Search results for: Mm-wave band
769 Mutations in rpoB, katG and inhA Genes: The Association with Resistance to Rifampicin and Isoniazid in Egyptian Mycobacterium tuberculosis Clinical Isolates
Authors: Ayman K. El Essawy, Amal M. Hosny, Hala M. Abu Shady
Abstract:
The rapid detection of TB and drug resistance, both optimizes treatment and improves outcomes. In the current study, respiratory specimens were collected from 155 patients. Conventional susceptibility testing and MIC determination were performed for rifampicin (RIF) and isoniazid (INH). Genotype MTBDRplus assay, which is a molecular genetic assay based on the DNA-STRIP technology and specific gene sequencing with primers for rpoB, KatG, and mab-inhA genes were used to detect mutations associated with resistance to rifampicin and isoniazid. In comparison to other categories, most of rifampicin resistant (61.5%) and isoniazid resistant isolates (47.1%) were from patients relapsed in treatment. The genotypic profile (using Genotype MTBDRplus assay) of multi-drug resistant (MDR) isolates showed missing of katG wild type 1 (WT1) band and appearance of mutation band katG MUT2. For isoniazid mono-resistant isolates, 80% showed katG MUT1, 20% showed katG MUT1, and inhA MUT1, 20% showed only inhA MUT1. Accordingly, 100% of isoniazid resistant strains were detected by this assay. Out of 17 resistant strains, 16 had mutation bands for katG distinguished high resistance to isoniazid. The assay could clearly detect rifampicin resistance among 66.7% of MDR isolates that showed mutation band rpoB MUT3 while 33.3% of them were considered as unknown. One mono-resistant rifampicin isolate did not show rifampicin mutation bands by Genotype MTBDRplus assay, but it showed an unexpected mutation in Codon 531 of rpoB by DNA sequence analysis. Rifampicin resistance in this strain could be associated with a mutation in codon 531 of rpoB (based on molecular sequencing), and Genotype MTBDRplus assay could not detect the associated mutation. If the results of Genotype MTBDRplus assay and sequencing were combined, this strain shows hetero-resistance pattern. Gene sequencing of eight selected isolates, previously tested by Genotype MTBDRplus assay, could detect resistance mutations mainly in codon 315 (katG gene), position -15 in inhA promotes gene for isoniazid resistance and codon 531 (rpoB gene) for rifampicin resistance. Genotyping techniques allow distinguishing between recurrent cases of reinfection or reactivation and supports epidemiological studies.Keywords: M. tuberculosis, rpoB, KatG, inhA, genotype MTBDRplus
Procedia PDF Downloads 167768 Electrically Tuned Photoelectrochemical Properties of Ferroelectric PVDF/Cu/PVDF-NaNbO₃ Photoanode
Authors: Simrjit Singh, Neeraj Khare
Abstract:
In recent years, photo-electrochemical (PEC) water splitting with an aim to generate hydrogen (H₂) as a clean and renewable fuel has been the subject of intense research interests. Ferroelectric semiconductors have been demonstrated to exhibit enhanced PEC properties as these can be polarized with the application of an external electric field resulting in a built-in potential which helps in separating out the photogenerated charge carriers. In addition to this, by changing the polarization direction, the energy band alignment at the electrode/electrolyte interface can be modulated in a way that it can help in the easy transfer of the charge carriers from the electrode to the electrolyte. In this paper, we investigated the photoelectrochemical properties of ferroelectric PVDF/Cu/PVDF-NaNbO₃ PEC cell and demonstrated that PEC properties can be tuned with ferroelectric polarization and piezophototronic effect. Photocurrent density is enhanced from ~0.71 mA/cm² to 1.97 mA/cm² by changing the polarization direction. Furthermore, due to flexibility and piezoelectric properties of PVDF/Cu/PVDF-NaNbO₃ PEC cell, a further ~26% enhancement in the photocurrent is obtained using the piezophototronic effect. A model depicting the modulation of band alignment between PVDF and NaNbO₃ with the electric field is proposed to explain the observed tuning of the PEC properties. Electrochemical Impedance spectroscopy measurements support the validity of the proposed model.Keywords: electrical tuning, H₂ generation, photoelectrochemical, NaNbO₃
Procedia PDF Downloads 171767 Microwave Synthesis, Optical Properties and Surface Area Studies of NiO Nanoparticles
Authors: Ayed S. Al-Shihri, Abul Kalam, Abdullah G. Al-Sehemi, Gaohui Du, Tokeer Ahmad, Ahmad Irfan
Abstract:
We report here the synthesis of nickel oxide (NiO) nanoparticles by microwave-assisted method, using a common precipitating agent followed by calcination in air at 400°C. The effect of the microwave and pH on the crystallite size, morphology, structure, energy band gap and surface area of NiO have been investigated by means of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet visible spectroscopy (UV-vis) and BET surface area studies. X-ray diffraction studies showed the formation of monophasic and highly crystalline cubic NiO. TEM analysis led to decrease the average grain size of NiO nanoparticles from 16.5 nm to 14 nm on increasing the amount of NaOH. FTIR studies also confirm the formation of NiO nanoparticles. It was observed that on increasing the volume of NaOH, the optical band gap energy (2.85 eV to 2.95 eV) and specific surface area (33.1 to 39.8 m2/g) increases, however the average particles size decreases (16.5 nm to 14 nm). This method may be extended to large scale synthesis of other metal oxides nanoparticles and the present study could be used for the potential applications in water treatment and many other fields.Keywords: BET surface area analysis, electron microscopy, optical properties, X-ray techniques
Procedia PDF Downloads 397766 The Effects of Addition of Chloride Ions on the Properties of ZnO Nanostructures Grown by Electrochemical Deposition
Authors: L. Mentar, O. Baka, A. Azizi
Abstract:
Zinc oxide as a wide band semiconductor materials, especially nanostructured materials, have potential applications in large-area such as electronics, sensors, photovoltaic cells, photonics, optical devices and optoelectronics due to their unique electrical and optical properties and surface properties. The feasibility of ZnO for these applications is due to the successful synthesis of diverse ZnO nanostructures, including nanorings, nanobows, nanohelixes, nanosprings, nanobelts, nanotubes, nanopropellers, nanodisks, and nanocombs, by different method. Among various synthesis methods, electrochemical deposition represents a simple and inexpensive solution based method for synthesis of semiconductor nanostructures. In this study, the electrodeposition method was used to produce zinc oxide (ZnO) nanostructures on fluorine-doped tin oxide (FTO)-coated conducting glass substrate as TCO from chloride bath. We present a systematic study on the effects of the concentration of chloride anion on the properties of ZnO. The influence of KCl concentrations on the electrodeposition process, morphological, structural and optical properties of ZnO nanostructures was examined. In this research electrochemical deposition of ZnO nanostructures is investigated using conventional electrochemical measurements (cyclic voltammetry and Mott-Schottky), scanning electron microscopy (SEM), and X-ray diffraction (XRD) techniques. The potentials of electrodeposition of ZnO were determined using the cyclic voltammetry. From the Mott-Schottky measurements, the flat-band potential and the donor density for the ZnO nanostructure are determined. SEM images shows different size and morphology of the nanostructures and depends greatly on the KCl concentrations. The morphology of ZnO nanostructures is determined by the corporated action between [Zn(NO3)2] and [Cl-].Very netted hexagonal grains are observed for the nanostructures deposited at 0.1M of KCl. XRD studies revealed that the all deposited films were polycrystalline in nature with wurtzite phase. The electrodeposited thin films are found to have preferred oriented along (002) plane of the wurtzite structure of ZnO with c-axis normal to the substrate surface for sample at different concentrations of KCl. UV-Visible spectra showed a significant optical transmission (~80%), which decreased with low Cl-1 concentrations. The energy band gap values have been estimated to be between 3.52 and 3.80 eV.Keywords: electrodeposition, ZnO, chloride ions, Mott-Schottky, SEM, XRD
Procedia PDF Downloads 290765 Application of Electrochemically Prepared PPy/MWCNT:MnO2 Nano-Composite Film in Microbial Fuel Cells for Sustainable Power Generation
Authors: Rajeev jain, D. C. Tiwari, Praveena Mishra
Abstract:
Nano-composite of polypyrrole/multiwalled carbon nanotubes:mangenese oxide (PPy/MWCNT:MnO2) was electrochemically deposited on the surface of carbon cloth (CC). The nano-composite was structurally characterized by FTIR, SEM, TEM and UV-Vis studies. Nano-composite was also characterized by cyclic voltammetry (CV), current voltage measurements (I-V) and the optical band gaps of film were evaluated from UV-Vis absorption studies. The PPy/MWCNT:MnO2 nano-composite was used as anode in microbial fuel cell (MFC) for sewage waste water treatment, power and coulombic efficiency measurement. The prepared electrode showed good electrical conductivity (0.1185 S m-1). This was also supported by band gap measurements (direct 0.8 eV, indirect 1.3 eV). The obtained maximum power density was 1125.4 mW m-2, highest chemical oxygen demand (COD) removal efficiency was 93% and the maximum coulombic efficiency was 59%. For the first time PPy/MWCNT:MnO2 nano-composite for MFC prepared from nano-composite electrode having the potential for the use in MFC with good stability and better adhesion of microbes is being reported. The SEM images confirm the growth and development of microbe’s colony.Keywords: carbon cloth, electro-polymerization, functionalization, microbial fuel cells, multi walled carbon nanotubes, polypyrrole
Procedia PDF Downloads 272764 Performance Demonstration of Extendable NSPO Space-Borne GPS Receiver
Authors: Hung-Yuan Chang, Wen-Lung Chiang, Kuo-Liang Wu, Chen-Tsung Lin
Abstract:
National Space Organization (NSPO) has completed in 2014 the development of a space-borne GPS receiver, including design, manufacture, comprehensive functional test, environmental qualification test and so on. The main performance of this receiver include 8-meter positioning accuracy, 0.05 m/sec speed-accuracy, the longest 90 seconds of cold start time, and up to 15g high dynamic scenario. The receiver will be integrated in the autonomous FORMOSAT-7 NSPO-Built satellite scheduled to be launched in 2019 to execute pre-defined scientific missions. The flight model of this receiver manufactured in early 2015 will pass comprehensive functional tests and environmental acceptance tests, etc., which are expected to be completed by the end of 2015. The space-borne GPS receiver is a pure software design in which all GPS baseband signal processing are executed by a digital signal processor (DSP), currently only 50% of its throughput being used. In response to the booming global navigation satellite systems, NSPO will gradually expand this receiver to become a multi-mode, multi-band, high-precision navigation receiver, and even a science payload, such as the reflectometry receiver of a global navigation satellite system. The fundamental purpose of this extension study is to port some software algorithms such as signal acquisition and correlation, reused code and large amount of computation load to the FPGA whose processor is responsible for operational control, navigation solution, and orbit propagation and so on. Due to the development and evolution of the FPGA is pretty fast, the new system architecture upgraded via an FPGA should be able to achieve the goal of being a multi-mode, multi-band high-precision navigation receiver, or scientific receiver. Finally, the results of tests show that the new system architecture not only retains the original overall performance, but also sets aside more resources available for future expansion possibility. This paper will explain the detailed DSP/FPGA architecture, development, test results, and the goals of next development stage of this receiver.Keywords: space-borne, GPS receiver, DSP, FPGA, multi-mode multi-band
Procedia PDF Downloads 370763 Characterization and Analysis of Airless Tire in Mountain Cycle
Authors: Sadia Rafiq, Md. Ashab Siddique Zaki, Ananya Roy
Abstract:
Mountain cycling is a type of off-road bicycle racing that typically takes place on rocky, arid, or other challenging terrains on specially-made mountain cycles. Professional cyclists race while attempting to stay on their bikes in a variety of locales across the world. For safety measures in mountain cycling, as there we have a high chance of injury in case of tire puncture, it’s a preferable way to use an airless tire instead of a pneumatic tire. As airless tire does not tend to go flat, it needs to be replaced less frequently. The airless tire replaces the pneumatic tire, wheel, and tire system with a single unit. It consists of a stiff hub connected to a shear band by flexible, pliable spokes, which is made of poly-composite and a tread band, all of which work together as a single unit to replace all of the components of a normal radial tire. In this paper, an analysis of airless tires in the mountain cycle is shown along with structure and material study. We will be taking the Honeycomb and Diamond Structure of spokes to compare the deformation in both cases and choose our preferable structure. As we know, the tread and spokes deform with the surface roughness and impact. So, the tire tread thickness and the design of spokes can control how much the tire can distort. Through the simulation, we can come to the conclusion that the diamond structure deforms less than the honeycomb structure. So, the diamond structure is more preferable.Keywords: airless tire, diamond structure, honeycomb structure, deformation
Procedia PDF Downloads 83762 Nelder-Mead Parametric Optimization of Elastic Metamaterials with Artificial Neural Network Surrogate Model
Authors: Jiaqi Dong, Qing-Hua Qin, Yi Xiao
Abstract:
Some of the most fundamental challenges of elastic metamaterials (EMMs) optimization can be attributed to the high consumption of computational power resulted from finite element analysis (FEA) simulations that render the optimization process inefficient. Furthermore, due to the inherent mesh dependence of FEA, minuscule geometry features, which often emerge during the later stages of optimization, induce very fine elements, resulting in enormously high time consumption, particularly when repetitive solutions are needed for computing the objective function. In this study, a surrogate modelling algorithm is developed to reduce computational time in structural optimization of EMMs. The surrogate model is constructed based on a multilayer feedforward artificial neural network (ANN) architecture, trained with prepopulated eigenfrequency data prepopulated from FEA simulation and optimized through regime selection with genetic algorithm (GA) to improve its accuracy in predicting the location and width of the primary elastic band gap. With the optimized ANN surrogate at the core, a Nelder-Mead (NM) algorithm is established and its performance inspected in comparison to the FEA solution. The ANNNM model shows remarkable accuracy in predicting the band gap width and a reduction of time consumption by 47%.Keywords: artificial neural network, machine learning, mechanical metamaterials, Nelder-Mead optimization
Procedia PDF Downloads 128761 Effect of Segregation Pattern of Mn, Si, and C on through Thickness Microstructure and Properties of Hot Rolled Steel
Authors: Waleed M. Al-Othman, Hamid Bayati, Abdullah Al-Shahrani, Haitham Al-Jabr
Abstract:
Pearlite bands commonly form parallel to the surface of the hot rolled steel and have significant influence on the properties of the steel. This study investigated the correlation between segregation pattern of Mn, Si, C and formation of the pearlite bands in hot rolled Gr 60 steel plate. Microstructural study indicated formation of a distinguished thick band at centerline of the plate with number of parallel bands through thickness of the steel plate. The thickness, frequency, and continuity of the bands are reduced from mid-thickness toward external surface of the steel plate. Analysis showed a noticeable increase of C, Si and Mn levels within the bands. Such alloying segregation takes place during metal solidification. EDS analysis verified presence of particles rich in Ti, Nb, Mn, C, N, within the bands. Texture analysis by Electron Backscatter Detector (EBSD) indicated the grains size/misorientation can noticeably change within the bands. Effect of banding on through-thickness properties of the steel was examined by carrying out microhardness, toughness and tensile tests. Results suggest the Mn and C contents are changed in sinusoidal pattern through thickness of the hot rolled plate and pearlite bands are formed at the peaks of this sinusoidal segregation pattern. Changes in grain size/misorientation, formation of highly alloyed particles, and pearlite within these bands, facilitate crack formation along boundaries of these bands.Keywords: pearlite band, alloying segregation, hot rolling, Ti, Nb, N, C
Procedia PDF Downloads 138760 Embedded Digital Image System
Authors: Dawei Li, Cheng Liu, Yiteng Liu
Abstract:
This paper introduces an embedded digital image system for Chinese space environment vertical exploration sounding rocket. In order to record the flight status of the sounding rocket as well as the payloads, an onboard embedded image processing system based on ADV212, a JPEG2000 compression chip, is designed in this paper. Since the sounding rocket is not designed to be recovered, all image data should be transmitted to the ground station before the re-entry while the downlink band used for the image transmission is only about 600 kbps. Under the same condition of compression ratio compared with other algorithm, JPEG2000 standard algorithm can achieve better image quality. So JPEG2000 image compression is applied under this condition with a limited downlink data band. This embedded image system supports lossless to 200:1 real time compression, with two cameras to monitor nose ejection and motor separation, and two cameras to monitor boom deployment. The encoder, ADV7182, receives PAL signal from the camera, then output the ITU-R BT.656 signal to ADV212. ADV7182 switches between four input video channels as the program sequence. Two SRAMs are used for Ping-pong operation and one 512 Mb SDRAM for buffering high frame-rate images. The whole image system has the characteristics of low power dissipation, low cost, small size and high reliability, which is rather suitable for this sounding rocket application.Keywords: ADV212, image system, JPEG2000, sounding rocket
Procedia PDF Downloads 421759 The Comparison of Joint Simulation and Estimation Methods for the Geometallurgical Modeling
Authors: Farzaneh Khorram
Abstract:
This paper endeavors to construct a block model to assess grinding energy consumption (CCE) and pinpoint blocks with the highest potential for energy usage during the grinding process within a specified region. Leveraging geostatistical techniques, particularly joint estimation, or simulation, based on geometallurgical data from various mineral processing stages, our objective is to forecast CCE across the study area. The dataset encompasses variables obtained from 2754 drill samples and a block model comprising 4680 blocks. The initial analysis encompassed exploratory data examination, variography, multivariate analysis, and the delineation of geological and structural units. Subsequent analysis involved the assessment of contacts between these units and the estimation of CCE via cokriging, considering its correlation with SPI. The selection of blocks exhibiting maximum CCE holds paramount importance for cost estimation, production planning, and risk mitigation. The study conducted exploratory data analysis on lithology, rock type, and failure variables, revealing seamless boundaries between geometallurgical units. Simulation methods, such as Plurigaussian and Turning band, demonstrated more realistic outcomes compared to cokriging, owing to the inherent characteristics of geometallurgical data and the limitations of kriging methods.Keywords: geometallurgy, multivariate analysis, plurigaussian, turning band method, cokriging
Procedia PDF Downloads 70758 Design and Implementation of a 94 GHz CMOS Double-Balanced Up-Conversion Mixer for 94 GHz Imaging Radar Sensors
Authors: Yo-Sheng Lin, Run-Chi Liu, Chien-Chu Ji, Chih-Chung Chen, Chien-Chin Wang
Abstract:
A W-band double-balanced mixer for direct up-conversion using standard 90 nm CMOS technology is reported. The mixer comprises an enhanced double-balanced Gilbert cell with PMOS negative resistance compensation for conversion gain (CG) enhancement and current injection for power consumption reduction and linearity improvement, a Marchand balun for converting the single LO input signal to differential signal, another Marchand balun for converting the differential RF output signal to single signal, and an output buffer amplifier for loading effect suppression, power consumption reduction and CG enhancement. The mixer consumes low power of 6.9 mW and achieves LO-port input reflection coefficient of -17.8~ -38.7 dB and RF-port input reflection coefficient of -16.8~ -27.9 dB for frequencies of 90~100 GHz. The mixer achieves maximum CG of 3.6 dB at 95 GHz, and CG of 2.1±1.5 dB for frequencies of 91.9~99.4 GHz. That is, the corresponding 3 dB CG bandwidth is 7.5 GHz. In addition, the mixer achieves LO-RF isolation of 36.8 dB at 94 GHz. To the authors’ knowledge, the CG, LO-RF isolation and power dissipation results are the best data ever reported for a 94 GHz CMOS/BiCMOS up-conversion mixer.Keywords: CMOS, W-band, up-conversion mixer, conversion gain, negative resistance compensation, output buffer amplifier
Procedia PDF Downloads 532757 Regression of Hand Kinematics from Surface Electromyography Data Using an Long Short-Term Memory-Transformer Model
Authors: Anita Sadat Sadati Rostami, Reza Almasi Ghaleh
Abstract:
Surface electromyography (sEMG) offers important insights into muscle activation and has applications in fields including rehabilitation and human-computer interaction. The purpose of this work is to predict the degree of activation of two joints in the index finger using an LSTM-Transformer architecture trained on sEMG data from the Ninapro DB8 dataset. We apply advanced preprocessing techniques, such as multi-band filtering and customizable rectification methods, to enhance the encoding of sEMG data into features that are beneficial for regression tasks. The processed data is converted into spike patterns and simulated using Leaky Integrate-and-Fire (LIF) neuron models, allowing for neuromorphic-inspired processing. Our findings demonstrate that adjusting filtering parameters and neuron dynamics and employing the LSTM-Transformer model improves joint angle prediction performance. This study contributes to the ongoing development of deep learning frameworks for sEMG analysis, which could lead to improvements in motor control systems.Keywords: surface electromyography, LSTM-transformer, spiking neural networks, hand kinematics, leaky integrate-and-fire neuron, band-pass filtering, muscle activity decoding
Procedia PDF Downloads 18756 Improved Visible Light Activities for Degrading Pollutants on ZnO-TiO2 Nanocomposites Decorated with C and Fe Nanoparticles
Authors: Yuvraj S. Malghe, Atul B. Lavand
Abstract:
In recent years, semiconductor photocatalytic degradation processes have attracted a lot of attention and are used widely for the destruction of organic pollutants present in waste water. Among various semiconductors, titanium dioxide (TiO2) is the most popular photocatalyst due to its excellent chemical stability, non-toxicity, relatively low cost and high photo-oxidation power. It has been known that zinc oxide (ZnO) with band gap energy 3.2 eV is a suitable alternative to TiO2 due to its high quantum efficiency, however it corrodes in acidic medium. Unfortunately TiO2 and ZnO both are active only in UV light due to their wide band gaps. Sunlight consist about 5-7% UV light, 46% visible light and 47% infrared radiation. In order to utilize major portion of sunlight (visible spectrum), it is necessary to modify the band gap of TiO2 as well as ZnO. This can be done by several ways such as semiconductor coupling, doping the material with metals/non metals. Doping of TiO2 using transition metals like Fe, Co and non-metals such as N, C or S extends its absorption wavelengths from UV to visible region. In the present work, we have synthesized ZnO-TiO2 nanocomposite using reverse microemulsion method. Visible light photocatalytic activity of synthesized nanocomposite was investigated for degradation of aqueous solution of malachite green (MG). To increase the photocatalytic activity of ZnO-TiO2 nanocomposite, it is decorated with C and Fe. Pure, carbon (C) doped and carbon, iron(C, Fe) co-doped nanosized ZnO-TiO2 nanocomposites were synthesized using reverse microemulsion method. These composites were characterized using, X-ray diffraction (XRD), Energy dispersive X-ray spectroscopy (EDX), Scanning electron microscopy (SEM), UV visible spectrophotometery and X-ray photoelectron spectroscopy (XPS). Visible light photocatalytic activities of synthesized nanocomposites were investigated for degradation of aqueous malachite green (MG) solution. C, Fe co-doped ZnO-TiO2 nanocomposite exhibit better photocatalytic activity and showed threefold increase in photocatalytic activity. Effect of amount of catalyst, pH and concentration of MG solution on the photodegradation rate is studied. Stability and reusability of photocatalyst is also studied. C, Fe decorated ZnO-TiO2 nanocomposite shows threefold increase in photocatalytic activity.Keywords: malachite green, nanocomposite, photocatalysis, titanium dioxide, zinc oxide
Procedia PDF Downloads 284755 Horse Race Model of Communication
Authors: Ariyaratna Athugala
Abstract:
Mass media play a significant role in democratic societies. The Political Economy of the Mass Media postulates that elite media interlock with other institutional sectors in ownership, and editorial management effectively circumscribing their ability to remain analytically detached from other dominant institutional sectors. The production of meaning in news discourse is not valued neutral, but part of a larger process of presenting a hegemonic understanding of the world to audiences as the “production of consent.” The horse race model argues that “the raw material of news” pressures six bands that ultimately shape the news audiences receive. The six bands are as follows: Crown piece (raw material), brow band (professionalism), throat latch (gatekeeper), a bit (construction), nose band (perception), and reins (ownership). dThe horse race model suggests that media ultimately serve to “manufacture consent” for a range of self-serving elite opinion options. These bands determine what events are deemed newsworthy, how they are covered, where they are placed within the media and how much coverage they receive. Highly descriptive in nature, the horse race model of communication is concerned with the question of whether media can be seen to play a hegemonic role in the society oriented towards legitimization, hegemonic pressures and ideological construction.Keywords: hegemonic pressures, horse race, ideological construction, six bands
Procedia PDF Downloads 251754 Notched Bands in Ultra-Wideband UWB Filter Design for Advanced Wireless Applications
Authors: Abdul Basit, Amil Daraz, Guoqiang Zhang
Abstract:
With the increasing demand for wireless communication systems for unlicensed indoor applications, the FCC, in February 2002, allocated unlicensed bands ranging from 3.1 GHZ to 10.6 GHz with fractional bandwidth of about 109 %, because it plays a key role in the radiofrequency (RF) front ends devices and has been widely applied in many other microwave circuits. Targeting the proposed band defined by the FCC for the UWB system, this article presents a UWB bandpass filter with three stop bands for the mitigation of wireless bands that may interfere with the UWB range. For this purpose, two resonators are utilized for the implementation of triple-notched bands. The C-shaped resonator is used for the first notch band creation at 3.4 GHz to suppress the WiMAX signal, while the H-shaped resonator is employed in the initial UWB design to introduce the dual notched characteristic at 4.5 GHz and 8.1 GHz to reject the WLAN and Satellite Communication signals. The overall circuit area covered by the proposed design is 30.6 mm × 20 mm, or in terms of guided wavelength at the first stopband, its size is 0.06 λg × 0.02 λg. The presented structure shows a good return loss under -10 dB over most of the passband and greater than -15 dB for the notched frequency bands. Finally, the filter is simulated and analyzed in HFSS 15.0. All the bands for the rejection of wireless signals are independently controlled, which makes this work superior to the rest of the UWB filters presented in the literature.Keywords: a bandpass filter (BPF), ultra-wideband (UWB), wireless communication, C-shaped resonator, triple notch
Procedia PDF Downloads 82753 Application of Rapid Eye Imagery in Crop Type Classification Using Vegetation Indices
Authors: Sunita Singh, Rajani Srivastava
Abstract:
For natural resource management and in other applications about earth observation revolutionary remote sensing technology plays a significant role. One of such application in monitoring and classification of crop types at spatial and temporal scale, as it provides latest, most precise and cost-effective information. Present study emphasizes the use of three different vegetation indices of Rapid Eye imagery on crop type classification. It also analyzed the effect of each indices on classification accuracy. Rapid Eye imagery is highly demanded and preferred for agricultural and forestry sectors as it has red-edge and NIR bands. The three indices used in this study were: the Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Normalized Difference Red Edge Index (NDRE) and all of these incorporated the Red Edge band. The study area is Varanasi district of Uttar Pradesh, India and Radial Basis Function (RBF) kernel was used here for the Support Vector Machines (SVMs) classification. Classification was performed with these three vegetation indices. The contribution of each indices on image classification accuracy was also tested with single band classification. Highest classification accuracy of 85% was obtained using three vegetation indices. The study concluded that NDRE has the highest contribution on classification accuracy compared to the other vegetation indices and the Rapid Eye imagery can get satisfactory results of classification accuracy without original bands.Keywords: GNDVI, NDRE, NDVI, rapid eye, vegetation indices
Procedia PDF Downloads 362752 Artificial Neural Network Approach for Vessel Detection Using Visible Infrared Imaging Radiometer Suite Day/Night Band
Authors: Takashi Yamaguchi, Ichio Asanuma, Jong G. Park, Kenneth J. Mackin, John Mittleman
Abstract:
In this paper, vessel detection using the artificial neural network is proposed in order to automatically construct the vessel detection model from the satellite imagery of day/night band (DNB) in visible infrared in the products of Imaging Radiometer Suite (VIIRS) on Suomi National Polar-orbiting Partnership (Suomi-NPP).The goal of our research is the establishment of vessel detection method using the satellite imagery of DNB in order to monitor the change of vessel activity over the wide region. The temporal vessel monitoring is very important to detect the events and understand the circumstances within the maritime environment. For the vessel locating and detection techniques, Automatic Identification System (AIS) and remote sensing using Synthetic aperture radar (SAR) imagery have been researched. However, each data has some lack of information due to uncertain operation or limitation of continuous observation. Therefore, the fusion of effective data and methods is important to monitor the maritime environment for the future. DNB is one of the effective data to detect the small vessels such as fishery ships that is difficult to observe in AIS. DNB is the satellite sensor data of VIIRS on Suomi-NPP. In contrast to SAR images, DNB images are moderate resolution and gave influence to the cloud but can observe the same regions in each day. DNB sensor can observe the lights produced from various artifact such as vehicles and buildings in the night and can detect the small vessels from the fishing light on the open water. However, the modeling of vessel detection using DNB is very difficult since complex atmosphere and lunar condition should be considered due to the strong influence of lunar reflection from cloud on DNB. Therefore, artificial neural network was applied to learn the vessel detection model. For the feature of vessel detection, Brightness Temperature at the 3.7 μm (BT3.7) was additionally used because BT3.7 can be used for the parameter of atmospheric conditions.Keywords: artificial neural network, day/night band, remote sensing, Suomi National Polar-orbiting Partnership, vessel detection, Visible Infrared Imaging Radiometer Suite
Procedia PDF Downloads 236751 Dendrimer-Encapsulated N, Pt Co-Doped TiO₂ for the Photodegration of Contaminated Wastewater
Authors: S. K. M. Nzaba, H. H. Nyoni, B. Ntsendwana, B. B. Mamba, A. T. Kuvarega
Abstract:
Azo dye effluents, released into water bodies are not only toxic to the ecosystem but also pose a serious impact on human health due to the carcinogenic and mutagenic effects of the compounds present in the dye discharge. Conventional water treatment methods such as adsorption, flocculation/coagulation and biological processes are not effective in completely removing most of the dyes and their natural degradation by-products. Advanced oxidation processes (AOPs) have proven to be effective technologies for complete mineralization of these recalcitrant pollutants. Therefore, there is a need for new technology that can solve the problem. Thus, this study examined the photocatalytic degradation of an azo dye brilliant black (BB) using non-metal/metal codoped TiO₂. N, Pt co-doped TiO₂ photocatalysts were prepared by a modified sol-gel method using amine-terminated polyamidoamine dendrimer generation 0 (PAMAM G0), amine-terminated polyamidoamine dendrimer generation 1 ( PAMAM G1) and hyperbranched polyethyleneimine (HPEI) as templates and source of nitrogen. Structural, morphological, and textural properties were evaluated using scanning electron microscopy coupled to energy dispersive X-ray spectroscopy (SEM/EDX), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), Fourier- transform infrared (FTIR), Raman spectroscopy (RS), photoluminescence (PL) and ultra-violet /visible spectroscopy (UV-Vis). The synthesized photocatalysts exhibited lower band gap energies as compared to the Degussa P-25 revealing a red shift in band gap towards the visible light absorption region. Photocatalytic activity of N, Pt co-doped TiO₂ was measured by the reaction of photocatalytic degradation of brilliant black (BB) dye. The N, metal codoped TiO₂ containing 0.5 wt. % of the metal consisted mainly of the anatase phase as confirmed by XRD results of all three samples, with a particle size range of 13–30 nm. The particles were largely spherical and shifted the absorption edge well into the visible region. Band gap reduction was more pronounced for the N, Pt HPEI (Pt 0.5 wt. %) codoped TiO₂ compared to PAMAM G0 and PAMAM G1. Consequently, codoping led to an enhancement in the photocatalytic activity of the materials for the degradation of brilliant black (BB).Keywords: codoped TiO₂, dendrimer, photodegradation, wastewater
Procedia PDF Downloads 174750 Potential Antibacterial Applications and Synthesis, Structural, Magnetic, Optical, and Dielectric Characterization of Nickel-Substituted Cobalt Ferrite Nanoparticles
Authors: Tesfay Gebremichael Reda
Abstract:
Nanoparticle technology is fast progressing and is being employed in innumerable medical applications. At this time, the public's health is seriously threatened by the rise of bacterial strains resistant to several medications. Metal nanoparticles are a potential alternate approach for tackling this global concern, and this is the main focus of this study. The citrate precursor sol-gel synthesis method was used to synthesize the, Niₓ Co(₁-ₓ) Fe₂ O₄, (where x = 0.0:0.2:1.0) nanoparticle. XRD identified the development of the cubic crystal structure to have a preferential orientation along (311), and the average particle size was found to be 29-38 nm. The average crystallizes assessed with ImageJ software and origin 22 of the SEM are nearly identical to the XRD results. In the created NCF NPs, the FT-IR spectroscopy reveals structural examinations and the redistribution of cations between octahedral (505-428 cm-1) and tetrahedral (653-603 cm-1) locales. Finally, the decrease of coercive fields HC, 2384 Oe to 241.93 Oe replacement of Co²+ cation with Ni²+. Band gap energy rises as Ni concentration increases, which may be attributed to the fact that the ionic radii of Ni²+ ions are smaller than that of Co²+ ions, which results in a strong electrostatic interaction. On the contrary, except at x = 0.4, the dielectric constant decreases as the nickel concentration increases. According to the findings of this research work, nanoparticles composed of Ni₀.₄ Co₀.₄ Fe₂ O₄ have demonstrated a promising value against S. aureus and E. coli, and it suggests a proposed model for their potential use as a new source of antibacterial agents.Keywords: antimicrobial, band gap, citrate precursor, dielectric, nanoparticle
Procedia PDF Downloads 29749 Investigation of Physical Properties of W-Doped CeO₂ and Mo-Doped CeO₂: A Density Functional Theory Study
Authors: Aicha Bouhlala, Sabah Chettibi
Abstract:
A systematic investigation on structural, electronic, and magnetic properties of Ce₀.₇₅A₀.₂₅O₂ (A = W, Mo) is performed using first-principles calculations within the framework Full-Potential Linear Augmented Plane Wave (FP-LAPW) method based on the Density Functional Theory (DFT). The exchange-correlation potential has been treated using the generalized gradient approximation (WC-GGA) developed by Wu-Cohen. The host compound CeO2 was doped with transition metal atoms W and Mo in the doping concentration of 25% to replace the Ce atom. In structural properties, the equilibrium lattice constant is observed for the W-doped CeO₂ compound which exists within the value of 5.314 A° and the value of 5.317 A° for Mo-doped CeO2. The present results show that Ce₀.₇₅A₀.₂₅O₂ (A=W, Mo) systems exhibit semiconducting behavior in both spin channels. Although undoped CeO₂ is a non-magnetic semiconductor. The band structure of these doped compounds was plotted and they exhibit direct band gap at the Fermi level (EF) in the majority and minority spin channels. In the magnetic properties, the doped atoms W and Mo play a vital role in increasing the magnetic moments of the supercell and the values of the total magnetic moment are found to be 1.998 μB for Ce₀.₇₅W₀.₂₅O₂ and to be 2.002 μB for Ce₀.₇₅Mo₀.₂₅O₂ compounds. Calculated results indicate that the magneto-electronic properties of the Ce₁₋ₓAₓO₂(A= W, Mo) oxides supply a new way to the experimentalist for the potential applications in spintronics devices.Keywords: FP-LAPW, DFT, CeO₂, properties
Procedia PDF Downloads 217748 Optical Characterization of Transition Metal Ion Doped ZnO Microspheres Synthesized via Laser Ablation in Air
Authors: Parvathy Anitha, Nilesh J. Vasa, M. S. Ramachandra Rao
Abstract:
ZnO is a semiconducting material with a direct wide band gap of 3.37 eV and a large exciton binding energy of 60 meV at room temperature. Microspheres with high sphericity and symmetry exhibit unique functionalities which makes them excellent omnidirectional optical resonators. Hence there is an advent interest in fabrication of single crystalline semiconductor microspheres especially magnetic ZnO microspheres, as ZnO is a promising material for semiconductor device applications. Also, ZnO is non-toxic and biocompatible, implying it is a potential material for biomedical applications. Room temperature Photoluminescence (PL) spectra of the fabricated ZnO microspheres were measured, at an excitation wavelength of 325 nm. The ultraviolet (UV) luminescence observed is attributed to the room-temperature free exciton related near-band-edge (NBE) emission in ZnO. Besides the NBE luminescence, weak and broad visible luminescence (~560nm) was also observed. This broad emission band in the visible range is associated with oxygen vacancies related to structural defects. In transition metal (TM) ion-doped ZnO, 3d levels emissions of TM ions will modify the inherent characteristic emissions of ZnO. A micron-sized ZnO crystal has generally a wurtzite structure with a natural hexagonal cross section, which will serve as a WGM (whispering gallery mode) lasing micro cavity due to its high refractive index (~2.2). But hexagonal cavities suffers more optical loss at their corners in comparison to spherical structures; hence spheres may be a better candidate to achieve effective light confinement. In our study, highly smooth spherical shaped micro particles with different diameters ranging from ~4 to 6 μm were grown on different substrates. SEM (Scanning Electron Microscopy) and AFM (Atomic Force Microscopy) images show the presence of uniform smooth surfaced spheres. Raman scattering measurements from the fabricated samples at 488 nm light excitation provide convincing supports for the wurtzite structure of the prepared ZnO microspheres. WGM lasing studies from TM-doped ZnO microparticles are in progress.Keywords: laser ablation, microcavity, photoluminescence, ZnO microsphere
Procedia PDF Downloads 217747 Effect of Annealing on Electrodeposited ZnTe Thin Films in Non-Aqueous Medium
Authors: Shyam Ranjan Kumar, Shashikant Rajpal
Abstract:
Zinc Telluride (ZnTe) is a binary II-VI direct band gap semiconducting material. This semiconducting material has several applications in sensors, photo-electrochemical devices and photovoltaic solar cell. In this study, Zinc telluride (ZnTe) thin films were deposited on nickel substrate by electrodeposition technique using potentiostat/galvanostat at -0.85 V using AR grade of Zinc Chloride (ZnCl2), Tellurium Tetrachloride (TeCl4) in non-aqueous bath. The developed films were physically stable and showed good adhesion. The as deposited ZnTe films were annealed at 400ºC in air. The solid state properties and optical properties of the as deposited and annealed films were carried out by XRD, EDS, SEM, AFM, UV–Visible spectrophotometer, and photoluminescence spectrophotometer. The diffraction peak observed at 2θ = 49.58° with (111) plane indicate the crystalline nature of ZnTe film. Annealing improves the crystalline nature of the film. Compositional analysis reveals the presence of Zn and Te with tellurium rich ZnTe film. SEM photograph at 10000X shows that grains of film are spherical in nature and densely distributed over the surface. The average roughness of the film is measured by atomic force microscopy and it is nearly equal to 60 nm. The direct wide band gap of 2.12 eV is observed by UV-Vis spectroscopy. Luminescence peak of the ZnTe films are also observed in as deposited and annealed case.Keywords: annealing, electrodeposition, optical properties, thin film, XRD, ZnTe
Procedia PDF Downloads 194746 Tide Contribution in the Flood Event of Jeddah City: Mathematical Modelling and Different Field Measurements of the Groundwater Rise
Authors: Aïssa Rezzoug
Abstract:
This paper is aimed to bring new elements that demonstrate the tide caused the groundwater to rise in the shoreline band, on which the urban areas occurs, especially in the western coastal cities of the Kingdom of Saudi Arabia like Jeddah. The reason for the last events of Jeddah inundation was the groundwater rise in the city coupled at the same time to a strong precipitation event. This paper will illustrate the tide participation in increasing the groundwater level significantly. It shows that the reason for internal groundwater recharge within the urban area is not only the excess of the water supply coming from surrounding areas, due to the human activity, with lack of sufficient and efficient sewage system, but also due to tide effect. The research study follows a quantitative method to assess groundwater level rise risks through many in-situ measurements and mathematical modelling. The proposed approach highlights groundwater level, in the urban areas of the city on the shoreline band, reaching the high tide level without considering any input from precipitation. Despite the small tide in the Red Sea compared to other oceanic coasts, the groundwater level is considerably enhanced by the tide from the seaside and by the freshwater table from the landside of the city. In these conditions, the groundwater level becomes high in the city and prevents the soil to evacuate quickly enough the surface flow caused by the storm event, as it was observed in the last historical flood catastrophe of Jeddah in 2009.Keywords: flood, groundwater rise, Jeddah, tide
Procedia PDF Downloads 115745 Real-Time Observation of Concentration Distribution for Mix Liquids including Water in Micro Fluid Channel with Near-Infrared Spectroscopic Imaging Method
Authors: Hiroki Takiguchi, Masahiro Furuya, Takahiro Arai
Abstract:
In order to quantitatively comprehend thermal flow for some industrial applications such as nuclear and chemical reactors, detailed measurements for temperature and abundance (concentration) of materials at high temporal and spatial resolution are required. Additionally, rigorous evaluation of the size effect is also important for practical realization. This paper introduces a real-time spectroscopic imaging method in micro scale field, which visualizes temperature and concentration distribution of a liquid or mix liquids with near-infrared (NIR) wavelength region. This imaging principle is based on absorption of pre-selected narrow band from absorption spectrum peak or its dependence property of target liquid in NIR region. For example, water has a positive temperature sensitivity in the wavelength at 1905 nm, therefore the temperature of water can be measured using the wavelength band. In the experiment, the real-time imaging observation of concentration distribution in micro channel was demonstrated to investigate the applicability of micro-scale diffusion coefficient and temperature measurement technique using this proposed method. The effect of thermal diffusion and binary mutual diffusion was evaluated with the time-series visualizations of concentration distribution.Keywords: near-infrared spectroscopic imaging, micro fluid channel, concentration distribution, diffusion phenomenon
Procedia PDF Downloads 161744 Assesment of Genetic Fidelity of Micro-Clones of an Aromatic Medicinal Plant Murraya koenigii (L.) Spreng
Authors: Ramesh Joshi, Nisha Khatik
Abstract:
Murraya koenigii (L.) Spreng locally known as “Curry patta” or “Meetha neem” belonging to the family Rutaceae that grows wildly in Southern Asia. Its aromatic leaves are commonly used as the raw material for traditional medicinal formulations in India. The leaves contain essential oil and also used as a condiment. Several monomeric and binary carbazol alkaloids present in the various plant parts. These alkaloids have been reported to possess anti-microbial, mosquitocidal, topo-isomerase inhibition and antioxidant properties. Some of the alkaloids reported in this plant have showed anti carcinogenic and anti-diabetic properties. The conventional method of propagation of this tree is limited to seeds only, which retain their viability for only a short period. Hence, a biotechnological approach might have an advantage edging over traditional breeding as well as the genetic improvement of M. koenigii within a short period. The development of a reproducible regeneration protocol is the prerequisite for ex situ conservation and micropropagation. An efficient protocol for high frequency regeneration of in vitro plants of Murraya koenigii via different explants such as- nodal segments, intermodal segments, leaf, root segments, hypocotyle, cotyledons and cotyledonary node explants is described. In the present investigation, assessment of clonal fidelity in the micropropagated plantlets of Murraya koenigii was attempted using RAPD and ISSR markers at different pathways of plant tissue culture technique. About 20 ISSR and 40 RAPD primers were used for all the samples. Genomic DNA was extracted by CTAB method. ISSR primer were found to be more suitable as compared to RAPD for the analysis of clonal fidelity of M. koenigii. The amplifications however, were finally performed using RAPD, ISSR markers owing to their better performance in terms of generation of amplification products. In RAPD primer maximum 75% polymorphism was recorded in OPU-2 series which exhibited out of 04 scorable bands, three bands were polymorphic with a band range of size 600-1500 bp. In ISSR primers the UBC 857 showed 50% polymorphism with 02 band were polymorphic of band range size between 400-1000 bp.Keywords: genetic fidelity, Murraya koenigii, aromatic plants, ISSR primers
Procedia PDF Downloads 502743 Synthesis, Structural, Magnetic, Optical, and Dielectric Characterization of Nickel-Substituted Cobalt Ferrite Nanoparticles and Potential Antibacterial Applications
Authors: Tesfay Gebremicheal Reda, K. Samatha, Paul Douglas Sanasi, D. Parajuli
Abstract:
Nanoparticle technology is fast progressing and is being employed in innumerable medical applications. At this time, the public's health is seriously threatened by the rise of bacterial strains resistant to several medications. Metal nanoparticles are a potential alternate approach for tackling this global concern, and this is the main focus of this study. The citrate precursor sol-gel synthesis method was used to synthesize the Niₓ Co₁₋ₓ Fe₂ O₄, (where x = 0.0:0.2:1.0) nanoparticle. XRD identified the development of the cubic crystal structure to have a preferential orientation along (311), and the average particle size was found to be 29-38 nm. The average crystallizes assessed with ImageJ software and origin 22 of the SEM are nearly identical to the XRD results. In the created NCF NPs, the FT-IR spectroscopy reveals structural examinations and the redistribution of cations between octahedral (505-428 cm⁻¹) and tetrahedral (653-603 cm⁻¹) locales. As the Co²⁺ cation is substituted with Ni²⁺, the coercive fields HC decrease from 2384 Oe to 241.93 Oe. Band gap energy rises as Ni concentration increases, which may be attributed to the fact that the ionic radii of Ni²⁺ ions are smaller than that of Co²⁺ ions, which results in a strong electrostatic interaction. On the contrary, except at x = 0.4, the dielectric constant decreases as the nickel concentration increases. According to the findings of this research work, nanoparticles are composed of Ni₀.₄ Co₀.₆ Fe₂ O₄ have demonstrated a promising value against S. aureus and E. coli, and it suggests a proposed model for their potential use as a source of antibacterial agent.Keywords: antimicrobial, band gap, citrate precursor, dielectric, nanoparticle
Procedia PDF Downloads 75742 Fabrication and Characteristics of Ni Doped Titania Nanotubes by Electrochemical Anodization
Authors: J. Tirano, H. Zea, C. Luhrs
Abstract:
It is well known that titanium dioxide is a semiconductor with several applications in photocatalytic process. Its band gap makes it very interesting in the photoelectrodes manufacturing used in photoelectrochemical cells for hydrogen production, a clean and environmentally friendly fuel. The synthesis of 1D titanium dioxide nanostructures, such as nanotubes, makes possible to produce more efficient photoelectrodes for solar energy to hydrogen conversion. In essence, this is because it increases the charge transport rate, decreasing recombination options. However, its principal constraint is to be mainly sensitive to UV range, which represents a very low percentage of solar radiation that reaches earth's surface. One of the alternatives to modifying the TiO2’s band gap and improving its photoactivity under visible light irradiation is to dope the nanotubes with transition metals. This option requires fabricating efficient nanostructured photoelectrodes with controlled morphology and specific properties able to offer a suitable surface area for metallic doping. Hence, currently one of the central challenges in photoelectrochemical cells is the construction of nanomaterials with a proper band position for driving the reaction while absorbing energy over the VIS spectrum. This research focuses on the synthesis and characterization of Nidoped TiO2 nanotubes for improving its photocatalytic activity in solar energy conversion applications. Initially, titanium dioxide nanotubes (TNTs) with controlled morphology were synthesized by two-step potentiostatic anodization of titanium foil. The anodization was carried out at room temperature in an electrolyte composed of ammonium fluoride, deionized water and ethylene glycol. Consequent thermal annealing of as-prepared TNTs was conducted in the air between 450 °C - 550 °C. Afterwards, the nanotubes were superficially modified by nickel deposition. Morphology and crystalline phase of the samples were carried out by SEM, EDS and XRD analysis before and after nickel deposition. Determining the photoelectrochemical performance of photoelectrodes is based on typical electrochemical characterization techniques. Also, the morphological characterization associated electrochemical behavior analysis were discussed to establish the effect of nickel nanoparticles modification on the TiO2 nanotubes. The methodology proposed in this research allows using other transition metal for nanotube surface modification.Keywords: dimensionally stable electrode, nickel nanoparticles, photo-electrode, TiO₂ nanotubes
Procedia PDF Downloads 178741 Purification, Extraction and Visualization of Lipopolysaccharide of Escherichia coli from Urine Samples of Patients with Urinary Tract Infection
Authors: Fariha Akhter Chowdhury, Mohammad Nurul Islam, Anamika Saha, Sabrina Mahboob, Abu Syed Md. Mosaddek, Md. Omar Faruque, Most. Fahmida Begum, Rajib Bhattacharjee
Abstract:
Urinary tract infection (UTI) is one of the most common infectious diseases in Bangladesh where Escherichia coli is the prevalent organism and responsible for most of the infections. Lipopolysaccharide (LPS) is known to act as a major virulence factor of E. coli. The present study aimed to purify, extract and visualize LPS of E. coli clinical isolates from urine samples of patients with UTI. The E. coli strain was isolated from the urine samples of 10 patients with UTI and then the antibiotic sensitivity pattern of the isolates was determined. The purification of LPS was carried out using the hot aqueous-phenol method and separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis, which was directly stained using the modified silver staining method and Coomassie blue. The silver-stained gel demonstrated both smooth and rough type LPS by showing trail-like band patterns with the presence and lacking O-antigen region, respectively. Coomassie blue staining showed no band assuring the absence of any contaminating protein. Our successful extraction of purified LPS from E. coli isolates of UTI patients’ urine samples can be an important step to understand the UTI disease conditions.Keywords: Escherichia coli, electrophoresis, polyacrylamide gel, silver staining, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
Procedia PDF Downloads 391740 Impact of Interventions on Brain Functional Connectivity in Young Male Basketball Players: A Comparative Study
Authors: Mohammad Khazaei, Reza Rostami, Hassan Gharayagh Zandi, Ruhollah Basatnia, Mahboubeh Ghayour Najafabadi
Abstract:
Introduction: This study delves into the influence of diverse interventions on brain functional connectivity among young male basketball players. Given the significance of understanding how interventions affect cognitive functions in athletes, particularly in the context of basketball, this research contributes to the growing body of knowledge in sports neuroscience. Methods: Three distinct groups were selected for comprehensive investigation: the Motivational Interview Group, Placebo Consumption Group, and Ritalin Consumption Group. The study involved assessing brain functional connectivity using various frequency bands (Delta, Theta, Alpha, Beta1, Beta2, Gamma, and Total Band) before and after the interventions. The participants were subjected to specific interventions corresponding to their assigned groups. Results: The findings revealed substantial differences in brain functional connectivity across the studied groups. The Motivational Interview Group exhibited optimal outcomes in PLI (Total Band) connectivity. The Placebo Consumption Group demonstrated a marked impact on PLV (Alpha) connectivity, and the Ritalin Consumption Group experienced a considerable enhancement in imCoh (Total Band) connectivity. Discussion: The observed variations in brain functional connectivity underscore the nuanced effects of different interventions on young male basketball players. The enhanced connectivity in specific frequency bands suggests potential cognitive and performance improvements. Notably, the Motivational Interview and Placebo Consumption groups displayed unique patterns, emphasizing the multifaceted nature of interventions. These findings contribute to the understanding of tailored interventions for optimizing cognitive functions in young male basketball players. Conclusion: This study provides valuable insights into the intricate relationship between interventions and brain functional connectivity in young male basketball players. Further research with expanded sample sizes and more sophisticated statistical analyses is recommended to corroborate and expand upon these initial findings. The implications of this study extend to the broader field of sports neuroscience, aiding in the development of targeted interventions for athletes in various disciplines.Keywords: electroencephalography, Ritalin, Placebo effect, motivational interview
Procedia PDF Downloads 68