Search results for: Samuel George
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 570

Search results for: Samuel George

270 Enhancing Email Security: A Multi-Layered Defense Strategy Approach and an AI-Powered Model for Identifying and Mitigating Phishing Attacks

Authors: Anastasios Papathanasiou, George Liontos, Athanasios Katsouras, Vasiliki Liagkou, Euripides Glavas

Abstract:

Email remains a crucial communication tool due to its efficiency, accessibility and cost-effectiveness, enabling rapid information exchange across global networks. However, the global adoption of email has also made it a prime target for cyber threats, including phishing, malware and Business Email Compromise (BEC) attacks, which exploit its integral role in personal and professional realms in order to perform fraud and data breaches. To combat these threats, this research advocates for a multi-layered defense strategy incorporating advanced technological tools such as anti-spam and anti-malware software, machine learning algorithms and authentication protocols. Moreover, we developed an artificial intelligence model specifically designed to analyze email headers and assess their security status. This AI-driven model examines various components of email headers, such as "From" addresses, ‘Received’ paths and the integrity of SPF, DKIM and DMARC records. Upon analysis, it generates comprehensive reports that indicate whether an email is likely to be malicious or benign. This capability empowers users to identify potentially dangerous emails promptly, enhancing their ability to avoid phishing attacks, malware infections and other cyber threats.

Keywords: email security, artificial intelligence, header analysis, threat detection, phishing, DMARC, DKIM, SPF, ai model

Procedia PDF Downloads 55
269 Comparative Study Using WEKA for Red Blood Cells Classification

Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy

Abstract:

Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-alaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.

Keywords: K-nearest neighbors algorithm, radial basis function neural network, red blood cells, support vector machine

Procedia PDF Downloads 407
268 Surface-Enhanced Raman Spectroscopy on Gold Nanoparticles in the Kidney Disease

Authors: Leonardo C. Pacheco-Londoño, Nataly J Galan-Freyle, Lisandro Pacheco-Lugo, Antonio Acosta-Hoyos, Elkin Navarro, Gustavo Aroca-Martinez, Karin Rondón-Payares, Alberto C. Espinosa-Garavito, Samuel P. Hernández-Rivera

Abstract:

At the Life Science Research Center at Simon Bolivar University, a primary focus is the diagnosis of various diseases, and the use of gold nanoparticles (Au-NPs) in diverse biomedical applications is continually expanding. In the present study, Au-NPs were employed as substrates for Surface-Enhanced Raman Spectroscopy (SERS) aimed at diagnosing kidney diseases arising from Lupus Nephritis (LN), preeclampsia (PC), and Hypertension (H). Discrimination models were developed for distinguishing patients with and without kidney diseases based on the SERS signals from urine samples by partial least squares-discriminant analysis (PLS-DA). A comparative study of the Raman signals across the three conditions was conducted, leading to the identification of potential metabolite signals. Model performance was assessed through cross-validation and external validation, determining parameters like sensitivity and specificity. Additionally, a secondary analysis was performed using machine learning (ML) models, wherein different ML algorithms were evaluated for their efficiency. Models’ validation was carried out using cross-validation and external validation, and other parameters were determined, such as sensitivity and specificity; the models showed average values of 0.9 for both parameters. Additionally, it is not possible to highlight this collaborative effort involved two university research centers and two healthcare institutions, ensuring ethical treatment and informed consent of patient samples.

Keywords: SERS, Raman, PLS-DA, kidney diseases

Procedia PDF Downloads 42
267 Analysis of Truck Drivers’ Distraction on Crash Risk

Authors: Samuel Nderitu Muchiri, Tracy Wangechi Maina

Abstract:

Truck drivers face a myriad of challenges in their profession. Enhancements in logistics effectiveness can be pivotal in propelling economic developments. The specific objective of the study was to assess the influence of driver distraction on crash risk. The study is significant as it elucidates best practices that truck drivers can embrace in an effort to enhance road safety. These include amalgamating behaviors that enable drivers to fruitfully execute multifaceted functions such as finding and following routes, evading collisions, monitoring speed, adhering to road regulations, and evaluating vehicle systems’ conditions. The analysis involved an empirical review of ten previous studies related to the research topic. The articles revealed that driver distraction plays a substantial role in road accidents and other crucial road security incidents across the globe. Africa depends immensely on the freight transport sector to facilitate supply chain operations. Several studies indicate that drivers who operate primarily on rural roads, such as those found in Sub-Saharan Africa, have an increased propensity to engage in distracted activities such as cell phone usage while driving. The findings also identified the need for digitalization in truck driving operations, including carrier management techniques such as fatigue management, artificial intelligence, and automating functions like cell phone usage controls. The recommendations can aid policymakers and commercial truck carriers in deepening their understanding of driver distraction and enforcing mitigations to foster road safety.

Keywords: truck drivers, distraction, digitalization, crash risk, road safety

Procedia PDF Downloads 48
266 Impact of Pulmonary Rehabilitation on Respiratory Parameters in Interstitial Lung Disease Patients: A Tertiary Care Hospital Study

Authors: Vivek Ku, A. K. Janmeja, D. Aggarwal, R. Gupta

Abstract:

Purpose: Pulmonary rehabilitation plays a key role in management of chronic lung diseases. However, pulmonary rehabilitation is an underused modality in the management of interstitial lung disease (ILD). This is because limited information is available in literature and no data is available from India on this issue so far. The study was carried out to evaluate the role of pulmonary rehabilitation on respiratory parameters in ILD patients. Methods: The present study was a prospective randomized non-blind case control study. Total of 40 ILD patients were randomized into 2 groups of 20 patients each viz ‘pulmonary rehabilitation group’ and ‘control group’. Pulmonary rehabilitation group underwent 8 weeks pulmonary rehabilitation (PR) along with medical management as per guidelines and the control group was advised only medical management. Results: Mean age in case group was 59.15 ± 10.39 years and in control group was 62.10 ± 14.54 years. The case and the control groups were matched for age and sex. Mean MRC grading at the end of 8 weeks showed significant improvement in the case group as compared to control group (p= 0.011 vs p = 0.655). Similarly, mean St. George Respiratory Questionnaire (SGRQ) score also showed significant improvement in pulmonary rehabilitation group at the end of the study (p= 0.001 vs p= 0.492). However, FEV1 and FVC had no significant change in the case and control group. Similarly, blood gases also did not show any significant difference in the group. Conclusion: Pulmonary rehabilitation improves breathlessness and thereby improves quality of life in the patients suffering from ILD. However, the pulmonary function values and blood gases are unaffected by pulmonary rehabilitation. Clinical Implications: Further large scale multicentre study is needed to ascertain the association.

Keywords: ILD, pulmonary rehabilitation, quality of life, pulmonary functions

Procedia PDF Downloads 269
265 Revisiting Pedestrians’ Appraisals of Urban Streets

Authors: Norhaslina Hassan, Sherina Rezvanipour, Amirhosein Ghaffarian Hoseini, Ng Siew Cheok

Abstract:

The walkability features of urban streets are prominent factors that are often focused on achieving a pedestrian-friendly environment. The limited attention that walkability enhancements devote to pedestrians' experiences or perceptions, on the other hand, raises the question of whether walkability enhancement is sufficient for pedestrians to enjoy using the streets. Thus, this paper evaluates the relationship between the socio-physical components of urban streets and pedestrians’ perceptions. A total of 1152 pedestrians from five urban streets in two major Malaysian cities, Kuala Lumpur, and George Town, Penang, participated in this study. In particular, this study used pedestrian preference scores towards socio-physical attributes that exist in urban streets to assess their impact on pedestrians’ appraisals of street likeability, comfort, and safety. Through analysis, the principal component analysis extracted eight socio-physical components, which were then tested via an ordinal regression model to identify their impact on pedestrian street likeability, comfort (visual, auditory, haptic and olfactory), and safety (physical safety, environmental safety, and security). Furthermore, a non-parametric Kruskal Wallis test was used to identify whether the results were subjected to any socio-demographic differences. The results found that all eight components had some degree of effect on the appraisals. It was also revealed that pedestrians’ preferences towards the attributes as well as their appraisals significantly varied based on their age, gender, ethnicity and education. These results and their implications for urban planning are further discussed in this paper.

Keywords: pedestrian appraisal, pedestrian perception, street sociophysical attributes, walking experience

Procedia PDF Downloads 122
264 A Comparative Study for Various Techniques Using WEKA for Red Blood Cells Classification

Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy

Abstract:

Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifyig the red blood cells as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively

Keywords: red blood cells, classification, radial basis function neural networks, suport vector machine, k-nearest neighbors algorithm

Procedia PDF Downloads 479
263 Bio Energy from Metabolic Activity of Bacteria in Plant and Soil Using Novel Microbial Fuel Cells

Authors: B. Samuel Raj, Solomon R. D. Jebakumar

Abstract:

Microbial fuel cells (MFCs) are an emerging and promising method for achieving sustainable energy since they can remove contaminated organic matter and simultaneously generate electricity. Our approach was driven in three different ways like Bacterial fuel cell, Soil Microbial fuel cell (Soil MFC) and Plant Microbial fuel cell (Plant MFC). Bacterial MFC: Sulphate reducing bacteria (SRB) were isolated and identified as the efficient electricigens which is able to produce ±2.5V (689mW/m2) and it has sustainable activity for 120 days. Experimental data with different MFC revealed that high electricity production harvested continuously for 90 days 1.45V (381mW/m2), 1.98V (456mW/m2) respectively. Biofilm formation was confirmed on the surface of the anode by high content screening (HCS) and scanning electron Microscopic analysis (SEM). Soil MFC: Soil MFC was constructed with low cost and standard Mudwatt soil MFC was purchased from keegotech (USA). Vermicompost soil (V1) produce high energy (± 3.5V for ± 400 days) compared to Agricultural soil (A1) (± 2V for ± 150 days). Biofilm formation was confirmed by HCS and SEM analysis. This finding provides a method for extracting energy from organic matter, but also suggests a strategy for promoting the bioremediation of organic contaminants in subsurface environments. Our Soil MFC were able to run successfully a 3.5V fan and three LED continuously for 150 days. Plant MFC: Amaranthus candatus (P1) and Triticum aestivium (P2) were used in Plant MFC to confirm the electricity production from plant associated microbes, four uniform size of Plant MFC were constructed and checked for energy production. P2 produce high energy (± 3.2V for 40 days) with harvesting interval of two times and P1 produces moderate energy without harvesting interval (±1.5V for 24 days). P2 is able run 3.5V fan continuously for 10days whereas P1 needs optimization of growth conditions to produce high energy.

Keywords: microbial fuel cell, biofilm, soil microbial fuel cell, plant microbial fuel cell

Procedia PDF Downloads 348
262 Screening Diversity: Artificial Intelligence and Virtual Reality Strategies for Elevating Endangered African Languages in the Film and Television Industry

Authors: Samuel Ntsanwisi

Abstract:

This study investigates the transformative role of Artificial Intelligence (AI) and Virtual Reality (VR) in the preservation of endangered African languages. The study is contextualized within the film and television industry, highlighting disparities in screen representation for certain languages in South Africa, underscoring the need for increased visibility and preservation efforts; with globalization and cultural shifts posing significant threats to linguistic diversity, this research explores approaches to language preservation. By leveraging AI technologies, such as speech recognition, translation, and adaptive learning applications, and integrating VR for immersive and interactive experiences, the study aims to create a framework for teaching and passing on endangered African languages. Through digital documentation, interactive language learning applications, storytelling, and community engagement, the research demonstrates how these technologies can empower communities to revitalize their linguistic heritage. This study employs a dual-method approach, combining a rigorous literature review to analyse existing research on the convergence of AI, VR, and language preservation with primary data collection through interviews and surveys with ten filmmakers. The literature review establishes a solid foundation for understanding the current landscape, while interviews with filmmakers provide crucial real-world insights, enriching the study's depth. This balanced methodology ensures a comprehensive exploration of the intersection between AI, VR, and language preservation, offering both theoretical insights and practical perspectives from industry professionals.

Keywords: language preservation, endangered languages, artificial intelligence, virtual reality, interactive learning

Procedia PDF Downloads 59
261 Beyond Adoption: Econometric Analysis of Impacts of Farmer Innovation Systems and Improved Agricultural Technologies on Rice Yield in Ghana

Authors: Franklin N. Mabe, Samuel A. Donkoh, Seidu Al-Hassan

Abstract:

In order to increase and bridge the differences in rice yield, many farmers have resorted to adopting Farmer Innovation Systems (FISs) and Improved Agricultural Technologies (IATs). This study econometrically analysed the impacts of adoption of FISs and IATs on rice yield using multinomial endogenous switching regression (MESR). Nine-hundred and seven (907) rice farmers from Guinea Savannah Zone (GSZ), Forest Savannah Transition Zone (FSTZ) and Coastal Savannah Zone (CSZ) were used for the study. The study used both primary and secondary data. FBO advice, rice farming experience and distance from farming communities to input markets increase farmers’ adoption of only FISs. Factors that increase farmers’ probability of adopting only IATs are access to extension advice, credit, improved seeds and contract farming. Farmers located in CSZ have higher probability of adopting only IATs than their counterparts living in other agro-ecological zones. Age and access to input subsidy increase the probability of jointly adopting FISs and IATs. FISs and IATs have heterogeneous impact on rice yield with adoption of only IATs having the highest impact followed by joint adoption of FISs and IATs. It is important for stakeholders in rice subsector to champion the provision of improved rice seeds, the intensification of agricultural extension services and contract farming concept. Researchers should endeavour to researched into FISs.

Keywords: farmer innovation systems, improved agricultural technologies, multinomial endogenous switching regression, treatment effect

Procedia PDF Downloads 422
260 Visual Improvement Outcome of Pars Plana Vitrectomy Combined Endofragmentation and Secondary IOL Implantation for Dropped Nucleus After Cataract Surgery : A Case Report

Authors: Saut Samuel Simamora

Abstract:

PURPOSE: Nucleus drop is one of the most feared and severe complications of modern cataract surgery. The lens material may drop through iatrogenic breaks of the posterior capsule. The incidence of the nucleus as the complication of phacoemulsification increases concomitant to the increased frequency of phacoemulsification. Pars plana vitrectomy (PPV) followed by endofragmentation and secondary intraocular lens (IOL) implantation is the choice of management procedure. This case report aims to present the outcome of PPV for the treatment dropped nucleus after cataract surgery METHODS: A 65 year old female patient came to Vitreoretina department with chief complaints blurry vision in her left eye after phacoemulsification one month before. Ophthalmological examination revealed visual acuity of the right eye (VA RE) was 6/15, and the left eye (VA LE) was hand movement. The intraocular pressure (IOP) on the right eye was 18 mmHg, and on the left eye was 59 mmHg. On her left eye, there were aphakic, dropped lens nucleus and secondary glaucoma.RESULTS: The patient got antiglaucoma agent until her IOP was decreased. She underwent pars plana vitrectomy to remove dropped nucleus and iris fixated IOL. One week post operative evaluation revealed VA LE was 6/7.5 and iris fixated IOL in proper position. CONCLUSIONS: Nucleus drop generally occurs in phacoemulsification cataract surgery techniques. Retained lens nucleus or fragments in the vitreous may cause severe intraocular inflammation leading to secondary glaucoma. The proper and good management for retained lens fragments in nucleus drop give excellent outcome to patient.

Keywords: secondary glaucoma, complication of phacoemulsification, nucleus drop, pars plana vitrectomy

Procedia PDF Downloads 78
259 Evaluation of Virtual Reality for the Rehabilitation of Athlete Lower Limb Musculoskeletal Injury: A Method for Obtaining Practitioner’s Viewpoints through Observation and Interview

Authors: Hannah K. M. Tang, Muhammad Ateeq, Mark J. Lake, Badr Abdullah, Frederic A. Bezombes

Abstract:

Based on a theoretical assessment of current literature, virtual reality (VR) could help to treat sporting injuries in a number of ways. However, it is important to obtain rehabilitation specialists’ perspectives in order to design, develop and validate suitable content for a VR application focused on treatment. Subsequently, a one-day observation and interview study focused on the use of VR for the treatment of lower limb musculoskeletal conditions in athletes was conducted at St George’s Park England National Football Centre with rehabilitation specialists. The current paper established the methods suitable for obtaining practitioner’s viewpoints through observation and interview in this context. Particular detail was provided regarding the method of qualitatively processing interview results using the qualitative data analysis software tool NVivo, in order to produce a narrative of overarching themes. The observations and overarching themes identified could be used as a framework and success criteria of a VR application developed in future research. In conclusion, this work explained the methods deemed suitable for obtaining practitioner’s viewpoints through observation and interview. This was required in order to highlight characteristics and features of a VR application designed to treat lower limb musculoskeletal injury of athletes and could be built upon to direct future work.

Keywords: athletes, lower-limb musculoskeletal injury, rehabilitation, return-to-sport, virtual reality

Procedia PDF Downloads 255
258 Effect of Naphtha in Addition to a Cycle Steam Stimulation Process Reducing the Heavy Oil Viscosity Using a Two-Level Factorial Design

Authors: Nora A. Guerrero, Adan Leon, María I. Sandoval, Romel Perez, Samuel Munoz

Abstract:

The addition of solvents in cyclic steam stimulation is a technique that has shown an impact on the improved recovery of heavy oils. In this technique, it is possible to reduce the steam/oil ratio in the last stages of the process, at which time this ratio increases significantly. The mobility of improved crude oil increases due to the structural changes of its components, which at the same time reflected in the decrease in density and viscosity. In the present work, the effect of the variables such as temperature, time, and weight percentage of naphtha was evaluated, using a factorial design of experiments 23. From the results of analysis of variance (ANOVA) and Pareto diagram, it was possible to identify the effect on viscosity reduction. The experimental representation of the crude-vapor-naphtha interaction was carried out in a batch reactor on a Colombian heavy oil of 12.8° API and 3500 cP. The conditions of temperature, reaction time, and percentage of naphtha were 270-300 °C, 48-66 hours, and 3-9% by weight, respectively. The results showed a decrease in density with values in the range of 0.9542 to 0.9414 g/cm³, while the viscosity decrease was in the order of 55 to 70%. On the other hand, simulated distillation results, according to ASTM 7169, revealed significant conversions of the 315°C+ fraction. From the spectroscopic techniques of nuclear magnetic resonance NMR, infrared FTIR and UV-VIS visible ultraviolet, it was determined that the increase in the performance of the light fractions in the improved crude is due to the breakdown of alkyl chains. The methodology for cyclic steam injection with naphtha and laboratory-scale characterization can be considered as a practical tool in improved recovery processes.

Keywords: viscosity reduction, cyclic steam stimulation, factorial design, naphtha

Procedia PDF Downloads 173
257 Digital Repository as a Service: Enhancing Access and Preservation of Cultural Heritage Artefacts

Authors: Lefteris Tsipis, Demosthenes Vouyioukas, George Loumos, Antonis Kargas, Dimitris Varoutas

Abstract:

The employment of technology and digitization is crucial for cultural organizations to establish and sustain digital repositories for their cultural heritage artefacts. This utilization is also essential in facilitating the presentation of cultural works and exhibits to a broader audience. Consequently, in this work, we propose a digital repository that functions as Software as a Service (SaaS), primarily promoting the safe storage, display, and sharing of cultural materials, enhancing accessibility, and fostering a deeper understanding and appreciation of cultural heritage. Moreover, the proposed digital repository service is designed as a multitenant architecture, which enables organizations to expand their reach, enhance accessibility, foster collaboration, and ensure the preservation of their content. Specifically, this project aims to assist each cultural institution in organizing its digital cultural assets into collections and feeding other digital platforms, including educational, museum, pedagogical, and games, through appropriate interfaces. Moreover, the creation of this digital repository offers a cutting-edge and effective open-access laboratory solution. It allows organizations to have a significant influence on their audiences by fostering cultural understanding and appreciation. Additionally, it facilitates the connection between different digital repositories and national/European aggregators, promoting collaboration and information sharing. By embracing this solution, cultural institutions can benefit from shared resources and features, such as system updates, backup and recovery services, and data analytics tools, that are provided by the platform.

Keywords: cultural technologies, gaming technologies, web sharing, digital repository

Procedia PDF Downloads 79
256 Microplastic Migration from Food Packaging on Cured Meat Products

Authors: Klytaimnistra Katsara, George Kenanakis, Eleftherios Alissandrakis, Vassilis M. Papadakis

Abstract:

In recent decades, microplastics (MPs) attracted the interest of the research community as the level of environmental plastic pollution has increased over the years. Through air inhalation and food consumption, MPs enter the human body, creating a series of possible health issues. The majority of MPs enter through the digestive tract; they migrate from the plastic packaging of the foodstuffs. Several plastics, such as Polyethylene (PE), are commonly used as food packaging material due to their preservation and storage capabilities. In this work, the surfaces of three different cured meat products with varied fat compositions were studied (bacon, mortadella, and salami) to determine the migration of MPs from plastic packaging. Micro-Raman spectroscopic measurements were performed in an experimental set lasting 28 days, where the meat samples were stored in vacuum-sealed low-density polyethylene (LDPE) pouches under refrigeration conditions at 4°C. Specific measurement days (0, 3, 9, 12, 15, and 28 days of storage) were chosen to obtain comparative results. Raman micro-spectroscopy was used to monitor the MPs migration, where the Raman spectral profile of LDPE first appeared on day 9 in Bacon, day 15 in Salami, and finally, on day 28 in Mortadella. All the meat samples on day 28 were tainted because a layer of bacterial outgrowth had developed on their surface. In conclusion, MP migration from food packaging to the surface of the cured meat samples was proven. To minimize the consumption of MPs in cured meat products that are stored in plastic packaging, a short period of storage time under refrigeration conditions is advised.

Keywords: cured meat, food packaging, low-density polyethylene, microplastic migration, micro-Raman spectroscopy

Procedia PDF Downloads 70
255 Chaotic Electronic System with Lambda Diode

Authors: George Mahalu

Abstract:

The Chua diode has been configured over time in various ways, using electronic structures like operational amplifiers (AOs) or devices with gas or semiconductors. When discussing the use of semiconductor devices, tunnel diodes (Esaki diodes) are most often considered, and more recently, transistorized configurations such as lambda diodes. The paperwork proposed here uses in the modeling a lambda diode type configuration consisting of two junction field effect transistors (JFET). The original scheme is created in the MULTISIM electronic simulation environment and is analyzed in order to identify the conditions for the appearance of evolutionary unpredictability specific to nonlinear dynamic systems with chaos-induced behavior. The chaotic deterministic oscillator is one autonomous type, a fact that places it in the class of Chua’s type oscillators, the only significant and most important difference being the presence of a nonlinear device like the one mentioned structure above. The chaotic behavior is identified both by means of strange attractor-type trajectories and visible during the simulation and by highlighting the hypersensitivity of the system to small variations of one of the input parameters. The results obtained through simulation and the conclusions drawn are useful in the further research of ways to implement such constructive electronic solutions in theoretical and practical applications related to modern small signal amplification structures, to systems for encoding and decoding messages through various modern ways of communication, as well as new structures that can be imagined both in modern neural networks and in those for the physical implementation of some requirements imposed by current research with the aim of obtaining practically usable solutions in quantum computing and quantum computers.

Keywords: chua, diode, memristor, chaos

Procedia PDF Downloads 87
254 Cohabitation, Ethnicities, and Tolerance: An Anthropologic Approach of Political Conflicts in Mozambique

Authors: Samuel Francisco Ngovene

Abstract:

Mozambique is a country with cultural segregation along its rivers, dividing the main ethnic groups of Machangana, Macena, and Macua, inter alia South, Centre, and North. This division has led to internal conflicts, seemingly rooted in ethnicity. The aim of this study is to analyze the tolerance of the main ethnic groups in Mozambique in terms of cohabitation, sharing opportunities, and political power. The study utilizes participant observation in the field, group discussions, and a questionnaire targeting 150 respondents split into 50 for each ethnic group. The study finds that people in Mozambique are generally tolerant of cohabiting or marrying individuals from different ethnic groups. However, when it comes to sharing opportunities such as employment or business, there is a perception that individuals from different ethnic groups may be taking away opportunities. Similarly, each ethnic group believes that having a president from their own group would lead to better opportunities for their community. The study highlights the importance of addressing this intolerance, as it can be a source of internal political conflicts. The anthropological approach provides a valuable tool for diplomacy channels to ensure long-lasting peace. Analysis procedures: The data collected through participant observation, group discussions are analytically crosschecked, comparing the opinions of people from different ethnic groups, while the data from the questionnaire are analyzed statistically to understand the level of tolerance among the ethnic groups and their perceptions of sharing opportunities and political power. The study addresses the question of whether the main ethnic groups in Mozambique are tolerant of cohabitation, sharing opportunities, and political power among themselves. The study concludes that while there is overall tolerance for cohabitation and marriage across ethnic groups, there is also a perception that individuals from different ethnic groups may take away opportunities. The study suggests that cultural education from a young age may be an effective way to promote tolerance.

Keywords: cohabitation, ethnicities, Mozambique, political conflicts, tolerance

Procedia PDF Downloads 56
253 Characterization of the Microorganisms Associated with Pleurotus ostractus and Pleurotus tuber-Regium Spent Mushroom Substrate

Authors: Samuel E. Okere, Anthony E. Ataga

Abstract:

Introduction: The microbial ecology of Pleurotus osteratus and Pleurotus tuber–regium spent mushroom substrate (SMS) were characterized to determine other ways of its utilization. Materials and Methods: The microbiological properties of the spent mushroom substrate were determined using standard methods. This study was carried out at the Microbiology Laboratory University of Port Harcourt, Rivers State, Nigeria. Results: Quantitative microbiological analysis revealed that Pleurotus osteratus spent mushroom substrate (POSMS) contained 7.9x10⁵ and 1.2 x10³ cfu/g of total heterotrophic bacteria and total fungi count respectively while Pleurotus tuber-regium spent mushroom substrate (PTSMS) contained 1.38x10⁶ and 9.0 x10² cfu/g of total heterotrophic bacteria count and total fungi count respectively. The fungi species encountered from Pleurotus tuber-regium spent mushroom substrate (PTSMS) include Aspergillus and Cladosporum species, while Aspergillus and Penicillium species were encountered from Pleurotus osteratus spent mushroom substrate (POSMS). However, the bacteria species encountered from Pleurotus tuber-regium spent mushroom substrate include Bacillus, Acinetobacter, Alcaligenes, Actinobacter, and Pseudomonas species while Bacillus, Actinobacteria, Aeromonas, Lactobacillus and Aerococcus species were encountered from Pleurotus osteratus spent mushroom substrate (POSMS). Conclusion: Therefore based on the findings from this study, it can be concluded that spent mushroom substrate contain microorganisms that can be utilized both in bioremediation of oil-polluted soils as they contain important hydrocarbon utilizing microorganisms such as Penicillium, Aspergillus and Bacillus species and also as sources of plant growth-promoting rhizobacteria (PGPR) such as Pseudomonas and Bacillus species which can induce resistance on plants. However, further studies are recommended, especially to molecularly characterize these microorganisms.

Keywords: characterization, microorganisms, mushroom, spent substrate

Procedia PDF Downloads 159
252 Hot Deformability of Si-Steel Strips Containing Al

Authors: Mohamed Yousef, Magdy Samuel, Maha El-Meligy, Taher El-Bitar

Abstract:

The present work is dealing with 2% Si-steel alloy. The alloy contains 0.05% C as well as 0.85% Al. The alloy under investigation would be used for electrical transformation purposes. A heating (expansion) - cooling (contraction) dilation investigation was executed to detect the a, a+g, and g transformation temperatures at the inflection points of the dilation curve. On heating, primary a  was detected at a temperature range between room temperature and 687 oC. The domain of a+g was detected in the range between 687 oC and 746 oC. g phase exists in the closed g region at the range between 746 oC and 1043 oC. The domain of a phase appears again at a temperature range between 1043 and 1105 oC, and followed by secondary a at temperature higher than 1105 oC. A physical simulation of thermo-mechanical processing on the as-cast alloy was carried out. The simulation process took into consideration the hot flat rolling pilot plant parameters. The process was executed on the thermo-mechanical simulator (Gleeble 3500). The process was designed to include seven consecutive passes. The 1st pass represents the roughing stage, while the remaining six passes represent finish rolling stage. The whole process was executed at the temperature range from 1100 oC to 900 oC. The amount of strain starts with 23.5% at the roughing pass and decreases continuously to reach 7.5 % at the last finishing pass. The flow curve of the alloy can be abstracted from the stress-strain curves representing simulated passes. It shows alloy hardening from a pass to the other up to pass no. 6, as a result of decreasing the deformation temperature and increasing of cumulative strain. After pass no. 6, the deformation process enhances the dynamic recrystallization phenomena to appear, where the z-parameter would be high.

Keywords: si- steel, hot deformability, critical transformation temperature, physical simulation, thermo-mechanical processing, flow curve, dynamic softening.

Procedia PDF Downloads 244
251 Rapid Classification of Soft Rot Enterobacteriaceae Phyto-Pathogens Pectobacterium and Dickeya Spp. Using Infrared Spectroscopy and Machine Learning

Authors: George Abu-Aqil, Leah Tsror, Elad Shufan, Shaul Mordechai, Mahmoud Huleihel, Ahmad Salman

Abstract:

Pectobacterium and Dickeya spp which negatively affect a wide range of crops are the main causes of the aggressive diseases of agricultural crops. These aggressive diseases are responsible for a huge economic loss in agriculture including a severe decrease in the quality of the stored vegetables and fruits. Therefore, it is important to detect these pathogenic bacteria at their early stages of infection to control their spread and consequently reduce the economic losses. In addition, early detection is vital for producing non-infected propagative material for future generations. The currently used molecular techniques for the identification of these bacteria at the strain level are expensive and laborious. Other techniques require a long time of ~48 h for detection. Thus, there is a clear need for rapid, non-expensive, accurate and reliable techniques for early detection of these bacteria. In this study, infrared spectroscopy, which is a well-known technique with all its features, was used for rapid detection of Pectobacterium and Dickeya spp. at the strain level. The bacteria were isolated from potato plants and tubers with soft rot symptoms and measured by infrared spectroscopy. The obtained spectra were analyzed using different machine learning algorithms. The performances of our approach for taxonomic classification among the bacterial samples were evaluated in terms of success rates. The success rates for the correct classification of the genus, species and strain levels were ~100%, 95.2% and 92.6% respectively.

Keywords: soft rot enterobacteriaceae (SRE), pectobacterium, dickeya, plant infections, potato, solanum tuberosum, infrared spectroscopy, machine learning

Procedia PDF Downloads 97
250 Facial Recognition Technology in Institutions of Higher Learning: Exploring the Use in Kenya

Authors: Samuel Mwangi, Josephine K. Mule

Abstract:

Access control as a security technique regulates who or what can access resources. It is a fundamental concept in security that minimizes risks to the institutions that use access control. Regulating access to institutions of higher learning is key to ensure only authorized personnel and students are allowed into the institutions. The use of biometrics has been criticized due to the setup and maintenance costs, hygiene concerns, and trepidations regarding data privacy, among other apprehensions. Facial recognition is arguably a fast and accurate way of validating identity in order to guard protected areas. It guarantees that only authorized individuals gain access to secure locations while requiring far less personal information whilst providing an additional layer of security beyond keys, fobs, or identity cards. This exploratory study sought to investigate the use of facial recognition in controlling access in institutions of higher learning in Kenya. The sample population was drawn from both private and public higher learning institutions. The data is based on responses from staff and students. Questionnaires were used for data collection and follow up interviews conducted to understand responses from the questionnaires. 80% of the sampled population indicated that there were many security breaches by unauthorized people, with some resulting in terror attacks. These security breaches were attributed to stolen identity cases, where staff or student identity cards were stolen and used by criminals to access the institutions. These unauthorized accesses have resulted in losses to the institutions, including reputational damages. The findings indicate that security breaches are a major problem in institutions of higher learning in Kenya. Consequently, access control would be beneficial if employed to curb security breaches. We suggest the use of facial recognition technology, given its uniqueness in identifying users and its non-repudiation capabilities.

Keywords: facial recognition, access control, technology, learning

Procedia PDF Downloads 124
249 Infusion Pump Historical Development, Measurement and Parts of Infusion Pump

Authors: Samuel Asrat

Abstract:

Infusion pumps have become indispensable tools in modern healthcare, allowing for precise and controlled delivery of fluids, medications, and nutrients to patients. This paper provides an overview of the historical development, measurement, and parts of infusion pumps. The historical development of infusion pumps can be traced back to the early 1960s when the first rudimentary models were introduced. These early pumps were large, cumbersome, and often unreliable. However, advancements in technology and engineering over the years have led to the development of smaller, more accurate, and user-friendly infusion pumps. Measurement of infusion pumps involves assessing various parameters such as flow rate, volume delivered, and infusion duration. Flow rate, typically measured in milliliters per hour (mL/hr), is a critical parameter that determines the rate at which fluids or medications are delivered to the patient. Accurate measurement of flow rate is essential to ensure the proper administration of therapy and prevent adverse effects. Infusion pumps consist of several key parts, including the pump mechanism, fluid reservoir, tubing, and control interface. The pump mechanism is responsible for generating the necessary pressure to push fluids through the tubing and into the patient's bloodstream. The fluid reservoir holds the medication or solution to be infused, while the tubing serves as the conduit through which the fluid travels from the reservoir to the patient. The control interface allows healthcare providers to program and adjust the infusion parameters, such as flow rate and volume. In conclusion, infusion pumps have evolved significantly since their inception, offering healthcare providers unprecedented control and precision in delivering fluids and medications to patients. Understanding the historical development, measurement, and parts of infusion pumps is essential for ensuring their safe and effective use in clinical practice.

Keywords: dip, ip, sp, is

Procedia PDF Downloads 62
248 Role and Impact of Artificial Intelligence in Sales and Distribution Management

Authors: Kiran Nair, Jincy George, Suhaib Anagreh

Abstract:

Artificial intelligence (AI) in a marketing context is a form of a deterministic tool designed to optimize and enhance marketing tasks, research tools, and techniques. It is on the verge of transforming marketing roles and revolutionize the entire industry. This paper aims to explore the current dissemination of the application of artificial intelligence (AI) in the marketing mix, reviewing the scope and application of AI in various aspects of sales and distribution management. The paper also aims at identifying the areas of the strong impact of AI in factors of sales and distribution management such as distribution channel, purchase automation, customer service, merchandising automation, and shopping experiences. This is a qualitative research paper that aims to examine the impact of AI on sales and distribution management of 30 multinational brands in six different industries, namely: airline; automobile; banking and insurance; education; information technology; retail and telecom. Primary data is collected by means of interviews and questionnaires from a sample of 100 marketing managers that have been selected using convenient sampling method. The data is then analyzed using descriptive statistics, correlation analysis and multiple regression analysis. The study reveals that AI applications are extensively used in sales and distribution management, with a strong impact on various factors such as identifying new distribution channels, automation in merchandising, customer service, and purchase automation as well as sales processes. International brands have already integrated AI extensively in their day-to-day operations for better efficiency and improved market share while others are investing heavily in new AI applications for gaining competitive advantage.

Keywords: artificial intelligence, sales and distribution, marketing mix, distribution channel, customer service

Procedia PDF Downloads 153
247 One-Pot Synthesis of 5-Hydroxymethylfurfural from Hexose Sugar over Chromium Impregnated Zeolite Based Catalyst, Cr/H-ZSM-5

Authors: Samuel K. Degife, Kamal K. Pant, Sapna Jain

Abstract:

The world´s population and industrialization of countries continued to grow in an alarming rate irrespective of the security for food, energy supply, and pure water availability. As a result, the global energy consumption is observed to increase significantly. Fossil energy resources that mainly comprised of crude oil, coal, and natural gas have been used by mankind as the main energy source for almost two centuries. However, sufficient evidences are revealing that the consumption of fossil resource as transportation fuel emits environmental pollutants such as CO2, NOx, and SOx. These resources are dwindling rapidly besides enormous amount of problems associated such as fluctuation of oil price and instability of oil-rich regions. Biomass is a promising renewable energy candidate to replace fossil-based transportation fuel and chemical production. The present study aims at valorization of hexose sugars (glucose and fructose) using zeolite based catalysts in imidazolium based ionic liquid (1-butyl-3-methylimidazolium chloride, [BMIM] Cl) reaction media. The catalytic effect chromium impregnated H-ZSM-5 (Cr/H-ZSM-5) was studied for dehydration of hexose sugars. The wet impregnation method was used to prepare Cr/H-ZSM-5 catalyst. The characterization of the prepared catalyst was performed using techniques such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction analysis (XRD), Temperature-programmed desorption of ammonia (NH3-TPD) and BET-surface area analysis. The dehydration product, 5-hydroxymethylfurfural (5-HMF), was analyzed using high-performance liquid chromatography (HPLC). Cr/H-ZSM-5 was effective in dehydrating fructose with 87% conversion and 55% yield 5-HMF at 180 oC for 30 min of reaction time compared with H-ZSM-5 catalyst which yielded only 31% of 5-HMF at identical reaction condition.

Keywords: chromium, hexose, ionic liquid, , zeolite

Procedia PDF Downloads 174
246 Determination of Klebsiella Pneumoniae Susceptibility to Antibiotics Using Infrared Spectroscopy and Machine Learning Algorithms

Authors: Manal Suleiman, George Abu-Aqil, Uraib Sharaha, Klaris Riesenberg, Itshak Lapidot, Ahmad Salman, Mahmoud Huleihel

Abstract:

Klebsiella pneumoniae is one of the most aggressive multidrug-resistant bacteria associated with human infections resulting in high mortality and morbidity. Thus, for an effective treatment, it is important to diagnose both the species of infecting bacteria and their susceptibility to antibiotics. Current used methods for diagnosing the bacterial susceptibility to antibiotics are time-consuming (about 24h following the first culture). Thus, there is a clear need for rapid methods to determine the bacterial susceptibility to antibiotics. Infrared spectroscopy is a well-known method that is known as sensitive and simple which is able to detect minor biomolecular changes in biological samples associated with developing abnormalities. The main goal of this study is to evaluate the potential of infrared spectroscopy in tandem with Random Forest and XGBoost machine learning algorithms to diagnose the susceptibility of Klebsiella pneumoniae to antibiotics within approximately 20 minutes following the first culture. In this study, 1190 Klebsiella pneumoniae isolates were obtained from different patients with urinary tract infections. The isolates were measured by the infrared spectrometer, and the spectra were analyzed by machine learning algorithms Random Forest and XGBoost to determine their susceptibility regarding nine specific antibiotics. Our results confirm that it was possible to classify the isolates into sensitive and resistant to specific antibiotics with a success rate range of 80%-85% for the different tested antibiotics. These results prove the promising potential of infrared spectroscopy as a powerful diagnostic method for determining the Klebsiella pneumoniae susceptibility to antibiotics.

Keywords: urinary tract infection (UTI), Klebsiella pneumoniae, bacterial susceptibility, infrared spectroscopy, machine learning

Procedia PDF Downloads 165
245 A Survey of Skin Cancer Detection and Classification from Skin Lesion Images Using Deep Learning

Authors: Joseph George, Anne Kotteswara Roa

Abstract:

Skin disease is one of the most common and popular kinds of health issues faced by people nowadays. Skin cancer (SC) is one among them, and its detection relies on the skin biopsy outputs and the expertise of the doctors, but it consumes more time and some inaccurate results. At the early stage, skin cancer detection is a challenging task, and it easily spreads to the whole body and leads to an increase in the mortality rate. Skin cancer is curable when it is detected at an early stage. In order to classify correct and accurate skin cancer, the critical task is skin cancer identification and classification, and it is more based on the cancer disease features such as shape, size, color, symmetry and etc. More similar characteristics are present in many skin diseases; hence it makes it a challenging issue to select important features from a skin cancer dataset images. Hence, the skin cancer diagnostic accuracy is improved by requiring an automated skin cancer detection and classification framework; thereby, the human expert’s scarcity is handled. Recently, the deep learning techniques like Convolutional neural network (CNN), Deep belief neural network (DBN), Artificial neural network (ANN), Recurrent neural network (RNN), and Long and short term memory (LSTM) have been widely used for the identification and classification of skin cancers. This survey reviews different DL techniques for skin cancer identification and classification. The performance metrics such as precision, recall, accuracy, sensitivity, specificity, and F-measures are used to evaluate the effectiveness of SC identification using DL techniques. By using these DL techniques, the classification accuracy increases along with the mitigation of computational complexities and time consumption.

Keywords: skin cancer, deep learning, performance measures, accuracy, datasets

Procedia PDF Downloads 127
244 Numerical Investigation of Entropy Signatures in Fluid Turbulence: Poisson Equation for Pressure Transformation from Navier-Stokes Equation

Authors: Samuel Ahamefula Mba

Abstract:

Fluid turbulence is a complex and nonlinear phenomenon that occurs in various natural and industrial processes. Understanding turbulence remains a challenging task due to its intricate nature. One approach to gain insights into turbulence is through the study of entropy, which quantifies the disorder or randomness of a system. This research presents a numerical investigation of entropy signatures in fluid turbulence. The work is to develop a numerical framework to describe and analyse fluid turbulence in terms of entropy. This decomposes the turbulent flow field into different scales, ranging from large energy-containing eddies to small dissipative structures, thus establishing a correlation between entropy and other turbulence statistics. This entropy-based framework provides a powerful tool for understanding the underlying mechanisms driving turbulence and its impact on various phenomena. This work necessitates the derivation of the Poisson equation for pressure transformation of Navier-Stokes equation and using Chebyshev-Finite Difference techniques to effectively resolve it. To carry out the mathematical analysis, consider bounded domains with smooth solutions and non-periodic boundary conditions. To address this, a hybrid computational approach combining direct numerical simulation (DNS) and Large Eddy Simulation with Wall Models (LES-WM) is utilized to perform extensive simulations of turbulent flows. The potential impact ranges from industrial process optimization and improved prediction of weather patterns.

Keywords: turbulence, Navier-Stokes equation, Poisson pressure equation, numerical investigation, Chebyshev-finite difference, hybrid computational approach, large Eddy simulation with wall models, direct numerical simulation

Procedia PDF Downloads 92
243 Investigation of the Effect of Lecturers' Attributes on Students' Interest in Learning Statistic Ghanaian Tertiary Institutions

Authors: Samuel Asiedu-Addo, Jonathan Annan, Yarhands Dissou Arthur

Abstract:

The study aims to explore the relational effect of lecturers’ personal attribute on student’s interest in statistics. In this study personal attributes of lecturers’ such as lecturer’s dynamism, communication strategies and rapport in the classroom as well as applied knowledge during lecture were examined. Here, exploratory research design was used to establish the effect of lecturer’s personal attributes on student’s interest. Data were analyzed by means of confirmatory factor analysis and structural equation modeling (SEM) using the SmartPLS 3 program. The study recruited 376 students from the faculty of technical and vocational education of the University of Education Winneba Kumasi campus, and Ghana Technology University College as well as Kwame Nkrumah University of science and Technology. The results revealed that personal attributes of an effective lecturer were lecturer’s dynamism, rapport, communication and applied knowledge contribute (52.9%) in explaining students interest in statistics. Our regression analysis and structural equation modeling confirm that lecturers personal attribute contribute effectively by predicting student’s interest of 52.9% and 53.7% respectively. The paper concludes that the total effect of a lecturer’s attribute on student’s interest is moderate and significant. While a lecturer’s communication and dynamism were found to contribute positively to students’ interest, they were insignificant in predicting students’ interest. We further showed that a lecturer’s personal attributes such as applied knowledge and rapport have positive and significant effect on tertiary student’s interest in statistic, whilst lecturers’ communication and dynamism do not significantly affect student interest in statistics; though positively related.

Keywords: student interest, effective teacher, personal attributes, regression and SEM

Procedia PDF Downloads 358
242 Industrial Kaolinite Resource Deposits Study in Grahamstown Area, Eastern Cape, South Africa

Authors: Adeola Ibukunoluwa Samuel, Afsoon Kazerouni

Abstract:

Industrial mineral kaolin has many favourable properties such as colour, shape, softness, non-abrasiveness, natural whiteness, as well as chemical stability. It occurs extensively in North of Bedford road Grahamstown, South Africa. The relationship between both the physical and chemical properties as lead to its application in the production of certain industrial products which are used by the public; this includes the prospect of production of paper, ceramics, rubber, paint, and plastics. Despite its interesting economic potentials, kaolinite clay mineral remains undermined, and this is threatening its sustainability in the mineral industry. This research study focuses on a detailed evaluation of the kaolinite mineral and possible ways to increase its lifespan in the industry. The methods employed for this study includes petrographic microscopy analysis, X-ray powder diffraction analysis (XRD), and proper field reconnaissance survey. Results emanating from this research include updated geological information on Grahamstown. Also, mineral transformation phases such as quartz, kaolinite, calcite and muscovite were identified in the clay samples. Petrographic analysis of the samples showed that the study area has been subjected to intense tectonic deformation and cement replacement. Also, different dissolution patterns were identified on the Grahamstown kaolinitic clay deposits. Hence incorporating analytical studies and data interpretations, possible ways such as the establishment of processing refinery near mining plants, which will, in turn, provide employment for the locals and land reclamation is suggested. In addition, possible future sustainable industrial applications of the clay minerals seem to be possible if additives, cellulosic wastes are used to alter the clay mineral.

Keywords: kaolinite, industrial use, sustainability, Grahamstown, clay minerals

Procedia PDF Downloads 188
241 Isolation and Biological Activity of Betulinic and Oleanolic Acids from the Aerial Plant Parts of Maesobotrya Barteri (Baill)

Authors: Christiana Ene Ogwuche, Joseph Amupitan, George Ndukwe, Rachael Ayo

Abstract:

Maesobotrya barteri (Baill), belonging to the family Euphorbiaceae, is a medicinal plant growing widely in tropical Africa. The Aerial plant parts of Maesobotrya barteri (Baill) were collected fresh from Orokam, Ogbadibo local Government of Benue State, Nigeria in July 2013. Taxonomical identification was done by Mallam Musa Abdullahi at the Herbarium unit of Biological Sciences Department, ABU, Zaria, Nigeria. Pulverized aerial parts of Maesobotrya barteri (960g) was exhaustively extracted successively using petroleum ether, chloroform, ethyl acetate and methanol and concentrated in the rotary evaporator at 40°C. The Petroleum ether extract had the second highest activity against test microbes from preliminary crude microbial screenings. The Petroleum ether extract was subjected to phytochemical studies, antimicrobial analysis and column chromatography (CC). The column chromatography yielded fraction PE, which was further purified using preparative thin layer chromatography to give PE1. The structure of the isolated compound was established using 1-D NMR and 2-D NMR spectroscopic analysis and by direct comparison with data reported in literature was confirmed to be a mixture, an isomer of Betulinic acid and Oleanolic acid, both with the molecular weight (C₃₀H₄₈O₃). The bioactivity of this compound was carried out using some clinical pathogens and the activity compared with standard drugs, and this was found to be comparable with the standard drug.

Keywords: Maesobotrya barteri, medicinal plant, bioactivity, petroleum spirit extract, butellinic acid, oleanilic acid

Procedia PDF Downloads 199