Search results for: Peng Cheng
371 Cellular Degradation Activity is Activated by Ambient Temperature Reduction in an Annual Fish (Nothobranchius rachovii)
Authors: Cheng-Yen Lu, Chin-Yuan Hsu
Abstract:
Ambient temperature reduction (ATR) can extend the lifespan of an annual fish (Nothobranchius rachovii), but the underlying mechanism is unknown. In this study, the expression, concentration, and activity of cellular-degraded molecules were evaluated in the muscle of N. rachovii reared under high (30 °C), moderate (25 °C), and low (20 °C) ambient temperatures by biochemical techniques. The results showed that (i) the activity of the 20S proteasome, the expression of microtubule-associated protein 1 light chain 3-II (LC3-II), the expression of lysosome-associated membrane protein type 2a (Lamp 2a), and lysosome activity increased with ATR; (ii) the expression of the 70 kD heat shock cognate protein (Hsc 70) decreased with ATR; (iii) the expression of the 20S proteasome, the expression of lysosome-associated membrane protein type 1 (Lamp 1), the expression of molecular target of rapamycin (mTOR), the expression of phosphorylated mTOR (p-mTOR), and the p-mTOR/mTOR ratio did not change with ATR. These findings indicated that ATR activated the activity of proteasome, macroautophagy, and chaperone-mediated autophagy. Taken together these data reveal that ATR likely activates cellular degradation activity to extend the lifespan of N. rachovii.Keywords: ambient temperature reduction, autophagy, degradation activity, lifespan, proteasome
Procedia PDF Downloads 462370 Exploring the Relationship between Employer Brand and Organizational Attractiveness: The Mediating Role of Employer Image and the Moderating Role of Value Congruence
Authors: Yi Shan Wu, Ting Hsuan Wu, Li Wei Cheng, Pei Yu Guo
Abstract:
Given the fiercely competitive environment, human capital is one of the most valuable assets in a commercial enterprise. Therefore, developing strategies to acquire more talents is crucial. Talents are mainly attracted by both internal and external employer brands as well as by the messages conveyed from the employer image. This not only manifests the importance of a brand and an image of an organization but shows people might be affected by their personal values when assessing an organization as an employer. The goal of the present study is to examine the association between employer brand, employer image, and the likelihood of increasing organizational attractiveness. In addition, we draw from social identity theory to propose value congruence may affect the relationship between employer brand and employer image. Data was collected from those people who only worked less than a year in the industry via an online survey (N=209). The results show that employer image partly mediates the effect of employer brand on organizational attractiveness. In addition, the results also suggest that value congruence does not moderate the relationship between employer brand and employer image. These findings explain why building a good employer brand could enhance organization attractiveness and indicate there should be other factors that may affect employer image building, offering directions for future research.Keywords: organizational attractiveness, employer brand, employer image, value congruence
Procedia PDF Downloads 138369 Identification of Landslide Features Using Back-Propagation Neural Network on LiDAR Digital Elevation Model
Authors: Chia-Hao Chang, Geng-Gui Wang, Jee-Cheng Wu
Abstract:
The prediction of a landslide is a difficult task because it requires a detailed study of past activities using a complete range of investigative methods to determine the changing condition. In this research, first step, LiDAR 1-meter by 1-meter resolution of digital elevation model (DEM) was used to generate six environmental factors of landslide. Then, back-propagation neural networks (BPNN) was adopted to identify scarp, landslide areas and non-landslide areas. The BPNN uses 6 environmental factors in input layer and 1 output layer. Moreover, 6 landslide areas are used as training areas and 4 landslide areas as test areas in the BPNN. The hidden layer is set to be 1 and 2; the hidden layer neurons are set to be 4, 5, 6, 7 and 8; the learning rates are set to be 0.01, 0.1 and 0.5. When using 1 hidden layer with 7 neurons and the learning rate sets to be 0.5, the result of Network training root mean square error is 0.001388. Finally, evaluation of BPNN classification accuracy by the confusion matrix shows that the overall accuracy can reach 94.4%, and the Kappa value is 0.7464.Keywords: digital elevation model, DEM, environmental factors, back-propagation neural network, BPNN, LiDAR
Procedia PDF Downloads 145368 Machine Learning in Momentum Strategies
Authors: Yi-Min Lan, Hung-Wen Cheng, Hsuan-Ling Chang, Jou-Ping Yu
Abstract:
The study applies machine learning models to construct momentum strategies and utilizes the information coefficient as an indicator for selecting stocks with strong and weak momentum characteristics. Through this approach, the study has built investment portfolios capable of generating superior returns and conducted a thorough analysis. Compared to existing research on momentum strategies, machine learning is incorporated to capture non-linear interactions. This approach enhances the conventional stock selection process, which is often impeded by difficulties associated with timeliness, accuracy, and efficiency due to market risk factors. The study finds that implementing bidirectional momentum strategies outperforms unidirectional ones, and momentum factors with longer observation periods exhibit stronger correlations with returns. Optimizing the number of stocks in the portfolio while staying within a certain threshold leads to the highest level of excess returns. The study presents a novel framework for momentum strategies that enhances and improves the operational aspects of asset management. By introducing innovative financial technology applications to traditional investment strategies, this paper can demonstrate significant effectiveness.Keywords: information coefficient, machine learning, momentum, portfolio, return prediction
Procedia PDF Downloads 54367 Study of the Non-isothermal Crystallization Kinetics of Polypropylene Homopolymer/Impact Copolymer Composites
Authors: Pixiang Wang, Shaoyang Liu, Yucheng Peng
Abstract:
Polypropylene (PP) is an essential material of numerous applications in different industrial sectors, including packaging, construction, and automotive. Because the application of homopolypropylene (HPP) is limited by its relatively low impact strength and high embrittlement temperature, various types of impact copolymer PP (ICPP) that incorporate elastomers/rubbers into HPP to increase impact strength have been successfully commercialized. Crystallization kinetics of an isotactic HPP, an ICPP, and their composites were studied in this work understand the composites’ behaviors better. The Avrami-Jeziorny model was used to describe the crystallization process. For most samples, the Avrami exponent, n, was greater than 3, indicating the crystal grew in three dimensions with spherical geometry. However, the n value could drop below 3 when the ICPP content was 80 wt.% or higher and the cooling rate was 7.5°C/min or lower, implying that the crystals could grow in two dimensions and some lamella structures could be formed under those conditions. The nucleation activity increased with the increase of the ICPP content, demonstrating that the rubber phase in the ICPP acted as a nucleation agent and facilitated the nucleation process. The decrease in crystallization rate after the ICPP content exceeded 60 wt.% might be caused by the excessive amount of crystal nuclei induced by the high ICPP content, which caused strong crystal-crystal interactions and limited the crystal growth space. The nucleation activity and the n value showed high correlations to the mechanical and thermal properties of the materials. The quantitative study of the kinetics of crystallization in this work could be a helpful reference for manufacturing ICPP and HPP/ICPP mixtures.Keywords: polypropylene, crystallization kinetics, Avrami-Jeziorny model, crystallization activation energy, Nucleation activity
Procedia PDF Downloads 88366 E-Commercial Enterprises' Behavior on China's Local Government's Economic Policy: An Example from Zhejiang Province
Authors: Chia-Chi Cheng
Abstract:
After the implementation of “the internet plus,” several puzzles emerge as below: why does China impose more regulation and laws on economic development on the Internet? Why does China urge the importance of manufacturing industry? Why does China’s local government passively implement the policy imposed by the central government? What kind of factors can influence China’s local government’s economic preference? In the framework of neo-institutionalism, this research considers China’s local government as changing agents to analyze its preferences and behavior. In general, the interests urged by the local government will decide its preference and behaviors. They will change its counterpart to cooperate if the change will bring more benefits. Thus, they will change its preference and behavior while the external environment alters. While the local government has the same definition on political activity and economic interest, they will prefer to cooperate with the local enterprises in the way of laying symbiont, within the presumption that the institution remains. While the local government has the different positions on political activity and economic interest, they will re-define the existed regulation or create new regulation in the condition of institution vacuum. Sequentially, they will replace the targets, and the policy, which does not fit in the Central government’s policy, will emerge.Keywords: China, institutional change, government enterprise relationship, e-commercial policy
Procedia PDF Downloads 238365 A Brave New World of Privacy: Empirical Insights into the Metaverse’s Personalization Dynamics
Authors: Cheng Xu
Abstract:
As the metaverse emerges as a dynamic virtual simulacrum of reality, its implications on user privacy have become a focal point of interest. While previous discussions have ventured into metaverse privacy dynamics, a glaring empirical gap persists, especially concerning the effects of personalization in the context of news recommendation services. This study stands at the forefront of addressing this void, meticulously examining how users' privacy concerns shift within the metaverse's personalization context. Through a pre-registered randomized controlled experiment, participants engaged in a personalization task across both the metaverse and traditional online platforms. Upon completion of this task, a comprehensive news recommendation service provider offers personalized news recommendations to the users. Our empirical findings reveal that the metaverse inherently amplifies privacy concerns compared to traditional settings. However, these concerns are notably mitigated when users have a say in shaping the algorithms that drive these recommendations. This pioneering research not only fills a significant knowledge gap but also offers crucial insights for metaverse developers and policymakers, emphasizing the nuanced role of user input in shaping algorithm-driven privacy perceptions.Keywords: metaverse, privacy concerns, personalization, digital interaction, algorithmic recommendations
Procedia PDF Downloads 117364 Music Tourism for Identity and Cultural Communication in Qualitative Analysis with MAXQDA
Authors: Yixuan Peng
Abstract:
Music tourism is the phenomenon of people visiting a place because of their association with music, as well as the process of creating an emotional attachment to a place through the connection between people and music. Music offers people the opportunity to immerse themselves in the local culture. Music tourism is increasingly recognized as an industry with economic and social impacts. People often come together for a common purpose of music at a certain time and place, such as concert, opera, or music workshop. This is very similar to the act of pilgrimage: the process of participation evokes strong emotions; it takes time and money to get to the destination; the gathering, and the emotional co-frequency. This study conducted further qualitative research using MAXQDA by applying the musical topophilia model with East Asians as interview subjects. There are three steps to traveling: before, during and after the trip. To date, 53 individuals living in East Asia have been interviewed one-on-one (online/offline) about their travel experiences. This part of the interview is limited to the two stages that are before and after travel. Based on the results of the interviews above, and as Europe has the most representative music industry and the richest variety of music genres. The " during the trip" phase of the observations and interviews were conducted in Europe and involved on-site music in Salzburg and London, including musical theater, street music, and musical pilgrimages. Interviews with 24 people were conducted in English, Chinese and Japanese. This study will use data to demonstrate the followings: the irreplaceability of music in faraway places; the identity and sense of belonging that music brings; the ethnic barriers that music crosses; and the cultural communication that music enables.Keywords: belongingness, gathering, modern pilgrimage, anthropology of music, sociology of music
Procedia PDF Downloads 87363 Equipment Contribution Analysis in Task-Oriented Heterogeneous Combat Network with Conflicting Edges
Authors: Lijian Sun, Yun Zhou, Cheng Zhu, Weiming Zhang
Abstract:
Modern warfare emphasizes that the combat system-of-systems (CSoS) includes various combat units and powerful information exchange capabilities. Therefore, these units have formed a complex Heterogeneous Combat Network (HCN), where enemy and friendly combat forces engage within this network. To better accomplish an assigned task, equipment contribution analysis aims to identify important nodes within the HCN. However, constraints such as equipment payload often give rise to conflicting edges within the HCN. Hence, this paper focuses on analysing equipment contribution within task-oriented HCN from the perspective of Course of Action (COA). Specifically, this paper defines the HCN with constraints and proposes an approach to compute COA within the HCN. Then, the COA Capability Index (COACI) and COA Capability Change Index (COACCI) are proposed to analyse equipment contribution in the HCN. Finally, the effectiveness of the above method is validated through a case study. This paper provides a quantitative analysis approach for equipment contribution analysis within task-oriented HCN and offers valuable insights for designing more effective combat system-of-systems (CSoS).Keywords: equipment contribution, heterogeneous combat network, conflicting edges, course of action, kill chain
Procedia PDF Downloads 9362 Predicting Medical Check-Up Patient Re-Coming Using Sequential Pattern Mining and Association Rules
Authors: Rizka Aisha Rahmi Hariadi, Chao Ou-Yang, Han-Cheng Wang, Rajesri Govindaraju
Abstract:
As the increasing of medical check-up popularity, there are a huge number of medical check-up data stored in database and have not been useful. These data actually can be very useful for future strategic planning if we mine it correctly. In other side, a lot of patients come with unpredictable coming and also limited available facilities make medical check-up service offered by hospital not maximal. To solve that problem, this study used those medical check-up data to predict patient re-coming. Sequential pattern mining (SPM) and association rules method were chosen because these methods are suitable for predicting patient re-coming using sequential data. First, based on patient personal information the data was grouped into … groups then discriminant analysis was done to check significant of the grouping. Second, for each group some frequent patterns were generated using SPM method. Third, based on frequent patterns of each group, pairs of variable can be extracted using association rules to get general pattern of re-coming patient. Last, discussion and conclusion was done to give some implications of the results.Keywords: patient re-coming, medical check-up, health examination, data mining, sequential pattern mining, association rules, discriminant analysis
Procedia PDF Downloads 642361 Self-Organizing Maps for Credit Card Fraud Detection and Visualization
Authors: Peng Chun-Yi, Chen Wei-Hsuan, Ueng Shyh-Kuang
Abstract:
This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies
Procedia PDF Downloads 60360 The Integrated Urban Strategies Based on Deep Urban History and Modern Technology Study: Tourism and Leisure Industries as Driving Force to Reactivate Historical Area
Authors: Cheng Li, Jie Shen, Yutian Tang
Abstract:
Embracing the upcoming era of urbanization with the challenges of limitation of resources, disappearing cultural identities and conflicts among different groups of stakeholders, new integrated approaches are offered in our urban practice to help decision-makers and stakeholders frame and develop well-conceived, practical strategies for urban developing trajectories to approach urban-level sustainability in multiple social, cultural, ecological dimensions. Through bottom-up participation, we take advantage of tourism and leisure industries as driving forces for urbanization in China to promote integrated sustainable systems, with the hope of approaching both historical and ecological aspects of urban sustainability; and also thanks to top-down participation, we have codes, standards and rules established by the governments to strengthen the implementation of ecological urban sustainability. The results are monitored and evaluated experimentally and multidimensionally and the sustainable systems we constructed with local stakeholder groups turned out to be effective. The presentation of our selected projects would indicate our different focuses on urban sustainability.Keywords: urban sustainability, integrated urban strategy, tourism and leisure industries, history, modern technology
Procedia PDF Downloads 381359 Risk Assessment of Heavy Metals in River Sediments and Suspended Matter in Small Tributaries of Abandoned Mercury Mines in Wanshan, Guizhou
Authors: Guo-Hui Lu, Jing-Yi Cai, Ke-Yan Tan, Xiao-Cai Yin, Yu Zheng, Peng-Wei Shao, Yong-Liang Yang
Abstract:
Soil erosion around abandoned mines is one of the important geological agents for pollutant diffuses to the lower reaches of the local river basin system. River loading of pollutants is an important parameter for remediation of abandoned mines. In order to obtain information on pollutant transport and diffusion downstream in mining area, the small tributary system of the Xiaxi River in Wanshan District of Guizhou Province was selected as the research area. Sediment and suspended matter samples were collected and determined for Pb, As, Hg, Zn, Co, Cd, Cu, Ni, Cr, and Mn by inductively coupled plasma mass spectrometry (ICP-MS) and atomic fluorescence spectrometry (AFS) with the pretreatment of wet digestion. Discussions are made for pollution status and spatial distribution characteristics. The total Hg content in the sediments ranged from 0.45 to 16.0 g/g (dry weight) with an average of 5.79 g/g, which was ten times higher than the limit of Class II soil for mercury by the National Soil Environmental Quality Standard. The maximum occurred at the intersection of the Jin River and the Xiaxi River. The potential ecological hazard index (RI) was used to evaluate the ecological risk of heavy metals in the sediments. The average RI value for the whole study area suggests the high potential ecological risk level. High Cd potential ecological risk was found at individual sites.Keywords: heavy metal, risk assessment, sediment, suspended matter, Wanshan mercury mine, small tributary system
Procedia PDF Downloads 130358 Microwave Heating and Catalytic Activity of Iron/Carbon Materials for H₂ Production from the Decomposition of Plastic Wastes
Authors: Peng Zhang, Cai Liang
Abstract:
The non-biodegradable plastic wastes have posed severe environmental and ecological contaminations. Numerous technologies, such as pyrolysis, incineration, and landfilling, have already been employed for the treatment of plastic waste. Compared with conventional methods, microwave has displayed unique advantages in the rapid production of hydrogen from plastic wastes. Understanding the interaction between microwave radiation and materials would promote the optimization of several parameters for the microwave reaction system. In this work, various carbon materials have been investigated to reveal microwave heating performance and the ensuing catalytic activity. Results showed that the diversity in the heating characteristic was mainly due to the dielectric properties and the individual microstructures. Furthermore, the gaps and steps among the surface of carbon materials would lead to the distortion of the electromagnetic field, which correspondingly induced plasma discharging. The intensity and location of local plasma were also studied. For high-yield H₂ production, iron nanoparticles were selected as the active sites, and a series of iron/carbon bifunctional catalysts were synthesized. Apart from the high catalytic activity, the iron particles in nano-size close to the microwave skin depth would transfer microwave irradiation to the heat, intensifying the decomposition of plastics. Under microwave radiation, iron is supported on activated carbon material with 10wt.% loading exhibited the best catalytic activity for H₂ production. Specifically, the plastics were rapidly heated up and subsequently converted into H₂ with a hydrogen efficiency of 85%. This work demonstrated a deep understanding of microwave reaction systems and provided the optimization for plastic treatment.Keywords: plastic waste, recycling, hydrogen, microwave
Procedia PDF Downloads 71357 Group Learning for the Design of Human Resource Development for Enterprise
Authors: Hao-Hsi Tseng, Hsin-Yun Lee, Yu-Cheng Kuo
Abstract:
In order to understand whether there is a better than the learning function of learning methods and improve the CAD Courses for enterprise’s design human resource development, this research is applied in learning practical learning computer graphics software. In this study, Revit building information model for learning content, design of two different modes of learning curriculum to learning, learning functions, respectively, and project learning. Via a post-test, questionnaires and student interviews, etc., to study the effectiveness of a comparative analysis of two different modes of learning. Students participate in a period of three weeks after a total of nine-hour course, and finally written and hands-on test. In addition, fill in the questionnaire response by the student learning, a total of fifteen questionnaire title, problem type into the base operating software, application software and software-based concept features three directions. In addition to the questionnaire, and participants were invited to two different learning methods to conduct interviews to learn more about learning students the idea of two different modes. The study found that the ad hoc short-term courses in learning, better learning outcomes. On the other hand, functional style for the whole course students are more satisfied, and the ad hoc style student is difficult to accept the ad hoc style of learning.Keywords: development, education, human resource, learning
Procedia PDF Downloads 360356 Construct the Fur Input Mixed Model with Activity-Based Benefit Assessment Approach of Leather Industry
Authors: M. F. Wu, F. T. Cheng
Abstract:
Leather industry is the most important traditional industry to provide the leather products in the world for thousand years. The fierce global competitive environment and common awareness of global carbon reduction make livestock supply quantities falling, salt and wet blue leather material reduces and the price skyrockets significantly. Exchange rate fluctuation led sales revenue decreasing which due to the differences of export exchanges and compresses the overall profitability of leather industry. This paper applies activity-based benefit assessment approach to build up fitness fur input mixed model, fur is Wet Blue, which concerned with four key factors: the output rate of wet blue, unit cost of wet blue, yield rate and grade level of Wet Blue to achieve the low cost strategy under given unit price of leather product condition of the company. The research findings indicate that applying this model may improve the input cost structure, decrease numbers of leather product inventories and to raise the competitive advantages of the enterprise in the future.Keywords: activity-based benefit assessment approach, input mixed, output rate, wet blue
Procedia PDF Downloads 376355 Development and Evaluation of a Psychological Adjustment and Adaptation Status Scale for Breast Cancer Survivors
Authors: Jing Chen, Jun-E Liu, Peng Yue
Abstract:
Objective: The objective of this study was to develop a psychological adjustment and adaptation status scale for breast cancer survivors, and to examine the reliability and validity of the scale. Method: 37 breast cancer survivors were recruited in qualitative research; a five-subject theoretical framework and an item pool of 150 items of the scale were derived from the interview data. In order to evaluate and select items and reach a preliminary validity and reliability for the original scale, the suggestions of study group members, experts and breast cancer survivors were taken, and statistical methods were used step by step in a sample of 457 breast cancer survivors. Results: An original 24-item scale was developed. The five dimensions “domestic affections”, “interpersonal relationship”, “attitude of life”, “health awareness”, “self-control/self-efficacy” explained 58.053% of the total variance. The content validity was assessed by experts, the CVI was 0.92. The construct validity was examined in a sample of 264 breast cancer survivors. The fitting indexes of confirmatory factor analysis (CFA) showed good fitting of the five dimensions model. The criterion-related validity of the total scale with PTGI was satisfactory (r=0.564, p<0.001). The internal consistency reliability and test-retest reliability were tested. Cronbach’s alpha value (0.911) showed a good internal consistency reliability, and the intraclass correlation coefficient (ICC=0.925, p<0.001) showed a satisfactory test-retest reliability. Conclusions: The scale was brief and easy to understand, was suitable for breast cancer patients whose physical strength and energy were limited.Keywords: breast cancer survivors, rehabilitation, psychological adaption and adjustment, development of scale
Procedia PDF Downloads 513354 The Impact of Financial News and Press Freedom on Abnormal Returns around Earnings Announcements in Greater China
Authors: Yu-Chen Wei, Yang-Cheng Lu, I-Chi Lin
Abstract:
This study examines the impacts of news sentiment and press freedom on abnormal returns during the earnings announcement in greater China including the Shanghai, Shenzhen and Taiwan stock markets. The news sentiment ratio is calculated by using the content analysis of semantic orientation. The empirical results show that news released prior to the event date may decrease the cumulative abnormal returns prior to the earnings announcement regardless of whether it is released in China or Taiwan. By contrast, companies with optimistic financial news may increase the cumulative abnormal returns during the announcement date. Furthermore, the difference in terms of press freedom is considered in greater China to compare the impact of press freedom on abnormal returns. The findings show that, the freer the press is, the more negatively significant will be the impact of news on the abnormal returns, which means that the press freedom may decrease the ability of the news to impact the abnormal returns. The intuition is that investors may receive alternative news related to each company in the market with greater press freedom, which proves the efficiency of the market and reduces the possible excess returns.Keywords: news, press freedom, Greater China, earnings announcement, abnormal returns
Procedia PDF Downloads 394353 The Design of Intelligent Passenger Organization System for Metro Stations Based on Anylogic
Authors: Cheng Zeng, Xia Luo
Abstract:
Passenger organization has always been an essential part of China's metro operation and management. Facing the massive passenger flow, stations need to improve their intelligence and automation degree by an appropriate integrated system. Based on the existing integrated supervisory control system (ISCS) and simulation software (Anylogic), this paper designs an intelligent passenger organization system (IPOS) for metro stations. Its primary function includes passenger information acquisition, data processing and computing, visualization management, decision recommendations, and decision response based on interlocking equipment. For this purpose, the logical structure and intelligent algorithms employed are particularly devised. Besides, the structure diagram of information acquisition and application module, the application of Anylogic, the case library's function process are all given by this research. Based on the secondary development of Anylogic and existing technologies like video recognition, the IPOS is supposed to improve the response speed and address capacity in the face of emergent passenger flow of metro stations.Keywords: anylogic software, decision-making support system, intellectualization, ISCS, passenger organization
Procedia PDF Downloads 176352 DNpro: A Deep Learning Network Approach to Predicting Protein Stability Changes Induced by Single-Site Mutations
Authors: Xiao Zhou, Jianlin Cheng
Abstract:
A single amino acid mutation can have a significant impact on the stability of protein structure. Thus, the prediction of protein stability change induced by single site mutations is critical and useful for studying protein function and structure. Here, we presented a deep learning network with the dropout technique for predicting protein stability changes upon single amino acid substitution. While using only protein sequence as input, the overall prediction accuracy of the method on a standard benchmark is >85%, which is higher than existing sequence-based methods and is comparable to the methods that use not only protein sequence but also tertiary structure, pH value and temperature. The results demonstrate that deep learning is a promising technique for protein stability prediction. The good performance of this sequence-based method makes it a valuable tool for predicting the impact of mutations on most proteins whose experimental structures are not available. Both the downloadable software package and the user-friendly web server (DNpro) that implement the method for predicting protein stability changes induced by amino acid mutations are freely available for the community to use.Keywords: bioinformatics, deep learning, protein stability prediction, biological data mining
Procedia PDF Downloads 471351 The Tourism Pattern Based on Lifestyle: A Case Study of Suzhou City in China
Authors: Ling Chen, Lanyan Peng
Abstract:
In the new round of institutional reform of the State Council, Ministry of Culture and Ministry of Tourism were formed into a new department, Ministry of Culture and Tourism, which embodied the idea of the fusion development of cultural and tourism industries. At the same time, domestic tourists pay more attention to the tourism experience and tourism quality. The tourism patterns have been changed from the sightseeing mode of the individual scenic spot to the lifestyle mode of feeling the cultural atmosphere of the tourist destination. Therefore, this paper focuses on the tourism pattern based on lifestyle, studies the development status, content, and implementation measures of the tourism pattern. As the tourism pattern based on lifestyle integrating cultural and tourism industries in-depth, tourists can experience the living atmosphere, living conditions and living quality of the tourist destination, and deeply understand the urban cultural connotation during the trip. Suzhou has taken a series of measures to build up a tourism pattern based on lifestyle-'Suzhou life' tourism, including regional planning of tourism, integration of cultural resources, construction of urban atmosphere, and upgrading infrastructure. 'Suzhou life' tourism is based on the Suzhou food (cooked wheaten food, dim sum, specialty snacks), tourist attractions (Suzhou gardens, the ancient city) and characteristic recreational ways (appreciating Kun opera, enjoying Suzhou Pingtan, tea drinking). And the continuous integration of the three components above meet the spiritual, cultural needs of tourists and upgrade the tourism pattern based on lifestyle. Finally, the paper puts forward the tourism pattern planning suggestions.Keywords: tourism pattern, lifestyle, integration of cultural and tourism industries, Suzhou life
Procedia PDF Downloads 239350 Factors Influencing the Continuance Usage of Online Mobile Payment Apps: A Case Study of WECHAT Users in China
Authors: Isaac Kofi Mensah, Jianing Mi, Feng Cheng
Abstract:
This research paper seeks to investigate the factors determining the continuance usage of online mobile payment applications among WECHAT users in China. Technology Acceptance Model (TAM) and the Diffusion of Innovation (DOI) theory would both be applied as the theoretical foundation for this study. A developed instrument would be administered to the targeted sample of 1000 WECHAT Users in the City of Harbin, China, through an online questionnaire administration platform. Factors such as perceived usefulness, perceived ease of use, perceived service quality, social influence, trust in the internet, internet self-efficacy, relative advantage, compatibility, and complexity would be explored to determine its significant impact on the continuance intention to use mobile payment apps. This study is at the development and implementation stage. The successful completion of this research article would not only provide an insightful understanding of the factors influencing the decision of WECHAT users in China to use mobile payment applications but also enrich the e-commerce adoption literature.Keywords: diffusion of innovation (DOI), e-commerce, mobile payment, technology acceptance model (TAM), WECHAT
Procedia PDF Downloads 195349 Design of Target Selection for Pedestrian Autonomous Emergency Braking System
Authors: Tao Song, Hao Cheng, Guangfeng Tian, Chuang Xu
Abstract:
An autonomous emergency braking system is an advanced driving assistance system that enables vehicle collision avoidance and pedestrian collision avoidance to improve vehicle safety. At present, because the pedestrian target is small, and the mobility is large, the pedestrian AEB system is faced with more technical difficulties and higher functional requirements. In this paper, a method of pedestrian target selection based on a variable width funnel is proposed. Based on the current position and predicted position of pedestrians, the relative position of vehicle and pedestrian at the time of collision is calculated, and different braking strategies are adopted according to the hazard level of pedestrian collisions. In the CNCAP standard operating conditions, comparing the method of considering only the current position of pedestrians and the method of considering pedestrian prediction position, as well as the method based on fixed width funnel and variable width funnel, the results show that, based on variable width funnel, the choice of pedestrian target will be more accurate and the opportunity of the intervention of AEB system will be more reasonable by considering the predicted position of the pedestrian target and vehicle's lateral motion.Keywords: automatic emergency braking system, pedestrian target selection, TTC, variable width funnel
Procedia PDF Downloads 157348 Scalable Systolic Multiplier over Binary Extension Fields Based on Two-Level Karatsuba Decomposition
Authors: Chiou-Yng Lee, Wen-Yo Lee, Chieh-Tsai Wu, Cheng-Chen Yang
Abstract:
Shifted polynomial basis (SPB) is a variation of polynomial basis representation. SPB has potential for efficient bit-level and digit-level implementations of multiplication over binary extension fields with subquadratic space complexity. For efficient implementation of pairing computation with large finite fields, this paper presents a new SPB multiplication algorithm based on Karatsuba schemes, and used that to derive a novel scalable multiplier architecture. Analytical results show that the proposed multiplier provides a trade-off between space and time complexities. Our proposed multiplier is modular, regular, and suitable for very-large-scale integration (VLSI) implementations. It involves less area complexity compared to the multipliers based on traditional decomposition methods. It is therefore, more suitable for efficient hardware implementation of pairing based cryptography and elliptic curve cryptography (ECC) in constraint driven applications.Keywords: digit-serial systolic multiplier, elliptic curve cryptography (ECC), Karatsuba algorithm (KA), shifted polynomial basis (SPB), pairing computation
Procedia PDF Downloads 363347 Preparation and Characterization of Nanostructured FeN Electrocatalyst for Air Cathode Microbial Fuel Cell (MFC)
Authors: Md. Maksudur Rahman Khan, Chee Wai Woon, Huei Ruey Ong, Vignes Rasiah, Chin Kui Cheng, Kar Min Chan, E. Baranitharan
Abstract:
The present work represents a preparation of non-precious iron-based electrocatalyst (FeN) for ORR in air-cathode microbial fuel cell by pyrolysis treatment. Iron oxalate which recovered from the industrial wastewater and Phenanthroline (Phen) were used as the iron and nitrogen precursors, respectively in preparing FeN catalyst. The performance of as prepared catalyst (FeN) was investigated in a single chambered air cathode MFC in which anaerobic sludge was used as inoculum and palm oil mill effluent as substrate. The maximum open circuit potential (OCV) and the highest power density recorded were 0.543 V and 4.9 mW/m2, respectively. Physical characterization of FeN was elucidated by using Brunauner Emmett Teller (BET), X-Ray Diffraction (XRD) analysis and Field Emission Scanning Electron Microscopy (FESEM) while the electrochemical properties were characterized by cyclic voltammetry (CV) analysis. The presence of biofilm on anode surface was examined using FESEM and confirmed using Infrared Spectroscopy and Thermogravimetric Analysis. The findings of this study demonstrated that FeN is electrochemically active and further modification is needed to increase the ORR catalytic activity.Keywords: iron based catalyst, microbial fuel cells, oxygen reduction reaction, palm oil mill effluent
Procedia PDF Downloads 334346 Astaxanthin Induces Cytotoxicity through Down-Regulating Rad51 Expression in Human Lung Cancer Cells
Authors: Jyh-Cheng Chen, Tai-Jing Wang, Yun-Wei Lin
Abstract:
Astaxanthin has been demonstrated to exhibit a wide range of beneficial effects including anti-inflammatory and anti-cancer properties. However, the molecular mechanism of astaxanthin-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination and high levels of Rad51 expression are observed in chemo- or radioresistant carcinomas. In this study, astaxanthin treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1703. Treatment with astaxanthin decreased Rad51 expression and phospho-AKT protein level in a time and dose-dependent manner. Furthermore, expression of constitutively active AKT (AKT-CA) vector significantly rescued the decreased Rad51 protein and mRNA levels in astaxanthin-treated NSCLC cells. Combined treatment with PI3K inhibitors (LY294002 or wortmannin) and astaxanthin further decreased the Rad51 expression in NSCLC cells. Knockdown of Rad51 enhanced astaxanthin-induced cytotoxicity and growth inhibition in NSCLC cells. These findings may have implications for the rational design of future drug regimens incorporating astaxanthin for the treatment of NSCLC.Keywords: astaxanthin, cytotoxicity, AKT, non-small cell lung cancer, PI3K
Procedia PDF Downloads 297345 Dyeing of Polyester/Cotton Blends with Reverse-Micelle Encapsulated High Energy Disperse/Reactive Dye Mixture
Authors: Chi-Wai Kan, Yanming Wang, Alan Yiu-Lun Tang, Cheng-Hao Lee Lee
Abstract:
Dyeing of polyester/cotton blend fabrics in various polyester/cotton percentages (32/68, 40/60 and 65/35) was investigated using (poly(ethylene glycol), PEG) based reverse-micelle. High energy disperse dyes and warm type reactive dyes were encapsulated and applied on polyester/cotton blend fabrics in a one bath one step dyeing process. Comparison of reverse micellar-based and aqueous-based (water-based) dyeing was conducted in terms of colour reflectance. Experimental findings revealed that the colour shade of the dyed fabrics in reverse micellar non-aqueous dyeing system at a lower dyeing temperature of 98°C is slightly lighter than that of conventional aqueous dyeing system in two-step process (130oC for disperse dyeing and 70°C for reactive dyeing). The exhaustion of dye in polyester-cotton blend fabrics, in terms of colour reflectance, were found to be highly fluctuated at dyeing temperature of 98°C.Keywords: one-bath dyeing, polyester/cotton blends, disperse/reactive dyes, reverse micelle
Procedia PDF Downloads 151344 Exploring Gaming-Learning Interaction in MMOG Using Data Mining Methods
Authors: Meng-Tzu Cheng, Louisa Rosenheck, Chen-Yen Lin, Eric Klopfer
Abstract:
The purpose of the research is to explore some of the ways in which gameplay data can be analyzed to yield results that feedback into the learning ecosystem. Back-end data for all users as they played an MMOG, The Radix Endeavor, was collected, and this study reports the analyses on a specific genetics quest by using the data mining techniques, including the decision tree method. In the study, different reasons for quest failure between participants who eventually succeeded and who never succeeded were revealed. Regarding the in-game tools use, trait examiner was a key tool in the quest completion process. Subsequently, the results of decision tree showed that a lack of trait examiner usage can be made up with additional Punnett square uses, displaying multiple pathways to success in this quest. The methods of analysis used in this study and the resulting usage patterns indicate some useful ways that gameplay data can provide insights in two main areas. The first is for game designers to know how players are interacting with and learning from their game. The second is for players themselves as well as their teachers to get information on how they are progressing through the game, and to provide help they may need based on strategies and misconceptions identified in the data.Keywords: MMOG, decision tree, genetics, gaming-learning interaction
Procedia PDF Downloads 358343 High Density Polyethylene Biocomposites Reinforced with Hydroxyapatite Nanorods and Carbon Nanofibers for Joint Replacements
Authors: Chengzhu Liao, Jianbo Zhang, Haiou Wang, Jing Ming, Huili Li, Yanyan Li, Hua Cheng, Sie Chin Tjong
Abstract:
Since Bonfield’s group’s pioneer work, there has been growing interest amongst the materials scientists, biomedical engineers and surgeons in the use of novel biomaterials for the treatment of bone defects and injuries. This study focuses on the fabrication, mechanical characterization and biocompatibility evaluation of high density polyethylene (HDPE) reinforced with hydroxyapatite nanorods (HANR) and carbon nanofibers (CNF). HANRs of 20 wt% and CNFs of 0.5-2 wt% were incorporated into HDPE to form biocomposites using traditional melt-compounding and injection molding techniques. The mechanical measurements show that CNF additions greatly improve the tensile strength and Young’s modulus of HDPE and HDPE-20% nHA composites. Meanwhile, the nHA and CNF fillers were found to be effective to improve dimensional and thermal stability of HDPE. The results of osteoblast cell cultivation and dimethyl thiazolyl diphenyl thiazolyl tetrazolium (MTT) tests showed that the HDPE/ CNF-nHA nanocomposites are biocompatible. Such HDPE/ CNF-nHA hybrids are found to be potential biomaterials for making orthopedic joint/bone replacements.Keywords: biocompatibility, biocomposite, carbon nanofiber, high density polyethylene, hydroxyapatite
Procedia PDF Downloads 305342 Variable Refrigerant Flow (VRF) Zonal Load Prediction Using a Transfer Learning-Based Framework
Authors: Junyu Chen, Peng Xu
Abstract:
In the context of global efforts to enhance building energy efficiency, accurate thermal load forecasting is crucial for both device sizing and predictive control. Variable Refrigerant Flow (VRF) systems are widely used in buildings around the world, yet VRF zonal load prediction has received limited attention. Due to differences between VRF zones in building-level prediction methods, zone-level load forecasting could significantly enhance accuracy. Given that modern VRF systems generate high-quality data, this paper introduces transfer learning to leverage this data and further improve prediction performance. This framework also addresses the challenge of predicting load for building zones with no historical data, offering greater accuracy and usability compared to pure white-box models. The study first establishes an initial variable set of VRF zonal building loads and generates a foundational white-box database using EnergyPlus. Key variables for VRF zonal loads are identified using methods including SRRC, PRCC, and Random Forest. XGBoost and LSTM are employed to generate pre-trained black-box models based on the white-box database. Finally, real-world data is incorporated into the pre-trained model using transfer learning to enhance its performance in operational buildings. In this paper, zone-level load prediction was integrated with transfer learning, and a framework was proposed to improve the accuracy and applicability of VRF zonal load prediction.Keywords: zonal load prediction, variable refrigerant flow (VRF) system, transfer learning, energyplus
Procedia PDF Downloads 30