Search results for: environmental control system
29694 Multi-Stage Optimization of Local Environmental Quality by Comprehensive Computer Simulated Person as Sensor for Air Conditioning Control
Authors: Sung-Jun Yoo, Kazuhide Ito
Abstract:
In this study, a comprehensive computer simulated person (CSP) that integrates computational human model (virtual manikin) and respiratory tract model (virtual airway), was applied for estimation of indoor environmental quality. Moreover, an inclusive prediction method was established by integrating computational fluid dynamics (CFD) analysis with advanced CSP which is combined with physiologically-based pharmacokinetic (PBPK) model, unsteady thermoregulation model for analysis targeting micro-climate around human body and respiratory area with high accuracy. This comprehensive method can estimate not only the contaminant inhalation but also constant interaction in the contaminant transfer between indoor spaces, i.e., a target area for indoor air quality (IAQ) assessment, and respiratory zone for health risk assessment. This study focused on the usage of the CSP as an air/thermal quality sensor in indoors, which means the application of comprehensive model for assessment of IAQ and thermal environmental quality. Demonstrative analysis was performed in order to examine the applicability of the comprehensive model to the heating, ventilation, air conditioning (HVAC) control scheme. CSP was located at the center of the simple model room which has dimension of 3m×3m×3m. Formaldehyde which is generated from floor material was assumed as a target contaminant, and flow field, sensible/latent heat and contaminant transfer analysis in indoor space were conducted by using CFD simulation coupled with CSP. In this analysis, thermal comfort was evaluated by thermoregulatory analysis, and respiratory exposure risks represented by adsorption flux/concentration at airway wall surface were estimated by PBPK-CFD hybrid analysis. These Analysis results concerning IAQ and thermal comfort will be fed back to the HVAC control and could be used to find a suitable ventilation rate and energy requirement for air conditioning system.Keywords: CFD simulation, computer simulated person, HVAC control, indoor environmental quality
Procedia PDF Downloads 36129693 Solar-Powered Smart Irrigation System as an Adaptation Strategy under Climate Change: A Case Study to Develop Medicinal Security Based on Ancestral Knowledge
Authors: Luisa Cabezas, Karol Leal, Harold Mendoza, Fabio Trochez, Angel Lozada
Abstract:
According to the 2030 Agenda for Sustainable Development Goals (SDG) in which equal importance is given to economic, social, and environmental dimensions where the equality and dignity of each human person is placed at the center of discussion, changing the development concept for one with more responsibility with the environment. It can be found that the energy and food systems are deeply entangled, and they are transversal to the 17 proposed SDG. In this order of ideas, a research project is carried out at Unidad Central del Valle del Cauca (UCEVA) with these two systems in mind, on one hand the energy transition and, on the other hand the transformation of agri-food systems. This project it could be achieved by automation and control irrigation system of medicinal, aromatic, and condimentary plants (MACP) area within the UCEVA Agroecological Farm and located in rural area of Tulua municipality (Valle del Cauca Department, Colombia). This system have allowed to stablish a remote monitoring of MACP area, including MACP moisture measurement, and execute the required system actions. In addition, the electrical system of irrigation control system is powered by a scalable photovoltaic solar energy system based on its specifications. Thus, the developed system automates and control de irrigation system, which is energetically self-sustainable and allows to satisfy the MACP area requirements. Is important to highlight that at MACP area, several medicinal, aromatic, and condimentary plants species are preserved to become primary sources for the pharmaceutical industry and, in many occasions, the only medicines for many communities. Therefore, preserve medicinal plants area would generates medicinal security and preserve cultural heritage as these plants are part of ancestral knowledge that penetrate academic and research communities at UCEVA campus to other society sectors.Keywords: ancestral knowledge, climate change, medicinal plants, solar energy
Procedia PDF Downloads 23829692 Decision Making about the Environmental Management Implementation: Incentives and Expectations
Authors: Eva Štěpánková
Abstract:
Environmental management implementation is presently one of the ways of organization success and value improvement. Increasing an organization motivation to environmental measures introduction is caused primarily by the rising pressure of the society that generates various incentives to endeavor for the environmental performance improvement. The aim of the paper is to identify and characterize the key incentives and expectations leading organizations to the environmental management implementation. The author focuses on five businesses of different size and field, operating in the Czech Republic. The qualitative approach and grounded theory procedure are used in research. The results point out that the significant incentives for environmental management implementation represent primarily demands of customers, the opportunity to declare the environmental commitment and image improvement. The researched enterprises less commonly expect the economical contribution, competitive advantage increase or export rate improvement. The results show that marketing contributions are primarily expected from the environmental management implementation.Keywords: environmental management, environmental management system, ISO 14001, Czech Republic
Procedia PDF Downloads 38629691 Control of a Wind Energy Conversion System Works in Tow Operating Modes (Hyper Synchronous and Hypo Synchronous)
Authors: A. Moualdia, D. J. Boudana, O. Bouchhida, A. Medjber
Abstract:
Wind energy has many advantages, it does not pollute and it is an inexhaustible source. However, the cost of this energy is still too high to compete with traditional fossil fuels, especially on sites less windy. The performance of a wind turbine depends on three parameters: the power of wind, the power curve of the turbine and the generator's ability to respond to wind fluctuations. This paper presents a control chain conversion based on a double-fed asynchronous machine and flow-oriented. The supply system comprises of two identical converters, one connected to the rotor and the other one connected to the network via a filter. The architecture of the device is up by three commands are necessary for the operation of the turbine control extraction of maximum power of the wind to control itself (MPPT) control of the rotor side converter controlling the electromagnetic torque and stator reactive power and control of the grid side converter by controlling the DC bus voltage and active power and reactive power exchanged with the network. The proposed control has been validated in both modes of operation of the three-bladed wind 7.5 kW, using Matlab/Simulink. The results of simulation control technology study provide good dynamic performance and static.Keywords: D.F.I.G, variable wind speed, hypersynchrone, energy quality, hyposynchrone
Procedia PDF Downloads 36729690 Stability and Performance Improvement of a Two-Degree-of-Freedom Robot under Interaction Using the Impedance Control
Authors: Seyed Reza Mirdehghan, Mohammad Reza Haeri Yazdi
Abstract:
In this paper, the stability and the performance of a two-degree-of-freedom robot under an interaction with a unknown environment has been investigated. The time when the robot returns to its initial position after an interaction and the primary resistance of the robot against the impact must be reduced. Thus, the applied torque on the motor will be reduced. The impedance control is an appropriate method for robot control in these conditions. The stability of the robot at interaction moment was transformed to be a robust stability problem. The dynamic of the unknown environment was modeled as a weight function and the stability of the robot under an interaction with the environment has been investigated using the robust control concept. To improve the performance of the system, a force controller has been designed which the normalized impedance after interaction has been reduced. The resistance of the robot has been considered as a normalized cost function and its value was 0.593. The results has showed reduction of resistance of the robot against impact and the reduction of convergence time by lower than one second.Keywords: impedance control, control system, robots, interaction
Procedia PDF Downloads 43129689 A Neural Network Control for Voltage Balancing in Three-Phase Electric Power System
Authors: Dana M. Ragab, Jasim A. Ghaeb
Abstract:
The three-phase power system suffers from different challenging problems, e.g. voltage unbalance conditions at the load side. The voltage unbalance usually degrades the power quality of the electric power system. Several techniques can be considered for load balancing including load reconfiguration, static synchronous compensator and static reactive power compensator. In this work an efficient neural network is designed to control the unbalanced condition in the Aqaba-Qatrana-South Amman (AQSA) electric power system. It is designed for highly enhanced response time of the reactive compensator for voltage balancing. The neural network is developed to determine the appropriate set of firing angles required for the thyristor-controlled reactor to balance the three load voltages accurately and quickly. The parameters of AQSA power system are considered in the laboratory model, and several test cases have been conducted to test and validate the proposed technique capabilities. The results have shown a high performance of the proposed Neural Network Control (NNC) technique for correcting the voltage unbalance conditions at three-phase load based on accuracy and response time.Keywords: three-phase power system, reactive power control, voltage unbalance factor, neural network, power quality
Procedia PDF Downloads 19629688 Computational Simulations on Stability of Model Predictive Control for Linear Discrete-Time Stochastic Systems
Authors: Tomoaki Hashimoto
Abstract:
Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial time and a moving terminal time. This paper examines the stability of model predictive control for linear discrete-time systems with additive stochastic disturbances. A sufficient condition for the stability of the closed-loop system with model predictive control is derived by means of a linear matrix inequality. The objective of this paper is to show the results of computational simulations in order to verify the validity of the obtained stability condition.Keywords: computational simulations, optimal control, predictive control, stochastic systems, discrete-time systems
Procedia PDF Downloads 43329687 Development of AUTOSAR Software Components of MDPS System
Authors: Jae-Woo Kim, Kyung-Joong Lee, Hyun-Sik Ahn
Abstract:
This paper describes the development of a Motor-Driven Power Steering (MDPS) system using Automotive Open System Architecture (AUTOSAR) methodology. The MDPS system is a new power steering technology for vehicles and it can enhance driver’s convenience and fuel efficiency. AUTOSAR defines common standards for the implementation of embedded automotive software. Some aspects of safety and timing requirements are analyzed. Through the AUTOSAR methodology, the embedded software becomes more flexible, reusable and maintainable than ever. Hence, we first design software components (SW-C) for MDPS control based on AUTOSAR and implement SW-Cs for MDPS control using authoring tool following AUTOSAR standards.Keywords: AUTOSAR, MDPS, simulink, software component
Procedia PDF Downloads 35029686 Power Angle Control Strategy of Virtual Synchronous Machine: A Novel Approach to Control Virtual Synchronous Machine
Authors: Shishir Lamichhane, Saurav Dulal, Bibek Gautam, Madan Thapa Magar, Indraman Tamrakar
Abstract:
Renewable energies such as wind turbines and solar photovoltaic have gained significance as a result of global environmental pollution and energy crises. These sources of energy are converted into electrical energy and delivered to end-users through the utility system. As a result of the widespread use of power electronics-based grid-interfacing technologies to accommodate renewable sources of energy, the prevalence of converters has expanded as well. As a result, the power system's rotating inertia is decreasing, endangering the utility grid's stability. The use of Virtual Synchronous Machine (VSM) technology has been proposed to overcome the grid stability problem due to low rotating inertia. The grid-connected inverter used in VSM can be controlled to emulate inertia, which replicates the external features of a synchronous generator. As a result, the rotating inertia is increased to support the power system's stability. A power angle control strategy is proposed in this paper and its model is simulated in MATLAB/Simulink to study the effects of parameter disturbances on the active power and frequency for a VSM. The system consists of a synchronous generator, which is modeled in such a way that the frequency drops to an unacceptable region during transient conditions due to a lack of inertia when VSM is not used. Then, the suggested model incorporating VSM emulates rotating inertia, injecting a controllable amount of energy into the grid during frequency transients to enhance transient stability.Keywords: damping constant, inertia–constant, ROCOF, transient stability, distributed sources
Procedia PDF Downloads 20729685 Suitable Tuning Method Selection for PID Controller Used in Digital Excitation System of Brushless Synchronous Generator
Authors: Deepak M. Sajnekar, S. B. Deshpande, R. M. Mohril
Abstract:
At present many rotary excitation control system are using analog type of Automatic Voltage Regulator which now started to replace with the digital automatic voltage regulator which is provided with PID controller and tuning of PID controller is a challenging task. The cases where digital excitation control system is used tuning of PID controller are still carried out by pole placement method. Tuning of PID controller used for static excitation control system is not challenging because it does not involve exciter time constant. This paper discusses two methods of tuning PID controller i.e. Pole placement method and pole zero cancellation method. GUI prepared for both the methods on the platform of MATLAB. Using this GUI, performance results and time required for tuning for both the methods are compared. Sensitivity of the methods is also presented with parameter variation like loop gain ‘K’ and exciter time constant ‘te’.Keywords: digital excitation system, automatic voltage regulator, pole placement method, pole zero cancellation method
Procedia PDF Downloads 67829684 Implementation and Modeling of a Quadrotor
Authors: Ersan Aktas, Eren Turanoğuz
Abstract:
In this study, the quad-electrical rotor driven unmanned aerial vehicle system is designed and modeled using fundamental dynamic equations. After that, mechanical, electronical and control system of the air vehicle are designed and implemented. Brushless motor speeds are altered via electronic speed controllers in order to achieve desired controllability. The vehicle's fundamental Euler angles (i.e., roll angle, pitch angle, and yaw angle) are obtained via AHRS sensor. These angles are provided as an input to the control algorithm that run on soft the processor on the electronic card. The vehicle control algorithm is implemented in the electronic card. Controller is designed and improved for each Euler angles. Finally, flight tests have been performed to observe and improve the flight characteristics.Keywords: quadrotor, UAS applications, control architectures, PID
Procedia PDF Downloads 36529683 A Model of Critical Consideration of Environmental Education: Concepts, Contexts, and Competencies
Authors: Mohammad Anwar, Hamid Ullah Khan, Shah Waliullah
Abstract:
Recently, environmental education is an essential element in avoiding environmental degradation around the globe that needs new articles and policymakers’ emphasis. Hence, the present article examines the impact of environmental education on environmental knowledge, environmental behavior, and environmental attitudes in Indonesia. The present research also investigated the moderating role of government support in environmental education, environmental knowledge, environmental behavior, and environmental attitude in Indonesia. A questionnaire was used as the primary data collection method. The smart PLS was utilized to test the association among variables and the hypotheses of the study. The results revealed that environmental education had a significant and positive linkage with environmental knowledge, environmental behavior, and environmental attitude in Indonesia. The findings also exposed that government support significantly moderated environmental education, environmental knowledge, and environmental behavior in Indonesia. The findings of this research would provide help to the policymakers in establishing the policies related to environmental education and reducing environmental degradation.Keywords: environmental education, environmental knowledge, environmental behavior, environmental attitude, government support
Procedia PDF Downloads 9729682 Multi-Agent Railway Control System: Requirements Definitions of Multi-Agent System Using the Behavioral Patterns Analysis (BPA) Approach
Authors: Assem I. El-Ansary
Abstract:
This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach in developing an Multi-Agent Railway Control System (MARCS). The Event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are the Behavioral Pattern Analysis (BPA) modeling methodology, and the development of an interactive software tool (DECISION), which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.Keywords: analysis, multi-agent, railway control, modeling methodology, software modeling, event-oriented, behavioral pattern, use cases
Procedia PDF Downloads 54729681 An Attribute Based Access Control Model with POL Module for Dynamically Granting and Revoking Authorizations
Authors: Gang Liu, Huimin Song, Can Wang, Runnan Zhang, Lu Fang
Abstract:
Currently, resource sharing and system security are critical issues. This paper proposes a POL module composed of PRIV ILEGE attribute (PA), obligation and log which improves attribute based access control (ABAC) model in dynamically granting authorizations and revoking authorizations. The following describes the new model termed PABAC in terms of the POL module structure, attribute definitions, policy formulation and authorization architecture, which demonstrate the advantages of it. The POL module addresses the problems which are not predicted before and not described by access control policy. It can be one of the subject attributes or resource attributes according to the practical application, which enhances the flexibility of the model compared with ABAC. A scenario that illustrates how this model is applied to the real world is provided.Keywords: access control, attribute based access control, granting authorizations, privilege, revoking authorizations, system security
Procedia PDF Downloads 35929680 Design of Speed Bump Recognition System Integrated with Adjustable Shock Absorber Control
Authors: Ming-Yen Chang, Sheng-Hung Ke
Abstract:
This research focuses on the development of a speed bump identification system for real-time control of adjustable shock absorbers in vehicular suspension systems. The study initially involved the collection of images of various speed bumps, and rubber speed bump profiles found on roadways. These images were utilized for training and recognition purposes through the deep learning object detection algorithm YOLOv5. Subsequently, the trained speed bump identification program was integrated with an in-vehicle camera system for live image capture during driving. These images were instantly transmitted to a computer for processing. Using the principles of monocular vision ranging, the distance between the vehicle and an approaching speed bump was determined. The appropriate control distance was established through both practical vehicle measurements and theoretical calculations. Collaboratively, with the electronically adjustable shock absorbers equipped in the vehicle, a shock absorber control system was devised to dynamically adapt the damping force just prior to encountering a speed bump. This system effectively mitigates passenger discomfort and enhances ride quality.Keywords: adjustable shock absorbers, image recognition, monocular vision ranging, ride
Procedia PDF Downloads 6729679 Controller Design for Active Suspension System of 1/4 Car with Unknown Mass and Time-Delay
Authors: Ali Al-Zughaibi
Abstract:
The purpose of this paper is to present a modeling and control of the quarter car active suspension system with unknown mass, unknown time-delay and road disturbance. The objective of designing the controller by deriving a control law to achieve stability of the system and convergence that can considerably improve the ride comfort and road disturbance handling. Thus is accomplished by using Routh-Herwitz criterion and based on some assumptions. A mathematical proof is given to show the ability of the designed controller to ensure stability and convergence of the active suspension system and dispersion oscillation of system with unknown mass, time-delay and road disturbances. Simulations were also performed for controlling quarter car suspension, where the results obtained from these simulations verify the validity of the proposed design.Keywords: active suspension system, time-delay, disturbance rejection, dynamic uncertainty
Procedia PDF Downloads 32129678 The Impact of a Sustainable Solar System on the Growth of Strawberry Plants in an Agricultural Greenhouse
Authors: Ilham Ihoume, Rachid Tadili, Nora Arbaoui
Abstract:
This study examines the effects of a solar-based heating system, in a north-south oriented agricultural greenhouse on the development of strawberry plants during winter. This system relies on the circulation of water as a heat transfer fluid in a closed circuit installed on the greenhouse roof to store heat during the day and release it inside at night. A comparative experimental study was conducted in two greenhouses, one experimental with the solar heating system and the other for control without any heating system. Both greenhouses are located on the terrace of the Solar Energy and Environment Laboratory of the Mohammed V University in Rabat, Morocco. The devel-oped heating system consists of a copper coil inserted in double glazing and placed on the roof of the greenhouse, a water pump circulator, a battery, and a photovoltaic solar panel to power the electrical components. This inexpen-sive and environmentally friendly system allows the greenhouse to be heated during the winter and improves its microclimate system. This improvement resulted in an increase in the air temperature inside the experimental green-house by 6 °C and 8 °C, and a reduction in its relative humidity by 23% and 35% compared to the control greenhouse and the ambient air, respectively, throughout the winter. For the agronomic performance, it was observed that the production was 17 days earlier than in the control greenhouse.Keywords: sustainability, solar energy, thermal energy storage., greenhouse heating
Procedia PDF Downloads 4029677 Accurate and Repeatable Pressure Control for Critical Testing of Advanced Ceramics Using Proportional and Derivative Controller
Authors: Benchalak Muangmeesri
Abstract:
The purpose of this paper is to discuss how to test the best control performance of a ceramics. Hydraulic press machine (HPM) is the most common shaping of advanced ceramic with products, dimensions, and ceramic products mainly from synthetic powders. A microcontroller can be achieved to control process and has set high standards in the shaping of raw materials in powder form. HPM was proposed to develop a position control system that linked to the embedded controller PIC16F877 via Proportional and Derivative (PD) controller. The model is performed using MATLAB/SIMULINK and the best control performance of an HPM. Finally, PD controller results, showing the best performance as it had the smallest overshoot and highest quality using a microcontroller control.Keywords: ceramics, hydraulic press, microcontroller, PD controller
Procedia PDF Downloads 35829676 A Study of Key Technologies for the Realization of Smart Grid and Its Research Situation in Pakistan and Abroad
Authors: Arjmand Khaliq, Pemra Sohaib
Abstract:
In this paper smart grid technologies which converts conventional grid into smart grid has been discussed. Integration of advanced technologies including two way communication, advanced control system, sensors, smart metering system and other provide opportunity to make conventional grid a intelligent and automatic system which is named as smart grid. This paper gives the concept of smart grid and functional characteristics of smart grid technology, summed up the research progress in Pakistan and abroad and the significance of developing smart grid. Based on the analysis of the smart grid, smart grid technologies will result a reliable and energy efficient power system in the future. On the other hand smart grid technologies have been reviewed in this paper highlighting the key technologies of smart grid, and points out the problems and challenges in the realization of smart grid.Keywords: energy, power system reliability, power system monitoring and control, sensor, smart grid, two-way communication
Procedia PDF Downloads 39729675 Optimal Tracking Control of a Hydroelectric Power Plant Incorporating Neural Forecasting for Uncertain Input Disturbances
Authors: Marlene Perez Villalpando, Kelly Joel Gurubel Tun
Abstract:
In this paper, we propose an optimal control strategy for a hydroelectric power plant subject to input disturbances like meteorological phenomena. The engineering characteristics of the system are described by a nonlinear model. The random availability of renewable sources is predicted by a high-order neural network trained with an extended Kalman filter, whereas the power generation is regulated by the optimal control law. The main advantage of the system is the stabilization of the amount of power generated in the plant. A control supervisor maintains stability and availability in hydropower reservoirs water levels for power generation. The proposed approach demonstrated a good performance to stabilize the reservoir level and the power generation along their desired trajectories in the presence of disturbances.Keywords: hydropower, high order neural network, Kalman filter, optimal control
Procedia PDF Downloads 29929674 Selective and Highly Sensitive Measurement of ¹⁵NH₃ Using Photoacoustic Spectroscopy for Environmental Applications
Authors: Emily Awuor, Helga Huszar, Zoltan Bozoki
Abstract:
Isotope analysis has found numerous applications in the environmental science discipline, most common being the tracing of environmental contaminants on both regional and global scales. Many environmental contaminants contain ammonia (NH₃) since it is the most abundant gas in the atmosphere and its largest sources are from agricultural and industrial activities. NH₃ isotopes (¹⁴NH₃ and ¹⁵NH₃) are therefore important and can be used in the traceability studies of these atmospheric pollutants. The goal of the project is the construction of a photoacoustic spectroscopy system that is capable of measuring ¹⁵NH₃ isotope selectively in terms of its concentration. A further objective is for the system to be robust, easy-to-use, and automated. This is provided by using two telecommunication type near-infrared distributed feedback (DFB) diode lasers and a laser coupler as the light source in the photoacoustic measurement system. The central wavelength of the lasers in use was 1532 nm, with the tuning range of ± 1 nm. In this range, strong absorption lines can be found for both ¹⁴NH₃ and ¹⁵NH₃. For the selective measurement of ¹⁵NH₃, wavelengths were chosen where the cross effect of ¹⁴NH₃ and water vapor is negligible. We completed the calibration of the photoacoustic system, and as a result, the lowest detectable concentration was 3.32 ppm (3Ϭ) in the case of ¹⁵NH₃ and 0.44 ppm (3Ϭ) in the case of ¹⁴NH₃. The results are most useful in the environmental pollution measurement and analysis.Keywords: ammonia isotope, near-infrared DFB diode laser, photoacoustic spectroscopy, environmental monitoring
Procedia PDF Downloads 14829673 Chaos Analysis of a 3D Finance System and Generalized Synchronization for N-Dimension
Authors: Muhammad Fiaz
Abstract:
The article in hand is the study of complex features like Zero Hopf Bifurcation, Chaos and Synchronization of integer and fractional order version of a new 3D finance system. Trusted tools of averaging theory and active control method are utilized for investigation of Zero Hopf bifurcation and synchronization for both versions respectively. Inventiveness of the paper is to find the answer of a question that is it possible to find a chaotic system which can be synchronized with any other of the same dimension? Based on different examples we categorically develop a theory that if a couple of master and slave chaotic dynamical system is synchronized by selecting a suitable gain matrix with special conditions then the master system is synchronized with any chaotic dynamical system of the same dimension. With the help of this study we developed generalized theorems for synchronization of n-dimension dynamical systems for integer as well as fractional versions. it proposed that this investigation will contribute a lot to control dynamical systems and only a suitable gain matrix with special conditions is enough to synchronize the system under consideration with any other chaotic system of the same dimension. Chaotic properties of fractional version of the new finance system are also analyzed at fractional order q=0.87. Simulations results, where required, also provided for authenticity of analytical study.Keywords: complex analysis, chaos, generalized synchronization, control dynamics, fractional order analysis
Procedia PDF Downloads 7029672 Using IoT on Single Input Multiple Outputs (SIMO) DC–DC Converter to Control Smart-home
Authors: Auwal Mustapha Imam
Abstract:
The aim of the energy management system is to monitor and control utilization, access, optimize and manage energy availability. This can be realized through real-time analyses and energy sources and loads data control in a predictive way. Smart-home monitoring and control provide convenience and cost savings by controlling appliances, lights, thermostats and other loads. There may be different categories of loads in the various homes, and the homeowner may wish to control access to solar-generated energy to protect the storage from draining completely. Controlling the power system operation by managing the converter output power and controlling how it feeds the appliances will satisfy the residential load demand. The Internet of Things (IoT) provides an attractive technological platform to connect the two and make home automation and domestic energy utilization easier and more attractive. This paper presents the use of IoT-based control topology to monitor and control power distribution and consumption by DC loads connected to single-input multiple outputs (SIMO) DC-DC converter, thereby reducing leakages, enhancing performance and reducing human efforts. A SIMO converter was first developed and integrated with the IoT/Raspberry Pi control topology, which enables the user to monitor and control power scheduling and load forecasting via an Android app.Keywords: flyback, converter, DC-DC, photovoltaic, SIMO
Procedia PDF Downloads 4929671 The Uniting Control Lyapunov Functions in Permanent Magnet Synchronous Linear Motor
Authors: Yi-Fei Yang, Nai-Bao He, Shao-Bang Xing
Abstract:
This study investigates the permanent magnet synchronous linear motor (PMSLM) chaotic motion under the specific physical parameters, the stability and the security of motor-driven system will be unavoidably influenced. Therefore, it is really necessary to investigate the methods of controlling or suppressing chaos in PMSLM. Firstly, we derive a chaotic model of PMSLM in the closed-loop system. Secondly, in order to realize the local asymptotic stabilization of the mechanical subsystem and the global stabilization of the motor-driven system including electrical subsystem, we propose an improved uniting control lyapunov functions by introducing backstepping approach. Finally, an illustrated example is also given to show the electiveness of the obtained results.Keywords: linear motor, lyapunov functions, chao control, hybrid controller
Procedia PDF Downloads 33829670 Backstepping Controller for a Variable Wind Speed Energy Conversion System Based on a DFIG
Authors: Sara Mensou, Ahmed Essadki, Issam Minka, Tamou Nasser, Badr Bououlid Idrissi
Abstract:
In this paper we present a contribution for the modeling and control of wind energy conversion system based on a Doubly Fed Induction Generator (DFIG). Since the wind speed is random the system has to produce an optimal electrical power to the Network and ensures important strength and stability. In this work, the Backstepping controller is used to control the generator via two converter witch placed a DC bus capacitor and connected to the grid by a Filter R-L, in order to optimize capture wind energy. All is simulated and presented under MATLAB/Simulink Software to show performance and robustness of the proposed controller.Keywords: wind turbine, doubly fed induction generator, MPPT control, backstepping controller, power converter
Procedia PDF Downloads 19029669 Lateral Control of Electric Vehicle Based on Fuzzy Logic Control
Authors: Hartani Kada, Merah Abdelkader
Abstract:
Aiming at the high nonlinearities and unmatched uncertainties of the intelligent electric vehicles’ dynamic system, this paper presents a lateral motion control algorithm for intelligent electric vehicles with four in-wheel motors. A fuzzy logic procedure is presented and formulated to realize lateral control in lane change. The vehicle dynamics model and a desired target tracking model were established in this paper. A fuzzy logic controller was designed for integrated active front steering (AFS) and direct yaw moment control (DYC) in order to improve vehicle handling performance and stability, and a fuzzy controller for the automatic steering problem. The simulation results demonstrate the strong robustness and excellent tracking performance of the control algorithm that is proposed.Keywords: fuzzy logic, lateral control, AFS, DYC, electric car technology, longitudinal control, lateral motion
Procedia PDF Downloads 61129668 Environmental Safety and Occupational Health Risk Assessment for Rocket Static Test
Authors: Phontip Kanlahasuth
Abstract:
This paper presents the environmental safety and occupational health risk assessment of rocket static test by assessing risk level from probability and severity and then appropriately applying the risk control measures. Before the environmental safety and occupational health measures are applied, the serious hazards level is 31%, medium level is 24% and low level is 45%. Once risk control measures are practically implemented, the serious hazard level can be diminished, medium level is 38%, low level is 45% and eliminated level is 17%. It is clearly shown that the environmental safety and occupational health measures can significantly reduce the risk level.Keywords: rocket static test, hazard, risk, risk assessment, risk analysis, environment, safety, occupational health, acceptable risk, probability, severity, risk level
Procedia PDF Downloads 58729667 Optimal Trajectory Finding of IDP Ventilation Control with Outdoor Air Information and Indoor Health Risk Index
Authors: Minjeong Kim, Seungchul Lee, Iman Janghorban Esfahani, Jeong Tai Kim, ChangKyoo Yoo
Abstract:
A trajectory of set-point of ventilation control systems plays an important role for efficient ventilation inside subway stations since it affects the level of indoor air pollutants and ventilation energy consumption. To maintain indoor air quality (IAQ) at a comfortable range with lower ventilation energy consumption, the optimal trajectory of the ventilation control system needs to be determined. The concentration of air pollutants inside the station shows a diurnal variation in accordance with the variations in the number of passengers and subway frequency. To consider the diurnal variation of IAQ, an iterative dynamic programming (IDP) that searches for a piecewise control policy by separating whole duration into several stages is used. When outdoor air is contaminated by pollutants, it enters the subway station through the ventilation system, which results in the deteriorated IAQ and adverse effects on passenger health. In this study, to consider the influence of outdoor air quality (OAQ), a new performance index of the IDP with the passenger health risk and OAQ is proposed. This study was carried out for an underground subway station at Seoul Metro, Korea. The optimal set-points of the ventilation control system are determined every 3 hours, then, the ventilation controller adjusts the ventilation fan speed according to the optimal set-point changes. Compared to manual ventilation system which is operated irrespective of the OAQ, the IDP-based ventilation control system saves 3.7% of the energy consumption. Compared to the fixed set-point controller which is operated irrespective of the IAQ diurnal variation, the IDP-based controller shows better performance with a 2% decrease in energy consumption, maintaining the comfortable IAQ range inside the station.Keywords: indoor air quality, iterative dynamic algorithm, outdoor air information, ventilation control system
Procedia PDF Downloads 50229666 Safety-Security Co-Engineering of Control Systems
Authors: Elena A. Troubitsyna
Abstract:
Designers of modern safety-critical control systems are increasingly relying on networking to provide the systems with advanced functionality and satisfy customer’s needs. However, networking nature of modern control systems also brings new technological challenges associated with ensuring system safety in the presence of openness and hence, potential security threats. In this paper, we propose a methodology that relies on systems-theoretic analysis to enable an integrated analysis of safety and security requirements of controlling software. We demonstrate how to create a safety case – a structured argument about system safety – with explicit representation of both safety and security goals. Our approach provides the designers with a systematic approach to analysing safety and security interdependencies while designing safety-critical control systems.Keywords: controlling software, integrated analysis, security, safety-security co-engineering
Procedia PDF Downloads 49729665 Human Gesture Recognition for Real-Time Control of Humanoid Robot
Authors: S. Aswath, Chinmaya Krishna Tilak, Amal Suresh, Ganesh Udupa
Abstract:
There are technologies to control a humanoid robot in many ways. But the use of Electromyogram (EMG) electrodes has its own importance in setting up the control system. The EMG based control system helps to control robotic devices with more fidelity and precision. In this paper, development of an electromyogram based interface for human gesture recognition for the control of a humanoid robot is presented. To recognize control signs in the gestures, a single channel EMG sensor is positioned on the muscles of the human body. Instead of using a remote control unit, the humanoid robot is controlled by various gestures performed by the human. The EMG electrodes attached to the muscles generates an analog signal due to the effect of nerve impulses generated on moving muscles of the human being. The analog signals taken up from the muscles are supplied to a differential muscle sensor that processes the given signal to generate a signal suitable for the microcontroller to get the control over a humanoid robot. The signal from the differential muscle sensor is converted to a digital form using the ADC of the microcontroller and outputs its decision to the CM-530 humanoid robot controller through a Zigbee wireless interface. The output decision of the CM-530 processor is sent to a motor driver in order to control the servo motors in required direction for human like actions. This method for gaining control of a humanoid robot could be used for performing actions with more accuracy and ease. In addition, a study has been conducted to investigate the controllability and ease of use of the interface and the employed gestures.Keywords: electromyogram, gesture, muscle sensor, humanoid robot, microcontroller, Zigbee
Procedia PDF Downloads 408