Search results for: glow curve peaks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1471

Search results for: glow curve peaks

1171 Flexural Behavior of Composite Hybrid Beam Models Combining Steel Inverted T-Section and RC Flange

Authors: Abdul Qader Melhem, Hacene Badache

Abstract:

This paper deals with the theoretical and experimental study of shear connection via simple steel reinforcement shear connectors, which are steel reinforcing bars bent into L-shapes, instead of commonly used headed studs. This suggested L-shape connectors are readily available construction material in steel reinforcement. The composite section, therefore, consists of steel inverted T-section being embedded within a lightly reinforced concrete flange at the top slab as a unit. It should be noted that the cross section of these composite models involves steel inverted T-beam, replacing the steel top flange of a standard commonly employed I-beam section. The paper concentrates on the elastic and elastic-plastic behavior of these composite models. Failure modes either by cracking of concrete or shear connection be investigated in details. Elastic and elastoplastic formulas of the composite model have been computed for different locations of NA. Deflection formula has been derived, its value was close to the test value. With a supportive designing curve, this curve is valuable for both designing engineers and researchers. Finally, suggested designing curves and valuable equations will be presented. A check is made between theoretical and experimental outcomes.

Keywords: composite, elastic-plastic, failure, inverted T-section, L-Shape connectors

Procedia PDF Downloads 219
1170 A Study on the Synthesis of Boron Nitride Microtubes

Authors: Pervaiz Ahmad, Mayeen Uddin Khandaker, Yusoff Mohd Amin

Abstract:

A unique cone-like morphologies of boron nitride microtubes with larger internal space and thin walls structure are synthesized in a dual zone quartz tube furnace at 1200 ° C with ammonia as a reaction atmosphere. The synthesized microtubes are found to have diameter in the range of 1 to ̴ 2 μm with walls thickness estimated from 10 – 100 nm. XPS survey shows N 1s and B 1s peaks at 398.7 eV and 191 eV that represent h-BN in the sample. Raman spectroscopy indicates a high intensity peak at 1372.53 (cm-1) that corresponds to the E2g mode of h-BN.

Keywords: BNMTs, synthesis, reaction atmosphere, growth

Procedia PDF Downloads 380
1169 Soil Water Retention and Van Genuchten Parameters following Tillage and Manure Effects

Authors: Shahin Farajifar, Azadeh Safadoust, Ali Akbar Mahboubi

Abstract:

A study was conducted to evaluate hydraulic properties of a sandy loam soil and corn (Zea mays L.) crop production under a short-term tillage and manure combinations field experiment carried out in west of Iran. Treatments included composted cattle manure application rates [0, 30, and 60 Mg (dry weight) ha-1] and tillage systems [no-tillage (NT), chisel plowing (CP), and moldboard plowing (MP)] arranged in a split-plot design. Soil water characteristic curve (SWCC) and saturated hydraulic conductivity (Ks) were significantly affected by manure and tillage treatments. At any matric suction, the soil water content was in the order of MP>CP>NT. At all matric suctions, the amount of water retained by the soil increased as manure application rate increased (i.e. 60>30>0 Mg ha-1). Similar to the tillage effects, at high suctions the differences of water retained due to manure addition were less than that at low suctions. The change of SWCC from tillage methods and manure applications may attribute to the change of pore size and aggregate size distributions. Soil Ks was in the order of CP>MP>NT for the first two layers and in the order of MP>CP and NT for the deeper soil layer. The Ks also increased with increasing rates of manure application (i.e. 60>30>0 Mg ha-1). This was due to the increase in the total pore size and continuity.

Keywords: corn, manuure, saturated hydraulic conductivity, soil water characteristic curve, tillage

Procedia PDF Downloads 70
1168 CFD Analysis of an Aft Sweep Wing in Subsonic Flow and Making Analogy with Roskam Methods

Authors: Ehsan Sakhaei, Ali Taherabadi

Abstract:

In this study, an aft sweep wing with specific characteristic feature was analysis with CFD method in Fluent software. In this analysis wings aerodynamic coefficient was calculated in different rake angle and wing lift curve slope to rake angle was achieved. Wing section was selected among NACA airfoils version 6. The sweep angle of wing is 15 degree, aspect ratio 8 and taper ratios 0.4. Designing and modeling this wing was done in CATIA software. This model was meshed in Gambit software and its three dimensional analysis was done in Fluent software. CFD methods used here were based on pressure base algorithm. SIMPLE technique was used for solving Navier-Stokes equation and Spalart-Allmaras model was utilized to simulate three dimensional wing in air. Roskam method is one of the common and most used methods for determining aerodynamics parameters in the field of airplane designing. In this study besides CFD analysis, an advanced aircraft analysis was used for calculating aerodynamic coefficient using Roskam method. The results of CFD were compared with measured data acquired from Roskam method and authenticity of relation was evaluated. The results and comparison showed that in linear region of lift curve there is a minor difference between aerodynamics parameter acquired from CFD to relation present by Roskam.

Keywords: aft sweep wing, CFD method, fluent, Roskam, Spalart-Allmaras model

Procedia PDF Downloads 498
1167 Thermal Cracking Approach Investigation to Improve Biodiesel Properties

Authors: Roghaieh Parvizsedghy, Seyyed Mojtaba Sadrameli

Abstract:

Biodiesel as an alternative diesel fuel is steadily gaining more attention and significance. However, there are some drawbacks while using biodiesel regarding its properties that requires it to be blended with petrol based diesel and/or additives to improve the fuel characteristics. This study analyses thermal cracking as an alternative technology to improve biodiesel characteristics in which, FAME based biodiesel produced by transesterification of castor oil is fed into a continuous thermal cracking reactor at temperatures range of 450-500°C and flowrate range of 20-40 g/hr. Experiments designed by response surface methodology and subsequent statistical studies show that temperature and feed flowrate significantly affect the products yield. Response surfaces were used to study the impact of temperature and flowrate on the product properties. After each experiment, the produced crude bio-oil was distilled and diesel cut was separated. As shorter chain molecules are produced through thermal cracking, the distillation curve of the diesel cut fitted more with petrol based diesel curve in comparison to the biodiesel. Moreover, the produced diesel cut properties adequately pose within property ranges defined by the related standard of petrol based diesel. Cold flow properties, high heating value as the main drawbacks of the biodiesel are improved by this technology. Thermal cracking decreases kinematic viscosity, Flash point and cetane number.

Keywords: biodiesel, castor oil, fuel properties, thermal cracking

Procedia PDF Downloads 255
1166 Half Model Testing for Canard of a Hybrid Buoyant Aircraft

Authors: Anwar U. Haque, Waqar Asrar, Ashraf Ali Omar, Erwin Sulaeman, Jaffer Sayed Mohamed Ali

Abstract:

Due to the interference effects, the intrinsic aerodynamic parameters obtained from the individual component testing are always fundamentally different than those obtained for complete model testing. Consideration and limitation for such testing need to be taken into account in any design work related to the component buildup method. In this paper, the scaled model of a straight rectangular canard of a hybrid buoyant aircraft is tested at 50 m/s in IIUM-LSWT (Low-Speed Wind Tunnel). Model and its attachment with the balance are kept rigid to have results free from the aeroelastic distortion. Based on the velocity profile of the test section’s floor; the height of the model is kept equal to the corresponding boundary layer displacement. Balance measurements provide valuable but limited information of the overall aerodynamic behavior of the model. Zero lift coefficient is obtained at -2.2o and the corresponding drag coefficient was found to be less than that at zero angles of attack. As a part of the validation of low fidelity tool, the plot of lift coefficient plot was verified by the experimental data and except the value of zero lift coefficient, the overall trend has under-predicted the lift coefficient. Based on this comparative study, a correction factor of 1.36 is proposed for lift curve slope obtained from the panel method.

Keywords: wind tunnel testing, boundary layer displacement, lift curve slope, canard, aerodynamics

Procedia PDF Downloads 465
1165 Iron Deficiency and Iron Deficiency Anaemia/Anaemia as a Diagnostic Indicator for Coeliac Disease: A Systematic Review With Meta-Analysis

Authors: Sahar Shams

Abstract:

Coeliac disease (CD) is a widely reported disease particularly in countries with predominant Caucasian populations. It presents with many signs and symptoms including iron deficiency (ID) and iron deficiency anaemia/anaemia (IDA/A). The exact association between ID, IDA/A and CD and how accurate these signs are in diagnosing CD is not fully known. This systematic review was conducted to investigate the accuracy of both ID & IDA/A as a diagnostic indicator for CD and whether it warrants point of care testing. A systematic review was performed looking at studies published in MEDLINE, Embase, Cochrane Library, and Web of Science. QUADAS-2 tool was used to assess risk of bias in each study. ROC curve and forest plots were generated as part of the meta-analysis after data extraction. 16 studies were identified in total, 13 of which were IDA/A studies and 3 ID studies. The prevalence of CD regardless of diagnostic indicator was assumed as 1%. The QUADAS-2 tool indicated most of studies as having high risk of bias. The PPV for CD was higher in those with ID than for those with IDA/A. Meta-analysis showed the overall odds of having CD is 5 times higher in individuals with ID & IDA/A. The ROC curve showed that there is definitely an association between both diagnostic indicators and CD, the association is not a particularly strong one due to great heterogeneity between studies. Whilst an association between IDA/A & ID and coeliac disease was evident, the results were not deemed significant enough to prompt coeliac disease testing in those with IDA/A & ID.

Keywords: anemia, iron deficiency anemia, coeliac disease, point of care testing

Procedia PDF Downloads 122
1164 Comparative Diagnostic Performance of Diffusion-Weighted Imaging Combined With Microcalcifications on Mammography for Discriminating Malignant From Benign Bi-rads 4 Lesions With the Kaiser Score

Authors: Wangxu Xia

Abstract:

BACKGROUND BI-RADS 4 lesions raise the possibility of malignancy that warrant further clinical and radiologic work-up. This study aimed to evaluate the predictive performance of diffusion-weighted imaging(DWI) and microcalcifications on mammography for predicting malignancy of BI-RADS 4 lesions. In addition, the predictive performance of DWI combined with microcalcifications was alsocompared with the Kaiser score. METHODS During January 2021 and June 2023, 144 patients with 178 BI-RADS 4 lesions underwent conventional MRI, DWI, and mammography were included. The lesions were dichotomized intobenign or malignant according to the pathological results from core needle biopsy or surgical mastectomy. DWI was performed with a b value of 0 and 800s/mm2 and analyzed using theapparent diffusion coefficient, and a Kaiser score > 4 was considered to suggest malignancy. Thediagnostic performances for various diagnostic tests were evaluated with the receiver-operatingcharacteristic (ROC) curve. RESULTS The area under the curve (AUC) for DWI was significantly higher than that of the of mammography (0.86 vs 0.71, P<0.001), but was comparable with that of the Kaiser score (0.86 vs 0.84, P=0.58). However, the AUC for DWI combined with mammography was significantly highthan that of the Kaiser score (0.93 vs 0.84, P=0.007). The sensitivity for discriminating malignant from benign BI-RADS 4 lesions was highest at 89% for Kaiser score, but the highest specificity of 83% can be achieved with DWI combined with mammography. CONCLUSION DWI combined with microcalcifications on mammography could discriminate malignant BI-RADS4 lesions from benign ones with a high AUC and specificity. However, Kaiser score had a better sensitivity for discrimination.

Keywords: MRI, DWI, mammography, breast disease

Procedia PDF Downloads 52
1163 Insulin Resistance in Children and Adolescents in Relation to Body Mass Index, Waist Circumference and Body Fat Weight

Authors: E. Vlachopapadopoulou, E. Dikaiakou, E. Anagnostou, I. Panagiotopoulos, E. Kaloumenou, M. Kafetzi, A. Fotinou, S. Michalacos

Abstract:

Aim: To investigate the relation and impact of Body Mass Index (BMI), Waist Circumference (WC) and Body Fat Weight (BFW) on insulin resistance (MATSUDA INDEX < 2.5) in children and adolescents. Methods: Data from 95 overweight and obese children (47 boys and 48 girls) with mean age 10.7 ± 2.2 years were analyzed. ROC analysis was used to investigate the predictive ability of BMI, WC and BFW for insulin resistance and find the optimal cut-offs. The overall performance of the ROC analysis was quantified by computing area under the curve (AUC). Results: ROC curve analysis indicated that the optimal-cut off of WC for the prediction of insulin resistance was 97 cm with sensitivity equal to 75% and specificity equal to 73.1%. AUC was 0.78 (95% CI: 0.63-0.92, p=0.001). The sensitivity and specificity of obesity for the discrimination of participants with insulin resistance from those without insulin resistance were equal to 58.3% and 75%, respectively (AUC=0.67). BFW had a borderline predictive ability for insulin resistance (AUC=0.58, 95% CI: 0.43-0.74, p=0.101). The predictive ability of WC was equivalent with the correspondence predictive ability of BMI (p=0.891). Obese subjects had 4.2 times greater odds for having insulin resistance (95% CI: 1.71-10.30, p < 0.001), while subjects with WC more than 97 had 8.1 times greater odds for having insulin resistance (95% CI: 2.14-30.86, p=0.002). Conclusion: BMI and WC are important clinical factors that have significant clinical relation with insulin resistance in children and adolescents. The cut off of 97 cm for WC can identify children with greater likelihood for insulin resistance.

Keywords: body fat weight, body mass index, insulin resistance, obese children, waist circumference

Procedia PDF Downloads 310
1162 Sensitivity Enhancement in Graphene Based Surface Plasmon Resonance (SPR) Biosensor

Authors: Angad S. Kushwaha, Rajeev Kumar, Monika Srivastava, S. K. Srivastava

Abstract:

A lot of research work is going on in the field of graphene based SPR biosensor. In the conventional SPR based biosensor, graphene is used as a biomolecular recognition element. Graphene adsorbs biomolecules due to carbon based ring structure through sp2 hybridization. The proposed SPR based biosensor configuration will open a new avenue for efficient biosensing by taking the advantage of Graphene and its fascinating nanofabrication properties. In the present study, we have studied an SPR biosensor based on graphene mediated by Zinc Oxide (ZnO) and Gold. In the proposed structure, prism (BK7) base is coated with Zinc Oxide followed by Gold and Graphene. Using the waveguide approach by transfer matrix method, the proposed structure has been investigated theoretically. We have analyzed the reflectance versus incidence angle curve using He-Ne laser of wavelength 632.8 nm. Angle, at which the reflectance is minimized, termed as SPR angle. The shift in SPR angle is responsible for biosensing. From the analysis of reflectivity curve, we have found that there is a shift in SPR angle as the biomolecules get attached on the graphene surface. This graphene layer also enhances the sensitivity of the SPR sensor as compare to the conventional sensor. The sensitivity also increases by increasing the no of graphene layer. So in our proposed biosensor we have found minimum possible reflectivity with optimum level of sensitivity.

Keywords: biosensor, sensitivity, surface plasmon resonance, transfer matrix method

Procedia PDF Downloads 412
1161 Experiments on Weakly-Supervised Learning on Imperfect Data

Authors: Yan Cheng, Yijun Shao, James Rudolph, Charlene R. Weir, Beth Sahlmann, Qing Zeng-Treitler

Abstract:

Supervised predictive models require labeled data for training purposes. Complete and accurate labeled data, i.e., a ‘gold standard’, is not always available, and imperfectly labeled data may need to serve as an alternative. An important question is if the accuracy of the labeled data creates a performance ceiling for the trained model. In this study, we trained several models to recognize the presence of delirium in clinical documents using data with annotations that are not completely accurate (i.e., weakly-supervised learning). In the external evaluation, the support vector machine model with a linear kernel performed best, achieving an area under the curve of 89.3% and accuracy of 88%, surpassing the 80% accuracy of the training sample. We then generated a set of simulated data and carried out a series of experiments which demonstrated that models trained on imperfect data can (but do not always) outperform the accuracy of the training data, e.g., the area under the curve for some models is higher than 80% when trained on the data with an error rate of 40%. Our experiments also showed that the error resistance of linear modeling is associated with larger sample size, error type, and linearity of the data (all p-values < 0.001). In conclusion, this study sheds light on the usefulness of imperfect data in clinical research via weakly-supervised learning.

Keywords: weakly-supervised learning, support vector machine, prediction, delirium, simulation

Procedia PDF Downloads 190
1160 Pharmacokinetic Study of Clarithromycin in Human Female of Pakistani Population

Authors: Atifa Mushtaq, Tanweer Khaliq, Hafiz Alam Sher, Asia Farid, Anila Kanwal, Maliha Sarfraz

Abstract:

The study was designed to assess the various pharmacokinetic parameters of a commercially available clarithromycin Tablet (Klaricid® 250 mg Abbot, Pakistan) in plasma sample of healthy adult female volunteers by applying a rapid, sensitive and accurate HPLC-UV analytical method. The human plasma samples were evaluated by using an isocratic High Performance Liquid Chromatography (HPLC) system of Sykam consisted of a pump with a column C18 column (250×4.6mn, 5µm) UV-detector. The mobile phase comprises of potassium dihydrogen phosphate (50 mM, pH 6.8, contained 0.7% triethylamine), methanol and acetonitrile (30:25:45, v/v/v) was delivered with injection volume of 20µL at flow rate of 1 mL/min. The detection was performed at λmax 275 nm. By applying this method, important pharmacokinetic parameters Cmax, Tmax, Area under curve (AUC), half-life (t1/2), , Volume of distribution (Vd) and Clearance (Cl) were measured. The parameters of pharmacokinetics of clarithromycin were calculated by software (APO) pharmacological analysis. Maximum plasma concentrations Cmax 2.78 ±0.33 µg/ml, time to reach maximum concentration tmax 2.82 ± 0.11 h and Area under curve AUC was 20.14 h.µg/ml. The mean ± SD values obtained for the pharmacokinetic parameters showed a significant difference in pharmacokinetic parameters observed in previous literature which emphasizes the need for dose adjustment of clarithromycin in Pakistani population.

Keywords: Pharmacokinetc, Clarothromycin, HPLC, Pakistan

Procedia PDF Downloads 99
1159 Improved of Elliptic Curves Cryptography over a Ring

Authors: Abdelhakim Chillali, Abdelhamid Tadmori, Muhammed Ziane

Abstract:

In this article we will study the elliptic curve defined over the ring An and we define the mathematical operations of ECC, which provides a high security and advantage for wireless applications compared to other asymmetric key cryptosystem.

Keywords: elliptic curves, finite ring, cryptography, study

Procedia PDF Downloads 367
1158 Studies on Radio Frequency Sputtered Copper Zinc Tin Sulphide Absorber Layers for Thin Film Solar Cells

Authors: G. Balaji, R. Balasundaraprabhu, S. Prasanna, M. D. Kannan, K. Sivakumaran, David Mcilroy

Abstract:

Copper Zin tin sulphide (Cu2ZnSnS4 or CZTS) is found to be better alternative to Copper Indium gallium diselenide as absorber layers in thin film based solar cells due to the utilisation of earth-abundant materials in the midst of lower toxicity. In the present study, Cu2ZnSnS4 thin films were prepared on soda lime glass using (CuS, ZnS, SnS) targets and were deposited by three different stacking orders, using RF Magnetron sputtering. The substrate temperature was fixed at 300 °C during the depositions. CZTS thin films were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy and UV-Vis-NIR spectroscopy. All the samples exhibited X-ray peaks pertaining to (112) kesterite phase of CZTS, along with the presence of a predominant wurtzite CZTS phase. X-ray photoelectron spectroscopy revealed the presence of all the elements in all the samples. The change in stacking order clearly shows that it affects the structural and phase properties of the films. Relative atomic concentrations of Zn, Cu, Sn and S, which are determined by high-resolution XPS core level spectra integrated peak areas revealed that the CZTS films exhibit inhomogeneity in both stoichiometry and elemental composition. Raman spectroscopy studies on the film showed the presence of CZTS phase. The energy band gap of the CZTS thin films was found to be in the range of 1.5 eV to 1.6 eV. The films were then annealed at 450 °C for 5 hrs and it was found that the predominant nature of the X-ray peaks has transformed from Wurtzite to Kesterite phase which is highly desirable for absorber layers in thin film solar cells. The optimized CZTS layer was used as an absorber layer in thin film solar cells. ZnS and CdS were used as buffer layers which in turn prepared by Hot wall epitaxy technique. Gallium doped Zinc oxide was used as a transparent conducting oxide. The solar cell structure Glass/Mo/CZTS/CdS or ZnS/GZO has been fabricated, and solar cell parameters were measured.

Keywords: earth-abundant, Kesterite, RF sputtering, thin film solar cells

Procedia PDF Downloads 277
1157 Tillage and Manure Effects on Water Retention and Van Genuchten Parameters in Western Iran

Authors: Azadeh Safadoust, Ali Akbar Mahboubi, Mohammad Reza Mosaddeghi, Bahram Gharabaghi

Abstract:

A study was conducted to evaluate hydraulic properties of a sandy loam soil and corn (Zea mays L.) crop production under a short-term tillage and manure combinations field experiment carried out in west of Iran. Treatments included composted cattle manure application rates [0, 30, and 60 Mg (dry weight) ha⁻¹] and tillage systems [no-tillage (NT), chisel plowing (CP), and moldboard plowing (MP)] arranged in a split-plot design. Soil water characteristic curve (SWCC) and saturated hydraulic conductivity (Ks) were significantly affected by manure and tillage treatments. At any matric suction, the soil water content was in the order of MP>CP>NT. At all matric suctions, the amount of water retained by the soil increased as manure application rate increased (i.e. 60>30>0 Mg ha⁻¹). Similar to the tillage effects, at high suctions the differences of water retained due to manure addition were less than that at low suctions. The change of SWCC from tillage methods and manure applications may attribute to the change of pore size and aggregate size distributions. Soil Ks was in the order of CP>MP>NT for the first two layers and in the order of MP>CP and NT for the deeper soil layer. The Ks also increased with increasing rates of manure application (i.e. 60>30>0 Mg ha⁻¹). This was due to the increase in the total pore size and continuity.

Keywords: corn, manure, saturated hydraulic conductivity, soil water characteristic curve, tillage

Procedia PDF Downloads 72
1156 Generation of ZnO-Au Nanocomposite in Water Using Pulsed Laser Irradiation

Authors: Elmira Solati, Atousa Mehrani, Davoud Dorranian

Abstract:

Generation of ZnO-Au nanocomposite under laser irradiation of a mixture of the ZnO and Au colloidal suspensions are experimentally investigated. In this work, firstly ZnO and Au nanoparticles are prepared by pulsed laser ablation of the corresponding metals in water using the 1064 nm wavelength of Nd:YAG laser. In a second step, the produced ZnO and Au colloidal suspensions were mixed in different volumetric ratio and irradiated using the second harmonic of a Nd:YAG laser operating at 532 nm wavelength. The changes in the size of the nanostructure and optical properties of the ZnO-Au nanocomposite are studied as a function of the volumetric ratio of ZnO and Au colloidal suspensions. The crystalline structure of the ZnO-Au nanocomposites was analyzed by X-ray diffraction (XRD). The optical properties of the samples were examined at room temperature by a UV-Vis-NIR absorption spectrophotometer. Transmission electron microscopy (TEM) was done by placing a drop of the concentrated suspension on a carbon-coated copper grid. To further confirm the morphology of ZnO-Au nanocomposites, we performed Scanning electron microscopy (SEM) analysis. Room temperature photoluminescence (PL) of the ZnO-Au nanocomposites was measured to characterize the luminescence properties of the ZnO-Au nanocomposites. The ZnO-Au nanocomposites were characterized by Fourier transform infrared (FTIR) spectroscopy. The X-ray diffraction pattern shows that the ZnO-Au nanocomposites had the polycrystalline structure of Au. The behavior observed by images of transmission electron microscope reveals that soldering of Au and ZnO nanoparticles include their adhesion. The plasmon peak in ZnO-Au nanocomposites was red-shifted and broadened in comparison with pure Au nanoparticles. By using the Tauc’s equation, the band gap energy for ZnO-Au nanocomposites is calculated to be 3.15–3.27 eV. In this work, the formation of ZnO-Au nanocomposites shifts the FTIR peak of metal oxide bands to higher wavenumbers. PL spectra of the ZnO-Au nanocomposites show that several weak peaks in the ultraviolet region and several relatively strong peaks in the visible region. SEM image indicates that the morphology of ZnO-Au nanocomposites produced in water was spherical. The TEM images of ZnO-Au nanocomposites demonstrate that with increasing the volumetric ratio of Au colloidal suspension the adhesion increased. According to the size distribution graphs of ZnO-Au nanocomposites with increasing the volumetric ratio of Au colloidal suspension the amount of ZnO-Au nanocomposites with the smaller size is further.

Keywords: Au nanoparticles, pulsed laser ablation, ZnO-Au nanocomposites, ZnO nanoparticles

Procedia PDF Downloads 335
1155 Destination Port Detection For Vessels: An Analytic Tool For Optimizing Port Authorities Resources

Authors: Lubna Eljabu, Mohammad Etemad, Stan Matwin

Abstract:

Port authorities have many challenges in congested ports to allocate their resources to provide a safe and secure loading/ unloading procedure for cargo vessels. Selecting a destination port is the decision of a vessel master based on many factors such as weather, wavelength and changes of priorities. Having access to a tool which leverages AIS messages to monitor vessel’s movements and accurately predict their next destination port promotes an effective resource allocation process for port authorities. In this research, we propose a method, namely, Reference Route of Trajectory (RRoT) to assist port authorities in predicting inflow and outflow traffic in their local environment by monitoring Automatic Identification System (AIS) messages. Our RRoT method creates a reference route based on historical AIS messages. It utilizes some of the best trajectory similarity measure to identify the destination of a vessel using their recent movement. We evaluated five different similarity measures such as Discrete Fr´echet Distance (DFD), Dynamic Time Warping (DTW), Partial Curve Mapping (PCM), Area between two curves (Area) and Curve length (CL). Our experiments show that our method identifies the destination port with an accuracy of 98.97% and an fmeasure of 99.08% using Dynamic Time Warping (DTW) similarity measure.

Keywords: spatial temporal data mining, trajectory mining, trajectory similarity, resource optimization

Procedia PDF Downloads 113
1154 Enzymatic Degradation of Poly (Butylene Adipate Terephthalate) Copolymer Using Lipase B From Candida Antarctica and Effect of Poly (Butylene Adipate Terephthalate) on Plant Growth

Authors: Aqsa Kanwal, Min Zhang, Faisal Sharaf, Li Chengtao

Abstract:

The globe is facing increasing challenges of plastic pollution due to single-use of plastic-based packaging material. The plastic material is continuously being dumped into the natural environment, which causes serious harm to the entire ecosystem. Polymer degradation in nature is very difficult, so the use of biodegradable polymers instead of conventional polymers can mitigate this issue. Due to the good mechanical properties and biodegradability, aliphatic-aromatic polymers are being widely commercialized. Due to the advancement in molecular biology, many studies have reported specific microbes that can effectively degrade PBAT. Aliphatic polyesters undergo hydrolytic cleavage of ester groups, so they can be easily degraded by microorganisms. In this study, we investigated the enzymatic degradation of poly (butylene adipate terephthalate) (PBAT) copolymer using lipase B from Candida Antarctica (CALB). Results of the study displayed approximately 5.16 % loss in PBAT mass after 2 days which significantly increased to approximately 15.7 % at the end of the experiment (12 days) as compared to blank. The pH of the degradation solution also displayed significant reduction and reached the minimum value of 6.85 at the end of the experiment. The structure and morphology of PBAT after degradation were characterized by FTIR, XRD, SEM, and TGA. FTIR analysis showed that after degradation many peaks become weaker and the peak at 2950 cm-1 almost disappeared after 12 days. The XRD results indicated that as the degradation time increases the intensity of diffraction peaks slightly increases as compared to the blank PBAT. TGA analysis also confirmed the successful degradation of PBAT with time. SEM micrographs further confirmed that degradation has occurred. Hence, biodegradable polymers can widely be used. The effect of PBAT biodegradation on plant growth was also studied and it was found that PBAT has no toxic effect on the growth of plants. Hence PBAT can be employed in a wide range of applications.

Keywords: aliphatic-aromatic co-polyesters, polybutylene adipate terephthalate, lipase (CALB), biodegradation, plant growth

Procedia PDF Downloads 72
1153 Dynamic Effects of Energy Consumption, Economic Growth, International Trade and Urbanization on Environmental Degradation in Nigeria

Authors: Abdulkarim Yusuf

Abstract:

Motivation: A crucial but difficult goal for governments and policymakers in Nigeria in recent years has been the sustainability of economic growth. This goal must be accomplished by regulating or lowering greenhouse gas emissions, which calls for switching to a low- or zero-carbon production system. The lack of in-depth empirical studies on the environmental impact of socioeconomic variables on Nigeria and a number of unresolved issues from earlier research is what led to the current study. Objective: This study fills an important empirical gap by investigating the existence of an Environmental Kuznets Curve hypothesis and the long and short-run dynamic impact of socioeconomic variables on ecological sustainability in Nigeria. Data and method: Annual time series data covering the period 1980 to 2020 and the Autoregressive Distributed Lag technique in the presence of structural breaks were adopted for this study. Results: The empirical findings support the existence of the environmental Kuznets curve hypothesis for Nigeria in the long and short run. Energy consumption and total import exacerbate environmental deterioration in the long and short run, whereas total export improves environmental quality in the long and short run. Financial development, which contributed to a conspicuous decrease in the level of environmental destruction in the long run, escalated it in the short run. In contrast, urbanization caused a significant increase in environmental damage in the long run but motivated a decrease in biodiversity loss in the short run. Implications: The government, policymakers, and all energy stakeholders should take additional measures to ensure the implementation and diversification of energy sources to accommodate more renewable energy sources that emit less carbon in order to promote efficiency in Nigeria's production processes and lower carbon emissions. In order to promote the production and trade of environmentally friendly goods, they should also revise and strengthen environmental policies. With affordable, dependable, and sustainable energy use for higher productivity and inclusive growth, Nigeria will be able to achieve its long-term development goals of good health and wellbeing.

Keywords: economic growth, energy consumption, environmental degradation, environmental Kuznets curve, urbanization, Nigeria

Procedia PDF Downloads 46
1152 The Relationship between Human Neutrophil Elastase Levels and Acute Respiratory Distress Syndrome in Patients with Thoracic Trauma

Authors: Wahyu Purnama Putra, Artono Isharanto

Abstract:

Thoracic trauma is trauma that hits the thoracic wall or intrathoracic organs, either due to blunt trauma or sharp trauma. Thoracic trauma often causes impaired ventilation-perfusion due to damage to the lung parenchyma. This results in impaired tissue oxygenation, which is one of the causes of acute respiratory distress syndrome (ARDS). These changes are caused by the release of pro-inflammatory mediators, plasmatic proteins, and proteases into the alveolar space associated with ongoing edema, as well as oxidative products that ultimately result in severe inhibition of the surfactant system. This study aims to predict the incidence of acute respiratory distress syndrome (ARDS) through human neutrophil elastase levels. This study examines the relationship between plasma elastase levels as a predictor of the incidence of ARDS in thoracic trauma patients in Malang. This study is an observational cohort study. Data analysis uses the Pearson correlation test and ROC curve (receiver operating characteristic curve). It can be concluded that there is a significant (p= 0.000, r= -0.988) relationship between elastase levels and BGA-3. If the value of elastase levels is limited to 23.79 ± 3.95, the patient will experience mild ARDS. While if the value of elastase levels is limited to 57.68 ± 18.55, in the future, the patient will experience moderate ARDS. Meanwhile, if the elastase level is between 107.85 ± 5.04, the patient will likely experience severe ARDS. Neutrophil elastase levels correlate with the degree of severity of ARDS incidence.

Keywords: ARDS, human neutrophil elastase, severity, thoracic trauma

Procedia PDF Downloads 136
1151 Performance Assessment of Multi-Level Ensemble for Multi-Class Problems

Authors: Rodolfo Lorbieski, Silvia Modesto Nassar

Abstract:

Many supervised machine learning tasks require decision making across numerous different classes. Multi-class classification has several applications, such as face recognition, text recognition and medical diagnostics. The objective of this article is to analyze an adapted method of Stacking in multi-class problems, which combines ensembles within the ensemble itself. For this purpose, a training similar to Stacking was used, but with three levels, where the final decision-maker (level 2) performs its training by combining outputs from the tree-based pair of meta-classifiers (level 1) from Bayesian families. These are in turn trained by pairs of base classifiers (level 0) of the same family. This strategy seeks to promote diversity among the ensembles forming the meta-classifier level 2. Three performance measures were used: (1) accuracy, (2) area under the ROC curve, and (3) time for three factors: (a) datasets, (b) experiments and (c) levels. To compare the factors, ANOVA three-way test was executed for each performance measure, considering 5 datasets by 25 experiments by 3 levels. A triple interaction between factors was observed only in time. The accuracy and area under the ROC curve presented similar results, showing a double interaction between level and experiment, as well as for the dataset factor. It was concluded that level 2 had an average performance above the other levels and that the proposed method is especially efficient for multi-class problems when compared to binary problems.

Keywords: stacking, multi-layers, ensemble, multi-class

Procedia PDF Downloads 263
1150 Vehicle Maneuverability on Horizontal Curves on Hilly Terrain: A Study on Shillong Highway

Authors: Surendra Choudhary, Sapan Tiwari

Abstract:

The driver has two fundamental duties i) controlling the position of the vehicle along the longitudinal and lateral direction of movement ii) roadway width. Both of these duties are interdependent and are concurrently referred to as two-dimensional driver behavior. One of the main problems facing driver behavior modeling is to identify the parameters for describing the exemplary driving conduct and car maneuver under distinct traffic circumstances. Still, to date, there is no well-accepted theory that can comprehensively model the 2-D driver conduct (longitudinal and lateral). The primary objective of this research is to explore the vehicle's lateral longitudinal behavior in the heterogeneous condition of traffic on horizontal curves as well as the effect of road geometry on dynamic traffic parameters, i.e., car velocity and lateral placement. In this research, with their interrelationship, a thorough assessment of dynamic car parameters, i.e., speed, lateral acceleration, and turn radius. Also, horizontal curve road parameters, i.e., curvature radius, pavement friction, are performed. The dynamic parameters of the various types of car drivers are gathered using a VBOX GPS-based tool with high precision. The connection between dynamic car parameters and curve geometry is created after the removal of noise from the GPS trajectories. The major findings of the research are that car maneuvers with higher than the design limits of speed, acceleration, and lateral deviation on the studied curves of the highway. It can become lethal if the weather changes from dry to wet.

Keywords: geometry, maneuverability, terrain, trajectory, VBOX

Procedia PDF Downloads 138
1149 Quantitative and Fourier Transform Infrared Analysis of Saponins from Three Kenyan Ruellia Species: Ruellia prostrata, Ruellia lineari-bracteolata and Ruellia bignoniiflora

Authors: Christine O. Wangia, Jennifer A. Orwa, Francis W. Muregi, Patrick G. Kareru, Kipyegon Cheruiyot, Eric Guantai

Abstract:

Ruellia (syn. Dipteracanthus) species are wild perennial creepers belonging to the Acanthaceae family. These species are reported to possess anti-inflammatory, analgesic, antioxidant, gastroprotective, anticancer, and immuno-stimulant properties. Phytochemical screening of both aqueous and methanolic extracts of Ruellia species revealed the presence of saponins. Saponins have been reported to possess anti-inflammatory, antioxidant, immuno-stimulant, antihepatotoxic, antibacterial, anticarcinogenic, and antiulcerogenic activities. The objective of this study was to quantify and analyze the Fourier transform infrared (FTIR) spectra of saponins in crude extracts of three Kenyan Ruellia species namely Ruellia prostrata (RPM), Ruellia lineari-bracteolata (RLB) and Ruellia bignoniiflora (RBK). Sequential organic extraction of the ground whole plant material was done using petroleum ether (PE), chloroform, ethyl acetate (EtOAc), and absolute methanol by cold maceration, while aqueous extraction was by hot maceration. The plant powders and extracts were mixed with spectroscopic grade KBr and compressed into a pellet. The infrared spectra were recorded using a Shimadzu FTIR spectrophotometer of 8000 series in the range of 3500 cm-1 - 500 cm-1. Quantitative determination of the saponins was done using standard procedures. Quantitative analysis of saponins showed that RPM had the highest quantity of crude saponins (2.05% ± 0.03), followed by RLB (1.4% ± 0.15) and RBK (1.25% ± 0.11), respectively. FTIR spectra revealed the spectral peaks characteristic for saponins in RPM, RLB, and RBK plant powders, aqueous and methanol extracts; O-H absorption (3265 - 3393 cm-1), C-H absorption ranging from 2851 to 2924 cm-1, C=C absorbance (1628 - 1655 cm-1), oligosaccharide linkage (C-O-C) absorption due to sapogenins (1036 - 1042 cm-1). The crude saponins from RPM, RLB and RBK showed similar peaks to their respective extracts. The presence of the saponins in extracts of RPM, RLB and RBK may be responsible for some of the biological activities reported in the Ruellia species.1

Keywords: Ruellia bignoniiflora, Ruellia linearibracteolata, Ruellia prostrata, Saponins

Procedia PDF Downloads 166
1148 Impact of Meteorological Factors on Influenza Activity in Pakistan; A Tale of Two Cities

Authors: Nadia Nisar

Abstract:

Background: In the temperate regions Influenza activities occur sporadically all year round with peaks coinciding during cold months. Meteorological and environmental conditions play significant role in the transmission of influenza globally. In this study, we assessed the relationship between meteorological parameters and influenza activity in two geographical areas of Pakistan. Methods: Influenza data were collected from Islamabad (north) and Multan (south) regions of national influenza surveillance system during 2010-2015. Meteorological database was obtained from National Climatic Data Center (Pakistan). Logistic regression model with a stepwise approach was used to explore the relationship between meteorological parameters with influenza peaks. In statistical model, we used the weekly proportion of laboratory-confirmed influenza positive samples to represent Influenza activity with metrological parameters as the covariates (temperature, humidity and precipitation). We also evaluate the link between environmental conditions associated with seasonal influenza epidemics: 'cold-dry' and 'humid-rainy'. Results: We found that temperature and humidity was positively associated with influenza in north and south both locations (OR = 0.927 (0.88-0.97)) & (OR = 0.1.078 (1.027-1.132)) and (OR = 1.023 (1.008-1.037)) & (OR = 0.978 (0.964-0.992)) respectively, whilst precipitation was negatively associated with influenza (OR = 1.054 (1.039-1.070)) & (OR = 0.949 (0.935-0.963)). In both regions, temperature and humidity had the highest contribution to the model as compared to the precipitation. We revealed that the p-value for all of climate parameters is <0.05 by Independent-sample t-test. These results demonstrate that there were significant relationships between climate factors and influenza infection with correlation coefficients: 0.52-0.90. The total contribution of these three climatic variables accounted for 89.04%. The reported number of influenza cases increased sharply during the cold-dry season (i.e., winter) when humidity and temperature are at minimal levels. Conclusion: Our findings showed that measures of temperature, humidity and cold-dry season (winter) can be used as indicators to forecast influenza infections. Therefore integrating meteorological parameters for influenza forecasting in the surveillance system may benefit the public health efforts in reducing the burden of seasonal influenza. More studies are necessary to understand the role of these parameters in the viral transmission and host susceptibility process.

Keywords: influenza, climate, metrological, environmental

Procedia PDF Downloads 196
1147 A Novel Approach of NPSO on Flexible Logistic (S-Shaped) Model for Software Reliability Prediction

Authors: Pooja Rani, G. S. Mahapatra, S. K. Pandey

Abstract:

In this paper, we propose a novel approach of Neural Network and Particle Swarm Optimization methods for software reliability prediction. We first explain how to apply compound function in neural network so that we can derive a Flexible Logistic (S-shaped) Growth Curve (FLGC) model. This model mathematically represents software failure as a random process and can be used to evaluate software development status during testing. To avoid trapping in local minima, we have applied Particle Swarm Optimization method to train proposed model using failure test data sets. We drive our proposed model using computational based intelligence modeling. Thus, proposed model becomes Neuro-Particle Swarm Optimization (NPSO) model. We do test result with different inertia weight to update particle and update velocity. We obtain result based on best inertia weight compare along with Personal based oriented PSO (pPSO) help to choose local best in network neighborhood. The applicability of proposed model is demonstrated through real time test data failure set. The results obtained from experiments show that the proposed model has a fairly accurate prediction capability in software reliability.

Keywords: software reliability, flexible logistic growth curve model, software cumulative failure prediction, neural network, particle swarm optimization

Procedia PDF Downloads 340
1146 Critical Study on the Sensitivity of Corrosion Fatigue Crack Growth Rate to Cyclic Waveform and Microstructure in Marine Steel

Authors: V. C. Igwemezie, A. N. Mehmanparast

Abstract:

The primary focus of this work is to understand how variations in the microstructure and cyclic waveform affect the corrosion fatigue crack growth (CFCG) in steel, especially in the Paris region of the da/dN vs. ΔK curve. This work is important because it provides fundamental information on the modelling, design, selection, and use of steels for various engineering applications in the marine environment. The corrosion fatigue tests data on normalized and thermomechanical control process (TMCP) ferritic-pearlitic steels by the authors were compared with several studies on different microstructures in the literature. The microstructures of these steels are radically different and general comparative fatigue crack growth resistance performance study on the effect of microstructure in these materials are very scarce and where available are limited to few studies. The results, for purposes of engineering application, in this study show less dependency of fatigue crack growth rate (FCGR) on yield strength, tensile strength, ductility, frequency and stress ratio in the range 0.1 – 0.7. The nature of the steel microstructure appears to be a major factor in determining the rate at which fatigue cracks propagate in the entire da/dN vs. ΔK sigmoidal curve. The study also shows that the sine wave shape is the most damaging fatigue waveform for ferritic-pearlitic steels. This tends to suggest that the test under sine waveform would be a conservative approach, regardless of the waveform for design of engineering structures.

Keywords: BS7910, corrosion-fatigue crack growth rate, cyclic waveform, microstructure, steel

Procedia PDF Downloads 146
1145 Developing Pavement Structural Deterioration Curves

Authors: Gregory Kelly, Gary Chai, Sittampalam Manoharan, Deborah Delaney

Abstract:

A Structural Number (SN) can be calculated for a road pavement from the properties and thicknesses of the surface, base course, sub-base, and subgrade. Historically, the cost of collecting structural data has been very high. Data were initially collected using Benkelman Beams and now by Falling Weight Deflectometer (FWD). The structural strength of pavements weakens over time due to environmental and traffic loading factors, but due to a lack of data, no structural deterioration curve for pavements has been implemented in a Pavement Management System (PMS). International Roughness Index (IRI) is a measure of the road longitudinal profile and has been used as a proxy for a pavement’s structural integrity. This paper offers two conceptual methods to develop Pavement Structural Deterioration Curves (PSDC). Firstly, structural data are grouped in sets by design Equivalent Standard Axles (ESA). An ‘Initial’ SN (ISN), Intermediate SN’s (SNI) and a Terminal SN (TSN), are used to develop the curves. Using FWD data, the ISN is the SN after the pavement is rehabilitated (Financial Accounting ‘Modern Equivalent’). Intermediate SNIs, are SNs other than the ISN and TSN. The TSN was defined as the SN of the pavement when it was approved for pavement rehabilitation. The second method is to use Traffic Speed Deflectometer data (TSD). The road network already divided into road blocks, is grouped by traffic loading. For each traffic loading group, road blocks that have had a recent pavement rehabilitation, are used to calculate the ISN and those planned for pavement rehabilitation to calculate the TSN. The remaining SNs are used to complete the age-based or if available, historical traffic loading-based SNI’s.

Keywords: conceptual, pavement structural number, pavement structural deterioration curve, pavement management system

Procedia PDF Downloads 535
1144 Optimization of Dez Dam Reservoir Operation Using Genetic Algorithm

Authors: Alireza Nikbakht Shahbazi, Emadeddin Shirali

Abstract:

Since optimization issues of water resources are complicated due to the variety of decision making criteria and objective functions, it is sometimes impossible to resolve them through regular optimization methods or, it is time or money consuming. Therefore, the use of modern tools and methods is inevitable in resolving such problems. An accurate and essential utilization policy has to be determined in order to use natural resources such as water reservoirs optimally. Water reservoir programming studies aim to determine the final cultivated land area based on predefined agricultural models and water requirements. Dam utilization rule curve is also provided in such studies. The basic information applied in water reservoir programming studies generally include meteorological, hydrological, agricultural and water reservoir related data, and the geometric characteristics of the reservoir. The system of Dez dam water resources was simulated applying the basic information in order to determine the capability of its reservoir to provide the objectives of the performed plan. As a meta-exploratory method, genetic algorithm was applied in order to provide utilization rule curves (intersecting the reservoir volume). MATLAB software was used in order to resolve the foresaid model. Rule curves were firstly obtained through genetic algorithm. Then the significance of using rule curves and the decrease in decision making variables in the system was determined through system simulation and comparing the results with optimization results (Standard Operating Procedure). One of the most essential issues in optimization of a complicated water resource system is the increasing number of variables. Therefore a lot of time is required to find an optimum answer and in some cases, no desirable result is obtained. In this research, intersecting the reservoir volume has been applied as a modern model in order to reduce the number of variables. Water reservoir programming studies has been performed based on basic information, general hypotheses and standards and applying monthly simulation technique for a statistical period of 30 years. Results indicated that application of rule curve prevents the extreme shortages and decrease the monthly shortages.

Keywords: optimization, rule curve, genetic algorithm method, Dez dam reservoir

Procedia PDF Downloads 261
1143 Effect of Chitosan Oligosaccharide from Tenebrio Molitor on Prebiotics

Authors: Hyemi Kim, Jay Kim, Kyunghoon Han, Ra-Yeong Choi, In-Woo Kim, Hyung Joo Suh, Ki-Bae Hong, Sung Hee Han

Abstract:

Chitosan is used in various industries such as food and medical care because it is known to have various functions such as anti-obesity, anti-inflammatory and anti-cancer benefits. Most of the commercial chitosan is extracted from crustaceans. As the harvest rate of snow crabs and red snow crabs decreases and safety issues arise due to environmental pollution, research is underway to extract chitosan from insects. In this study, we used Response Surface Methodology (RSM) to predict the optimal conditions to produce chitosan oligosaccharides from mealworms (MCOS), which can be absorbed through the intestine as low-molecular-weight chitosan. The experimentally confirmed optimal conditions for MCOS production using chitosanase were found to be a substrate concentration of 2.5%, enzyme addition of 30 mg/g and a reaction time of 6 hours. The chemical structure and physicochemical properties of the produced MCOS were measured using MALDI-TOF mass spectra and FTIR spectra. The MALDI-TOF mass spectra revealed peaks corresponding to the dimer (375.045), trimer (525.214), tetramer (693.243), pentamer (826.296), and hexamer (987.360). In the FTIR spectra, commercial chitosan oligosaccharides exhibited a weak peak pattern at 3500-2500 cm-1, unlike chitosan or chitosan oligosaccharides. There was a difference in the peak at 3200~3500 cm-1, where different vibrations corresponding to OH and amine groups overlapped. Chitosan, chitosan oligosaccharide, and commercial chitosan oligosaccharide showed peaks at 2849, 2884, and 2885 cm-1, respectively, attributed to the absorption of the C-H stretching vibration of methyl or methine. The amide I, amide II, and amide III bands of chitosan, chitosan oligosaccharide, and commercial chitosan oligosaccharide exhibited peaks at 1620/1620/1602, 1553/1555/1505, and 1310/1309/1317 cm-1, respectively. Furthermore, the solubility of MCOS was 45.15±3.43, water binding capacity (WBC) was 299.25±4.57, and fat binding capacity (FBC) was 325.61±2.28 and the solubility of commercial chitosan oligosaccharides was 49.04±9.52, WBC was 280.55±0.50, and FBC was 157.22±18.15. Thus, the characteristics of MCOS and commercial chitosan oligosaccharides are similar. The results of investigating the impact of chitosan oligosaccharide on the proliferation of probiotics revealed increased growth in L. casei, L. acidophilus, and Bif. Bifidum. Therefore, the major short-chain fatty acids produced by gut microorganisms, such as acetic acid, propionic acid, and butyric acid, increased within 24 hours of adding 1% (p<0.01) and 2% (p<0.001) MCOS. The impact of MCOS on the overall gut microbiota was assessed, revealing that the Chao1 index did not show significant differences, but the Simpson index decreased in a concentration-dependent manner, indicating a higher species diversity. The addition of MCOS resulted in changes in the overall microbial composition, with an increase in Firmicutes and Verrucomicrobia (p<0.05) compared to the control group, while Proteobacteria and Actinobacteria (p<0.05) decreased. At the genus level, changes in microbiota due to MCOS supplementation showed an increase in beneficial bacteria like lactobacillus, Romboutsia, Turicibacter, and Akkermansia (p<0.0001) while harmful bacteria like Enterococcus, Morganella, Proterus, and Bacteroides (p<0.0001) decreased. In this study, chitosan oligosaccharides were successfully produced under established conditions from mealworms, and these chitosan oligosaccharides are expected to have prebiotic effects, similar to those obtained from crabs.

Keywords: mealworms, chitosan, chitosan oligosaccharide, prebiotics

Procedia PDF Downloads 62
1142 Structural and Magnetic Properties of Cr Doped Ni-Zn Nanoferrites Prepared by Co-Precipitation Method

Authors: E. Ateia, L. M. Salah, A. H. El-Bassuony

Abstract:

Physical properties of nanocrystalline Ni1-xZnxCryFe2-yO4, (x=0.3, 0.5 and y=0.0, 0.1) with estimated crystallite size of 16.4 nm have been studied. XRD pattern of all prepared systems shows that, the nanosamples without Cr3+ have a cubic spinel structure with the appearance of small peaks designated as a secondary phase. Magnetic constants such as saturation magnetization, (MS) remanent magnetization (Mr) and coercive field (Hc) were obtained and reported. The obtained data shows that, the addition of Cr3+ (0.1mol) decreases the saturation magnetization. This is due to the decrease of magnetic moment of Cr3+ ion (3.0 μB) with respect to Fe3+ ion (5.85 μB). The electrical properties of the investigated samples were also investigated.

Keywords: electrical conductivity, ferrites, grain size, sintering

Procedia PDF Downloads 282