean-Francois Rajotte, Martin Sotir, Frank Gouineau

Abstract:

The installation and management of traffic monitoring devices can be costly from both a financial and resource point of view. It is therefore important to take advantage of in-place infrastructures to extract the most information. Here we show how low-quality urban road traffic images from cameras already available in many cities (such as Montreal, Vancouver, and Toronto) can be used to estimate traffic flow. To this end, we use a pre-trained neural network, developed for object detection, to count vehicles within images. We then compare the results with human annotations gathered through crowdsourcing campaigns. We use this comparison to assess performance and calibrate the neural network annotations. As a use case, we consider six months of continuous monitoring over hundreds of cameras installed in the city of Montreal. We compare the results with city-provided manual traffic counting performed in similar conditions at the same location. The good performance of our system allows us to consider applications which can monitor the traffic conditions in near real-time, making the counting usable for traffic-related services. Furthermore, the resulting annotations pave the way for building a historical vehicle counting dataset to be used for analysing the impact of road traffic on many city-related issues, such as urban planning, security, and pollution.

Keywords: traffic monitoring, deep learning, image annotation, vehicles, roads, artificial intelligence, real-time systems

Procedia PDF Downloads 200
3106 Policy Monitoring and Water Stakeholders Network Analysis in Shemiranat

Authors: Fariba Ebrahimi, Mehdi Ghorbani

Abstract:

Achieving to integrated Water management fundamentally needs to effective relation, coordination, collaboration and synergy among various actors who have common but different responsibilities. In this sense, the foundation of comprehensive and integrated management is not compatible with centralization and top-down strategies. The aim of this paper is analysis institutional network of water relevant stakeholders and water policy monitoring in Shemiranat. In this study collaboration networks between informal and formal institutions co-management process have been investigated. Stakeholder network analysis as a quantitative method has been implicated in this research. The results of this study indicate that institutional cohesion is medium; sustainability of institutional network is about 40 percent (medium). Additionally the core-periphery index has measured in this study according to reciprocity index. Institutional capacities for integrated natural resource management in regional level are measured in this study. Furthermore, the necessity of centrality reduction and promote stakeholders relations and cohesion are emphasized to establish a collaborative natural resource governance.

Keywords: policy monitoring, water management, social network, stakeholder, shemiranat

Procedia PDF Downloads 275
3105 Characterization and Calibration of a Fluxgate Magnetometer Sensor 539

Authors: Luz Yoali Alfaro Luna, Angélica Hernández Rayas, Teodoro Córdova Fraga

Abstract:

This work characterizes and calibrates a fluxgate 539 magnetometer sensor, implementing a real-time monitoring interface to measure magnetic fields with high precision. The objective is to develop an innovative prototype integrating the Fluxgate 539 sensor, a WX-DC2412 power supply, and an Arduino UNO. Methods include interface programming and data conversion to Gauss units. The results show accurate measurements after calibrating the sensor, establishing a foundation for further research in magnetobiology.

Keywords: calibration, fluxgate 539, magnetobiology, magnetic field measurement, monitoring interface, sensor characterization

Procedia PDF Downloads 19
3104 External Sulphate Attack: Advanced Testing and Performance Specifications

Authors: G. Massaad, E. Roziere, A. Loukili, L. Izoret

Abstract:

Based on the monitoring of mass, hydrostatic weighing, and the amount of leached OH- we deduced the nature of leached and precipitated minerals, the amount of lost aggregates and the evolution of porosity and cracking during the sulphate attack. Using these information, we are able to draw the volume / mass changes brought by mineralogical variations and cracking of the cement matrix. Then we defined a new performance indicator, the averaged density, capable to resume along the test of sulphate attack the occurred physicochemical variation occurred in the cementitious matrix and then highlight.

Keywords: monitoring strategy, performance indicator, sulphate attack, mechanism of degradation

Procedia PDF Downloads 323
3103 In situ Real-Time Multivariate Analysis of Methanolysis Monitoring of Sunflower Oil Using FTIR

Authors: Pascal Mwenge, Tumisang Seodigeng

Abstract:

The combination of world population and the third industrial revolution led to high demand for fuels. On the other hand, the decrease of global fossil 8fuels deposits and the environmental air pollution caused by these fuels has compounded the challenges the world faces due to its need for energy. Therefore, new forms of environmentally friendly and renewable fuels such as biodiesel are needed. The primary analytical techniques for methanolysis yield monitoring have been chromatography and spectroscopy, these methods have been proven reliable but are more demanding, costly and do not provide real-time monitoring. In this work, the in situ monitoring of biodiesel from sunflower oil using FTIR (Fourier Transform Infrared) has been studied; the study was performed using EasyMax Mettler Toledo reactor equipped with a DiComp (Diamond) probe. The quantitative monitoring of methanolysis was performed by building a quantitative model with multivariate calibration using iC Quant module from iC IR 7.0 software. 15 samples of known concentrations were used for the modelling which were taken in duplicate for model calibration and cross-validation, data were pre-processed using mean centering and variance scale, spectrum math square root and solvent subtraction. These pre-processing methods improved the performance indexes from 7.98 to 0.0096, 11.2 to 3.41, 6.32 to 2.72, 0.9416 to 0.9999, RMSEC, RMSECV, RMSEP and R2Cum, respectively. The R2 value of 1 (training), 0.9918 (test), 0.9946 (cross-validation) indicated the fitness of the model built. The model was tested against univariate model; small discrepancies were observed at low concentration due to unmodelled intermediates but were quite close at concentrations above 18%. The software eliminated the complexity of the Partial Least Square (PLS) chemometrics. It was concluded that the model obtained could be used to monitor methanol of sunflower oil at industrial and lab scale.

Keywords: biodiesel, calibration, chemometrics, methanolysis, multivariate analysis, transesterification, FTIR

Procedia PDF Downloads 149
3102 Comparison of Air Quality in 2019 and 2020 in the Campuses of the University of the Basque Country

Authors: Elisabete Alberdi, Irantzu Álvarez, Nerea Astigarraga, Heber Hernández

Abstract:

The purpose of this research work is to study the emissions of certain substances that contribute to air pollution and, as far as possible, to try to eliminate or reduce them, to avoid damage to both health and the environment. This work focuses on analyzing and comparing air quality in 2019 and 2020 in the Autonomous Community of the Basque Country, especially near the UPV/EHU campuses. We use Geostatistics to develop a spatial model and to analyse the levels of pollutants in those areas where the scope of the monitoring stations is limited. Finally, different more sustainable transport alternatives for users have been proposed.

Keywords: air quality, pollutants, monitoring stations, environment, geostatistics

Procedia PDF Downloads 174
3101 Student Feedback and Its Impact on Fostering the Quality of Teaching at the Academia

Authors: S. Vanker, A. Aaver, A. Roio, L. Nuut

Abstract:

To be sure about the effective and less effective/ineffective approaches to course instruction, we hold the opinion that the faculty members need regular feedback from their students in order to be aware of how well or unwell their teaching styles have worked when instructing the courses. It can be confirmed without a slightest hesitation that undergraduate students’ motivated-ness can be sustained when continually improving the quality of teaching and properly sequencing the academic courses both, in the curricula and timetables. At Estonian Aviation Academy, four different forms of feedback are used: Lecture monitoring, questionnaires for all students, study information system subject monitoring and direct feedback received by the lecturer. Questionnaires for all students are arranged once during a study year and separately for the first year and senior students. The results are discussed in academic departments together with student representatives, analyzed with the teaching staff and, if needed, improvements are suggested. In addition, a monitoring system is planned where a lecturer acts in both roles – as an observer and as the lecturer. This will foster better exchange of experience and through this help to make the whole study process more interesting.

Keywords: learner motivation, feedback, student support, undergraduate education

Procedia PDF Downloads 320
3100 Study on Monitoring Techniques Developed for a City Railway Construction

Authors: Myoung-Jin Lee, Sung-Jin Lee, Young-Kon Park, Jin-Wook Kim, Bo-Kyoung Kim, Song-Hun Chong, Sun-Il Kim

Abstract:

Currently, sinkholes may occur due to natural or unknown causes. When the sinkhole is an instantaneous phenomenon, most accidents occur because of significant damage. Thus, methods of monitoring are being actively researched, such that the impact of the accident can be mitigated. A sinkhole can severely affect and wreak havoc in community-based facilities such as a city railway construction. Therefore, the development of a laser / scanning system and an image-based tunnel is one method of pre-monitoring that it stops the accidents. The laser scanning is being used but this has shortcomings as it involves the development of expensive equipment. A laser / videobased scanning tunnel is being developed at Korea Railroad Research Institute. This is designed to automatically operate the railway. The purpose of the scanning is to obtain an image of the city such as of railway structures (stations, tunnel). At the railway structures, it has developed 3D laser scanning that can find a micro-crack can not be distinguished by the eye. An additional aim is to develop technology to monitor the status of the railway structure without the need for expensive post-processing of 3D laser scanning equipment, by developing corresponding software.

Keywords: 3D laser scanning, sinkhole, tunnel, city railway construction

Procedia PDF Downloads 436
3099 Proposal Method of Prediction of the Early Stages of Dementia Using IoT and Magnet Sensors

Authors: João Filipe Papel, Tatsuji Munaka

Abstract:

With society's aging and the number of elderly with dementia rising, researchers have been actively studying how to support the elderly in the early stages of dementia with the objective of allowing them to have a better life quality and as much as possible independence. To make this possible, most researchers in this field are using the Internet Of Things to monitor the elderly activities and assist them in performing them. The most common sensor used to monitor the elderly activities is the Camera sensor due to its easy installation and configuration. The other commonly used sensor is the sound sensor. However, we need to consider privacy when using these sensors. This research aims to develop a system capable of predicting the early stages of dementia based on monitoring and controlling the elderly activities of daily living. To make this system possible, some issues need to be addressed. First, the issue related to elderly privacy when trying to detect their Activities of Daily Living. Privacy when performing detection and monitoring Activities of Daily Living it's a serious concern. One of the purposes of this research is to achieve this detection and monitoring without putting the privacy of the elderly at risk. To make this possible, the study focuses on using an approach based on using Magnet Sensors to collect binary data. The second is to use the data collected by monitoring Activities of Daily Living to predict the early stages of Dementia. To make this possible, the research team suggests developing a proprietary ontology combined with both data-driven and knowledge-driven.

Keywords: dementia, activity recognition, magnet sensors, ontology, data driven and knowledge driven, IoT, activities of daily living

Procedia PDF Downloads 105
3098 Permissible Horizontal Displacements during the Construction of Vertical Shafts in Soft Soils at the Valley of Mexico: Case History

Authors: Joel M. De La Rosa R.

Abstract:

In this paper, the results obtained when monitoring the horizontal deformations of the soil mass are detailed, during each of the construction stages of several vertical shafts located in the soft soils of the Valley of Mexico, by means of the flotation method. From the analysis of these results, the magnitude and percentage relationship with respect to the diameter and depth of excavation of the horizontal deformations that occurred during the monitoring period is established. Based on the horizontal deformation monitoring system and the information provided by the supervisor's site log, the construction stages that have the greatest impact on deformations are established. Additionally, an analysis of the deformations is carried out, which takes into account the resistance and deformability characteristics of the excavated soils, as well as the prevailing hydraulic conditions. This work will allow construction engineers and institutions in charge of infrastructure works in the Valley of Mexico to establish permissible ranges for horizontal deformations that can occur in very soft and saturated soils, during the different construction stages; improving response protocols to potentially dangerous behaviors.

Keywords: vertical shaft, flotation method, very soft clays, construction supervision

Procedia PDF Downloads 189
3097 Development and Investigation of Sustainable Wireless Sensor Networks for forest Ecosystems

Authors: Shathya Duobiene, Gediminas Račiukaitis

Abstract:

Solar-powered wireless sensor nodes work best when they operate continuously with minimal energy consumption. Wireless Sensor Networks (WSNs) are a new technology opens up wide studies, and advancements are expanding the prevalence of numerous monitoring applications and real-time aid for environments. The Selective Surface Activation Induced by Laser (SSAIL) technology is an exciting development that gives the design of WSNs more flexibility in terms of their shape, dimensions, and materials. This research work proposes a methodology for using SSAIL technology for forest ecosystem monitoring by wireless sensor networks. WSN monitoring the temperature and humidity were deployed, and their architectures are discussed. The paper presents the experimental outcomes of deploying newly built sensor nodes in forested areas. Finally, a practical method is offered to extend the WSN's lifespan and ensure its continued operation. When operational, the node is independent of the base station's power supply and uses only as much energy as necessary to sense and transmit data.

Keywords: internet of things (IoT), wireless sensor network, sensor nodes, SSAIL technology, forest ecosystem

Procedia PDF Downloads 74
3096 Application of a Model-Free Artificial Neural Networks Approach for Structural Health Monitoring of the Old Lidingö Bridge

Authors: Ana Neves, John Leander, Ignacio Gonzalez, Raid Karoumi

Abstract:

Systematic monitoring and inspection are needed to assess the present state of a structure and predict its future condition. If an irregularity is noticed, repair actions may take place and the adequate intervention will most probably reduce the future costs with maintenance, minimize downtime and increase safety by avoiding the failure of the structure as a whole or of one of its structural parts. For this to be possible decisions must be made at the right time, which implies using systems that can detect abnormalities in their early stage. In this sense, Structural Health Monitoring (SHM) is seen as an effective tool for improving the safety and reliability of infrastructures. This paper explores the decision-making problem in SHM regarding the maintenance of civil engineering structures. The aim is to assess the present condition of a bridge based exclusively on measurements using the suggested method in this paper, such that action is taken coherently with the information made available by the monitoring system. Artificial Neural Networks are trained and their ability to predict structural behavior is evaluated in the light of a case study where acceleration measurements are acquired from a bridge located in Stockholm, Sweden. This relatively old bridge is presently still in operation despite experiencing obvious problems already reported in previous inspections. The prediction errors provide a measure of the accuracy of the algorithm and are subjected to further investigation, which comprises concepts like clustering analysis and statistical hypothesis testing. These enable to interpret the obtained prediction errors, draw conclusions about the state of the structure and thus support decision making regarding its maintenance.

Keywords: artificial neural networks, clustering analysis, model-free damage detection, statistical hypothesis testing, structural health monitoring

Procedia PDF Downloads 210