Search results for: enzymatic synthesis
2214 Empirical Green’s Function Technique for Accelerogram Synthesis: The Problem of the Use for Marine Seismic Hazard Assessment
Authors: Artem A. Krylov
Abstract:
Instrumental seismological researches in water areas are complicated and expensive, that leads to the lack of strong motion records in most offshore regions. In the same time the number of offshore industrial infrastructure objects, such as oil rigs, subsea pipelines, is constantly increasing. The empirical Green’s function technique proved to be very effective for accelerograms synthesis under the conditions of poorly described seismic wave propagation medium. But the selection of suitable small earthquake record in offshore regions as an empirical Green’s function is a problem because of short seafloor instrumental seismological investigation results usually with weak micro-earthquakes recordings. An approach based on moving average smoothing in the frequency domain is presented for preliminary processing of weak micro-earthquake records before using it as empirical Green’s function. The method results in significant waveform correction for modeled event. The case study for 2009 L’Aquila earthquake was used to demonstrate the suitability of the method. This work was supported by the Russian Foundation of Basic Research (project № 18-35-00474 mol_a).Keywords: accelerogram synthesis, empirical Green's function, marine seismology, microearthquakes
Procedia PDF Downloads 3242213 Functionality and Application of Rice Bran Protein Hydrolysates in Oil in Water Emulsions: Their Stabilities to Environmental Stresses
Authors: R. Charoen, S. Tipkanon, W. Savedboworn, N. Phonsatta, A. Panya
Abstract:
Rice bran protein hydrolysates (RBPH) were prepared from defatted rice bran of two different Thai rice cultivars (Plai-Ngahm-Prachinburi; PNP and Khao Dok Mali 105; KDM105) using an enzymatic method. This research aimed to optimize enzyme-assisted protein extraction. In addition, the functional properties of RBPH and their stabilities to environmental stresses including pH (3 to 8), ionic strength (0 mM to 500 mM) and the thermal treatment (30 °C to 90 °C) were investigated. Results showed that enzymatic process for protein extraction of defatted rice bran was as follows: enzyme concentration 0.075 g/ 5 g of protein, extraction temperature 50 °C and extraction time 4 h. The obtained protein hydrolysate powders had a degree of hydrolysis (%) of 21.05% in PNP and 19.92% in KDM105. The solubility of protein hydrolysates at pH 4-6 was ranged from 27.28-38.57% and 27.60-43.00% in PNP and KDM105, respectively. In general, antioxidant activities indicated by total phenolic content, FRAP, ferrous ion-chelating (FIC), and 2,2’-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) of KDM105 had higher than PNP. In terms of functional properties, the emulsifying activity index (EAI) was was 8.78 m²/g protein in KDM105, whereas PNP was 5.05 m²/g protein. The foaming capacity at 5 minutes (%) was 47.33 and 52.98 in PNP and KDM105, respectively. Glutamine, Alanine, Valine, and Leucine are the major amino acid in protein hydrolysates where the total amino acid of KDM105 gave higher than PNP. Furthermore, we investigated environmental stresses on the stability of 5% oil in water emulsion (5% oil, 10 mM citrate buffer) stabilized by RBPH (3.5%). The droplet diameter of emulsion stabilized by KDM105 was smaller (d < 250 nm) than produced by PNP. For environmental stresses, RBPH stabilized emulsions were stable at pH around 3 and 5-6, at high salt (< 400 mM, pH 7) and at temperatures range between 30-50°C.Keywords: functional properties, oil in water emulsion, protein hydrolysates, rice bran protein
Procedia PDF Downloads 2182212 Salt-Induced Modulation in Biomass Production, Pigment Concentration, Ion Accumulation, Antioxidant System and Yield in Pea Plant
Abstract:
Salinity is one of the most important environmental factors that limit the production of crop plants to the greatest proportion than any other ones. Salt-induced changes in growth, pigment concentration, water status, malondialdehydes (MDA) and H₂O₂ content, enzymatic and non-enzymatic antioxidants, Na⁺, K⁺ content and yield attributes were examined in the glasshouse on ten pea (Pisum Sativum L.) accessions, namely ‘13240’, ‘18302’, ‘19666’, ‘19700’, ‘19776’, ‘19785’, ‘19788’, ‘20153’, ‘20155’, ‘26719’ were subjected to non-stress (0 mM NaCl) and salt stress (100 mM and150 mM NaCl) in pots containing sand medium. The results showed that salt stress at level150 mM substantially reduced biomass production, leaf water status, pigment concentration (chlorophyll ‘a’, ‘b’, ‘carotenoid content’ total chlorophyll), K⁺ content, quantum yield and yield attributes as compared to plants treated with 100 mM NaCl. Antioxidant enzymes, Catalase (CAT), Peroxidase (POD), Superoxide dismutase (SOD) and Ascorbate peroxidase (APX), proline content, total soluble protein, total amino acids, Malondialdehyde content (MDA), Hydrogen peroxide (H₂O₂) content and Na⁺ uptake markedly enhanced due to the influence of salt stress. On the basis of analyses (expressed as percent of control), of 10 accessions of pea plant, two were ranked as salt tolerant namely (‘19666’, ‘20153’), four were moderately tolerant namely (‘19700’, ‘19776’, ‘19785’, ‘20155’), and three were salt sensitive namely (‘13240’, ‘18302’, ‘26719’) at 150 mM NaCl level.Keywords: antioxidant enzymes, ion uptake, pigment concentration, salt stress, yield attributes
Procedia PDF Downloads 1072211 Synthesis and Characterization of Zinc (II) Complex and Its Catalytic Activity on C(SP3)-H Oxidation Reactions
Authors: Yalçın Kılıç, İbrahim Kani
Abstract:
The conversion of hydrocarbons to carbonyl compounds by oxidation reaction is one of the most important reactions in the synthesis of fine chemicals. As a result of the oxidation of hydrocarbons containing aliphatic sp3-CH groups in their structures, aldehydes, ketones or carboxylic acids can be obtained. In this study, OSSO-type 2,2'-[1,4-butanedylbis(thio)]bis-benzoic acid (tsabutH2) ligand and [Zn(µ-tsabut)(phen)]n complex (where phen = 1,10-phenantroline) were synthesized and their structures were characterized by single crystal x-ray diffraction method. The catalytic efficiency of the complex in the catalytic oxidation studies of organic compounds such as cyclohexane, ethylbenzene, diphenylmethane, and p-xylene containing sp3-C-H in its structure was investigated.Keywords: metal complex, OSSO-type ligand, catalysis, oxidation
Procedia PDF Downloads 1002210 A Facile Synthesis Strategy of Saccharine/TiO₂ Composite Heterojunction Catalyst for Co₂RR
Authors: Jenaidullah Batur, Sebghatullah Mudaber
Abstract:
Currently, there is a list of catalysts that can reduce CO₂ to valuable chemicals and fuels, among them metal oxides such as TiO₂, known as promising photocatalysts to produce hydrogen and CO unless they are at an earlier age and still need to promote activity to able for produce fabricated values. Herein, in this work, we provided a novel, facile and eco-friendly synthesis strategy to synthesize more effective TiO₂-organic composite materials to selectively reduce CO₂ to CO. In this experiment, commercial nanocrystalline TiO₂ and saccharin with Li (LiBr, LiCl) were synthesized using the facile physical grinding in the motel pestle for 10 minutes, then added 10 mL of deionized water (18.2 megaohms) on the 300mg composite catalyst before samples moving for hydrothermal heating for 24 hours at 80 C in the oven. Compared with nanosized TiO₂, the new TiO₂-Sac-Li indeed displays a high CO generation rate of 70.83 μmol/g/h, which is 7 times higher than TiO₂, which shows enhancement in CO₂ reduction and an apparent improvement in charge carrier dynamic. The CO₂ reduction process at the gas-solid interface on TiO₂-Sac-Li composite semiconductors is investigated by functional calculations and several characterization methods. The results indicate that CO₂ can be easily activated by the TiO₂-Sac-Li atoms on the surface. This work innovatively investigates CO₂ reduction in novel composite materials and helps to broaden the applications of composite materials semiconductors.Keywords: green chemistry, green synthesis, TiO₂, photocatalyst
Procedia PDF Downloads 842209 Scale Up-Mechanochemical Synthesis of High Surface Area Alpha-Alumina
Authors: Sarah Triller, Ferdi Schüth
Abstract:
The challenges encountered in upscaling the mechanochemical synthesis of high surface area α-alumina are investigated in this study. After lab-scale experiments in shaker mills and planetary ball mills, the optimization of reaction parameters of the conversion in the smallest vessel of a scalable mill, named Simoloyer, was developed. Furthermore, the future perspectives by scaling up the conversion in several steps are described. Since abrasion from the steel equipment can be problematic, the process was transferred to a ceramically lined mill, which solved the contamination problem. The recovered alpha-alumina shows a high specific surface area in all investigated scales.Keywords: mechanochemistry, scale-up, ball milling, ceramic lining
Procedia PDF Downloads 662208 Synthesis Using Sintering and Characterisation of FeCrCoNiZn Alloy Using SEM and Nanoindentation
Authors: Steadyman Chikumba, Vasudeva Vereedhi Rao
Abstract:
This paper reports on the synthesis of FeCrCoNiZn and its characterisation using SEM and nanoindentation. The high entropy alloy FeCrCoNiZn was fabricated using spark plasma sintering at a temperature of 1100ᵒC from powders mixed for 9 hours. The powders mixture was equimolar, and the resultant microstructure had a single crystalline structure when studied under SEM. Several nano Vickers hardness measurements were taken on a polished surface etched by Nital solution. The hardness ranged from 711 Vickers to a maximum of 1773.2. The alloy FeCrCoNiZn showed a nano hardness of 1070 Vickers and a modulus of elasticity of 460.4 MPa. The process managed to fabricate a very hard material that can find applications where wear resistance is desired.Keywords: high entropy alloy, FeCrVNiZn, nanohardness, SEM
Procedia PDF Downloads 992207 Effect of Ultrasound-Assisted Pretreatment on Saccharification of Spent Coffee Grounds
Authors: Shady S. Hassan, Brijesh K. Tiwari, Gwilym A. Williams, Amit K. Jaiswal
Abstract:
EU is known as the destination with the highest rate of the coffee consumption per capita in the world. Spent coffee grounds (SCG) are the main by-product of coffee brewing. SCG is either disposed as a solid waste or employed as compost, although the polysaccharides from such lignocellulosic biomass might be used as feedstock for fermentation processes. However, SCG as a lignocellulose have a complex structure and pretreatment process is required to facilitate an efficient enzymatic hydrolysis of carbohydrates. However, commonly used pretreatment methods, such as chemical, physico-chemical and biological techniques are still insufficient to meet optimal industrial production requirements in a sustainable way. Ultrasound is a promising candidate as a sustainable green pretreatment solution for lignocellulosic biomass utilization in a large scale biorefinery. Thus, ultrasound pretreatment of SCG without adding harsh chemicals investigated as a green technology to enhance enzyme hydrolysis. In the present work, ultrasound pretreatment experiments were conducted on SCG using different ultrasound frequencies (25, 35, 45, 130, and 950 kHz) for 60 min. Regardless of ultrasound power, low ultrasound frequency is more effective than high ultrasound frequency in pretreatment of biomass. Ultrasound pretreatment of SCG (at ultrasound frequency of 25 kHz for 60 min) followed by enzymatic hydrolysis resulted in total reducing sugars of 56.1 ± 2.8 mg/g of biomass. Fourier transform Infrared Spectroscopy (FTIR) was employed to investigate changes in functional groups of biomass after pretreatment, while high-performance liquid chromatography (HPLC) was employed for determination of glucose. Pretreatment of lignocellulose by low frequency ultrasound in water only was found to be an effective green approach for SCG to improve saccharification and glucose yield compared to native biomass. Pretreatment conditions will be optimized, and the enzyme hydrolysate will be used as media component substitute for the production of ethanol.Keywords: lignocellulose, ultrasound, pretreatment, spent coffee grounds
Procedia PDF Downloads 3232206 Plausible Influence of Hydroxycitric Acid and Garcinol in Garcinia indica Fruit Extract in High Fat Diet Induced Type 2 Diabetes Mellitus
Authors: Hannah Rachel Vasanthi, Paomipem Phazang, Veereshkumar, Sali, Ramesh Parjapath, Sangeetha Marimuthu Kannan
Abstract:
Garcinia indica (G. indica) fruit rind extract commonly used in South Indian culinary and Indian System of medicines is reported to exhibit various biological activities. The present study envisages the influence of the phytoconstituents in G. indica extract (Vrikshamla capsules- a herbal supplement) on diabetic condition. The condition of type 2 diabetes was triggered in experimental animals by feeding high fat diet for 8 weeks followed by a sub-diabetogenic dose of 35mg/kg bw of streptozotocin intraperitoneally. Oral supplementation of the extract at two doses (100 and 200 mg/kg body weight) for 14 days reduced hyperglycemia, hypercholesterolemia and dyslipidemia (p< 0.001). Pathophysiological changes of obesity and diabetes associated complications majorly mediated by oxidative stress were analyzed by measuring the markers of oxidative stress such as lipid peroxidation, enzymatic (SOD, Catalase, GPx) and non-enzymatic markers (GSH). Conspicuous changes markers were noticed in diabetic condition which was reverted by the G. indica extract. Screening the extract by AccuTOF-DART (MS) revealed the presence of hydroxycitric acid and garcinol in abundant quantity which probably has influenced the biological activity. This was also corroborated through docking studies of hydroxycitric acid and garcinol both individually and synergistically with the antioxidant proteins. Altogether, hydroxycitric acid and garcinol present in G. indica fruit extract alleviates the pathophysiological conditions such as hyperglycemia, dyslipidemia, insulin resistance and oxidative stress mediated by diabesity.Keywords: antioxidants , diabesity, hydroxycitric acid, garcinol, Garcinia indica, sreptozotocin
Procedia PDF Downloads 2642205 Effect of Bacillus thuringiensis israelensis against Culex pipiens (Insect: Culicidae) Effect of Bti on Two Non-Target Species Eylais hamata (Acari: Hydrachnidia) and Physa marmorata (Gastropoda: Physidae) and Dosage of Their GST Biomarker
Authors: Meriem Mansouri, Fatiha Bendali Saoudi, Noureddine Soltani
Abstract:
Biological control presents a means of control for the protection of the environment. Bacillus thuringiensis israelensis Berliner 1915 is an inseticide of biological origin because it is a bacterium of the Bacillaceae family. This biocide has a biological importance, because of its specific larvicidal action against Culicidae, blood-sucking insects, responsible for several diseases to humans and animals through the world. As well as, its high specificity for these insects. Also, the freshwater mites, this necessarily parasitic group for aquatic species such as the Physidae, also have an effective biological control against the Culicidae, because of their voracious predation to the larvae of these insects. The present work aims to study the effects of the biocide Bacillus thuringiensis var israelinsis, against non-target adults of water mites Eylais hamata Koenike, 1897, as well as its associated host species Physa marmorata Fitzinger, 1833. After 12 days of oral treatment of adults with lethal concentration (LC50:0.08µg/ml), determined from essays on 4th instar larvae of Culex pipiens (hematophagous insects). No adverse effect has been recorded for adult individuals of Eylais hamata, contrary, snail Physa marmorata were sensitive for this dose of Bti. In parallel, after treatment at the Bti by LC50, the enzyme stress bio marker glutathione S-transferase, was measured after 24, 48 and 72 hours. The enzymatic activity of GST has increased after 24 and 48 hours following treatment.Keywords: biological control, Bacillus thuringiensis var israelinsis, culicidae, hydrachnidia, enzymatic activity
Procedia PDF Downloads 6502204 Differential Response of Cellular Antioxidants and Proteome Expression to Salt, Cadmium and Their Combination in Spinach (Spinacia oleracea)
Authors: Rita Bagheri, Javed Ahmed, Humayra Bashir, M. Irfan Qureshi
Abstract:
Agriculture lands suffer from a combination of stresses such as salinity and metal contamination including cadmium at the same time. Under such condition of multiple stresses, plant may exhibit unique responses different from the stress occurring individually. Thus, it would be interesting to investigate that how plant respond to combined stress at level of antioxidants and proteome expression, and identifying the proteins which are involved in imparting stress tolerance. With an approach of comparative proteomics and antioxidant analysis, present study investigates the response of Spinacia oleracea to salt (NaCl), cadmium (Cd), and their combination (NaCl+Cd) stress. Two-dimensional gel electrophoresis was used for resolving leaf proteome, and proteins of interest were identified using PDQuest software. A number of proteins expressed differentially, those indicated towards their roles in imparting stress tolerance, were digested by trypsin and analyzed on mass spectrometer for peptide mass fingerprinting (PMF). Data signals were then matched with protein databases using MASCOT. Results show that NaCl, Cd and both together (NaCl+Cd) induce oxidative stress which was highest in combined stress of Cd+NaCl. Correspondingly, the activities of enzymatic antioxidants viz., SOD, APX, GR and CAT, and non-enzymatic antioxidants had highest changes under combined stress compares to single stress over their respective controls. Among the identified proteins, several interesting proteins were identified that may be have role in Spinacia oleracia tolerance in individual and combinatorial stress of salt and cadmium. The functional classification of identified proteins indicates the importance and necessity of keeping higher ratio of defence and disease responsive proteins.Keywords: Spinacia oleracea, Cd, salinity, proteomics, antioxidants, combinatorial stress
Procedia PDF Downloads 3822203 Fly Ash Derived Zeolites as Potential Sorbents for Elemental Mercury Removal from Simulated Gas Stream
Authors: Piotr Kunecki, Magdalena Wdowin
Abstract:
The fly ash produced as waste in the process of conventional coal combustion was utilized in the hybrid synthesis of zeolites X and A from Faujasite (FAU) and Linde Type A (LTA) frameworks, respectively. The applied synthesis method included modification together with the crystallization stage. The sorbent modification was performed by introducing metals into the zeolite structure in order to create an ability to form stable bonds with elemental mercury (Hg0). The use of waste in the form of fly ash as a source of silicon and aluminum, as well as the proposed method of zeolite synthesis, fits the circular economy idea. The effect of zeolite modification on Hg0 removal from a simulated gas stream was studied empirically using prototype installation designed to test the effectiveness of sorption by solid-state sorbents. Both derived zeolites X and A modified with silver nitrate revealed significant mercury uptake during a 150-minute sorption experiment. The amount of elemental mercury removed in the experiment ranged from 5.69 to 6.01 µg Hg0/1g of sorbent for zeolites X and from 4.47 to 4.86 µg Hg0/1g of sorbent for zeolites A. In order to confirm the effectiveness of the sorbents towards mercury bonding, the possible re-emission effect was tested as well. Derived zeolites X and A did not show mercury re-emission after the sorption process, which confirms the stable bonding of Hg0 in the structure of synthesized zeolites. The proposed hybrid synthesis method possesses the potential to be implemented for both fly ash utilization as well as the time and energy-saving production of aluminosilicate, porous materials with high Hg0 removal efficiency. This research was supported by National Science Centre, Poland, grant no 2021/41/N/ST5/03214.Keywords: fly ash, synthetic zeolites, elemental mercury removal, sorption, simulated gas stream
Procedia PDF Downloads 862202 Characterization of Biogenic Silver Nanoparticles by Salvadora persica Leaves Extract and its Application Against Some MDR Pathogens E. Coli and S. Aureus
Authors: Mudawi M. Nour
Abstract:
Background: Now a days, the multidisciplinary scientific research conception in the field of nanotechnology has witnessed development with regard to the numerous applications and synthesis of nanomaterials. Objective: The current investigation has been conducted with the main focus on the green synthesis of silver nanoparticles from the leaves of Salvadora persica and its antibacterial activity against MDR pathogens E. coli and S. aureus. Methodology: Silver nanoparticles (AgNPs) were prepared after addition of aqueous extract of Salvadora persica leaves. The UV-Vis spectrophotometer, Transmission Electron Microscopy (TEM), zeta potential and Scanning Electron Microscopy (SEM) were employed to detect the particle size and morphology, besides Fourier transform infra-red spectrometer (FTIR) analysis was performed to determine the capping and stabilizing agents in the extract. Antibacterial assay for the biogenic AgNPs was conducted against E. coli and S. aureus. Results: Color change of the mixture from yellow to dark brown is the first indication to AgNPs formation. Furthermore, 420 nm was the peak value for UV-Vis spectroscopy absorption of the mixture. Besides, TEM and SEM micrographs showed wide variability in the diameter of smaller NPs aggregated together with spherical shapes, and zeta sizer showed about 153.3 nm as an average size of nanoparticles. Microbial suppression was noticed for the tested microorganisms. Furthermore, with the help of FTIR analysis, the biomolecules that act as capping and stabilizing agents of AgNPs are proteins and phenols present in the plant extract. Conclusion: Salvadora persica leaves extract act as a reducing and stabilizing agent for the synthesis of AgNPs, keeping its ability to suppress the MDR pathogen.Keywords: green synthesis, FTIR, MDR pathogen, salvadora persica
Procedia PDF Downloads 742201 Synthesis, Structural and Magnetic Properties of CdFe2O4 Ferrite
Authors: Justice Zakhele Msomi
Abstract:
Nanoparticles of CdFe2O4 with particle size of about 10 nm have been synthesized by high energy ball milling and co-precipitation processes. The synthesis route appears to have some effects on the properties. The compounds have been characterized by X-ray diffraction, Fourier Transform Infrared (FTIR), transmission electron microscopy (TEM), Mössbauer and magnetization measurements. The XRD pattern of CdFe2O4 provides information about single-phase formation of spinel structure with cubic symmetry. The FTIR measurements between 400 and 4000 cm-1 indicate intrinsic cation vibration of the spinel structure. The Mössbauer spectra were recorded at 4 K and 300 K. The hyperfine fields appear to be highly sensitive on particle size. The evolution of the properties as a function of particle size is also presented.Keywords: ferrite, nanoparticles, magnetization, Mössbauer
Procedia PDF Downloads 4032200 Synthesis and Pharmacological Evaluation of Substituted Pyrimidine Derivative Containing Thiol Group
Authors: Shradha S. Binani, Pravin S. Bodke, Ravi V. Joat
Abstract:
An efficient method has been described for the synthesis of 6-(substituted aryl)-4-(2'- hydroxy-5'-chlorophenyl)-1, 6-dihydropyrimidine-2-thiol, as a beneficial antibacterial and antifungal agents. The diketones of title compounds were synthesized in four steps and subsequently these diketones were further reacted with thiourea in the presence of DMF, which led to the formation of dihydropyrimidine derivatives 5 (a-f). Compounds 5 (a-f) were screened for their in vitro antibacterial and antifungal activity by agar well method. Compounds 5b, 5c, 5e, and 5f were exhibited significant antimicrobial potential against tested strains at 50ug/ml and 100ug/ml concentrations. Six novel dihydropyrimidine analogues have been synthesized, characterized and found to be promising antibacterial and antifungal agents.Keywords: diketones, dihyropyrimidine, antimicrobial activity, thiol group
Procedia PDF Downloads 4342199 Molecular Mechanism on Inflammation and Antioxidant Role of Pterocarpus Marsupiumin in Experimental Hyperglycaemia
Authors: Leelavinothan Pari , Ayyasamy Rathinam
Abstract:
Diabetes mellitus (DM) is a major and growing public health problem throughout the world. Pterocarpus marsupium (Roxb.) (Family: Fabaceae) is widely used as a traditional medicine to treat various diseases including diabetes. However, the molecular mechanism of Pterocarpus marsupium has not been investigated so far. Two fractions (2.5% and 5%) of extract from the medicinal plant, Pterocarpus marsupium (PME) were conducted in a dose dependent manner in streptozotocin (45 mg/kg b.w.) induced type 2 diabetic rats. Each fraction of PME was administered to diabetic rats intragastrically at a dose of 50, 100 and 200 mg/kg b.w for 45 days. The effective dose 200 mg/kg b.w of 5% fraction was more pronounced in reducing the levels of blood glucose (95.65 mg/dL) and glycosylated hemoglobin (HbA1c) (0.41 mg/g Hb), and increasing the plasma insulin (16.20 µU/mL) level. Moreover, PME (200 mg/kg b.w) significantly ameliorated lipid peroxidation products (thiobarbituric reactive substances, lipid hydroperoxides) enzymatic (superoxide dismutase, catalase and glutathione peroxidase) and non-enzymatic antioxidants (Vitamin C, Vitamin E and reduced glutathione) levels. The altered activities of the key enzymes of lipid metabolism along with the lipid profile in diabetic rats were significantly reverted to near normal levels by the administration of PME 5% 200 mg/kg b.w fraction. PME (200 mg/kg b.w) has the ability to reduce the inflammatory cytokines, such as TNF-α, IL-6 mRNA, as well as protein expression and apoptotic marker, such as caspase-3 enzyme in diabetic hepatic tissue. The above biochemical findings were also supported by histological studies such as improvement in pancreas and liver. Pterocarpus marsupium could effectively reduce the hyperglycemia, oxidative-stress, inflammation and hyperlipedimea in diabetic rats; hence it could be a useful drug in the management of diabetes without any side effects.Keywords: diabetes mellitus, streptozotocin, Pterocarpus marsupium, lipid peroxidation, Antioxidants, inflammatory cytokines
Procedia PDF Downloads 3762198 Precursor Synthesis of Carbon Materials with Different Aggregates Morphologies
Authors: Nikolai A. Khlebnikov, Vladimir N. Krasilnikov, Evgenii V. Polyakov, Anastasia A. Maltceva
Abstract:
Carbon materials with advanced surfaces are widely used both in modern industry and in environmental protection. The physical-chemical nature of these materials is determined by the morphology of primary atomic and molecular carbon structures, which are the basis for synthesizing the following materials: zero-dimensional (fullerenes), one-dimensional (fiber, tubes), two-dimensional (graphene) carbon nanostructures, three-dimensional (multi-layer graphene, graphite, foams) with unique physical-chemical and functional properties. Experience shows that the microscopic morphological level is the basis for the creation of the next mesoscopic morphological level. The dependence of the morphology on the chemical way and process prehistory (crystallization, colloids formation, liquid crystal state and other) is the peculiarity of the last called level. These factors determine the consumer properties of carbon materials, such as specific surface area, porosity, chemical resistance in corrosive environments, catalytic and adsorption activities. Based on the developed ideology of thin precursor synthesis, the authors discuss one of the approaches of the porosity control of carbon-containing materials with a given aggregates morphology. The low-temperature thermolysis of precursors in a gas environment of a given composition is the basis of the above-mentioned idea. The processes of carbothermic precursor synthesis of two different compounds: tungsten carbide WC:nC and zinc oxide ZnO:nC containing an impurity phase in the form of free carbon were selected as subjects of the research. In the first case, the transition metal (tungsten) forming carbides was the object of the synthesis. In the second case, there was selected zinc that does not form carbides. The synthesis of both kinds of transition metals compounds was conducted by the method of precursor carbothermic synthesis from the organic solution. ZnO:nC composites were obtained by thermolysis of succinate Zn(OO(CH2)2OO), formate glycolate Zn(HCOO)(OCH2CH2O)1/2, glycerolate Zn(OCH2CHOCH2OH), and tartrate Zn(OOCCH(OH)CH(OH)COO). WC:nC composite was synthesized from ammonium paratungstate and glycerol. In all cases, carbon structures that are specific for diamond- like carbon forms appeared on the surface of WC and ZnO particles after the heat treatment. Tungsten carbide and zinc oxide were removed from the composites by selective chemical dissolution preserving the amorphous carbon phase. This work presents the results of investigating WC:nC and ZnO:nC composites and carbon nanopowders with tubular, tape, plate and onion morphologies of aggregates that are separated by chemical dissolution of WC and ZnO from the composites by the following methods: SEM, TEM, XPA, Raman spectroscopy, and BET. The connection between the carbon morphology under the conditions of synthesis and chemical nature of the precursor and the possibility of regulation of the morphology with the specific surface area up to 1700-2000 m2/g of carbon-structured materials are discussed.Keywords: carbon morphology, composite materials, precursor synthesis, tungsten carbide, zinc oxide
Procedia PDF Downloads 3352197 Applications of Sulfur Nanoparticles: Synthesis and Characterizations
Authors: Sandeep K. Shukla, Roli Jain, Soumitra S. Pande, Archna Pandey
Abstract:
Sulfur nanoparticles were prepared by different methods with different sizes and shapes. When the sulfur is present as nanoparticles they have many practical applications in our life. This research discusses sulfur nanoparticles synthesis, characterizations and applications. With dandruff being a common everyday problem and the market is loaded with antidandruff shampoos and such skin care products, it is obvious to assume resourceful research into this area would be both objective to present scenario and potentially lucrative. Nanoparticles are frequently in use in some very powerful antimicrobial, antifungal cosmetics nowadays, especially silver. To check its antidandruff activity, experiments have been conducted on Malassezia furfur the causal organism for seborrheaic dermatitis or dandruff, which have been cultured for such study in our lab.Keywords: CTAB surfactant SEM, sulfur nanoparticles (S-NPs), XRD, polymeric surfactant
Procedia PDF Downloads 5892196 Study of the Antimicrobial Activity of the Extract of the Eucalyptus camaldulensis stemming from the Algerian Northeast
Authors: Meksem Nabila, Bordjiba Ouahiba, Meraghni Messaouda, Meksem Amara Leila, Djebar Mohhamed Reda
Abstract:
The problems of protection of the cultures are being more and more important that they interest great number of farmers and scientists because of the excessive use of the organic phytosanitary products of synthesis that causes fatal damages on the environment. To reduce the inconveniences produced by these pesticides, the use of "biopesticides" originated from plants could be an alternative. The aim of this work is the valuation of a botanical species: Eucalyptus camaldulensis from Northeastern Algeria which extracts are supposed to have an antimicrobial activity, similar to pesticides. The extraction of secondary metabolites from the leaves of E. camaldulensis was realized using methanol and water, and measurements of total polyphenols were made by spectrometric method. Determination of the antimicrobial activity of the extracts at issue was realized in vitro on phyto-pathogenic fungal and bacterial stumps. Tests of comparison were included in the essays by using the chemical pesticidal products of synthesis. The obtained results show that the plant contains polyphenols with an efficiency mattering of the order of 22 %. These polyphenols have a strong fungicidal and bactericidal pesticidal activity against various microbial stumps and the values of the zones of inhibition are more important compared with that obtained in the presence of the chemicals of synthesis (fungicide).Keywords: eucalyptus camaldulensis, biopesticide, polyphenols, antimicrobial activity
Procedia PDF Downloads 4322195 Effect of Inorganic Fertilization on Soil N Dynamics in Agricultural Plots in Central Mexico
Authors: Karla Sanchez-Ortiz, Yunuen Tapia-Torres, John Larsen, Felipe Garcia-Oliva
Abstract:
Due to food demand production, the use of synthetic nitrogenous fertilizer has increased in agricultural soils to replace the N losses. Nevertheless, the intensive use of synthetic nitrogenous fertilizer in conventional agriculture negatively affects the soil and therefore the environment, so alternatives such as organic agriculture have been proposed for being more environmentally friendly. However, further research in soil is needed to see how agricultural management affects the dynamics of C and N. The objective of this research was to evaluate the C and N dynamics in the soil with three different agricultural management: an agricultural plot with intensive inorganic fertilization, a plot with semi-organic management and an agricultural plot with recent abandonment (2 years). For each plot, the soil C and N dynamics and the enzymatic activity of NAG and β-Glucosidase were characterized. Total C and N concentration of the plant biomass of each site was measured as well. Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) was higher in abandoned plot, as well as this plot had higher total carbon (TC) and total nitrogen (TN), besides microbial N and microbial C. While the enzymatic activity of NAG and β-Glucosidase was greater in the agricultural plot with inorganic fertilization, as well as nitrate (NO₃) was higher in fertilized plot, in comparison with the other two plots. The aboveground biomass (AB) of maize in the plot with inorganic fertilization presented higher TC and TN concentrations than the maize AB growing in the semiorganic plot, but the C:N ratio was highest in the grass AB in the abandoned plot. The C:N ration in the maize grain was greater in the semi-organic agricultural plot. These results show that the plot under intensive agricultural management favors the loss of soil organic matter and N, degrading the dynamics of soil organic compounds, promoting its fertility depletion.Keywords: mineralization, nitrogen cycle, soil degradation, soil nutrients
Procedia PDF Downloads 1822194 Continuous Catalytic Hydrogenation and Purification for Synthesis Non-Phthalate
Authors: Chia-Ling Li
Abstract:
The scope of this article includes the production of 10,000 metric tons of non-phthalate per annum. The production process will include hydrogenation, separation, purification, and recycling of unprocessed feedstock. Based on experimental data, conversion and selectivity were chosen as reaction model parameters. The synthesis and separation processes of non-phthalate and phthalate were established by using Aspen Plus software. The article will be divided into six parts: estimation of physical properties, integration of production processes, purification case study, utility consumption, economic feasibility study and identification of bottlenecks. The purities of products was higher than 99.9 wt. %. Process parameters have important guiding significance to the commercialization of hydrogenation of phthalate.Keywords: economic analysis, hydrogenation, non-phthalate, process simulation
Procedia PDF Downloads 2772193 Intelligent and Optimized Placement for CPLD Devices
Authors: Abdelkader Hadjoudja, Hajar Bouazza
Abstract:
The PLD/CPLD devices are widely used for logic synthesis since several decades. Based on sum of product terms (PTs) architecture, the PLD/CPLD offer a high degree of flexibility to support various application requirements. They are suitable for large combinational logic, finite state machines as well as intensive I/O designs. CPLDs offer very predictable timing characteristics and are therefore ideal for critical control applications. This paper describes how the logic synthesis techniques, such as 1) XOR detection, 2) logic doubling, 3) complement of a Boolean function are combined, applied and used to optimize the CPLDs devices architecture that is based on PAL-like macrocells. Our goal is to use these techniques for minimizing the number of macrocells required to implement a circuit and minimize the delay of mapped circuit.Keywords: CPLD, doubling, optimization, XOR
Procedia PDF Downloads 2822192 Sensor Monitoring of the Concentrations of Different Gases Present in Synthesis of Ammonia Based on Multi-Scale Entropy and Multivariate Statistics
Authors: S. Aouabdi, M. Taibi
Abstract:
The supervision of chemical processes is the subject of increased development because of the increasing demands on reliability and safety. An important aspect of the safe operation of chemical process is the earlier detection of (process faults or other special events) and the location and removal of the factors causing such events, than is possible by conventional limit and trend checks. With the aid of process models, estimation and decision methods it is possible to also monitor hundreds of variables in a single operating unit, and these variables may be recorded hundreds or thousands of times per day. In the absence of appropriate processing method, only limited information can be extracted from these data. Hence, a tool is required that can project the high-dimensional process space into a low-dimensional space amenable to direct visualization, and that can also identify key variables and important features of the data. Our contribution based on powerful techniques for development of a new monitoring method based on multi-scale entropy MSE in order to characterize the behaviour of the concentrations of different gases present in synthesis and soft sensor based on PCA is applied to estimate these variables.Keywords: ammonia synthesis, concentrations of different gases, soft sensor, multi-scale entropy, multivarite statistics
Procedia PDF Downloads 3362191 Heterocyclic Ring Extension of Estrone: Synthesis and Cytotoxicity of Fused Pyrin, Pyrimidine and Thiazole Derivatives
Authors: Rafat M. Mohareb
Abstract:
Several D-ring alkylated estrone analogues display exceptionally high affinity for estrogen receptors. In particular, compounds in which an E-ring is formed are known to be involved in the inhibition of steroidogenic enzymes. Such compounds also have an effect on steroid dehydrogenase activity and the ability to inhibit the detrimental action of the steroid sulfatase enzyme. Generally, E-ring extended steroids have been accessed by modification of the C17-ketone in the D-ring by either arylimine or oximino formation, addition of a carbon nucleophile or hydrazone formation. Other approaches have included ketone reduction, silyl enol ether formation or ring-closing metathesis (giving five- or six-membered E-rings). Chemical modification of the steroid D-ring provides a way to alter the functional groups, sizes and stereochemistry of the D-ring, and numerous structure-activity relationships have been established by such synthetic alterations. Steroids bearing heterocycles fused to the D-ring of the steroid nucleus have been of pharmaceutical interest. In the present paper, we report on the efficient synthesis of estrone possessing pyran, pyrimidine and thiazole ring systems. This study focused on the synthesis and biochemical evaluation of newly synthesized heterocyclic compounds which were then subjected through inhibitory evaluations towards human cancer and normal cell lines.Keywords: estrone, heterocyclization, cytotoxicity, biomedicine
Procedia PDF Downloads 2952190 Synthesis and Catalytic Activity of N-Heterocyclic Carbene Copper Catalysts Supported on Magnetic Nanoparticles
Authors: Iwona Misztalewska-Turkowicz, Agnieszka Z. Wilczewska, Karolina H. Markiewicz
Abstract:
Carbenes - species which possess neutral carbon atom with two shared and two unshared valence electrons, are known for their high reactivity and instability. Nevertheless, it is also known, that some carbenes i.e. N-heterocyclic carbenes (NHCs), can form stable crystals. The usability of NHCs in organic synthesis was studied. Due to their exceptional properties (high nucleophilicity) NHCs are commonly used as organocatalysts and also as ligands in transition metal complexes. NHC ligands possess better electron-donating properties than phosphines. Moreover, they exhibit lower toxicity. Due to these features, phosphines are frequently replaced by NHC ligands. In this research is discussed the synthesis of five-membered NHCs which are mainly obtained by deprotonation of azolium salts, e.g., imidazolium or imidazolinium salts. Some of them are immobilized on a solid support what leads to formation of heterogeneous, recyclable catalysts. Magnetic nanoparticles (MNPs) are often used as a solid support for catalysts. MNPs can be easily separated from the reaction mixture using an external magnetic field. Due to their low size and high surface to volume ratio, they are a good choice for immobilization of catalysts. Herein is presented synthesis of N-heterocyclic carbene copper complexes directly on the surface of magnetic nanoparticles. Formation of four different catalysts is discussed. They vary in copper oxidation state (Cu(I) and Cu(II)) and structure of NHC ligand. Catalysts were tested in Huisgen reaction, a type of copper catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Huisgen reaction represents one of the few universal and highly efficient reactions in which 1,2,3-triazoles can be obtained. The catalytic activity of all synthesized catalysts was compared with activity of commercially available ones. Different reaction conditions (solvent, temperature, the addition of reductant) and reusability of the obtained catalysts were investigated and are discussed. The project was financially supported by National Science Centre, Poland, grant no. 2016/21/N/ST5/01316. Analyses were performed in Centre of Synthesis and Analyses BioNanoTechno of University of Bialystok. The equipment in the Centre of Synthesis and Analysis BioNanoTechno of University of Bialystok was funded by EU, as a part of the Operational Program Development of Eastern Poland 2007-2013, project: POPW.01.03.00-20-034/09-00 and POPW.01.03.00-20-004/11.Keywords: N-heterocyclic carbenes, click reaction, magnetic nanoparticles, copper catalysts
Procedia PDF Downloads 1572189 Synthesis and D.C. Conductivity Measurements of Polyaniline/CopperOxide Nanocomposites
Authors: L. N. Shubha, P. Madhusudana Rao
Abstract:
The Polyaniline / Copper Oxide(PANI / CuO) nanocomposite was prepared by solution mixing of prepared Polyaniline and copper Oxide in Dimethyl sulfoxide (DMSO). The synthesis involved the formation of dark green colored Polyaniline-Copper Oxide nanocomposite. The synthesized polymer nano composites were characterized by XRD, FTIR, SEM and UV-Visible Spectroscopy. The characteristic peaks in XRD, FTIR and UV-Visible spectra confirmed the presence of CuO in the polymer structure. SEM analysis revealed formation of PANI/CuO nano composite The D.C. conductivity measurements were performed using two probe method for various temperatures.Keywords: polyaniline/copper oxide (PANI/CuO) nanocomposite, XRD, SEM, FTIRand DC- conductivity, UV-visible spectra
Procedia PDF Downloads 3072188 Ultrasound-Assisted Sol – Gel Synthesis of Nano-Boehmite for Biomedical Purposes
Authors: Olga Shapovalova, Vladimir Vinogradov
Abstract:
Among many different sol – gel matrices only alumina can be successfully parenteral injected in the human body. And this is not surprising, because boehmite (aluminium oxyhydroxide) is the metal oxide approved by FDA and EMA for intravenous and intramuscular administrations, and also has been using for a longtime as adjuvant for producing of many modern vaccines. In our earlier study, it has been shown, that denaturation temperature of enzymes entrapped in sol-gel boehmite matrix increases for 30 – 60 °С with preserving of initial activity. It makes such matrices more attractive for long-term storage of non-stable drugs. In current work we present ultrasound-assisted sol-gel synthesis of nano-boehmite. This method provides bio-friendly, very stable, highly homogeneous alumina sol with using only water and aluminium isopropoxide as a precursor. Many parameters of the synthesis were studied in details: time of ultrasound treatment, US frequency, surface area, pore and nanoparticle size, zeta potential and others. Here we investigated the dependence of stability of colloidal sols and textural properties of the final composites as a function of the time of ultrasonic treatment. Chosen ultrasonic treatment time was between 30 and 180 minutes. Surface area, average pore diameter and total pore volume of the final composites were measured by surface and pore size analyzer Nova 1200 Quntachrome. It was shown that the matrices with ultrasonic treatment time equal to 90 minutes have the biggest surface area 431 ± 24 m2/g. On the other had such matrices have a smaller stability in comparison with the samples with ultrasonic treatment time equal to 120 minutes that have the surface area 390 ± 21 m2/g. It was shown that the stable sols could be formed only after 120 minutes of ultrasonic treatment, otherwise the white precipitate of boehmite is formed. We conclude that the optimal ultrasonic treatment time is 120 minutes.Keywords: boehmite matrix, stabilisation, ultrasound-assisted sol-gel synthesis
Procedia PDF Downloads 2672187 An Organocatalytic Construction of Vicinal Tetrasubstituted Stereocenters via Mannich Reaction of 2-Substituted Benzofuran-3-One with Isatin-Derived Ketimine
Authors: Koilpitchai Sivamuthuraman, Venkitasamy Kesavan
Abstract:
3-substituted 3-amino-2-oxindole skeleton bearing adjacent tetrasubstituted stereogenic centers is of great importance because of these heterocyclic motifs possess a wide range of pharmacological activity. The catalytic asymmetric construction of multi functionalised heterocyclic compound with adjacent tetrasubstituted stereocenters is one of the most difficult tasks in organic synthesis. To date, the most straightforward methodologies have been developed for synthesis of chiral 3-substituted 3-amino-2-oxindoles through the addition of carbon nucleophiles to isatin-derived ketimines. However, only a few successful examples have been described for the assembly of vicinal tetrasubstituted stereocenters using isatin derived ketimines as electrophiles. On the other hand, 2,2-Disubstituted benzofuran-3(2H)-ones and related frameworks are characteristic of a quaternary stereogenic center at C2 position present in quite a number of natural products and bioactive Molecules.Despite the intensive efforts devoted for the construction of 2,2-Disubstituted Benzofuran-3[2H]-one, there are only a few asymmetric methods such as organocatalytic Michael addition and enantioselective halogenations were reported till now. Due to the biological importance of oxindole and benzofuran-3-one, it is proposed here with the synthesis of hybrid molecule containing tetrasubstituted stereo centers through asymmetric organocatalysis. The addition of 2-substituted Benzofuran-3-one(1a) to isatin-derived ketimines(2a) using a bifunctional organocatalyst(catalyst IV or V), leading to chiral heterocyclic compounds containing both 3-amino 2-oxindole and benzofurn-3-one bearing vicinal quaternary stereocenters with good yields and excellent enantioselectivity. The present study extends the scope of the catalytic asymmetric Mannich reaction with isatin-derived ketimines, providing a new class of amino oxindole derivatives having benzofuran-3-one.Keywords: asymmetric synthesis, benzofuran-3-one, isatin-derived ketimines, quaternary stereocenters
Procedia PDF Downloads 1912186 Conformal Noble Metal High-Entropy Alloy Nanofilms by Atomic Layer Deposition for Enhanced Hydrogen Evolution Reaction/Oxygen Evolution Reaction Electrocatalysis Applications
Authors: Jing Lin, Zou Yiming, Goei Ronn, Li Yun, Amanda Ong Jiamin, Alfred Tok Iing Yoong
Abstract:
High-entropy alloy (HEA) coatings comprise multiple (five or more) principal elements that give superior mechanical, electrical, and thermal properties. However, the current synthesis methods of HEA coating still face huge challenges in facile and controllable preparation, as well as conformal integration, which seriously restricts their potential applications. Herein, we report a controllable synthesis of conformal quinary HEA coating consisting of noble metals (Rh, Ru, Ir, Pt, and Pd) by using the atomic layer deposition (ALD) with a post-annealing approach. This approach realizes low temperature (below 200 °C), precise control (nanoscale), and conformal synthesis (over complex substrates) of HEA coating. Furthermore, the resulting quinary HEA coating shows promising potential as a platform for catalysis, exhibiting substantially enhanced electrocatalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performances as compared to other noble metal-based structures such as single metal coating or multi-layered metal composites.Keywords: high-entropy alloy, thin-film, catalysis, water splitting, atomic layer deposition
Procedia PDF Downloads 1242185 Green, Smooth and Easy Electrochemical Synthesis of N-Protected Indole Derivatives
Authors: Sarah Fahad Alajmi, Tamer Ezzat Youssef
Abstract:
Here, we report a simple method for the direct conversion of 6-Nitro-1H-indole into N-substituted indoles via electrochemical dehydrogenative reaction with halogenated reagents under strongly basic conditions through N–R bond formation. The N-protected indoles have been prepared under moderate and scalable electrolytic conditions. The conduct of the reactions was performed in a simple divided cell under constant current without oxidizing reagents or transition-metal catalysts. The synthesized products have been characterized via UV/Vis spectrophotometry, 1H-NMR, and FTIR spectroscopy. A possible reaction mechanism is discussed based on the N-protective products. This methodology could be applied to the synthesis of various biologically active N-substituted indole derivatives.Keywords: green chemistry, 1H-indole, heteroaromatic, organic electrosynthesis
Procedia PDF Downloads 161