Search results for: ensemble Kalman filter
730 FLC with 3DSVM for 4LEG 4WIRE Shunt Active Power Filter
Authors: Abdelhalim Kessal, Ali Chebabhi
Abstract:
In this paper, a controller based on fuzzy logic control (FLC) associated to Three Dimensional Space Vector Modulation (3DSVM) is applied for shunt active filter in αβo axes domain. The main goals are to improve power quality under disturbed loads, minimize source currents harmonics and reduce neutral current magnitude in the four-wire structure. FLC is used to obtain the reference current and control the DC-bus voltage at the inverter output. The switching signals of the four-leg inverter are generating through a Three Dimensional Space Vector Modulation (3DSVM). Selected simulation results have been shown to validate the proposed system.Keywords: flc, 3dsvm, sapf, harmonic, inverter
Procedia PDF Downloads 497729 Microbial and SARS-CoV-2 Efficiency Analysis of Froumann HEPA Filter Air Cleaner Brand
Authors: Serap Gedikli, Hakan Çakmak, M. Buğra Güldiken, Duygu Yalnızoğlu
Abstract:
Air, which is necessary for living things to survive; while it carries some useful substances in it, it can also carry foreign particles of different sizes that may be harmful to the health. All airborne organic substances of biological origin, including bacteria, fungi, fungal spores, viruses, pollen, and their components, are called "bioaerosols". Nowadays, everyone spends most of their time in closed areas such as home, workplace, school, etc. Although it is known that outdoor air pollution affects health, it is not known that indoor air pollution has harmful effects in terms of health. In this study, indoor air microbial load and SARS-CoV-2 virus cleaning efficiency of Froumann brand air cleaners were studied. This work in 300 m³, 600 m³, and 1000 m³ completely closed areas without any air circulation with Froumann N80, N90, and N100 air-cleaning devices. Analyzes were performed for both areas at 60 minutes before and after the device was operated using a particle measuring device (Particles Plus 7302) and an air sampler (Mas-100 ECO). The measurements were taken by placing the test equipment 1.5-2 m away from the air cleaner. At the same time, the efficiency of the HEPA filter was evaluated by taking samples from the air outlet point of the HEPA filter using the air sampling device (Mas-100 ECO) after the device was started. Nutrient agar and malt agar are used as total mesophilic bacteria and total fungi. The number of colony-forming units per m³ (cfu/m³) was calculated by counting colonies in Petri dishes after incubation for 48 hours at 37°C for bacteria and 72 hours at 30°C for fungi. The change in the number of colonies and the decrease in the microbial load was calculated as a percentage value. SARS-CoV-2 activity analysis studies were carried out by İnönü University Microbiology Department in accordance with the World Health Organization regulations. Finally, the HEPA filter in the devices used was taken and kept under a certain temperature and humidity, and the change in the microbial load on it was monitored over a 6-month period. At the end of the studies, a 91%-94% reduction was determined in the total mesophilic bacteria count of Frouman brand N80, N90, and N100 model air cleaners. A decrease of 94%-96% was detected in the total number of yeast/molds. HEPA filter efficiency was evaluated, and at the end of the analysis, 98% of the bacterial load and approximately 100% of yeast/mold load at the HEPA filter air outlet point were decreased. According to the SARS- CoV-2 analysis results, when the device is operating at the medium airflow level 3, it can filter virus-carrying aerosols by 99%. As a result, it was determined that the Froumann model air cleaner was effective in controlling and reducing the microbial load in the indoor air.Keywords: HEPA filter, indoor air quality, microbial load, SARS-CoV-2
Procedia PDF Downloads 204728 Edge Detection in Low Contrast Images
Authors: Koushlendra Kumar Singh, Manish Kumar Bajpai, Rajesh K. Pandey
Abstract:
The edges of low contrast images are not clearly distinguishable to the human eye. It is difficult to find the edges and boundaries in it. The present work encompasses a new approach for low contrast images. The Chebyshev polynomial based fractional order filter has been used for filtering operation on an image. The preprocessing has been performed by this filter on the input image. Laplacian of Gaussian method has been applied on preprocessed image for edge detection. The algorithm has been tested on two test images.Keywords: low contrast image, fractional order differentiator, Laplacian of Gaussian (LoG) method, chebyshev polynomial
Procedia PDF Downloads 636727 River Stage-Discharge Forecasting Based on Multiple-Gauge Strategy Using EEMD-DWT-LSSVM Approach
Authors: Farhad Alizadeh, Alireza Faregh Gharamaleki, Mojtaba Jalilzadeh, Houshang Gholami, Ali Akhoundzadeh
Abstract:
This study presented hybrid pre-processing approach along with a conceptual model to enhance the accuracy of river discharge prediction. In order to achieve this goal, Ensemble Empirical Mode Decomposition algorithm (EEMD), Discrete Wavelet Transform (DWT) and Mutual Information (MI) were employed as a hybrid pre-processing approach conjugated to Least Square Support Vector Machine (LSSVM). A conceptual strategy namely multi-station model was developed to forecast the Souris River discharge more accurately. The strategy used herein was capable of covering uncertainties and complexities of river discharge modeling. DWT and EEMD was coupled, and the feature selection was performed for decomposed sub-series using MI to be employed in multi-station model. In the proposed feature selection method, some useless sub-series were omitted to achieve better performance. Results approved efficiency of the proposed DWT-EEMD-MI approach to improve accuracy of multi-station modeling strategies.Keywords: river stage-discharge process, LSSVM, discrete wavelet transform, Ensemble Empirical Decomposition Mode, multi-station modeling
Procedia PDF Downloads 175726 Filtration Efficacy of Reusable Full-Face Snorkel Masks for Personal Protective Equipment
Authors: Adrian Kong, William Chang, Rolando Valdes, Alec Rodriguez, Roberto Miki
Abstract:
The Pneumask consists of a custom snorkel-specific adapter that attaches a snorkel-port of the mask to a 3D-printed filter. This full-face snorkel mask was designed for use as personal protective equipment (PPE) during the COVID-19 pandemic when there was a widespread shortage of PPE for medical personnel. Various clinical validation tests have been conducted, including the sealing capability of the mask, filter performance, CO2 buildup, and clinical usability. However, data regarding the filter efficiencies of Pneumask and multiple filter types have not been determined. Using an experimental system, we evaluated the filtration efficiency across various masks and filters during inhalation. Eighteen combinations of respirator models (5 P100 FFRs, 4 Dolfino Masks) and filters (2091, 7093, 7093CN, BB50T) were evaluated for their exposure to airborne particles sized 0.3 - 10.0 microns using an electronic airborne particle counter. All respirator model combinations provided similar performance levels for 1.0-micron, 3.0-micron, 5.0-micron, 10.0-microns, with the greatest differences in the 0.3-micron and 0.5-micron range. All models provided expected performances against all particle sizes, with Class P100 respirators providing the highest performance levels across all particle size ranges. In conclusion, the modified snorkel mask has the potential to protect providers who care for patients with COVID-19 from increased airborne particle exposure.Keywords: COVID-19, PPE, mask, filtration, efficiency
Procedia PDF Downloads 167725 Optimization of SWL Algorithms Using Alternative Adder Module in FPGA
Authors: Tayab D. Memon, Shahji Farooque, Marvi Deshi, Imtiaz Hussain Kalwar, B. S. Chowdhry
Abstract:
Recently single-bit ternary FIR-like filter (SBTFF) hardware synthesize in FPGA is reported and compared with multi-bit FIR filter on similar spectral characteristics. Results shows that SBTFF dominates upon multi-bit filter overall. In this paper, an optimized adder module for ternary quantized sigma-delta modulated signal is presented. The adder is simulated using ModelSim for functional verification the area-performance of the proposed adder were obtained through synthesis in Xilinx and compared to conventional adder trees. The synthesis results show that the proposed adder tree achieves higher clock rates and lower chip area at higher inputs to the adder block; whereas conventional adder tree achieves better performance and lower chip area at lower number of inputs to the same adder block. These results enhance the usefulness of existing short word length DSP algorithms for fast and efficient mobile communication.Keywords: short word length (SWL), DSP algorithms, FPGA, SBTFF, VHDL
Procedia PDF Downloads 345724 Monte Carlo Simulation Study on Improving the Flatting Filter-Free Radiotherapy Beam Quality Using Filters from Low- z Material
Authors: H. M. Alfrihidi, H.A. Albarakaty
Abstract:
Flattening filter-free (FFF) photon beam radiotherapy has increased in the last decade, which is enabled by advancements in treatment planning systems and radiation delivery techniques like multi-leave collimators. FFF beams have higher dose rates, which reduces treatment time. On the other hand, FFF beams have a higher surface dose, which is due to the loss of beam hardening effect caused by the presence of the flatting filter (FF). The possibility of improving FFF beam quality using filters from low-z materials such as steel and aluminium (Al) was investigated using Monte Carlo (MC) simulations. The attenuation coefficient of low-z materials for low-energy photons is higher than that of high-energy photons, which leads to the hardening of the FFF beam and, consequently, a reduction in the surface dose. BEAMnrc user code, based on Electron Gamma Shower (EGSnrc) MC code, is used to simulate the beam of a 6 MV True-Beam linac. A phase-space (phosphor) file provided by Varian Medical Systems was used as a radiation source in the simulation. This phosphor file was scored just above the jaws at 27.88 cm from the target. The linac from the jaw downward was constructed, and radiation passing was simulated and scored at 100 cm from the target. To study the effect of low-z filters, steel and Al filters with a thickness of 1 cm were added below the jaws, and the phosphor file was scored at 100 cm from the target. For comparison, the FF beam was simulated using a similar setup. (BEAM Data Processor (BEAMdp) is used to analyse the energy spectrum in the phosphorus files. Then, the dose distribution resulting from these beams was simulated in a homogeneous water phantom using DOSXYZnrc. The dose profile was evaluated according to the surface dose, the lateral dose distribution, and the percentage depth dose (PDD). The energy spectra of the beams show that the FFF beam is softer than the FF beam. The energy peaks for the FFF and FF beams are 0.525 MeV and 1.52 MeV, respectively. The FFF beam's energy peak becomes 1.1 MeV using a steel filter, while the Al filter does not affect the peak position. Steel and Al's filters reduced the surface dose by 5% and 1.7%, respectively. The dose at a depth of 10 cm (D10) rises by around 2% and 0.5% due to using a steel and Al filter, respectively. On the other hand, steel and Al filters reduce the dose rate of the FFF beam by 34% and 14%, respectively. However, their effect on the dose rate is less than that of the tungsten FF, which reduces the dose rate by about 60%. In conclusion, filters from low-z material decrease the surface dose and increase the D10 dose, allowing for a high-dose delivery to deep tumors with a low skin dose. Although using these filters affects the dose rate, this effect is much lower than the effect of the FF.Keywords: flattening filter free, monte carlo, radiotherapy, surface dose
Procedia PDF Downloads 73723 Performance Evaluation of Filtration System for Groundwater Recharging Well in the Presence of Medium Sand-Mixed Storm Water
Authors: Krishna Kumar Singh, Praveen Jain
Abstract:
The collection of storm water runoff and forcing it into the groundwater is the need of the hour to sustain the ground water table. However, the runoff entraps various types of sediments and other floating objects whose removal are essential to avoid pollution of ground water and blocking of pores of aquifer. However, it requires regular cleaning and maintenance due to the problem of clogging. To evaluate the performance of filter system consisting of coarse sand (CS), gravel (G) and pebble (P) layers, a laboratory experiment was conducted in a rectangular column. The effect of variable thickness of CS, G and P layers of the filtration unit of the recharge shaft on the recharge rate and the sediment concentration of effluent water were evaluated. Medium sand (MS) of three particle sizes, viz. 0.150–0.300 mm (T1), 0.300–0.425 mm (T2) and 0.425–0.600 mm of thickness 25 cm, 30 cm, and 35 cm respectively in the top layer of the filter system and having seven influent sediment concentrations of 250–3,000 mg/l were used for the experimental study. The performance was evaluated in terms of recharge rates and clogging time. The results indicated that 100 % suspended solids were entrapped in the upper 10 cm layer of MS, the recharge rates declined sharply for influent concentrations of more than 1,000 mg/l. All treatments with a higher thickness of MS media indicated recharge rate slightly more than that of all treatment with a lower thickness of MS media respectively. The performance of storm water infiltration systems was highly dependent on the formation of a clogging layer at the filter. An empirical relationship has been derived between recharge rates, inflow sediment load, size of MS and thickness of MS with using MLR.Keywords: groundwater, medium sand-mixed storm water filter, inflow sediment load
Procedia PDF Downloads 392722 The Effect of Air Filter Performance on Gas Turbine Operation
Authors: Iyad Al-Attar
Abstract:
Air filters are widely used in gas turbines applications to ensure that the large mass (500kg/s) of clean air reach the compressor. The continuous demand of high availability and reliability has highlighted the critical role of air filter performance in providing enhanced air quality. In addition to being challenged with different environments [tropical, coastal, hot], gas turbines confront wide array of atmospheric contaminants with various concentrations and particle size distributions that would lead to performance degradation and components deterioration. Therefore, the role of air filters is of a paramount importance since fouled compressor can reduce power output and availability of the gas turbine to over 70 % throughout operation. Consequently, accurate filter performance prediction is critical tool in their selection considering their role in minimizing the economic impact of outages. In fact, actual performance of Efficient Particulate Air [EPA] filters used in gas turbine tend to deviate from the performance predicted by laboratory results. This experimental work investigates the initial pressure drop and fractional efficiency curves of full-scale pleated V-shaped EPA filters used globally in gas turbine. The investigation involved examining the effect of different operational conditions such as flow rates [500 to 5000 m3/h] and design parameters such as pleat count [28, 30, 32 and 34 pleats per 100mm]. This experimental work has highlighted the underlying reasons behind the reduction in filter permeability due to the increase of flow rates and pleat density. The reasons, which led to surface area losses of filtration media, are due to one or combination of the following effects: pleat-crowding, deflection of the entire pleated panel, pleat distortion at the corner of the pleat and/or filtration medium compression. This paper also demonstrates that the effect of increasing the flow rate has more pronounced effect on filter performance compared to pleating density. This experimental work suggests that a valid comparison of the pleat densities should be based on the effective surface area, namely, the area that participates in the filtration process, and not the total surface area the pleat density provides. Throughout this study, optimal pleat count that satisfies both initial pressure drop and efficiency requirements may not have necessarily existed.Keywords: filter efficiency, EPA Filters, pressure drop, permeability
Procedia PDF Downloads 239721 Quantum Statistical Machine Learning and Quantum Time Series
Authors: Omar Alzeley, Sergey Utev
Abstract:
Minimizing a constrained multivariate function is the fundamental of Machine learning, and these algorithms are at the core of data mining and data visualization techniques. The decision function that maps input points to output points is based on the result of optimization. This optimization is the central of learning theory. One approach to complex systems where the dynamics of the system is inferred by a statistical analysis of the fluctuations in time of some associated observable is time series analysis. The purpose of this paper is a mathematical transition from the autoregressive model of classical time series to the matrix formalization of quantum theory. Firstly, we have proposed a quantum time series model (QTS). Although Hamiltonian technique becomes an established tool to detect a deterministic chaos, other approaches emerge. The quantum probabilistic technique is used to motivate the construction of our QTS model. The QTS model resembles the quantum dynamic model which was applied to financial data. Secondly, various statistical methods, including machine learning algorithms such as the Kalman filter algorithm, are applied to estimate and analyses the unknown parameters of the model. Finally, simulation techniques such as Markov chain Monte Carlo have been used to support our investigations. The proposed model has been examined by using real and simulated data. We establish the relation between quantum statistical machine and quantum time series via random matrix theory. It is interesting to note that the primary focus of the application of QTS in the field of quantum chaos was to find a model that explain chaotic behaviour. Maybe this model will reveal another insight into quantum chaos.Keywords: machine learning, simulation techniques, quantum probability, tensor product, time series
Procedia PDF Downloads 469720 Automatic Assignment of Geminate and Epenthetic Vowel for Amharic Text-to-Speech System
Authors: Tadesse Anberbir, Felix Bankole, Tomio Takara, Girma Mamo
Abstract:
In the development of a text-to-speech synthesizer, automatic derivation of correct pronunciation from the grapheme form of a text is a central problem. Particularly deriving phonological features which are not shown in orthography is challenging. In the Amharic language, geminates and epenthetic vowels are very crucial for proper pronunciation but neither is shown in orthography. In this paper, we proposed and integrated a morphological analyzer into an Amharic Text-to-Speech system, mainly to predict geminates and epenthetic vowel positions, and prepared a duration modeling method. Amharic Text-to-Speech system (AmhTTS) is a parametric and rule-based system that adopts a cepstral method and uses a source filter model for speech production and a Log Magnitude Approximation (LMA) filter as the vocal tract filter. The naturalness of the system after employing the duration modeling was evaluated by sentence listening test and we achieved an average Mean Opinion Score (MOS) 3.4 (68%) which is moderate. By modeling the duration of geminates and controlling the locations of epenthetic vowel, we are able to synthesize good quality speech. Our system is mainly suitable to be customized for other Ethiopian languages with limited resources.Keywords: Amharic, gemination, speech synthesis, morphology, epenthesis
Procedia PDF Downloads 87719 Verification of Dosimetric Commissioning Accuracy of Flattening Filter Free Intensity Modulated Radiation Therapy and Volumetric Modulated Therapy Delivery Using Task Group 119 Guidelines
Authors: Arunai Nambi Raj N., Kaviarasu Karunakaran, Krishnamurthy K.
Abstract:
The purpose of this study was to create American Association of Physicist in Medicine (AAPM) Task Group 119 (TG 119) benchmark plans for flattening filter free beam (FFF) deliveries of intensity modulated radiation therapy (IMRT) and volumetric arc therapy (VMAT) in the Eclipse treatment planning system. The planning data were compared with the flattening filter (FF) IMRT & VMAT plan data to verify the dosimetric commissioning accuracy of FFF deliveries. AAPM TG 119 proposed a set of test cases called multi-target, mock prostate, mock head and neck, and C-shape to ascertain the overall accuracy of IMRT planning, measurement, and analysis. We used these test cases to investigate the performance of the Eclipse Treatment planning system for the flattening filter free beam deliveries. For these test cases, we generated two sets of treatment plans, the first plan using 7–9 IMRT fields and a second plan utilizing two arc VMAT technique for both the beam deliveries (6 MV FF, 6MV FFF, 10 MV FF and 10 MV FFF). The planning objectives and dose were set as described in TG 119. The dose prescriptions for multi-target, mock prostate, mock head and neck, and C-shape were taken as 50, 75.6, 50 and 50 Gy, respectively. The point dose (mean dose to the contoured chamber volume) at the specified positions/locations was measured using compact (CC‑13) ion chamber. The composite planar dose and per-field gamma analysis were measured with IMatriXX Evaluation 2D array with OmniPro IMRT Software (version 1.7b). FFF beam deliveries of IMRT and VMAT plans were comparable to flattening filter beam deliveries. Our planning and quality assurance results matched with TG 119 data. AAPM TG 119 test cases are useful to generate FFF benchmark plans. From the obtained data in this study, we conclude that the commissioning of FFF IMRT and FFF VMAT delivery were found within the limits of TG-119 and the performance of the Eclipse treatment planning system for FFF plans were found satisfactorily.Keywords: flattening filter free beams, intensity modulated radiation therapy, task group 119, volumetric modulated arc therapy
Procedia PDF Downloads 146718 A Data-Mining Model for Protection of FACTS-Based Transmission Line
Authors: Ashok Kalagura
Abstract:
This paper presents a data-mining model for fault-zone identification of flexible AC transmission systems (FACTS)-based transmission line including a thyristor-controlled series compensator (TCSC) and unified power-flow controller (UPFC), using ensemble decision trees. Given the randomness in the ensemble of decision trees stacked inside the random forests model, it provides an effective decision on the fault-zone identification. Half-cycle post-fault current and voltage samples from the fault inception are used as an input vector against target output ‘1’ for the fault after TCSC/UPFC and ‘1’ for the fault before TCSC/UPFC for fault-zone identification. The algorithm is tested on simulated fault data with wide variations in operating parameters of the power system network, including noisy environment providing a reliability measure of 99% with faster response time (3/4th cycle from fault inception). The results of the presented approach using the RF model indicate the reliable identification of the fault zone in FACTS-based transmission lines.Keywords: distance relaying, fault-zone identification, random forests, RFs, support vector machine, SVM, thyristor-controlled series compensator, TCSC, unified power-flow controller, UPFC
Procedia PDF Downloads 423717 Critically Sampled Hybrid Trigonometry Generalized Discrete Fourier Transform for Multistandard Receiver Platform
Authors: Temidayo Otunniyi
Abstract:
This paper presents a low computational channelization algorithm for the multi-standards platform using poly phase implementation of a critically sampled hybrid Trigonometry generalized Discrete Fourier Transform, (HGDFT). An HGDFT channelization algorithm exploits the orthogonality of two trigonometry Fourier functions, together with the properties of Quadrature Mirror Filter Bank (QMFB) and Exponential Modulated filter Bank (EMFB), respectively. HGDFT shows improvement in its implementation in terms of high reconfigurability, lower filter length, parallelism, and medium computational activities. Type 1 and type 111 poly phase structures are derived for real-valued HGDFT modulation. The design specifications are decimated critically and over-sampled for both single and multi standards receiver platforms. Evaluating the performance of oversampled single standard receiver channels, the HGDFT algorithm achieved 40% complexity reduction, compared to 34% and 38% reduction in the Discrete Fourier Transform (DFT) and tree quadrature mirror filter (TQMF) algorithm. The parallel generalized discrete Fourier transform (PGDFT) and recombined generalized discrete Fourier transform (RGDFT) had 41% complexity reduction and HGDFT had a 46% reduction in oversampling multi-standards mode. While in the critically sampled multi-standard receiver channels, HGDFT had complexity reduction of 70% while both PGDFT and RGDFT had a 34% reduction.Keywords: software defined radio, channelization, critical sample rate, over-sample rate
Procedia PDF Downloads 148716 Comparison Study of Machine Learning Classifiers for Speech Emotion Recognition
Authors: Aishwarya Ravindra Fursule, Shruti Kshirsagar
Abstract:
In the intersection of artificial intelligence and human-centered computing, this paper delves into speech emotion recognition (SER). It presents a comparative analysis of machine learning models such as K-Nearest Neighbors (KNN),logistic regression, support vector machines (SVM), decision trees, ensemble classifiers, and random forests, applied to SER. The research employs four datasets: Crema D, SAVEE, TESS, and RAVDESS. It focuses on extracting salient audio signal features like Zero Crossing Rate (ZCR), Chroma_stft, Mel Frequency Cepstral Coefficients (MFCC), root mean square (RMS) value, and MelSpectogram. These features are used to train and evaluate the models’ ability to recognize eight types of emotions from speech: happy, sad, neutral, angry, calm, disgust, fear, and surprise. Among the models, the Random Forest algorithm demonstrated superior performance, achieving approximately 79% accuracy. This suggests its suitability for SER within the parameters of this study. The research contributes to SER by showcasing the effectiveness of various machine learning algorithms and feature extraction techniques. The findings hold promise for the development of more precise emotion recognition systems in the future. This abstract provides a succinct overview of the paper’s content, methods, and results.Keywords: comparison, ML classifiers, KNN, decision tree, SVM, random forest, logistic regression, ensemble classifiers
Procedia PDF Downloads 45715 Harmonic Assessment and Mitigation in Medical Diagonesis Equipment
Authors: S. S. Adamu, H. S. Muhammad, D. S. Shuaibu
Abstract:
Poor power quality in electrical power systems can lead to medical equipment at healthcare centres to malfunction and present wrong medical diagnosis. Equipment such as X-rays, computerized axial tomography, etc. can pollute the system due to their high level of harmonics production, which may cause a number of undesirable effects like heating, equipment damages and electromagnetic interferences. The conventional approach of mitigation uses passive inductor/capacitor (LC) filters, which has some drawbacks such as, large sizes, resonance problems and fixed compensation behaviours. The current trends of solutions generally employ active power filters using suitable control algorithms. This work focuses on assessing the level of Total Harmonic Distortion (THD) on medical facilities and various ways of mitigation, using radiology unit of an existing hospital as a case study. The measurement of the harmonics is conducted with a power quality analyzer at the point of common coupling (PCC). The levels of measured THD are found to be higher than the IEEE 519-1992 standard limits. The system is then modelled as a harmonic current source using MATLAB/SIMULINK. To mitigate the unwanted harmonic currents a shunt active filter is developed using synchronous detection algorithm to extract the fundamental component of the source currents. Fuzzy logic controller is then developed to control the filter. The THD without the active power filter are validated using the measured values. The THD with the developed filter show that the harmonics are now within the recommended limits.Keywords: power quality, total harmonics distortion, shunt active filters, fuzzy logic
Procedia PDF Downloads 479714 Design of Two-Channel Quadrature Mirror Filter Banks Using a Transformation Approach
Authors: Ju-Hong Lee, Yi-Lin Shieh
Abstract:
Two-dimensional (2-D) quadrature mirror filter (QMF) banks have been widely considered for high-quality coding of image and video data at low bit rates. Without implementing subband coding, a 2-D QMF bank is required to have an exactly linear-phase response without magnitude distortion, i.e., the perfect reconstruction (PR) characteristics. The design problem of 2-D QMF banks with the PR characteristics has been considered in the literature for many years. This paper presents a transformation approach for designing 2-D two-channel QMF banks. Under a suitable one-dimensional (1-D) to two-dimensional (2-D) transformation with a specified decimation/interpolation matrix, the analysis and synthesis filters of the QMF bank are composed of 1-D causal and stable digital allpass filters (DAFs) and possess the 2-D doubly complementary half-band (DC-HB) property. This facilitates the design problem of the two-channel QMF banks by finding the real coefficients of the 1-D recursive DAFs. The design problem is formulated based on the minimax phase approximation for the 1-D DAFs. A novel objective function is then derived to obtain an optimization for 1-D minimax phase approximation. As a result, the problem of minimizing the objective function can be simply solved by using the well-known weighted least-squares (WLS) algorithm in the minimax (L∞) optimal sense. The novelty of the proposed design method is that the design procedure is very simple and the designed 2-D QMF bank achieves perfect magnitude response and possesses satisfactory phase response. Simulation results show that the proposed design method provides much better design performance and much less design complexity as compared with the existing techniques.Keywords: Quincunx QMF bank, doubly complementary filter, digital allpass filter, WLS algorithm
Procedia PDF Downloads 225713 Electron Microscopical Analysis of Arterial Line Filters During Cardiopulmonary Bypass
Authors: Won-Gon Kim
Abstract:
Introduction: The clinical value of arterial line filters is still a controversial issue. Proponents of arterial line filtration argue that filters remove particulate matter and undissolved gas from circulation, while opponents argue the absence of conclusive clinical data. We conducted scanning electron microscope (SEM) studies of arterial line filters used clinically in the CPB circuits during adult cardiac surgery and analyzed the types and characteristics of materials entrapped in the arterial line filters. Material and Methods: Twelve arterial line filters were obtained during routine hypothermic cardiopulmonary bypass in 12 adult cardiac patients. The arterial line filter was a screen type with a pore size of 40 ㎛ (Baxter Health care corporation Bentley division, Irvine, CA, U.S.A.). After opening the housing, the woven polyester strands were examined with SEM. Results and Conclusion: All segments examined(120 segments, each 2.5 X 2.5 cm in size) contained no embolic particles larger in their cross-sectional area than the pore size of the filter(40 ㎛). The origins of embolic particulates were mostly from environmental foreign bodies. This may suggest a possible need for more aggressive filtration of smaller particulates than is generally carried out at the present time.Keywords: arterial line filter, tubing wear, scanning electron microscopy, SEM
Procedia PDF Downloads 448712 Markov-Chain-Based Optimal Filtering and Smoothing
Authors: Garry A. Einicke, Langford B. White
Abstract:
This paper describes an optimum filter and smoother for recovering a Markov process message from noisy measurements. The developments follow from an equivalence between a state space model and a hidden Markov chain. The ensuing filter and smoother employ transition probability matrices and approximate probability distribution vectors. The properties of the optimum solutions are retained, namely, the estimates are unbiased and minimize the variance of the output estimation error, provided that the assumed parameter set are correct. Methods for estimating unknown parameters from noisy measurements are discussed. Signal recovery examples are described in which performance benefits are demonstrated at an increased calculation cost.Keywords: optimal filtering, smoothing, Markov chains
Procedia PDF Downloads 317711 A Sense of Belonging: Music Learning and School Connectedness
Authors: Johanna Gamboa-Kroesen
Abstract:
School connectedness, or the sense of belonging at school, is a critical factor in adolescent health, academic achievement, and socioemotional well-being. In educational research, the construct of the psychological sense of school membership is often referred to as school engagement, school bonding, or school attachment. While current research recognizes school connectedness as integral to a child’s mental health and academic success, many schools have yet to develop adequate interventions to promote a child’s overall sense of belonging at school. However, prior researches in music education indicates that, among other benefits, music classrooms may provide an environment where students feel they belong. While studies indicates that music learning environments, specifically performing ensemble learning environments, instill a sense of school connectedness and, more broadly, contribute to a student’s socio-emotional development, there has been inadequate research on how the actions of music teachers contribute to this phenomenon. The purpose of this study was to examine the relationship between school connectedness and music learning environments with middle school music students enrolled in a school-based music ensemble. In addition, the study aimed to provide a descriptive analysis of the instructional practices that music teachers use to promote an inclusive environment in their classrooms and an overall sense of belonging in their students. Using 191 student surveys of school membership, student reflective writings, 5 teacher interviews, and 10 classroom observations, this study examined the relationship between 7th and 8th-grade student-reported levels of connectedness within their school-based music ensemble and teacher instructional practice. The study found that students reported high levels of positive school membership within their music classes. Students who participate in school-based orchestra ensembles reported a positive change in emotional state during music instruction. In addition, evidence in this study found that music teachers use instructional practices to build connectedness through de-emphasizing competition and strengthening a student’s sense of relational value within their music learning experience. The findings offer implications for future music teacher instruction to create environments of inclusion, strengthen student-teacher relationships, and promote strategies that enhance student connection to school.Keywords: music education, belonging, instructional practice, school connectedness
Procedia PDF Downloads 69710 Non-Uniform Filter Banks-based Minimum Distance to Riemannian Mean Classifition in Motor Imagery Brain-Computer Interface
Authors: Ping Tan, Xiaomeng Su, Yi Shen
Abstract:
The motion intention in the motor imagery braincomputer interface is identified by classifying the event-related desynchronization (ERD) and event-related synchronization ERS characteristics of sensorimotor rhythm (SMR) in EEG signals. When the subject imagines different limbs or different parts moving, the rhythm components and bandwidth will change, which varies from person to person. How to find the effective sensorimotor frequency band of subjects is directly related to the classification accuracy of brain-computer interface. To solve this problem, this paper proposes a Minimum Distance to Riemannian Mean Classification method based on Non-Uniform Filter Banks. During the training phase, the EEG signals are decomposed into multiple different bandwidt signals by using multiple band-pass filters firstly; Then the spatial covariance characteristics of each frequency band signal are computered to be as the feature vectors. these feature vectors will be classified by the MDRM (Minimum Distance to Riemannian Mean) method, and cross validation is employed to obtain the effective sensorimotor frequency bands. During the test phase, the test signals are filtered by the bandpass filter of the effective sensorimotor frequency bands, and the extracted spatial covariance feature vectors will be classified by using the MDRM. Experiments on the BCI competition IV 2a dataset show that the proposed method is superior to other classification methods.Keywords: non-uniform filter banks, motor imagery, brain-computer interface, minimum distance to Riemannian mean
Procedia PDF Downloads 126709 Intelligent Fault Diagnosis for the Connection Elements of Modular Offshore Platforms
Authors: Jixiang Lei, Alexander Fuchs, Franz Pernkopf, Katrin Ellermann
Abstract:
Within the Space@Sea project, funded by the Horizon 2020 program, an island consisting of multiple platforms was designed. The platforms are connected by ropes and fenders. The connection is critical with respect to the safety of the whole system. Therefore, fault detection systems are investigated, which could detect early warning signs for a possible failure in the connection elements. Previously, a model-based method called Extended Kalman Filter was developed to detect the reduction of rope stiffness. This method detected several types of faults reliably, but some types of faults were much more difficult to detect. Furthermore, the model-based method is sensitive to environmental noise. When the wave height is low, a long time is needed to detect a fault and the accuracy is not always satisfactory. In this sense, it is necessary to develop a more accurate and robust technique that can detect all rope faults under a wide range of operational conditions. Inspired by this work on the Space at Sea design, we introduce a fault diagnosis method based on deep neural networks. Our method cannot only detect rope degradation by using the acceleration data from each platform but also estimate the contributions of the specific acceleration sensors using methods from explainable AI. In order to adapt to different operational conditions, the domain adaptation technique DANN is applied. The proposed model can accurately estimate rope degradation under a wide range of environmental conditions and help users understand the relationship between the output and the contributions of each acceleration sensor.Keywords: fault diagnosis, deep learning, domain adaptation, explainable AI
Procedia PDF Downloads 180708 Hierarchical Filtering Method of Threat Alerts Based on Correlation Analysis
Authors: Xudong He, Jian Wang, Jiqiang Liu, Lei Han, Yang Yu, Shaohua Lv
Abstract:
Nowadays, the threats of the internet are enormous and increasing; however, the classification of huge alert messages generated in this environment is relatively monotonous. It affects the accuracy of the network situation assessment, and also brings inconvenience to the security managers to deal with the emergency. In order to deal with potential network threats effectively and provide more effective data to improve the network situation awareness. It is essential to build a hierarchical filtering method to prevent the threats. In this paper, it establishes a model for data monitoring, which can filter systematically from the original data to get the grade of threats and be stored for using again. Firstly, it filters the vulnerable resources, open ports of host devices and services. Then use the entropy theory to calculate the performance changes of the host devices at the time of the threat occurring and filter again. At last, sort the changes of the performance value at the time of threat occurring. Use the alerts and performance data collected in the real network environment to evaluate and analyze. The comparative experimental analysis shows that the threat filtering method can effectively filter the threat alerts effectively.Keywords: correlation analysis, hierarchical filtering, multisource data, network security
Procedia PDF Downloads 201707 The Effect of Filter Design and Face Velocity on Air Filter Performance
Authors: Iyad Al-Attar
Abstract:
Air filters installed in HVAC equipment and gas turbine for power generation confront several atmospheric contaminants with various concentrations while operating in different environments (tropical, coastal, hot). This leads to engine performance degradation, as contaminants are capable of deteriorating components and fouling compressor assembly. Compressor fouling is responsible for 70 to 85% of gas turbine performance degradation leading to reduction in power output and availability and an increase in the heat rate and fuel consumption. Therefore, filter design must take into account face velocities, pleat count and its corresponding surface area; to verify filter performance characteristics (Efficiency and Pressure Drop). The experimental work undertaken in the current study examined two groups of four filters with different pleating densities were investigated for the initial pressure drop response and fractional efficiencies. The pleating densities used for this study is 28, 30, 32 and 34 pleats per 100mm for each pleated panel and measured for ten different flow rates ranging from 500 to 5000 m3/h with increment of 500m3/h. This experimental work of the current work has highlighted the underlying reasons behind the reduction in filter permeability due to the increase in face velocity and pleat density. The reasons that led to surface area losses of filtration media are due to one or combination of the following effects: pleat-crowding, deflection of the entire pleated panel, pleat distortion at the corner of the pleat and/or filtration medium compression. It is evident from entire array of experiments that as the particle size increases, the efficiency decreases until the MPPS is reached. Beyond the MPPS, the efficiency increases with increase in particle size. The MPPS shifts to a smaller particle size as the face velocity increases, while the pleating density and orientation did not have a pronounced effect on the MPPS. Throughout the study, an optimal pleat count which satisfies initial pressure drop and efficiency requirements may not have necessarily existed. The work has also suggested that a valid comparison of the pleat densities should be based on the effective surface area that participates in the filtration action and not the total surface area the pleat density provides.Keywords: air filters, fractional efficiency, gas cleaning, glass fibre, HEPA filter, permeability, pressure drop
Procedia PDF Downloads 135706 FPGA Implementation of a Marginalized Particle Filter for Delineation of P and T Waves of ECG Signal
Authors: Jugal Bhandari, K. Hari Priya
Abstract:
The ECG signal provides important clinical information which could be used to pretend the diseases related to heart. Accordingly, delineation of ECG signal is an important task. Whereas delineation of P and T waves is a complex task. This paper deals with the Study of ECG signal and analysis of signal by means of Verilog Design of efficient filters and MATLAB tool effectively. It includes generation and simulation of ECG signal, by means of real time ECG data, ECG signal filtering and processing by analysis of different algorithms and techniques. In this paper, we design a basic particle filter which generates a dynamic model depending on the present and past input samples and then produces the desired output. Afterwards, the output will be processed by MATLAB to get the actual shape and accurate values of the ranges of P-wave and T-wave of ECG signal. In this paper, Questasim is a tool of mentor graphics which is being used for simulation and functional verification. The same design is again verified using Xilinx ISE which will be also used for synthesis, mapping and bit file generation. Xilinx FPGA board will be used for implementation of system. The final results of FPGA shall be verified with ChipScope Pro where the output data can be observed.Keywords: ECG, MATLAB, Bayesian filtering, particle filter, Verilog hardware descriptive language
Procedia PDF Downloads 367705 Defect Identification in Partial Discharge Patterns of Gas Insulated Switchgear and Straight Cable Joint
Authors: Chien-Kuo Chang, Yu-Hsiang Lin, Yi-Yun Tang, Min-Chiu Wu
Abstract:
With the trend of technological advancement, the harm caused by power outages is substantial, mostly due to problems in the power grid. This highlights the necessity for further improvement in the reliability of the power system. In the power system, gas-insulated switches (GIS) and power cables play a crucial role. Long-term operation under high voltage can cause insulation materials in the equipment to crack, potentially leading to partial discharges. If these partial discharges (PD) can be analyzed, preventative maintenance and replacement of equipment can be carried out, there by improving the reliability of the power grid. This research will diagnose defects by identifying three different defects in GIS and three different defects in straight cable joints, for a total of six types of defects. The partial discharge data measured will be converted through phase analysis diagrams and pulse sequence analysis. Discharge features will be extracted using convolutional image processing, and three different deep learning models, CNN, ResNet18, and MobileNet, will be used for training and evaluation. Class Activation Mapping will be utilized to interpret the black-box problem of deep learning models, with each model achieving an accuracy rate of over 95%. Lastly, the overall model performance will be enhanced through an ensemble learning voting method.Keywords: partial discharge, gas-insulated switches, straight cable joint, defect identification, deep learning, ensemble learning
Procedia PDF Downloads 78704 Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Temporal Convolutional Network for Remaining Useful Life Prediction of Lithium Ion Batteries
Authors: Jing Zhao, Dayong Liu, Shihao Wang, Xinghua Zhu, Delong Li
Abstract:
Uhumanned Underwater Vehicles generally operate in the deep sea, which has its own unique working conditions. Lithium-ion power batteries should have the necessary stability and endurance for use as an underwater vehicle’s power source. Therefore, it is essential to accurately forecast how long lithium-ion batteries will last in order to maintain the system’s reliability and safety. In order to model and forecast lithium battery Remaining Useful Life (RUL), this research suggests a model based on Complete Ensemble Empirical Mode Decomposition with Adaptive noise-Temporal Convolutional Net (CEEMDAN-TCN). In this study, two datasets, NASA and CALCE, which have a specific gap in capacity data fluctuation, are used to verify the model and examine the experimental results in order to demonstrate the generalizability of the concept. The experiments demonstrate the network structure’s strong universality and ability to achieve good fitting outcomes on the test set for various battery dataset types. The evaluation metrics reveal that the CEEMDAN-TCN prediction performance of TCN is 25% to 35% better than that of a single neural network, proving that feature expansion and modal decomposition can both enhance the model’s generalizability and be extremely useful in industrial settings.Keywords: lithium-ion battery, remaining useful life, complete EEMD with adaptive noise, temporal convolutional net
Procedia PDF Downloads 153703 Multi-Model Super Ensemble Based Advanced Approaches for Monsoon Rainfall Prediction
Authors: Swati Bhomia, C. M. Kishtawal, Neeru Jaiswal
Abstract:
Traditionally, monsoon forecasts have encountered many difficulties that stem from numerous issues such as lack of adequate upper air observations, mesoscale nature of convection, proper resolution, radiative interactions, planetary boundary layer physics, mesoscale air-sea fluxes, representation of orography, etc. Uncertainties in any of these areas lead to large systematic errors. Global circulation models (GCMs), which are developed independently at different institutes, each of which carries somewhat different representation of the above processes, can be combined to reduce the collective local biases in space, time, and for different variables from different models. This is the basic concept behind the multi-model superensemble and comprises of a training and a forecast phase. The training phase learns from the recent past performances of models and is used to determine statistical weights from a least square minimization via a simple multiple regression. These weights are then used in the forecast phase. The superensemble forecasts carry the highest skill compared to simple ensemble mean, bias corrected ensemble mean and the best model out of the participating member models. This approach is a powerful post-processing method for the estimation of weather forecast parameters reducing the direct model output errors. Although it can be applied successfully to the continuous parameters like temperature, humidity, wind speed, mean sea level pressure etc., in this paper, this approach is applied to rainfall, a parameter quite difficult to handle with standard post-processing methods, due to its high temporal and spatial variability. The present study aims at the development of advanced superensemble schemes comprising of 1-5 day daily precipitation forecasts from five state-of-the-art global circulation models (GCMs), i.e., European Centre for Medium Range Weather Forecasts (Europe), National Center for Environmental Prediction (USA), China Meteorological Administration (China), Canadian Meteorological Centre (Canada) and U.K. Meteorological Office (U.K.) obtained from THORPEX Interactive Grand Global Ensemble (TIGGE), which is one of the most complete data set available. The novel approaches include the dynamical model selection approach in which the selection of the superior models from the participating member models at each grid and for each forecast step in the training period is carried out. Multi-model superensemble based on the training using similar conditions is also discussed in the present study, which is based on the assumption that training with the similar type of conditions may provide the better forecasts in spite of the sequential training which is being used in the conventional multi-model ensemble (MME) approaches. Further, a variety of methods that incorporate a 'neighborhood' around each grid point which is available in literature to allow for spatial error or uncertainty, have also been experimented with the above mentioned approaches. The comparison of these schemes with respect to the observations verifies that the newly developed approaches provide more unified and skillful prediction of the summer monsoon (viz. June to September) rainfall compared to the conventional multi-model approach and the member models.Keywords: multi-model superensemble, dynamical model selection, similarity criteria, neighborhood technique, rainfall prediction
Procedia PDF Downloads 139702 Abdominal Organ Segmentation in CT Images Based On Watershed Transform and Mosaic Image
Authors: Belgherbi Aicha, Hadjidj Ismahen, Bessaid Abdelhafid
Abstract:
Accurate Liver, spleen and kidneys segmentation in abdominal CT images is one of the most important steps for computer aided abdominal organs pathology diagnosis. In this paper, we have proposed a new semi-automatic algorithm for Liver, spleen and kidneys area extraction in abdominal CT images. Our proposed method is based on hierarchical segmentation and watershed algorithm. In our approach, a powerful technique has been designed to suppress over-segmentation based on mosaic image and on the computation of the watershed transform. The algorithm is currency in two parts. In the first, we seek to improve the quality of the gradient-mosaic image. In this step, we propose a method for improving the gradient-mosaic image by applying the anisotropic diffusion filter followed by the morphological filters. Thereafter we proceed to the hierarchical segmentation of the liver, spleen and kidney. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work.Keywords: anisotropic diffusion filter, CT images, morphological filter, mosaic image, multi-abdominal organ segmentation, mosaic image, the watershed algorithm
Procedia PDF Downloads 499701 Predicting Wealth Status of Households Using Ensemble Machine Learning Algorithms
Authors: Habtamu Ayenew Asegie
Abstract:
Wealth, as opposed to income or consumption, implies a more stable and permanent status. Due to natural and human-made difficulties, households' economies will be diminished, and their well-being will fall into trouble. Hence, governments and humanitarian agencies offer considerable resources for poverty and malnutrition reduction efforts. One key factor in the effectiveness of such efforts is the accuracy with which low-income or poor populations can be identified. As a result, this study aims to predict a household’s wealth status using ensemble Machine learning (ML) algorithms. In this study, design science research methodology (DSRM) is employed, and four ML algorithms, Random Forest (RF), Adaptive Boosting (AdaBoost), Light Gradient Boosted Machine (LightGBM), and Extreme Gradient Boosting (XGBoost), have been used to train models. The Ethiopian Demographic and Health Survey (EDHS) dataset is accessed for this purpose from the Central Statistical Agency (CSA)'s database. Various data pre-processing techniques were employed, and the model training has been conducted using the scikit learn Python library functions. Model evaluation is executed using various metrics like Accuracy, Precision, Recall, F1-score, area under curve-the receiver operating characteristics (AUC-ROC), and subjective evaluations of domain experts. An optimal subset of hyper-parameters for the algorithms was selected through the grid search function for the best prediction. The RF model has performed better than the rest of the algorithms by achieving an accuracy of 96.06% and is better suited as a solution model for our purpose. Following RF, LightGBM, XGBoost, and AdaBoost algorithms have an accuracy of 91.53%, 88.44%, and 58.55%, respectively. The findings suggest that some of the features like ‘Age of household head’, ‘Total children ever born’ in a family, ‘Main roof material’ of their house, ‘Region’ they lived in, whether a household uses ‘Electricity’ or not, and ‘Type of toilet facility’ of a household are determinant factors to be a focal point for economic policymakers. The determinant risk factors, extracted rules, and designed artifact achieved 82.28% of the domain expert’s evaluation. Overall, the study shows ML techniques are effective in predicting the wealth status of households.Keywords: ensemble machine learning, households wealth status, predictive model, wealth status prediction
Procedia PDF Downloads 38