Search results for: traditional learning approach
19225 Neural Reshaping: The Plasticity of Human Brain and Artificial Intelligence in the Learning Process
Authors: Seyed-Ali Sadegh-Zadeh, Mahboobe Bahrami, Sahar Ahmadi, Seyed-Yaser Mousavi, Hamed Atashbar, Amir M. Hajiyavand
Abstract:
This paper presents an investigation into the concept of neural reshaping, which is crucial for achieving strong artificial intelligence through the development of AI algorithms with very high plasticity. By examining the plasticity of both human and artificial neural networks, the study uncovers groundbreaking insights into how these systems adapt to new experiences and situations, ultimately highlighting the potential for creating advanced AI systems that closely mimic human intelligence. The uniqueness of this paper lies in its comprehensive analysis of the neural reshaping process in both human and artificial intelligence systems. This comparative approach enables a deeper understanding of the fundamental principles of neural plasticity, thus shedding light on the limitations and untapped potential of both human and AI learning capabilities. By emphasizing the importance of neural reshaping in the quest for strong AI, the study underscores the need for developing AI algorithms with exceptional adaptability and plasticity. The paper's findings have significant implications for the future of AI research and development. By identifying the core principles of neural reshaping, this research can guide the design of next-generation AI technologies that can enhance human and artificial intelligence alike. These advancements will be instrumental in creating a new era of AI systems with unparalleled capabilities, paving the way for improved decision-making, problem-solving, and overall cognitive performance. In conclusion, this paper makes a substantial contribution by investigating the concept of neural reshaping and its importance for achieving strong AI. Through its in-depth exploration of neural plasticity in both human and artificial neural networks, the study unveils vital insights that can inform the development of innovative AI technologies with high adaptability and potential for enhancing human and AI capabilities alike.Keywords: neural plasticity, brain adaptation, artificial intelligence, learning, cognitive reshaping
Procedia PDF Downloads 5619224 Cognitive Behavioral Modification in the Treatment of Aggressive Behavior in Children
Authors: Dijana Sulejmanović
Abstract:
Cognitive-behavioral modification (CBM) is a combination of cognitive and behavioral learning principles to shape and encourage the desired behaviors. A crucial element of cognitive-behavioral modification is that a change the behavior precedes awareness of how it affects others. CBM is oriented toward changing inner speech and learning to control behaviors through self-regulation techniques. It aims to teach individuals how to develop the ability to recognize, monitor and modify their thoughts, feelings, and behaviors. The review of literature emphasizes the efficiency the CBM approach in the treatment of children's hyperactivity and negative emotions such as anger. The results of earlier research show how impulsive and hyperactive behavior, agitation, and aggression may slow down and block the child from being able to actively monitor and participate in regular classes, resulting in the disruption of the classroom and the teaching process, and the children may feel rejected, isolated and develop long-term poor image of themselves and others. In this article, we will provide how the use of CBM, adapted to child's age, can incorporate measures of cognitive and emotional functioning which can help us to better understand the children’s cognitive processes, their cognitive strengths, and weaknesses, and to identify factors that may influence their behavioral and emotional regulation. Such a comprehensive evaluation can also help identify cognitive and emotional risk factors associated with aggressive behavior, specifically the processes involved in modulating and regulating cognition and emotions.Keywords: aggressive behavior, cognitive behavioral modification, cognitive behavioral theory, modification
Procedia PDF Downloads 33219223 A Comparative Study of Twin Delayed Deep Deterministic Policy Gradient and Soft Actor-Critic Algorithms for Robot Exploration and Navigation in Unseen Environments
Authors: Romisaa Ali
Abstract:
This paper presents a comparison between twin-delayed Deep Deterministic Policy Gradient (TD3) and Soft Actor-Critic (SAC) reinforcement learning algorithms in the context of training robust navigation policies for Jackal robots. By leveraging an open-source framework and custom motion control environments, the study evaluates the performance, robustness, and transferability of the trained policies across a range of scenarios. The primary focus of the experiments is to assess the training process, the adaptability of the algorithms, and the robot’s ability to navigate in previously unseen environments. Moreover, the paper examines the influence of varying environmental complexities on the learning process and the generalization capabilities of the resulting policies. The results of this study aim to inform and guide the development of more efficient and practical reinforcement learning-based navigation policies for Jackal robots in real-world scenarios.Keywords: Jackal robot environments, reinforcement learning, TD3, SAC, robust navigation, transferability, custom environment
Procedia PDF Downloads 10919222 Escape Room Pedagogy: Using Gamification to Promote Engagement, Encourage Connections, and Facilitate Skill Development in Undergraduate Students
Authors: Scott McCutcheon, Karen Schreder
Abstract:
Higher education is facing a new reality. Student connection with coursework, instructor, and peers competes with online gaming, screen time, and instant gratification. Pedagogical methods that align student connection and critical thinking in a content-rich environment are important in supporting student learning, a sense of community, and emotional health. This mixed methods study focuses on exploring how the use of educational escape rooms (EERs) can support student learning and learning retention while fostering engagement with each other, the instructor, and the coursework. EERs are content-specific, cooperative, team-based learning activities designed to be completed within a short segment of a typical class. Data for the study was collected over three semesters and includes results from the implementation of EERs in science-based and liberal studies courses taught by different instructors. Twenty-seven students were surveyed regarding their learning experiences with this pedagogy, and interviews with four student volunteers were conducted to add depth to the survey data. A key finding from this research indicates that students felt more connected to each other and the course content after participating in the escape room activity. Additional findings point to increased engagement and comprehension of the class material. Data indicates that the use of an EER pedagogy supports student engagement, well-being, subject comprehension, and student-student and student-instructor connection.Keywords: gamification, innovative pedagogy, student engagement, student emotional well being
Procedia PDF Downloads 7719221 Intrinsic Motivational Factor of Students in Learning Mathematics and Science Based on Electroencephalogram Signals
Authors: Norzaliza Md. Nor, Sh-Hussain Salleh, Mahyar Hamedi, Hadrina Hussain, Wahab Abdul Rahman
Abstract:
Motivational factor is mainly the students’ desire to involve in learning process. However, it also depends on the goal towards their involvement or non-involvement in academic activity. Even though, the students’ motivation might be in the same level, but the basis of their motivation may differ. In this study, it focuses on the intrinsic motivational factor which student enjoy learning or feeling of accomplishment the activity or study for its own sake. The intrinsic motivational factor of students in learning mathematics and science has found as difficult to be achieved because it depends on students’ interest. In the Program for International Student Assessment (PISA) for mathematics and science, Malaysia is ranked as third lowest. The main problem in Malaysian educational system, students tend to have extrinsic motivation which they have to score in exam in order to achieve a good result and enrolled as university students. The use of electroencephalogram (EEG) signals has found to be scarce especially to identify the students’ intrinsic motivational factor in learning science and mathematics. In this research study, we are identifying the correlation between precursor emotion and its dynamic emotion to verify the intrinsic motivational factor of students in learning mathematics and science. The 2-D Affective Space Model (ASM) was used in this research in order to identify the relationship of precursor emotion and its dynamic emotion based on the four basic emotions, happy, calm, fear and sad. These four basic emotions are required to be used as reference stimuli. Then, in order to capture the brain waves, EEG device was used, while Mel Frequency Cepstral Coefficient (MFCC) was adopted to be used for extracting the features before it will be feed to Multilayer Perceptron (MLP) to classify the valence and arousal axes for the ASM. The results show that the precursor emotion had an influence the dynamic emotions and it identifies that most students have no interest in mathematics and science according to the negative emotion (sad and fear) appear in the EEG signals. We hope that these results can help us further relate the behavior and intrinsic motivational factor of students towards learning of mathematics and science.Keywords: EEG, MLP, MFCC, intrinsic motivational factor
Procedia PDF Downloads 37119220 Challenges and Opportunities for M-Government Implementation in Saudi Arabia
Authors: A. Alssbaiheen, S. Love
Abstract:
Mobile government (m-government) is one of the promising technologies for developing the governance of developing countries. While developing countries often have less advanced internet infrastructure compared to the developed world, mobile phone penetration is very high in the Gulf Cooperation Council (GCC) countries and mobile internet use offers a means to transcend traditional logistical barriers to accessing government services. The study explores the challenges and opportunities of the mobile government in Saudi Arabia. Semi-structured interviews were conducted with a diverse cohort of Saudi mobile users. A total of 77 semi-structured interviews were collected and subsequently analysed using open, axial, and selective coding. The participants’ responses revealed that many opportunities exist for the development of m-government in Saudi Arabia, including high popular awareness of government initiatives in e-government, and willingness to use such services, largely due to the time-saving and convenience aspects it offers compared with traditional bureaucratic services. However, numerous barriers were identified, including the low quality and speed of the internet, service customization, and concerns about privacy data security. It was also felt that in addition to infrastructure challenges, the traditional bureaucratic attitude of government department would itself hinder the effective deployment and utilization of m-government services.Keywords: awareness, barriers, challenges, government services, mobile government, m-government, opportunities
Procedia PDF Downloads 46819219 Comparison of E-learning and Face-to-Face Learning Models Through the Early Design Stage in Architectural Design Education
Authors: Gülay Dalgıç, Gildis Tachir
Abstract:
Architectural design studios are ambiencein where architecture design is realized as a palpable product in architectural education. In the design studios that the architect candidate will use in the design processthe information, the methods of approaching the design problem, the solution proposals, etc., are set uptogetherwith the studio coordinators. The architectural design process, on the other hand, is complex and uncertain.Candidate architects work in a process that starts with abstre and ill-defined problems. This process starts with the generation of alternative solutions with the help of representation tools, continues with the selection of the appropriate/satisfactory solution from these alternatives, and then ends with the creation of an acceptable design/result product. In the studio ambience, many designs and thought relationships are evaluated, the most important step is the early design phase. In the early design phase, the first steps of converting the information are taken, and converted information is used in the constitution of the first design decisions. This phase, which positively affects the progress of the design process and constitution of the final product, is complex and fuzzy than the other phases of the design process. In this context, the aim of the study is to investigate the effects of face-to-face learning model and e-learning model on the early design phase. In the study, the early design phase was defined by literature research. The data of the defined early design phase criteria were obtained with the feedback graphics created for the architect candidates who performed e-learning in the first year of architectural education and continued their education with the face-to-face learning model. The findings of the data were analyzed with the common graphics program. It is thought that this research will contribute to the establishment of a contemporary architectural design education model by reflecting the evaluation of the data and results on architectural education.Keywords: education modeling, architecture education, design education, design process
Procedia PDF Downloads 14319218 A Goal-Oriented Approach for Supporting Input/Output Factor Determination in the Regulation of Brazilian Electricity Transmission
Authors: Bruno de Almeida Vilela, Heinz Ahn, Ana Lúcia Miranda Lopes, Marcelo Azevedo Costa
Abstract:
Benchmarking public utilities such as transmission system operators (TSOs) is one of the main strategies employed by regulators in order to fix monopolistic companies’ revenues. Since 2007 the Brazilian regulator has been utilizing Data Envelopment Analysis (DEA) to benchmark TSOs. Despite the application of DEA to improve the transmission sector’s efficiency, some problems can be pointed out, such as the high price of electricity in Brazil; the limitation of the benchmarking only to operational expenses (OPEX); the absence of variables that represent the outcomes of the transmission service; and the presence of extremely low and high efficiencies. As an alternative to the current concept of benchmarking the Brazilian regulator uses, we propose a goal-oriented approach. Our proposal supports input/output selection by taking traditional organizational goals and measures as a basis for the selection of factors for benchmarking purposes. As the main advantage, it resolves the classical DEA problems of input/output selection, undesirable and dual-role factors. We also provide a demonstration of our goal-oriented concept regarding service quality. As a result, most TSOs’ efficiencies in Brazil might improve when considering quality as important in their efficiency estimation.Keywords: decision making, goal-oriented benchmarking, input/output factor determination, TSO regulation
Procedia PDF Downloads 20019217 The Application of Transcranial Direct Current Stimulation (tDCS) Combined with Traditional Physical Therapy to Address Upper Limb Function in Chronic Stroke: A Case Study
Authors: Najmeh Hoseini
Abstract:
Strokerecovery happens through neuroplasticity, which is highly influenced by the environment, including neuro-rehabilitation. Transcranial direct current stimulation (tDCS) may enhance recovery by modulating neuroplasticity. With tDCS, weak direct currents are applied noninvasively to modify excitability in the cortical areas under its electrodes. Combined with functional activities, this may facilitate motor recovery in neurologic disorders such as stroke. The purpose of this case study was to examine the effect of tDCS combined with 30 minutes of traditional physical therapy (PT)on arm function following a stroke. A 29-year-old male with chronic stroke involving the left middle cerebral artery territory went through the treatment protocol. Design The design included 5 weeks of treatment: 1 week of traditional PT, 2 weeks of sham tDCS combined with traditional PT, and 2 weeks of tDCS combined with traditional PT. PT included functional electrical stimulation (FES) of wrist extensors followed by task-specific functional training. Dual hemispheric tDCS with 1 mA intensity was applied on the sensorimotor cortices for the first 20 min of the treatment combined with FES. Assessments before and after each treatment block included Modified Ashworth Scale, ChedokeMcmaster Arm and Hand inventory, Action Research Arm Test (ARAT), and the Box and Blocks Test. Results showed reduced spasticity in elbow and wrist flexors only after tDCS combination weeks (+1 to 0). The patient demonstrated clinically meaningful improvements in gross motor and fine motor control over the duration of the study; however, components of the ARAT that require fine motor control improved the greatest during the experimental block. Average time improvement compared to baseline was26.29 s for tDCS combination weeks, 18.48 s for sham tDCS, and 6.83 for PT standard of care weeks. Combining dual hemispheric tDCS with the standard of care PT demonstrated improvements in hand dexterity greater than PT alone in this patient case.Keywords: tDCS, stroke, case study, physical therapy
Procedia PDF Downloads 9819216 Lessons Learned from Covid19 - Related ERT in Universities
Authors: Sean Gay, Cristina Tat
Abstract:
This presentation will detail how a university in Western Japan has implemented its English for Academic Purposes (EAP) program during the onset of CoViD-19 in the spring semester of 2020. In the spring semester of 2020, after a 2 week delay, all courses within the School of Policy Studies EAP Program at Kwansei Gakuin University were offered in an online asynchronous format. The rationale for this decision was not to disadvantage students who might not have access to devices necessary for taking part in synchronous online lessons. The course coordinators were tasked with consolidating the materials originally designed for face-to-face14 week courses for a 12 week asynchronous online semester and with uploading the modified course materials to Luna, the university’s network, which is a modified version of Blackboard. Based on research to determine the social and academic impacts of this CoViD-19 ERT approach on the students who took part in this EAP program, this presentation explains how future curriculum design and implementation can be managed in a post-CoViD world. There are a wide variety of lessons that were salient. The role of the classroom as a social institution was very prominent; however, awareness of cognitive burdens and strategies to mitigate that burden may be more valuable for teachers. The lessons learned during this period of ERT can help teachers moving forward.Keywords: asynchronous online learning, emergency remote teaching (ERT), online curriculum design, synchronous online learning
Procedia PDF Downloads 20719215 Automatic Number Plate Recognition System Based on Deep Learning
Authors: T. Damak, O. Kriaa, A. Baccar, M. A. Ben Ayed, N. Masmoudi
Abstract:
In the last few years, Automatic Number Plate Recognition (ANPR) systems have become widely used in the safety, the security, and the commercial aspects. Forethought, several methods and techniques are computing to achieve the better levels in terms of accuracy and real time execution. This paper proposed a computer vision algorithm of Number Plate Localization (NPL) and Characters Segmentation (CS). In addition, it proposed an improved method in Optical Character Recognition (OCR) based on Deep Learning (DL) techniques. In order to identify the number of detected plate after NPL and CS steps, the Convolutional Neural Network (CNN) algorithm is proposed. A DL model is developed using four convolution layers, two layers of Maxpooling, and six layers of fully connected. The model was trained by number image database on the Jetson TX2 NVIDIA target. The accuracy result has achieved 95.84%.Keywords: ANPR, CS, CNN, deep learning, NPL
Procedia PDF Downloads 31119214 Total Life Cycle Cost and Life Cycle Assessment of Mass Timber Buildings in the US
Authors: Hongmei Gu, Shaobo Liang, Richard Bergman
Abstract:
With current worldwide trend in designs to have net-zero emission buildings to mitigate climate change, widespread use of mass timber products, such as Cross Laminated Timber (CLT), or Nail Laminated Timber (NLT) or Dowel Laminated Timber (DLT) in buildings have been proposed as one approach in reducing Greenhouse Gas (GHG) emissions. Consequentially, mass timber building designs are being adopted more and more by architectures in North America, especially for mid- to high-rise buildings where concrete and steel buildings are currently prevalent, but traditional light-frame wood buildings are not. Wood buildings and their associated wood products have tended to have lower environmental impacts than competing energy-intensive materials. It is common practice to conduct life cycle assessments (LCAs) and life cycle cost analyses on buildings with traditional structural materials like concrete and steel in the building design process. Mass timber buildings with lower environmental impacts, especially GHG emissions, can contribute to the Net Zero-emission goal for the world-building sector. However, the economic impacts from CLT mass timber buildings still vary from the life-cycle cost perspective and environmental trade-offs associated with GHG emissions. This paper quantified the Total Life Cycle Cost and cradle-to-grave GHG emissions of a pre-designed CLT mass timber building and compared it to a functionally-equivalent concrete building. The Total life cycle Eco-cost-efficiency is defined in this study and calculated to discuss the trade-offs for the net-zero emission buildings in a holistic view for both environmental and economic impacts. Mass timber used in buildings for the United States is targeted to the materials from the nation’s sustainable managed forest in order to benefit both national and global environments and economies.Keywords: GHG, economic impact, eco-cost-efficiency, total life-cycle costs
Procedia PDF Downloads 14519213 Implementation of Data Science in Field of Homologation
Authors: Shubham Bhonde, Nekzad Doctor, Shashwat Gawande
Abstract:
For the use and the import of Keys and ID Transmitter as well as Body Control Modules with radio transmission in a lot of countries, homologation is required. Final deliverables in homologation of the product are certificates. In considering the world of homologation, there are approximately 200 certificates per product, with most of the certificates in local languages. It is challenging to manually investigate each certificate and extract relevant data from the certificate, such as expiry date, approval date, etc. It is most important to get accurate data from the certificate as inaccuracy may lead to missing re-homologation of certificates that will result in an incompliance situation. There is a scope of automation in reading the certificate data in the field of homologation. We are using deep learning as a tool for automation. We have first trained a model using machine learning by providing all country's basic data. We have trained this model only once. We trained the model by feeding pdf and jpg files using the ETL process. Eventually, that trained model will give more accurate results later. As an outcome, we will get the expiry date and approval date of the certificate with a single click. This will eventually help to implement automation features on a broader level in the database where certificates are stored. This automation will help to minimize human error to almost negligible.Keywords: homologation, re-homologation, data science, deep learning, machine learning, ETL (extract transform loading)
Procedia PDF Downloads 16519212 Being an Afghan Woman in Australia; Stereotypes, Gender Roles, and Adaption with New Context
Authors: Rojan Afrouz
Abstract:
Introduction: The immigration is a complex process of transitioning and transformation. Immigrants are more likely to come from the patriarchal and hierarchical society with traditional gender roles and women’s stereotypes. Changing the perception of women’s gender roles may result in challenges between women and their family and community. In this article, Afghan women’s perspectives on gender roles and stereotypes have been investigated as well as their experience of changes in the new context of Australia. Australian initiatives of challenging gender roles have provided the opportunities for Afghan women to emancipate from the traditional gender roles and pursue the value of gender equality. In this process, they may face many challenges in intersectional levels within their family, community and wider society which is a complex conflate of oppressive factors that may not be addressed easily and straightforward. Methods: This qualitative study has been conducted among Afghan women who have lived in Australia less than ten years. Semi-structured interviews either face to face or by phone have been used to collect data for this study. The interviews have been audio-recorded and transcribed verbatim. Nvivo software has been used for data analysis. Findings: Many participants mentioned that they had been taught that a good Afghan woman is devoted, obedient and loyal to their family and community. They believed that for many Afghan families, Afghan women's natural place was inside the home as a housewife, mother, daughter involving so many responsibilities and expectation of making sacrifices. Many women stated that their attitudes toward gender roles and their feeling of being a woman had been changed since they came to Australia although the process of change for women was complex and diverse. Some had to deal with conflicts with their stereotypes, traditional gender roles as well as strong disagreement with their family and community. Conclusion: Moving to a different country with more gender equality is an opportunity for Afghan women to change their perceptions of gender roles and stereotypes. However, challenging traditional stereotypes and gender roles in the new context is a complex process comprising intersectional levels.Keywords: stereotypes, gender role, immigration, Afghan women
Procedia PDF Downloads 17519211 The Best Methods of Motivating and Encouraging the Students to Study: A Case Study
Authors: Mahmoud I. Syam, Osama K. El-Hafy
Abstract:
With lack of student motivation, there will be a little or no real learning in the class and this directly effects student achievement and test scores. Some students are naturally motivated to learn, but many students are not motivated, they do care little about learning and need their instructors to motivate them. Thus, motivating students is part of the instructor’s job. It’s a tough task to motivate students and make them have more attention and enthusiasm. As a part of this research, a questionnaire has been distributed among a sample of 155 students out of 1502 students from Foundation Program at Qatar University. The questionnaire helped us to determine some methods to motivate the students and encourage them to study such as variety of teaching activities, encouraging students to participate during the lectures, creating intense competition between the students, using instructional technology, not using grades as a threat and respecting the students and treating them in a good manner. Accordingly, some hypotheses are tested and some recommendations are presented.Keywords: learning, motivating, student, teacher, testing hypotheses
Procedia PDF Downloads 47719210 Dynamic Control Theory: A Behavioral Modeling Approach to Demand Forecasting amongst Office Workers Engaged in a Competition on Energy Shifting
Authors: Akaash Tawade, Manan Khattar, Lucas Spangher, Costas J. Spanos
Abstract:
Many grids are increasing the share of renewable energy in their generation mix, which is causing the energy generation to become less controllable. Buildings, which consume nearly 33% of all energy, are a key target for demand response: i.e., mechanisms for demand to meet supply. Understanding the behavior of office workers is a start towards developing demand response for one sector of building technology. The literature notes that dynamic computational modeling can be predictive of individual action, especially given that occupant behavior is traditionally abstracted from demand forecasting. Recent work founded on Social Cognitive Theory (SCT) has provided a promising conceptual basis for modeling behavior, personal states, and environment using control theoretic principles. Here, an adapted linear dynamical system of latent states and exogenous inputs is proposed to simulate energy demand amongst office workers engaged in a social energy shifting game. The energy shifting competition is implemented in an office in Singapore that is connected to a minigrid of buildings with a consistent 'price signal.' This signal is translated into a 'points signal' by a reinforcement learning (RL) algorithm to influence participant energy use. The dynamic model functions at the intersection of the points signals, baseline energy consumption trends, and SCT behavioral inputs to simulate future outcomes. This study endeavors to analyze how the dynamic model trains an RL agent and, subsequently, the degree of accuracy to which load deferability can be simulated. The results offer a generalizable behavioral model for energy competitions that provides the framework for further research on transfer learning for RL, and more broadly— transactive control.Keywords: energy demand forecasting, social cognitive behavioral modeling, social game, transfer learning
Procedia PDF Downloads 11319209 Validating Condition-Based Maintenance Algorithms through Simulation
Authors: Marcel Chevalier, Léo Dupont, Sylvain Marié, Frédérique Roffet, Elena Stolyarova, William Templier, Costin Vasile
Abstract:
Industrial end-users are currently facing an increasing need to reduce the risk of unexpected failures and optimize their maintenance. This calls for both short-term analysis and long-term ageing anticipation. At Schneider Electric, we tackle those two issues using both machine learning and first principles models. Machine learning models are incrementally trained from normal data to predict expected values and detect statistically significant short-term deviations. Ageing models are constructed by breaking down physical systems into sub-assemblies, then determining relevant degradation modes and associating each one to the right kinetic law. Validating such anomaly detection and maintenance models is challenging, both because actual incident and ageing data are rare and distorted by human interventions, and incremental learning depends on human feedback. To overcome these difficulties, we propose to simulate physics, systems, and humans -including asset maintenance operations- in order to validate the overall approaches in accelerated time and possibly choose between algorithmic alternatives.Keywords: degradation models, ageing, anomaly detection, soft sensor, incremental learning
Procedia PDF Downloads 13019208 Black-Hole Dimension: A Distinct Methodology of Understanding Time, Space and Data in Architecture
Authors: Alp Arda
Abstract:
Inspired by Nolan's ‘Interstellar’, this paper delves into speculative architecture, asking, ‘What if an architect could traverse time to study a city?’ It unveils the ‘Black-Hole Dimension,’ a groundbreaking concept that redefines urban identities beyond traditional boundaries. Moving past linear time narratives, this approach draws from the gravitational dynamics of black holes to enrich our understanding of urban and architectural progress. By envisioning cities and structures as influenced by black hole-like forces, it enables an in-depth examination of their evolution through time and space. The Black-Hole Dimension promotes a temporal exploration of architecture, treating spaces as narratives of their current state interwoven with historical layers. It advocates for viewing architectural development as a continuous, interconnected journey molded by cultural, economic, and technological shifts. This approach not only deepens our understanding of urban evolution but also empowers architects and urban planners to create designs that are both adaptable and resilient. Echoing themes from popular culture and science fiction, this methodology integrates the captivating dynamics of time and space into architectural analysis, challenging established design conventions. The Black-Hole Dimension champions a philosophy that welcomes unpredictability and complexity, thereby fostering innovation in design. In essence, the Black-Hole Dimension revolutionizes architectural thought by emphasizing space-time as a fundamental dimension. It reimagines our built environments as vibrant, evolving entities shaped by the relentless forces of time, space, and data. This groundbreaking approach heralds a future in architecture where the complexity of reality is acknowledged and embraced, leading to the creation of spaces that are both responsive to their temporal context and resilient against the unfolding tapestry of time.Keywords: black-hole, timeline, urbanism, space and time, speculative architecture
Procedia PDF Downloads 7719207 Cells Detection and Recognition in Bone Marrow Examination with Deep Learning Method
Authors: Shiyin He, Zheng Huang
Abstract:
In this paper, deep learning methods are applied in bio-medical field to detect and count different types of cells in an automatic way instead of manual work in medical practice, specifically in bone marrow examination. The process is mainly composed of two steps, detection and recognition. Mask-Region-Convolutional Neural Networks (Mask-RCNN) was used for detection and image segmentation to extract cells and then Convolutional Neural Networks (CNN), as well as Deep Residual Network (ResNet) was used to classify. Result of cell detection network shows high efficiency to meet application requirements. For the cell recognition network, two networks are compared and the final system is fully applicable.Keywords: cell detection, cell recognition, deep learning, Mask-RCNN, ResNet
Procedia PDF Downloads 19419206 The Effect of Initial Sample Size and Increment in Simulation Samples on a Sequential Selection Approach
Authors: Mohammad H. Almomani
Abstract:
In this paper, we argue the effect of the initial sample size, and the increment in simulation samples on the performance of a sequential approach that used in selecting the top m designs when the number of alternative designs is very large. The sequential approach consists of two stages. In the first stage the ordinal optimization is used to select a subset that overlaps with the set of actual best k% designs with high probability. Then in the second stage the optimal computing budget is used to select the top m designs from the selected subset. We apply the selection approach on a generic example under some parameter settings, with a different choice of initial sample size and the increment in simulation samples, to explore the impacts on the performance of this approach. The results show that the choice of initial sample size and the increment in simulation samples does affect the performance of a selection approach.Keywords: Large Scale Problems, Optimal Computing Budget Allocation, ordinal optimization, simulation optimization
Procedia PDF Downloads 35719205 Application of a Lighting Design Method Using Mean Room Surface Exitance
Authors: Antonello Durante, James Duff, Kevin Kelly
Abstract:
The visual needs of people in modern work based buildings are changing. Self-illuminated screens of computers, televisions, tablets and smart phones have changed the relationship between people and the lit environment. In the past, lighting design practice was primarily based on providing uniform horizontal illuminance on the working plane, but this has failed to ensure good quality lit environments. Lighting standards of today continue to be set based upon a 100 year old approach that at its core, considers the task illuminance of the utmost importance, with this task typically being located on a horizontal plane. An alternative method focused on appearance has been proposed, as opposed to the traditional performance based approach. Mean Room Surface Exitance (MRSE) and Target-Ambient Illuminance Ratio (TAIR) are two new metrics proposed to assess illumination adequacy in interiors. The hypothesis is that these factors will be superior to the existing metrics used, which are horizontal illuminance led. For the six past years, research has examined this, within the Dublin Institute of Technology, with a view to determining the suitability of this approach for application to general lighting practice. Since the start of this research, a number of key findings have been produced that centered on how occupants will react to various levels of MRSE. This paper provides a broad update on how this research has progressed. More specifically, this paper will: i) Demonstrate how MRSE can be measured using HDR images technology, ii) Illustrate how MRSE can be calculated using scripting and an open source lighting computation engine, iii) Describe experimental results that demonstrate how occupants have reacted to various levels of MRSE within experimental office environments.Keywords: illumination hierarchy (IH), mean room surface exitance (MRSE), perceived adequacy of illumination (PAI), target-ambient illumination ratio (TAIR)
Procedia PDF Downloads 19119204 Random Access in IoT Using Naïve Bayes Classification
Authors: Alhusein Almahjoub, Dongyu Qiu
Abstract:
This paper deals with the random access procedure in next-generation networks and presents the solution to reduce total service time (TST) which is one of the most important performance metrics in current and future internet of things (IoT) based networks. The proposed solution focuses on the calculation of optimal transmission probability which maximizes the success probability and reduces TST. It uses the information of several idle preambles in every time slot, and based on it, it estimates the number of backlogged IoT devices using Naïve Bayes estimation which is a type of supervised learning in the machine learning domain. The estimation of backlogged devices is necessary since optimal transmission probability depends on it and the eNodeB does not have information about it. The simulations are carried out in MATLAB which verify that the proposed solution gives excellent performance.Keywords: random access, LTE/LTE-A, 5G, machine learning, Naïve Bayes estimation
Procedia PDF Downloads 14919203 Promoting Teaching and Learning Structures Based on Innovation and Entrepreneurship in Valahia University of Targoviste
Authors: Gabriela Teodorescu, Ioana Daniela Dulama
Abstract:
In an ever-changing society, the education system needs to constantly evolve to meet market demands. During its 30 years of existence, Valahia University of Targoviste (VUT) tried to offer its students a series of teaching-learning schemes that would prepare them for a remarkable career. In VUT, the achievement of performance through innovation can be analyzed by reference to several key indicators (i.e., university climate, university resources, and innovative methods applied to classes), but it is possible to differentiate between activities in the classic format: participate to courses; interactive seminars and tutorials; laboratories, workshops, project-based learning; entrepreneurial activities, through simulated enterprises; mentoring activities. Thus, VUT has implemented over time a series of schemes and projects based on innovation and entrepreneurship, and in this paper, some of them will be briefly presented. All these schemes were implemented by facilitating an effective dialog with students and the opportunity to listen to their views at all levels of the University and in all fields of study, as well as by developing a partnership with students to set out priority areas. VUT demonstrates innovation and entrepreneurial capacity through its new activities for higher education, which will attract more partnerships and projects dedicated to students.Keywords: Romania, project-based learning, entrepreneurial activities, simulated enterprises
Procedia PDF Downloads 16719202 Attitudes of Saudi Students Attending the English Programmes of the Royal Commission for Jubail and Yanbu toward Using Computer-Assisted Language Learning
Authors: Sultan Ahmed Arishi
Abstract:
The objective of the study was to investigate the attitude of the Saudi students attending the English Language programmes of the Royal Commission for Jubail towards using CALL, as well as to discover whether computer-assisted teaching is useful and valuable for students in learning English. Data were collected with the help of interviews and survey questionnaires. The outcomes of the investigation showed that students had a positive attitude towards CALL. Moreover, the listening skills of the students had the most substantial effect on students learning English through CALL. Unexpectedly, the teaching staff, equipment, curriculum, or even a student's poor English background was a distinct barrier that attributed to any weaknesses of using CALL, or in other words, all these factors were of a similar attitude.Keywords: CALL, teaching aids, teaching technology, teaching English with technology, teaching English in Saudi Arabia
Procedia PDF Downloads 15019201 Cultural Boundaries and Mental Health Stigma: A Systemic Review of Interventions to Reduce Opposition of Mental Health Services in Asian American Families
Authors: Tanya L. Patimeteeporn, Murali D. Nair
Abstract:
There is a wide range of literature that suggests the factors that prevent Asian American families from utilizing mental health services. These factors arise from a combination of cultural perceptions of mental illness, and methods of treating them without the use of a mental health professional. Due to the increased awareness of Asian Americans’ stigmatization to mental health, there has been an effort to create culturally competent interventions for Asian American families that would reduce opposition to mental health services. Assessment of the effectiveness of these interventions reveals practices that integrate traditional healing methods with psychoeducation are more likely to promote receptiveness of mental health services by Asian American families. The documentary in this review, demonstrates these traditional healing methods from various ethnic enclaves in Los Angeles. In addition, mental health professionals who provide these interventions to Asian American families need to consider culture-bound syndromes and the various Asian health philosophies and belief systems in order to provide a culturally sensitive holistic treatment for their clients. However, because the literature on these interventions is limited, there is a need for a larger body of evidence to accurately assess the effectiveness of these culturally competent psychoeducation interventions.Keywords: Asian American, cultural boundaries, intervention, mental health stigma, psychoeducation, traditional healing
Procedia PDF Downloads 55219200 Application of De Novo Programming Approach for Optimizing the Business Process
Authors: Z. Babic, I. Veza, A. Balic, M. Crnjac
Abstract:
The linear programming model is sometimes difficult to apply in real business situations due to its assumption of proportionality. This paper shows an example of how to use De Novo programming approach instead of linear programming. In the De Novo programming, resources are not fixed like in linear programming but resource quantities depend only on available budget. Budget is a new, important element of the De Novo approach. Two different production situations are presented: increasing costs and quantity discounts of raw materials. The focus of this paper is on advantages of the De Novo approach in the optimization of production plan for production company which produces souvenirs made from famous stone from the island of Brac, one of the greatest islands from Croatia.Keywords: business process, De Novo programming, optimizing, production
Procedia PDF Downloads 22519199 Data-Driven Insights Into Juvenile Recidivism: Leveraging Machine Learning for Rehabilitation Strategies
Authors: Saiakhil Chilaka
Abstract:
Juvenile recidivism presents a significant challenge to the criminal justice system, impacting both the individuals involved and broader societal safety. This study aims to identify the key factors influencing recidivism and successful rehabilitation outcomes by utilizing a dataset of over 25,000 individuals from the NIJ Recidivism Challenge. We employed machine learning techniques, particularly Random Forest Classification, combined with SHAP (SHapley Additive exPlanations) for model interpretability. Our findings indicate that supervision risk score, percent days employed, and education level are critical factors affecting recidivism, with higher levels of supervision, successful employment, and education contributing to lower recidivism rates. Conversely, Gang Affiliation emerged as a significant risk factor for reoffending. The model achieved an accuracy of 68.8%, highlighting its utility in identifying high-risk individuals and informing targeted interventions. These results suggest that a comprehensive approach involving personalized supervision, vocational training, educational support, and anti-gang initiatives can significantly reduce recidivism and enhance rehabilitation outcomes for juveniles, providing critical insights for policymakers and juvenile justice practitioners.Keywords: juvenile, justice system, data analysis, SHAP
Procedia PDF Downloads 2819198 Empirical Evaluation of Game Components Based on Learning Theory: A Preliminary Study
Authors: Seoi Lee, Dongjoo Chin, Heewon Kim
Abstract:
Gamification refers to a technique that applies game elements to non-gaming elements, such as education and exercise, to make people more engaged in these behaviors. The purpose of this study was to identify effective elements in gamification for changing human behaviors. In order to accomplish this purpose, a survey based on learning theory was developed, especially for assessing antecedents and consequences of behaviors, and 8 popular and 8 unpopular games were selected for comparison. A total of 407 adult males and females were recruited via crowdsourcing Internet marketplace and completed the survey, which consisted of 19 questions for antecedent and 14 questions for consequences. Results showed no significant differences in consequence questions between popular and unpopular games. For antecedent questions, popular games are superior to unpopular games in character customization, play type selection, a sense of belonging, patch update cycle, and influence or dominance. This study is significant in that it reveals the elements of gamification based on learning theory. Future studies need to empirically validate whether these factors affect behavioral change.Keywords: gamification, learning theory, antecedent, consequence, behavior change, behaviorism
Procedia PDF Downloads 22819197 Enterprise Security Architecture: Approaches and a Framework
Authors: Amir Mohtarami, Hadi Kandjani
Abstract:
The amount of business-critical information in enterprises is growing at an extraordinary rate, and the ability to catalog that information and properly protect it using traditional security mechanisms is not keeping pace. Alongside the Information Technology (IT), information security needs a holistic view in enterprise. In other words, a comprehensive architectural approach is required, focusing on the information itself, understanding what the data are, who owns it, and which business and regulatory policies should be applied to the information. Enterprise Architecture Frameworks provide useful tools to grasp different dimensions of IT in organizations. Usually this is done by the layered views on IT architecture, but not requisite security attention has been held in this frameworks. In this paper, after a brief look at the Enterprise Architecture (EA), we discuss the issue of security in the overall enterprise IT architecture. Due to the increasing importance of security, a rigorous EA program in an enterprise should be able to consider security architecture as an integral part of its processes and gives a visible roadmap and blueprint for this aim.Keywords: enterprise architecture, architecture framework, security architecture, information systems
Procedia PDF Downloads 70719196 The Impact of Universal Design for Learning Implementation on Teaching Practices for Students with Intellectual Disabilities in the Kingdom of Saudi Arabia
Authors: Adnan Alhazmi
Abstract:
Background: UDL can be understood as a framework that holds the potential to elaborate the alternatives and platforms for the students with intellectual disabilities within general education settings and aims at offering flexible pathways that can support all the students in gaining a mastering over the goals of learning. This system of learning addresses the problem of the variability of the learner by delineating the diverse ways in which the individuals can understand, conceive, express and deal with the information. Goal: The aim of the proposed research is to examine the impact of the implementation of UDL in teaching practices for the students with intellectual disabilities in Saudi Arabian schools. Method: This research has used a combination of quantitative and qualitative designs. Survey questionnaires were used to gather the data for under this analytical descriptive method. The application of the qualitative interpretive approach was applied with the help of the interview to gather a detailed understanding on the aim of the research. For this purpose, the semi-structured interviews were conducted. Thus, the primary data will be gathered with the help of survey and interview to examine the impact of universal design learning implementation on teaching practices for intellectually disabled students in Saudi Arabian schools. The survey was conducted to examine the prevailing teaching practices for the students with intellectual disabilities in Saudi Arabia and evaluate if the teaching experience influences the current practices or not. The surveys were distributed to 50 teachers who teach the students with intellectual disabilities. However, the interviews were conducted to explore barriers of implementing UDL in Saudi Arabia and provide suggested guideline for the implementation of UDL in Saudi Arabia. The interviews, therefore, were with 10 teachers teaching the same subject. Findings: A key findings highlighted in this study revealed that the UDL framework serves as a crucial guide for teachers within inclusive settings to undertake meaningful planning for the individuals with intellectual disabilities so that they are able to access, participate, and grow within the general education curriculum. Other findings of the study highlighted the need to prepare the educators and all faculty members to understand the purpose and need for inclusion, the UDL framework so that better information about academic and social expectations for individuals with intellectual disabilities can be delivered. Conclusion: On the basis of the preliminary study undertaken on the subject of research, it could be suggested that UDL can serve to be an effective support for undertaking a meaningful inclusion of students with intellectual disability (ID) in general educational settings. It holds the potential role of working as an institutional design framework that could be used for designing curriculum for students with intellectual disabilities.Keywords: intellectual disability, inclusion, universal design for learning, teaching practice
Procedia PDF Downloads 141