Search results for: plant parasitic nematodes
427 A Comparative Study on the Hypoglycemic Effects of Hydroalcoholic Extracts from Silybum marianum, Camellia sinensis (Green Tea), and Urtica dioica Plants in Diabetic Rats
Authors: Sogand Moshfeghi, Alireza Biglari
Abstract:
Diabetes is an endocrine disorder that is commonly treated with insulin. However, long-term usage of insulin and hypoglycemic chemical drugs can result in various side effects. Therefore, it is crucial to explore effective compounds with minimal side effects for diabetes treatment. This study aimed to compare the hypoglycemic effects of hydroalcoholic extracts derived from Silybum marianum, Camellia sinensis (green tea), and Urtica dioica plants. Male Wistar rats were allocated to 5 groups. Group 1 received normal Salin. Other groups were diabetic (induced by Streptozotocin 65 mg/kg Ip), group 2 received normal Salin (Ip, qod. 21 days). Group 3 received Silybum Marianum L, hydroalcoholic extract (100 mg/kg, ip.qod, 21 days). Group 4 received Camellia sinesis L, hydroalcoholic extract (100mg/kg,ip,qod,21 days), and group 5 received Urtica dioica L. hydroalcoholic extract (100mg/kg, ip,qod,21 days). Blood samples were collected at 14 and 21 days after the initial injection to evaluate the blood glucose levels. On the fourteenth day, the blood glucose levels for the diabetic groups were as follows: Group 2: 424.7±34.5, Group 3: 390.7±10.5, Group 4: 350.4±16.9, and Group 5: 340±20.5. On the 21st day, the respective blood glucose levels were: Group 2: 432±5.0, Group 3: 410.16±5.0, Group 4: 264.3±17.5, and Group 5: 270.7±24.5. Statistical analysis using the Tukey Anova test indicated that on the fourteenth day, both the green tea and Urtica groups exhibited significant hypoglycemic effects. Furthermore, on the 21st day, Urtica dioica extract demonstrated comparable effects to Camellia Sinensis extract, while Silybum Marianum extract did not significantly lower blood glucose levels compared to the diabetic group. In conclusion, the hydroalcoholic extracts from Camellia sinensis and Urtica dioica plants exhibited promising hypoglycemic effects in diabetic rats. These findings provide valuable insights into the potential use of natural plant extracts as alternative or complementary treatments for diabetes, warranting further investigation to harness their therapeutic benefit effectively.Keywords: Camellia sinesis, glucose, Silybum marianum, Urtica dioica
Procedia PDF Downloads 72426 The State of Research on Medicinal Plants in Morocco
Authors: Alami Ilyass, Loubna Kharchoufa, Elachouri Mostafa
Abstract:
The two great realms of living diversity are cultural and biological. Today, both are being lost at an alarming rate. Of all the Earth’s biological diversity, plant kingdom is of high significance, and most essential to human welfare, in fact, medicinal plants are extensively exploited for countless purposes. Among these multiple uses, medicinal plants are the most important source of medicine for humankind healthcare and well being. In recent years there has been a great surge of public interest in the use of herbs and plants. Some scientists have viewed this phenomenon as a modern “herbal renaissance”. The importance of plants as medicines in developed and developing countries has recently been acknowledged by the United Nations (UN). However, to date fewer than 5% of the approximately 250,000 species of higher plants have been exhaustively studied for their potential pharmacological activity. A number of drugs from ethnobotanical leads have provided significant milestones in Western medicine. Despite this success, pharmacognosy research on Moroccan flora needs more studies aimed at the exploration of their therapeutic potential. A major weakness is the absence of strong funding agencies in the country, and a real national drug discovery program. Moreover, the lack of the coordination between different universities and research institutions leads, in most cases, to a waste of time, money and efforts of many researchers. In this work, we focus our attention on research into traditional indigenous medicinal plants in Morocco. Three parts constitute the head lines of this work: In the first one, we take up Moroccan biodiversity matter, the second part is devoted principally to the state of research into medicinal plants by Moroccan scholars and the last one is consecrated to the debate of factors which handicap the progress of research on phytomedicine in Morocco. The objectives of the present study are twofold: first, to highlight the state of the medicinal plants researches in Morocco. Second goal is to assess and correlate the levels of knowledge of the local flora to the research on medicinal plants to attempt to build capacity for research within Moroccan Scientific community at rate of developing country.Keywords: Morocco, medicinal plants, ethnobotanical, pharmacognosy, phytomedicine
Procedia PDF Downloads 187425 Promoting Social Advocacy through Digital Storytelling: The Case of Ocean Acidification
Authors: Chun Chen Yea, Wen Huei Chou
Abstract:
Many chemical changes in the atmosphere and the ocean are invisible to the naked eye, but they have profound impacts. These changes not only confirm the phenomenon of global carbon pollution, but also forewarn that more changes are coming. The carbon dioxide gases emitted from the burning of fossil fuels dissolve into the ocean and chemically react with seawater to form carbonic acid, which increases the acidity of the originally alkaline seawater. This gradual acidification is occurring at an unprecedented rate and will affect the effective formation of carapace of some marine organisms such as corals and crustaceans, which are almost entirely composed of calcium carbonate. The carapace of these organisms will become more dissoluble. Acidified seawater not only threatens the survival of marine life, but also negatively impacts the global ecosystem via the food chain. Faced with the threat of ocean acidification, all humans are duty-bound. The industrial sector outputs the highest level of carbon dioxide emissions in Taiwan, and the petrochemical industry is the major contributor. Ever since the construction of Formosa Plastics Group's No. 6 Naphtha Cracker Plant in Yunlin County, there have been many environmental concerns such as air pollution and carbon dioxide emission. The marine life along the coast of Yunlin is directly affected by ocean acidification arising from the carbon emissions. Societal change demands our willingness to act, which is what social advocacy promotes. This study uses digital storytelling for social advocacy and ocean acidification as the subject of a visual narrative in visualization to demonstrate the subsequent promotion of social advocacy. Storytelling can transform dull knowledge into an engaging narrative of the crisis faced by marine life. Digital dissemination is an effective social-work practice. The visualization promoting awareness on ocean acidification disseminated via social media platforms, such as Facebook and Instagram. Social media enables users to compose their own messages and share information across different platforms, which helps disseminate the core message of social advocacy.Keywords: digital storytelling, visualization, ocean acidification, social advocacy
Procedia PDF Downloads 117424 Enhancement in Antimicrobial and Antioxidant Activity of Cuminum cyminum L. through Niosome Nanocarries
Authors: Fatemeh Haghiralsadat, Mohadese Hashemi, Elham Akhoundi Kharanaghi, Mojgan Yazdani, Mahboobe Sharafodini, Omid Javani
Abstract:
Niosomes are colloidal particles formed from the self-assembly of non-ionic surfactants in aqueous medium resulting in closed bilayer structures. As a consequence of this hydrophilic and hydrophobic structure, niosomes have the capacity to entrap compounds of different solubilities. Niosomes are promising vehicle for drug delivery which protect sensitive drugs and improve the therapeutic index of drugs by restricting their action to target cells. Essential oils are complex mixtures of volatile compounds such as terpenoids, phenol-derived aromatic components that have been used for many biological properties including bactericidal, fungicidal, insecticidal, antioxidant, anti-tyrosinase and other medicinal properties. Encapsulation of essential oils in niosomes can be an attractive method to overcome their limitation such as volatility, easily decomposition by heat, humidity, light, or oxygen. Cuminum cyminum L. (Cumin) is an aromatic plant included in the Apiaceae family and is used to flavor foods, added to fragrances, and for medical preparations which is indigenous to Egypt, the Mediterranean region, Iran and India. The major components of the Cumin oil were reported as cuminaldehyde, γ -terpinene, β-pinene, p-cymene, p-mentha-1, 3-dien-7-al, and p-mentha-1, 4-dien-7-al which provide the antimicrobial and antioxidant activity. The aim of this work was to formulate Cumin essential oil-loaded niosomes to improve water solubility of natural product and evaluate its physico-chemical features and stability. Cumin oil was obtained through steam distillation using a clevenger-type apparatus and GC/MS was applied to identify the main components of the essential oil. Niosomes were prepared by using thin film hydration method and nanoparticles were characterized for particle size, dispersity index, zeta potential, encapsulation efficiency, in vitro release, and morphology.Keywords: Cuminum cyminum L., Cumin, niosome, essential oil, encapsulation
Procedia PDF Downloads 515423 The Influence of Characteristics of Waste Water on Properties of Sewage Sludge
Authors: Catalina Iticescu, Lucian P. Georgescu, Mihaela Timofti, Gabriel Murariu, Catalina Topa
Abstract:
In the field of environmental protection in the EU and also in Romania, strict and clear rules are imposed that are respected. Among those, mandatory municipal wastewater treatment is included. Our study involved Municipal Wastewater Treatment Plant (MWWTP) of Galati. MWWTP began its activity by the end of 2011 and technology is one of the most modern used in the EU. Moreover, to our knowledge, it is the first technology of this kind used in the region. Until commissioning, municipal wastewater was discharged directly into the Danube without any treatment. Besides the benefits of depollution, a new problem has arisen: the accumulation of increasingly large sewage sludge. Therefore, it is extremely important to find economically feasible and environmentally friendly solutions. One of the most feasible methods of disposing of sewage sludge is their use on agricultural land. Sewage sludge can be used in agriculture if monitored in terms of physicochemical properties (pH, nutrients, heavy metals, etc.), in order not to contribute to pollution in soils and not to affect chemical and biological balances, which are relatively fragile. In this paper, 16 physico-chemical parameters were monitored. Experimental testings were realised on waste water samples, sewage sludge results and treated water samples. Testing was conducted with electrochemichal methods (pH, conductivity, TDS); parameters N-total (mg/L), P-total (mg/L), N-NH4 (mg/L), N-NO2 (mg/L), N-NO3 (mg/L), Fe-total (mg/L), Cr-total (mg/L), Cu (mg/L), Zn (mg/L), Cd (mg/L), Pb (mg/L), Ni (mg/L) were determined by spectrophotometric methods using a spectrophotometer NOVA 60 and specific kits. Analyzing the results, we concluded that Sewage sludges, although containing heavy metals, are in small quantities and will not affect the land on which they will be deposited. Also, the amount of nutrients contained are appreciable. These features indicate that the sludge can be safely used in agriculture, with the advantage that they represent a cheap fertilizer. Acknowledgement: This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation – UEFISCDI, PNCDI III project, 79BG/2017, Efficiency of the technological process for obtaining of sewage sludge usable in agriculture, Efficient.Keywords: municipal wastewater, physico-chemical properties, sewage sludge, technology
Procedia PDF Downloads 209422 Q Eqchi Mayan Piper and Cissampelos Species Alter Reporter Genes and Endogenous Genes Expression in Mc-7 Cells
Authors: Sheila M. Wicks, Gail Mahady, Udesh Patel, Joanna Michel, Armando Caceres
Abstract:
Introduction: The genus piperaceae contains approximately 1000 species of herbs scrubs small trees and hanging vines distributed in both hemispheres. During our ethno medical work in Guatemala of the 27 plant families documented for us e by the Qeqchi Maya for reproductive disorders the most prominent were the Piperaceae (15%) and Menispermiaceae. Our Previous work showed that extracts from form Piper and Cissampelos species bound to both and progesterone and the estrogen receptors. In this work active extracts from Piper aeruginosibaccum Trelease, P auritum, P tuerckheimii and Cissampels tropaeolifolia were tested in functionalized cell based assays including a SEAP reporter gene and by qPCR of ER-responsive gene expression in MCF-7cells. In the reporter gene assay P aeruginosibaccum was estrogenic and enhanced E2 EFFECTS IN MCF-7 CELLS. P. tuerckheimi was not estrogenic alone but significantly enhanced the effects of E2 on SEAP reporter gene expression. Both altered mRNA expression of E2 responsive genes in MCF-7. Methods: this is collaborative project between University of Illinois at Chicago and University of San Carlos Guatemala City. 144 spices of plants were collected in Guatemala of which 57 used to treat a variety of women's reproductive health. The Genus Piperaraceae contains approximately 1000 species of herbs scrubs and small trees. Active extracts of the plants were tested in functionalized in cell-based bioassays including SEAP reporter genes. Results demonstrated altered mRNA expression of E2 responsive genes in MC-7 cells plants were collected in Guatemala of which 57 used. Conclusion of the 5 plants tested all were shown to contain components of binding to estrogenic receptor to a greater or lesser degree. These effects support the use of QEqchi Maya women in Guatemala for reproductive.Keywords: reporter genes, MC7, guatemala piperaceae, reproductive health
Procedia PDF Downloads 247421 Winners and Losers of Severe Drought and Grazing on a Dryland Grassland in Limpopo Province
Authors: Vincent Mokoka, Kai Behn, Edwin Mudongo, Jan Ruppert, Kingsley Ayisi, Anja Linstädter
Abstract:
Severe drought may trigger a transition of vegetation composition in dryland grasslands, with productive perennial grasses often being replaced by annual grasses. Grazing pressure is thought to exacerbate drought effects, but little is known on the joint effects of grazing and drought on the functional and taxonomic composition of the herbaceous vegetation in African savannas. This study thus aimed to elucidate which herbaceous species and plant functional types (PFTs) are most resistant to prolonged drought and grazing and whether resting plays a role in this context. Thus, we performed a six-year field experiment in South Africa’s Limpopo province, combining drought and grazing treatments. Aboveground herbaceous biomass was harvested annually and separated into species. We grouped species into five PFTs, i.e. very broad-leaved perennial grasses, broad-leaved perennial grasses, narrow-leaved perennial grasses, annual grasses, and forbs. For all species, we also recorded three-leaf traits (leaf area - LA, specific leaf area – SLA, and leaf dry matter content – LDM) to describe their resource acquisition strategies. We used generalized linear models to test for treatment effects and their interaction. Association indices were used to detect the relationship between species and treatments. We found that there were no absolute winner species or PFTs, as the six-year severe drought had a pronounced negative impact on the biomass production of all species and PFTs. However, we detected relative winners with increases in relative abundances, mainly forbs and less palatable narrow-leafed grasses with comparatively low LA and high LDMC, such as Aristida stipidata Hack. These species and PFTs also tended to be favored by grazing. Although few species profited from resting, for most species, the combination of drought and resting proved to be particularly unfavorable. Winners and losers can indicate ecological transition and may be used to guide management decisions.Keywords: aboveground net primary production, drought, functional diversity, winner and loser species
Procedia PDF Downloads 174420 High-Pressure Steam Turbine for Medium-Scale Concentrated Solar Power Plants
Authors: Ambra Giovannelli, Coriolano Salvini
Abstract:
Many efforts have been spent in the design and development of Concentrated Solar Power (CPS) Plants worldwide. Most of them are for on-grid electricity generation and they are large plants which can benefit from the economies of scale. Nevertheless, several potential applications for Small and Medium-Scale CSP plants can be relevant in the industrial sector as well as for off-grid purposes (i.e. in rural contexts). In a wide range of industrial processes, CSP technologies can be used for heat generation replacing conventional primary sources. For such market, proven technologies (usually hybrid solutions) already exist: more than 100 installations, especially in developing countries, are in operation and performance can be verified. On the other hand, concerning off-grid applications, solar technologies are not so mature. Even if the market offers a potential deployment of such systems, especially in countries where the access to grid is strongly limited, optimized solutions have not been developed yet. In this context, steam power plants can be taken into consideration for medium scale installations, due to the recent results achieved with direct steam generation systems based on paraboloidal dish or Fresnel lens solar concentrators. Steam at 4.0-4.5 MPa and 500°C can be produced directly by means of innovative solar receivers (some prototypes already exist). Although it could seem a promising technology, presently, steam turbines commercially available do not cover the required cycle specifications. In particular, while low-pressure turbines already exist on the market, high-pressure groups, necessary for the abovementioned applications, are not available. The present paper deals with the preliminary design of a high-pressure steam turbine group for a medium-scale CSP plant (200-1000 kWe). Such a group is arranged in a single geared package composed of four radial expander wheels. Such wheels have been chosen on the basis of automotive turbocharging technology and then modified to take the new requirements into account. Results related to the preliminary geometry selection and to the analysis of the high-pressure turbine group performance are reported and widely discussed.Keywords: concentrated solar power (CSP) plants, steam turbine, radial turbine, medium-scale power plants
Procedia PDF Downloads 217419 Selection of Most Appropriate Poplar and Willow Cultivars for Landfill Remediation Using Plant Physiology Parameters
Authors: Andrej Pilipović, Branislav Kovačević, Marina Milović, Lazar Kesić, Saša Pekeč, Leopold Poljaković-Pajnik, Saša Orlović
Abstract:
The effect of landfills on the environment reflects in the dispersion of the contaminants on surrounding soils by the groundwater plume. Such negative effect can be mitigated with the establishment of vegetative buffers surrounding landfills. The “TreeRemEnergy” project funded by the Science Fund of Republic of Serbia – Green program focuses on development of phytobuffers for landfill phytoremediation with the use of Short Rotation Woody Crops (SRWC) plantations that can be further used for the biomass for energy. One of the goals of the project is to select most appropriate poplar (Populus sp.) and willow (Salix sp.) clones through phytorecurrent selection that involves testing of various breeding traits. Physiological parameters serve as a significant contribution to the breeding process aimed to early detection of potential candidates. This study involved testing of the effect of the landfill soils on the photosynthetic processes of the selected poplar and willow candidates. For this purpose, measurements of the gas exchange, chlorophyll content and chlorophyll fluorescence were measured on the tested plants. Obtained results showed that there were differences in the influence of the controlled sources of variation on examined physiological parameters. The effect of clone was significant in all parameters, while the effect of the substrate was not statistically significant in any of measured parameters. However, the effect of interaction Clone×Substrate was significant in intercellular CO2 concentration(ci), stomatal conductance (gs) and transpiration rate (E), suggesting that water regime of the tested clones showed different response to the tested soils. Some clones showed more “generalist” behavior (380, 107/65/9, and PE19/66), while “specialist” behavior was recorded in clones PE4/68, S1-8, and 79/64/2. On the other hand, there was no significant effect of the tested substrate on the pigments content measured with SPAD meter. Results of this study allowed us to narrow the group of clones for further trails in field conditions.Keywords: clones, net photosynthesis, WUE, transpiration, stomatal conductance, SPAD
Procedia PDF Downloads 65418 A Comparative Study of the Techno-Economic Performance of the Linear Fresnel Reflector Using Direct and Indirect Steam Generation: A Case Study under High Direct Normal Irradiance
Authors: Ahmed Aljudaya, Derek Ingham, Lin Ma, Kevin Hughes, Mohammed Pourkashanian
Abstract:
Researchers, power companies, and state politicians have given concentrated solar power (CSP) much attention due to its capacity to generate large amounts of electricity whereas overcoming the intermittent nature of solar resources. The Linear Fresnel Reflector (LFR) is a well-known CSP technology type for being inexpensive, having a low land use factor, and suffering from low optical efficiency. The LFR was considered a cost-effective alternative option to the Parabolic Trough Collector (PTC) because of its simplistic design, and this often outweighs its lower efficiency. The LFR has been found to be a promising option for directly producing steam to a thermal cycle in order to generate low-cost electricity, but also it has been shown to be promising for indirect steam generation. The purpose of this important analysis is to compare the annual performance of the Direct Steam Generation (DSG) and Indirect Steam Generation (ISG) of LFR power plants using molten salt and other different Heat Transfer Fluids (HTF) to investigate their technical and economic effects. A 50 MWe solar-only system is examined as a case study for both steam production methods in extreme weather conditions. In addition, a parametric analysis is carried out to determine the optimal solar field size that provides the lowest Levelized Cost of Electricity (LCOE) while achieving the highest technical performance. As a result of optimizing the optimum solar field size, the solar multiple (SM) is found to be between 1.2 – 1.5 in order to achieve as low as 9 Cent/KWh for the direct steam generation of the linear Fresnel reflector. In addition, the power plant is capable of producing around 141 GWh annually and up to 36% of the capacity factor, whereas the ISG produces less energy at a higher cost. The optimization results show that the DSG’s performance overcomes the ISG in producing around 3% more annual energy, 2% lower LCOE, and 28% less capital cost.Keywords: concentrated solar power, levelized cost of electricity, linear Fresnel reflectors, steam generation
Procedia PDF Downloads 111417 Raising Antibodies against Epoxyscillirosidine, the Toxic Principle Contained in Moraea pallida Bak. in Rabbits
Authors: Hamza I. Isa, Gezina C. H. Ferreira, Jan E. Crafford, Christoffel J. Botha
Abstract:
Moraea pallida Bak. (yellow tulip) poisoning is the most important plant-induced cardiac glycoside toxicosis in South Africa. Cardiac glycoside poisonings collectively account for about 33 and 10 % mortalities due to plants, in large and small stock respectively, in South Africa. The toxic principle is 1α, 2α-epoxyscillirosidine, a bufadienolide. The aim of the study was to investigate the potential to develop a vaccine against epoxyscillirosidine. Epoxyscillirosidine and the related bufadienolides proscillaridin and bufalin, which are commercially available, were conjugated to the carrier proteins [Hen ovalbumin (OVA), bovine serum albumin (BSA) and keyhole limpet haemocyanin (KLH)], rendering them immunogenic. Adult male New Zealand White rabbits were immunized. In Trials 1 and 2, rabbits (n=6) were, each assigned to two groups. Experimental animals (n=3; n=4) were vaccinated with epoxyscillirosidine-OVA conjugate, while the control (n=3; n=2) were vaccinated with OVA, using Freund’s complete and incomplete and Montanide adjuvants, for Trials 1 and 2, respectively. In Trial 3, rabbits (n=15), randomly allocated to 5 equal groups (I, II, III, IV and V), were vaccinated with proscillaridin-BSA, bufalin-BSA, epoxyscillirosidine-KLH, epoxyscillirosidine-BSA conjugates, and BSA respectively, using Montanide as adjuvant. Vaccination was on Days 0, 21 and 42. Additional vaccinations were done on Day 56 and 63 for Trial 1. Vaccination was by intradermal injection of 0.4 ml of the immunogen (4 mg/ml [Trial 1] and 8 mg/ml for Trials 2 and Trial 3, respectively). Blood was collected pre-vaccination and at 3 week intervals following each vaccination. Antibody response was determined using an indirect ELISA. There was poor immune response associated with the dose (0.4 mg per rabbit) and adjuvant used in Trial 1. Antibodies were synthesized against the conjugate administered in Trial 2. For Trail 3, antibodies against the immunogens were successfully raised in rabbits with epoxyscillirosidine-KLH inducing the highest immune response. The antibodies raised against proscillaridin and bufalin cross-reacted with epoxyscillirosidine when used as antigen in the ELISA. The study successfully demonstrated the synthesis of antibodies against the bufadienolide conjugates administered. The cross-reactivity of proscillaridin and bufalin with epoxyscillirosidine could potentially be utilized as alternative to epoxyscillirosidine in future studies to prevent yellow tulp poisoning by vaccination.Keywords: antibodies , bufadienolides, cross-reactivity, epoxyscillirosidine, Moraea pallida, poisoning
Procedia PDF Downloads 155416 Anticorrosive Performances of “Methyl Ester Sulfonates” Biodegradable Anionic Synthetized Surfactants on Carbon Steel X 70 in Oilfields
Authors: Asselah Amel, Affif Chaouche M'yassa, Toudji Amira, Tazerouti Amel
Abstract:
This study covers two aspects ; the biodegradability and the performances in corrosion inhibition of a series of synthetized surfactants namely Φ- sodium methyl ester sulfonates (Φ-MES: C₁₂-MES, C₁₄-MES and C₁₆-MES. The biodegradability of these organic compounds was studied using the respirometric method, ‘the standard ISO 9408’. Degradation was followed by analysis of dissolved oxygen using the dissolved oxygen meter over 28 days and the results were compared with that of sodium dodecyl sulphate (SDS). The inoculum used consists of activated sludge taken from the aeration basin of the biological wastewater treatment plant in the city of Boumerdes-Algeria. In addition, the anticorrosive performances of Φ-MES surfactants on a carbon steel "X70" were evaluated in an injection water from a well of Hassi R'mel region- Algeria, known as Baremian water, and are compared to sodium dodecyl sulphate. Two technics, the weight loss and the linear polarization resistance corrosion rate (LPR) are used allowing to investigate the relationships between the concentrations of these synthetized surfactants and their surface properties, surface coverage and inhibition efficiency. Various adsorption isotherm models were used to characterize the nature of adsorption and explain their mechanism. The results show that the MES anionic surfactants was readily biodegradable, degrading faster than SDS, about 88% for C₁₂-MES compared to 66% for the SDS. The length of their carbon chain affects their biodegradability; the longer the chain, the lower the biodegradability. The inhibition efficiency of these surfactants is around 78.4% for C₁₂-MES, 76.60% for C₁₄-MES and 98.19% for C₁₆-MES and increases with their concentration and reaches a maximum value around their critical micelle concentrations ( CMCs). Scanning electron microscopy coupled to energy dispersive X-ray spectroscopy allowed to the visualization of a good adhesion of the protective film formed by the surfactants to the surface of the steel. The studied surfactants show the Langmuirian behavior from which the thermodynamic parameters as adsorption constant (Kads), standard free energy of adsorption (〖∆G〗_ads^0 ) are determined. Interaction of the surfactants with steel surface have involved physisorptions.Keywords: corrosion, surfactants, adsorption, adsorption isotherems
Procedia PDF Downloads 97415 Water Footprint for the Palm Oil Industry in Malaysia
Authors: Vijaya Subramaniam, Loh Soh Kheang, Astimar Abdul Aziz
Abstract:
Water footprint (WFP) has gained importance due to the increase in water scarcity in the world. This study analyses the WFP for an agriculture sector, i.e., the oil palm supply chain, which produces oil palm fresh fruit bunch (FFB), crude palm oil, palm kernel, and crude palm kernel oil. The water accounting and vulnerability evaluation (WAVE) method was used. This method analyses the water depletion index (WDI) based on the local blue water scarcity. The main contribution towards the WFP at the plantation was the production of FFB from the crop itself at 0.23m³/tonne FFB. At the mill, the burden shifts to the water added during the process, which consists of the boiler and process water, which accounted for 6.91m³/tonne crude palm oil. There was a 33% reduction in the WFP when there was no dilution or water addition after the screw press at the mill. When allocation was performed, the WFP reduced by 42% as the burden was shared with the palm kernel and palm kernel shell. At the kernel crushing plant (KCP), the main contributor towards the WFP 4.96 m³/tonne crude palm kernel oil which came from the palm kernel which carried the burden from upstream followed by electricity, 0.33 m³/tonne crude palm kernel oil used for the process and 0.08 m³/tonne crude palm kernel oil for transportation of the palm kernel. A comparison was carried out for mills with biogas capture versus no biogas capture, and the WFP had no difference for both scenarios. The comparison when the KCPs operate in the proximity of mills as compared to those operating in the proximity of ports only gave a reduction of 6% for the WFP. Both these scenarios showed no difference and insignificant difference, which differed from previous life cycle assessment studies on the carbon footprint, which showed significant differences. This shows that findings change when only certain impact categories are focused on. It can be concluded that the impact from the water used by the oil palm tree is low due to the practice of no irrigation at the plantations and the high availability of water from rainfall in Malaysia. This reiterates the importance of planting oil palm trees in regions with high rainfall all year long, like the tropics. The milling stage had the most significant impact on the WFP. Mills should avoid dilution to reduce this impact.Keywords: life cycle assessment, water footprint, crude palm oil, crude palm kernel oil, WAVE method
Procedia PDF Downloads 175414 Microwave-Assisted Alginate Extraction from Portuguese Saccorhiza polyschides – Influence of Acid Pretreatment
Authors: Mário Silva, Filipa Gomes, Filipa Oliveira, Simone Morais, Cristina Delerue-Matos
Abstract:
Brown seaweeds are abundant in Portuguese coastline and represent an almost unexploited marine economic resource. One of the most common species, easily available for harvesting in the northwest coast, is Saccorhiza polyschides grows in the lowest shore and costal rocky reefs. It is almost exclusively used by local farmers as natural fertilizer, but contains a substantial amount of valuable compounds, particularly alginates, natural biopolymers of high interest for many industrial applications. Alginates are natural polysaccharides present in cell walls of brown seaweed, highly biocompatible, with particular properties that make them of high interest for the food, biotechnology, cosmetics and pharmaceutical industries. Conventional extraction processes are based on thermal treatment. They are lengthy and consume high amounts of energy and solvents. In recent years, microwave-assisted extraction (MAE) has shown enormous potential to overcome major drawbacks that outcome from conventional plant material extraction (thermal and/or solvent based) techniques, being also successfully applied to the extraction of agar, fucoidans and alginates. In the present study, acid pretreatment of brown seaweed Saccorhiza polyschides for subsequent microwave-assisted extraction (MAE) of alginate was optimized. Seaweeds were collected in Northwest Portuguese coastal waters of the Atlantic Ocean between May and August, 2014. Experimental design was used to assess the effect of temperature and acid pretreatment time in alginate extraction. Response surface methodology allowed the determination of the optimum MAE conditions: 40 mL of HCl 0.1 M per g of dried seaweed with constant stirring at 20ºC during 14h. Optimal acid pretreatment conditions have enhanced significantly MAE of alginates from Saccorhiza polyschides, thus contributing for the development of a viable, more environmental friendly alternative to conventional processes.Keywords: acid pretreatment, alginate, brown seaweed, microwave-assisted extraction, response surface methodology
Procedia PDF Downloads 381413 Occupational Heat Stress Condition According to Wet Bulb Globe Temperature Index in Textile Processing Unit: A Case Study of Surat, Gujarat, India
Authors: Dharmendra Jariwala, Robin Christian
Abstract:
Thermal exposure is a common problem in every manufacturing industry where heat is used in the manufacturing process. In developing countries like India, a lack of awareness regarding the proper work environmental condition is observed among workers. Improper planning of factory building, arrangement of machineries, ventilation system, etc. play a vital role in the rise of temperature within the manufacturing areas. Due to the uncontrolled thermal stress, workers may be subjected to various heat illnesses from mild disorder to heat stroke. Heat stress is responsible for the health risk and reduction in production. Wet Bulb Globe Temperature (WBGT) index and relative humidity are used to evaluate heat stress conditions. WBGT index is a weighted average of natural wet bulb temperature, globe temperature, dry bulb temperature, which are measured with standard instrument QuestTemp 36 area stress monitor. In this study textile processing units have been selected in the industrial estate in the Surat city. Based on the manufacturing process six locations were identified within the plant at which process was undertaken at 120°C to 180°C. These locations were jet dying machine area, stenter machine area, printing machine, looping machine area, washing area which generate process heat. Office area was also selected for comparision purpose as a sixth location. Present Study was conducted in the winter season and summer season for day and night shift. The results shows that average WBGT index was found above Threshold Limiting Value (TLV) during summer season for day and night shift in all three industries except office area. During summer season highest WBGT index of 32.8°C was found during day shift and 31.5°C was found during night shift at printing machine area. Also during winter season highest WBGT index of 30°C and 29.5°C was found at printing machine area during day shift and night shift respectively.Keywords: relative humidity, textile industry, thermal stress, WBGT
Procedia PDF Downloads 173412 Evaluation of the Effectiveness of Barriers for the Control of Rats in Rice Plantation Field
Authors: Melina, Jumardi Jumardi, Erwin Erwin, Sri Nuraminah, Andi Nasruddin
Abstract:
The rice field rat (Rattus argentiventer Robinson and Kloss) is a pest causing the greatest yield loss of rice plants, especially in lowland agroecosystems with intensive cropping patterns (2-3 plantings per year). Field mice damage rice plants at all stages of growth, from seedling to harvest, even in storage warehouses. Severe damage with yield loss of up to 100% occurs if rats attack rice at the generative stage because the plants are no longer able to recover by forming new tillers. Farmers mainly use rodenticides in the form of poisoned baits or as fumigants, which are applied to rat burrow holes. This practice is generally less effective because mice are able to avoid the poison or become resistant after several exposures to it. In addition, excessive use of rodenticides can have negative impacts on the environment and non-target organisms. For this reason, this research was conducted to evaluate the effectiveness of fences as an environmentally friendly mechanical control method in reducing rice yield losses due to rat attacks. This study used a factorial randomized block design. The first factor was the fence material, namely galvanized zinc plate and plastic. The second factor was the height of the fence, namely 25, 50, 75, and 100 cm from the ground level. Each treatment combination was repeated five times. Data shows that zinc fences with a height of 75 and 100 cm are able to provide full protection to plants from rat infestations throughout the planting season. However, zinc fences with a height of 25 and 50 cm failed to prevent rat attacks. Plastic fences with a height of 25 and 50 cm failed to prevent rat attacks during the planting season, whereas 75 and 100 cm were able to prevent rat attacks until all the crops outside of the fence had been eaten by rats. The rat managed to get into the fence by biting the plastic fence close to the ground. Thus, the research results show that fences made of zinc plate with a height of at least 75 cm from the ground surface are effective in preventing plant damage caused by rats. To our knowledge, this research is the first to quantify the effectiveness of fences as a control of field rodents.Keywords: rice field rat, Rattus argentiventer, fence, rice
Procedia PDF Downloads 39411 Environmental Justice and Citizenship Rights in the Tehran Health Plan
Authors: Mohammad Parvaresh, Mahdi Babaee, Bahareh Arghand, Davood Nourmohammadi
Abstract:
Environmental degradation is caused by social inequalities and the inappropriate use of nature and a factor in the violation of human rights. Indeed, the right to a safe, healthy and ecologically-balanced environment is an independent human right. Therefore, the relationship between human rights and environmental protection is crucial for the study of social justice and sustainable development, and environmental problems are a result of the failure to realize social and economic justice. In this regard, 'article 50 of the constitution of the Islamic Republic of Iran as a general principle have many of the concepts of sustainable development, including: the growth and improvement of human life, the rights of present and future generations, and the integrity of the inner and outer generation, the prohibition of any environmental degradation'. Also, Charter on Citizen’s Rights, which was conveyed by the President of the Islamic Republic of Iran, Mr. Rouhani refers to the right to a healthy environment and sustainable development. In this regard in 2013, Tehran Province Water and Wastewater Co. defined a plan called 'Tehran’s Health Line' was includes Western and Eastern part by about 26 kilometers of water transferring pipelines varied 1000 to 2000 mm diameters. This project aims to: (1) Transfer water from the northwest water treatment plant to the southwest areas, which suffer from qualitative and quantitative water, in order to mix with the improper wells’ water; (2) Reducing the water consumption provided by harvesting from wells which results in improving the underground water resources, causing the large settlements and stopping the immigrating slums into the center or north side of the city. All of the financial resources accounted for 53,000,000 US$ which is mobilized by Tehran Province Water and Wastewater Co. to expedite the work. The present study examines the Tehran Health Line plan and the purpose of implementation of this plan to achieve environmental protection, environmental justice and citizenship rights for all people who live in Tehran.Keywords: environmental justice, international environmental law, erga omnes, charter on citizen's rights, Tehran health line
Procedia PDF Downloads 271410 Effect of Climatic Change on the Life Activities of Schistocerca graria from Thar Desert, Sindh, Pakistan
Authors: Ahmed Ali Samejo, Riffat Sultana
Abstract:
Pakistan has the sandy Thar Desert in the eastern area, which share border line with India and has exotic fauna and flora, the livelihood of native people rely on livestock and rain fed cultivated fields. The climate of Thar Desert is very harsh and stressful due to frequent drought and very little rainfall, which may occur during monsoon season in the months of July to October and temperature is high, and wind speed also increases in April to June. Schistocerca gregaria is a destructive pest of vegetation from Mauritania to the border line of Pakistan and India. Sometimes they produce swarms which consume all plant where ever they land down and cause the loss in agro-economy of the world. During the recent study, we observed that vegetation was not unique throughout the Thar Desert in the year 2015, because the first spell of rainfall showered over all areas of the Thar Desert in July. However, the second and third spell of rain was confined to village Mahandre jo par and surroundings from August to October. Consequently, vegetation and cultivated crops grew up specially bajra crop (Pennistum glaucum). The climate of Mahandre jo par and surroundings became favorable for S.gregaria, and remaining areas of Thar Desert went hostile. Therefore desert locust attracted to the pleasant area (Mahandre jo par and surroundings) and gradually concentrated, increased reproductive activities, but did not gregarize due to the harvest of bajra crop and the onset of the winter season with an immediate decrease in temperature. An outbreak was near to come into existence, and thereupon conditions become stressful for hoppers to continue further development. Afore mentioned was one reason behind hurdle to the outbreak, another reason might be that migration and concentration of desert locust took place at the end of the season, so climate becomes unfavorable for hoppers, due to dryness of vegetation. Soils also become dry, because rainfall was not showered in end of the season, that’s why eggs that were deposited in late summer were desiccated. This data might be proved fruitful to forecast any outbreak update in future.Keywords: agro-economy, destructive pest, climate, outbreak, vegetation
Procedia PDF Downloads 172409 Optimising Leafy Indigenous Vegetables as Functional Foods: The Nigerian Case Study
Authors: John Olayinka Atoyebi
Abstract:
Developing countries like Nigeria are facing myriad problems, ranging from economic challenges, lack of no jobs, food insecurity, malnutrition, and poverty. However, tackling some of these menaces is not just a trivial issue neither do some of them require rocket science to fix, but rather the understanding of every individual citizen recognizing their respective roles that they have to play in making the country better, rather than putting all the blames on the Government. Tackling nutrition and food insecurity is a complex problem, but this work examines what an individual can do to improve nutrient consumption. Leafy indigenous vegetables can be termed as functional foods since they are very rich in nutrients, phytochemicals and other beneficial compounds to the body system. These functional foods are the class that provides necessary health benefits beyond basic nutrition. Usually functional foods often contain bioactive compounds, which help the body through the prevention and management of various diseases, as well as improving the overall health of human beings. The analysis carried out on some Nigerian leafy indigenous vegetables in home grown setting revealed, for example, the potential use of Iron (Fe) amount of 318.15ppm in Basella alba (red species) and that of Telfaria Occidentalis (Ugu) with 261.22ppm as being useful to stimulate heme, a necessary precursor and protein in the formation of blood in human being. Moreso, Virnonia amygdalina (ewuro) and water leaf possess anti-bacterial and anti-diabetic properties. They also provide digestive health benefits and support to the body system, including anti-inflammatory properties. Also, medicinal plant like Morinda citrifolia (Noni), which had been found to possess anti-cancer properties, has a Vitamin C amount of 528.85 mg/100g and a total carotenoids amount of 85.50 µg/g. However, despite all these results and potential utilization of these and other indigenous vegetables in Nigeria, there is a gross unawareness and/or non-cognizance of their utilization potentials, as some home garden lacks understanding of the immense nutrition benefits, thus hindering some of the populace to make proper use of these vegetables to enhance their health.Keywords: developing countries, optimising, leafy vegetables, functional foods
Procedia PDF Downloads 5408 Hypoglycaemic and Hypolipidemic Activity of Cassia occidentalis Linn. Stem Bark Extract in Streptozotocin Induced Diabetes
Authors: Manjusha Choudhary
Abstract:
Objective: Cassia occidentalis Linn. belongs to Family Caesalpiniaceae is a common weed scattered from the foothills of Himalayas to West Bengal, South India, Burma, and Sri Lanka. It is used widely in folklore medicine in India as laxative, expectorant, analgesic, anti-malarial, hepatoprotective, relaxant, anti-inflammatory and antidiabetic. The present study was carried out to investigate the hypoglycaemic and hypolipidemic activities of ethanolic extract of Cassia occidentalis stem bark. Methods: Stem bark extract of Cassia occidentalis (SBCO) was administered orally at 250 and 500 mg/kg doses to normal and streptozotocin (STZ) induced type-2 diabetic mice. Various parameters like fasting blood glucose (FBG) level, serum cholesterol, high density lipoprotein (HDL) cholesterol, triglycerides (TG), total protein, urea, creatinine, serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT) levels and physical parameters like change in body weight, food intake, water intake were performed for the evaluation of antidiabetic effects. Results: Both the doses of extract caused a marked decrease in FBG levels in STZ induced type 2 diabetic mice. Administration of SBCO led to the decrease in the blood glucose, food intake, water intake, organ weight, SGOT, SGPT levels with significant value and increased the levels of TG, HDL cholesterol, creatinine, cholesterol, total protein with a significant value (p < 0.05-0.01). The decrease in body weight induced by STZ was restored to normal with a significant value (p < 0.01) at both doses. Conclusion: Present study reveals that SBCO possess potent hypoglycaemic and hypolipidemic activities and supports the folklore use of the stem bark of plant as antidiabetic agent.Keywords: Cassia occidentalis, diabetes, folklore, herbs, hypoglycemia, streptozotocin
Procedia PDF Downloads 406407 Optimization of Waste Plastic to Fuel Oil Plants' Deployment Using Mixed Integer Programming
Authors: David Muyise
Abstract:
Mixed Integer Programming (MIP) is an approach that involves the optimization of a range of decision variables in order to minimize or maximize a particular objective function. The main objective of this study was to apply the MIP approach to optimize the deployment of waste plastic to fuel oil processing plants in Uganda. The processing plants are meant to reduce plastic pollution by pyrolyzing the waste plastic into a cleaner fuel that can be used to power diesel/paraffin engines, so as (1) to reduce the negative environmental impacts associated with plastic pollution and also (2) to curb down the energy gap by utilizing the fuel oil. A programming model was established and tested in two case study applications that are, small-scale applications in rural towns and large-scale deployment across major cities in the country. In order to design the supply chain, optimal decisions on the types of waste plastic to be processed, size, location and number of plants, and downstream fuel applications were concurrently made based on the payback period, investor requirements for capital cost and production cost of fuel and electricity. The model comprises qualitative data gathered from waste plastic pickers at landfills and potential investors, and quantitative data obtained from primary research. It was found out from the study that a distributed system is suitable for small rural towns, whereas a decentralized system is only suitable for big cities. Small towns of Kalagi, Mukono, Ishaka, and Jinja were found to be the ideal locations for the deployment of distributed processing systems, whereas Kampala, Mbarara, and Gulu cities were found to be the ideal locations initially utilize the decentralized pyrolysis technology system. We conclude that the model findings will be most important to investors, engineers, plant developers, and municipalities interested in waste plastic to fuel processing in Uganda and elsewhere in developing economy.Keywords: mixed integer programming, fuel oil plants, optimisation of waste plastics, plastic pollution, pyrolyzing
Procedia PDF Downloads 129406 Effects of Cold Treatments on Methylation Profiles and Reproduction Mode of Diploid and Tetraploid Plants of Ranunculus kuepferi (Ranunculaceae)
Authors: E. Syngelaki, C. C. F. Schinkel, S. Klatt, E. Hörandl
Abstract:
Environmental influence can alter the conditions for plant development and can trigger changes in epigenetic variation. Thus, the exposure to abiotic environmental stress can lead to different DNA methylation profiles and may have evolutionary consequences for adaptation. Epigenetic control mechanisms may further influence mode of reproduction. The alpine species R. kuepferi has diploid and tetraploid cytotypes, that are mostly sexual and facultative apomicts, respectively. Hence, it is a suitable model system for studying the correlations of mode of reproduction, ploidy, and environmental stress. Diploid and tetraploid individuals were placed in two climate chambers and treated with low (+7°C day/+2°C night, -1°C cold shocks for three nights per week) and warm (control) temperatures (+15°C day/+10°C night). Subsequently, methylation sensitive-Amplified Fragment-Length Polymorphism (AFPL) markers were used to screen genome-wide methylation alterations triggered by stress treatments. The dataset was analyzed for four groups regarding treatment (cold/warm) and ploidy level (diploid/tetraploid), and also separately for full methylated, hemi-methylated and unmethylated sites. Patterns of epigenetic variation suggested that diploids differed significantly in their profiles from tetraploids independent from treatment, while treatments did not differ significantly within cytotypes. Furthermore, diploids are more differentiated than the tetraploids in overall methylation profiles of both treatments. This observation is in accordance with the increased frequency of apomictic seed formation in diploids and maintenance of facultative apomixis in tetraploids during the experiment. Global analysis of molecular variance showed higher epigenetic variation within groups than among them, while locus-by-locus analysis of molecular variance showed a high number (54.7%) of significantly differentiated un-methylated loci. To summarise, epigenetic variation seems to depend on ploidy level, and in diploids may be correlated to changes in mode of reproduction. However, further studies are needed to elucidate the mechanism and possible functional significance of these correlations.Keywords: apomixis, cold stress, DNA methylation, Ranunculus kuepferi
Procedia PDF Downloads 160405 Isolation, Identification and Screening of Marine Fungi for Potential Tyrosinase Inhibitor, Antibacterial and Antioxidant for Future Cosmeceuticals
Authors: Shivankar Agrawal, Sunil Kumar Deshmukh, Colin Barrow, Alok Adholeya
Abstract:
A variety of genetic and environmental factors cause various cosmetics and dermatological problems. There are already claimed drugs available in market for treating these problems. However, the challenge remains in finding more potent, environmental friendly, causing minimal side effects and economical cosmeceuticals. This leads to an increased demand for natural cosmeceutical products in the last few decades. Plant derived ingredients are limited because plants either contain toxic metabolites, grow too slow or seasonal harvesting is a problem. To identify new bioactive cosmetics ingredients of marine microbial bioresource, we screened 35 marine fungi isolated from marine samples collected from Andaman Island and west coast of India. Fungal crude extracts were investigated for their antityrosinase, antioxidant and antibacterial activities for the purpose of identifying anti-aging, skin-whitening and anti-acne biomolecule with the potential in cosmetics. In the tyrosinase inhibition and 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assays, two fungal extracts, including “P2”, Talaromyces stipitatus and “D4”, Aspergillus terreus showed high inhibitory activity at 1mg/mL for tyrosinase inhibition and 0.5mg/mL for DPPH scavenging. The in vitro antimicrobial activity was investigated by the agar well diffusion method. In the tyrosinase inhibition assay, 8 extracts showed significant antibacterial activity against bacteria causing skin and wound infection in humans. In the course of systematic screening program for bioactive marine fungi, strain “D5” was found to be most potent strain with MIC value of 1mg/mL, which was morphologically identified as Simplicillium lamellicola. The effects of the most active crude extracts against their susceptible test microorganisms were also investigated by SEM analysis. Further investigations will focus on purification and characterization major active components responsible for these activities.Keywords: antioxidant, antimicrobial activity, tyrosinase, cosmeceuticals, marine fungi
Procedia PDF Downloads 281404 Biosynthesis of Tumor Inhibitory Podophyllotoxin, Quercetin and Kaempferol from Callogenesis of Dysosma Pleiantha (Hance) Woodson
Authors: Palaniyandi Karuppaiya, Hsin Sheng Tsay, Fang Chen
Abstract:
Medicinal herbs do represent a huge and noteworthy reservoir for novel anticancer drugs discovery. Dysosma pleiantha (Hance) Woodson (Berberidaceae), one of the oldest traditional Chinese medicinal herb, highly prized by the mountain tribes of Taiwan and China for its medicinal properties contained pharmaceutically important antitumor compounds podophyllotoxin, quercetin and kaempferol. Among lignans, podophyllotoxin is an active antitumor compound and has now been modified to produce clinically useful drugs etoposide and teniposide. In recent years, natural populations of D. peliantha have declined considerably due to anthropogenic activities such as habitat destruction and commercial exploitation for medicinal applications. As to its overall conservation status, D. pleiantha has been ranked as threatened on the China Species Red List. In the present study, an efficient in vitro callus culture system of D. pleiantha was established on Gamborg’s medium with various combinations and concentrations of different auxins and cytokinins under dark condition. Best callus induction was recorded in 2 mg/L 2, 4 - Dichlorophenoxyacetic acid (2,4-D) along with 0.2 mg/L kinetin and the maximum callus proliferation was achieved at 1 mg/L 2,4-D. Among the explants tested, maximum callus induction (86 %) was achieved from tender leaves. Hence, in subsequent experiments, leaf callus was further investigated for suitable callus biomass and production level of anticancer compounds under the influence of different additives. A maximum fresh callus biomass (8.765 g) was recorded in callus proliferation medium contained 500 mg/L casein hydrolysate. High performance liquid chromatography results revealed that the addition of different concentrations of peptone (1, 2 and 4 g/L) in callus proliferation medium enhanced podophyllotoxin (16 fold), quercetin (12 fold) and kaempferol (5 fold) accumulation than control. Thus, the established in vitro callus culture under the influence of different additives may offer an alternative source of enhanced production of podophyllotoxin, kaempferol and quecertin without harming natural plant population.Keywords: dysosma pleiantha, kaempferol, podophyllotoxin, quercetin
Procedia PDF Downloads 277403 Balancing Electricity Demand and Supply to Protect a Company from Load Shedding: A Review
Authors: G. W. Greubel, A. Kalam
Abstract:
This paper provides a review of the technical problems facing the South African electricity system and discusses a hypothetical ‘virtual grid’ concept that may assist in solving the problems. The proposed solution has potential application across emerging markets with constrained power infrastructure or for companies who wish to be entirely powered by renewable energy. South Africa finds itself at a confluence of forces where the national electricity supply system is constrained with under-supply primarily from old and failing coal-fired power stations and congested and inadequate transmission and distribution systems. Simultaneously, the country attempts to meet carbon reduction targets driven by both an alignment with international goals and a consumer-driven requirement. The constrained electricity system is an aspect of an economy characterized by very low economic growth, high unemployment, and frequent and significant load shedding. The fiscus does not have the funding to build new generation capacity or strengthen the grid. The under-supply is increasingly alleviated by the penetration of wind and solar generation capacity and embedded roof-top solar. However, this increased penetration results in less inertia, less synchronous generation, and less capability for fast frequency response, with resultant instability. The renewable energy facilities assist in solving the under-supply issues but merely ‘kick the can down the road’ by not contributing to grid stability or by substituting the lost inertia, thus creating an expanding issue for the grid to manage. By technically balancing its electricity demand and supply a company with facilities located across the country can be protected from the effects of load shedding, and thus ensure financial and production performance, protect jobs, and contribute meaningfully to the economy. By treating the company’s load (across the country) and its various distributed generation facilities as a ‘virtual grid’, which by design will provide ancillary services to the grid one is able to create a win-win situation for both the company and the grid.Keywords: load shedding, renewable energy integration, smart grid, virtual grid, virtual power plant
Procedia PDF Downloads 58402 Arsenic (III) Removal by Zerovalent Iron Nanoparticles Synthesized with the Help of Tea Liquor
Authors: Tulika Malviya, Ritesh Chandra Shukla, Praveen Kumar Tandon
Abstract:
Traditional methods of synthesis are hazardous for the environment and need nature friendly processes for the treatment of industrial effluents and contaminated water. Use of plant parts for the synthesis provides an efficient alternative method. In this paper, we report an ecofriendly and nonhazardous biobased method to prepare zerovalent iron nanoparticles (ZVINPs) using the liquor of commercially available tea. Tea liquor as the reducing agent has many advantages over other polymers. Unlike other polymers, the polyphenols present in tea extract are nontoxic and water soluble at room temperature. In addition, polyphenols can form complexes with metal ions and thereafter reduce the metals. Third, tea extract contains molecules bearing alcoholic functional groups that can be exploited for reduction as well as stabilization of the nanoparticles. Briefly, iron nanoparticles were prepared by adding 2.0 g of montmorillonite K10 (MMT K10) to 5.0 mL of 0.10 M solution of Fe(NO3)3 to which an equal volume of tea liquor was then added drop wise over 20 min with constant stirring. The color of the mixture changed from whitish yellow to black, indicating the formation of iron nanoparticles. The nanoparticles were adsorbed on montmorillonite K10, which is safe and aids in the separation of hazardous arsenic species simply by filtration. Particle sizes ranging from 59.08±7.81 nm were obtained which is confirmed by using different instrumental analyses like IR, XRD, SEM, and surface area studies. Removal of arsenic was done via batch adsorption method. Solutions of As(III) of different concentrations were prepared by diluting the stock solution of NaAsO2 with doubly distilled water. The required amount of in situ prepared ZVINPs supported on MMT K10 was added to a solution of desired strength of As (III). After the solution had been stirred for the preselected time, the solid mass was filtered. The amount of arsenic [in the form of As (V)] remaining in the filtrate was measured using ion chromatograph. Stirring of contaminated water with zerovalent iron nanoparticles supported on montmorillonite K10 for 30 min resulted in up to 99% removal of arsenic as As (III) from its solution at both high and low pH (2.75 and 11.1). It was also observed that, under similar conditions, montmorillonite K10 alone provided only <10% removal of As(III) from water. Adsorption at low pH with precipitation at higher pH has been proposed for As(III) removal.Keywords: arsenic removal, montmorillonite K10, tea liquor, zerovalent iron nanoparticles
Procedia PDF Downloads 130401 New Insights into Ethylene and Auxin Interplay during Tomato Ripening
Authors: Bruna Lima Gomes, Vanessa Caroline De Barros Bonato, Luciano Freschi, Eduardo Purgatto
Abstract:
Plant hormones are long known to be tightly associated with fruit development and are involved in controlling various aspects of fruit ripening. For fleshy fruits, ripening is characterized for changes in texture, color, aroma and other parameters that markedly contribute to its quality. Ethylene is one of the major players regulating the ripening-related processes, but emerging evidences suggest that auxin is also part of this dynamic control. Thus, the aim of this study was providing new insights into the auxin role during ripening and the hormonal interplay between auxin and ethylene. For that, tomato fruits (Micro-Tom) were collected at mature green stage and separated in four groups: one for indole-3-acetic acid (IAA) treatment, one for ethylene, one for a combination of IAA and ethylene, and one for control. Hormone solution was injected through the stylar apex, while mock samples were injected with buffer only. For ethylene treatments, fruits were exposed to gaseous hormone. Then, fruits were left to ripen under standard conditions and to assess ripening development, hue angle was reported as color indicator and ethylene production was measured by gas chromatography. The transcript levels of three ripening-related ethylene receptors (LeETR3, LeETR4 and LeETR6) were evaluated by RT-qPCR. Results showed that ethylene treatment induced ripening, stimulated ethylene production, accelerated color changes and induced receptor expression, as expected. Nonetheless, auxin treatment showed the opposite effect once fruits remained green for longer time than control group and ethylene perception has changed, taking account the reduced levels of receptor transcripts. Further, treatment with both hormones revealed that auxin effect in delaying ripening was predominant, even with higher levels of ethylene. Altogether, the data suggest that auxin modulates several aspects of the tomato fruit ripening modifying the ethylene perception. The knowledge about hormonal control of fruit development will help design new strategies for effective manipulation of ripening regarding fruit quality and brings a new level of complexity on fruit ripening regulation.Keywords: ethylene, auxin, fruit ripening, hormonal crosstalk
Procedia PDF Downloads 460400 The Nubian Ibex’s Distribution, Population, Habitat, and Conservation Status in Sudan’s Red Sea State Over the Past Decade
Authors: Lubna M. A. Hassan, Nasir Brema, Abdallah Mamy, Insaf Yahya, Tanzil A. G., Ahmed M. M. Hasoba, Omer A. Suliman
Abstract:
The Nubian ibex species has been categorized as vulnerable by the International Union for Conservation of Nature (IUCN) due to a lack of population data in specific regions within their habitat. This species faces numerous challenges, including habitat loss caused by agricultural practices, livestock rearing, mining activity, and infrastructure development. Additionally, competition with non-native species and hunting pose significant threats to their survival. Unfortunately, studies on the distribution, conservation status, ecology, and health of the ibex are limited and primarily descriptive in nature. In order to bridge this knowledge gap, recent surveys were conducted in the Red Sea State of Sudan during specific periods in 2015, 2016, 2019, and 2021. These surveys have provided valuable insights into the distribution, habitats, and conservation status of the Nubian ibex in the Red Sea State. The findings indicate that the Capra nubiana ibex can be found across more than 17 mountains in the Red Sea State. However, the total population estimate from recent years suggests that there are fewer than 250 individuals remaining. The study has also identified the highest altitude at which the Nubian ibex habitats existed in Sudan's Red Sea State, measuring 1675 m. This area harbors a diverse array of Nubian ibex habitats, encompassing a total of 21 wild plant species from 10 distinct families. The region experiences an average annual temperature ranging from 20.64°C in January to 33.30°C in August. Precipitation occurs in November and December, although it is characterized by unreliability and erratic patterns. It is important to note that these population estimates were obtained through surveys conducted in collaboration with rangers and local communities, and adjustments to survey methods are necessary to accommodate the challenging mountainous terrain, such as utilizing aerial surveys. To effectively address these threats, it is imperative to establish comprehensive long-term monitoring programs.Keywords: Nubian ibex, distribution, population, habitats
Procedia PDF Downloads 86399 Effect of Scattered Vachellia Tortilis (Umbrella Torn) and Vachellia nilotica (Gum Arabic) Trees on Selected Physio-Chemical Properties of the Soil and Yield of Sorghum (Sorghum bicolor (L.) Moench) in Ethiopia
Authors: Sisay Negash, Zebene Asfaw, Kibreselassie Daniel, Michael Zech
Abstract:
A significant portion of the Ethiopian landscape features scattered trees that are deliberately managed in crop fields to enhance soil fertility and crop yield in which the compatibility of crops with these trees varies depending on location, tree species, and annual crop type. This study aimed to examine the effects of scattered Vachellia tortilis and Vachellia nilotica trees on selected physico-chemical properties of the soil, as well as the yield and yield components of sorghum in Ethiopia. Vachellia tortilis and Vachellia nilotica were selected on abundance occurrence and managed in crop fields. A randomized complete block design was used, with a distance from the tree canopy (middle, edge, and outside) as a treatment, and five trees of each species served as replications. Sorghum was planted up to 15 meters in the east, west, south, and north directions from the tree trunk to assess growth and yield. Soil samples were collected from the two tree species, three distance factors, three soil depths(0-20cm, 20-40cm, and 40-60cm), and five replications, totaling 45 samples for each tree species. These samples were analyzed for physical and chemical properties. The results indicated that both V. tortilis and V. nilotica significantly affected soil physico-chemical properties and sorghum yield. Specifically, soil moisture content, EC, total nitrogen, organic carbon, available phosphorus and potassium, CEC, sorghum plant height, panicle length, biomass, and yield decreased with increasing distance from the canopy. Conversely, bulk density and pH increased. Under the canopy, sorghum yield increased by 66.4% and 53.5% for V. tortilis and V. nilotica, respectively, due to higher soil moisture and nutrient availability. The study recommends promoting trees in crop fields, management options for new saplings, and further research on root decomposition and nutrient supply.Keywords: canopy, crop yield, soil nutrient, soil organic matter, yield components
Procedia PDF Downloads 25398 Assessment of Acute Oral Toxicity Studies and Anti Diabetic Activity of Herbal Mediated Nanomedicine
Authors: Shanker Kalakotla, Krishna Mohan Gottumukkala
Abstract:
Diabetes is a metabolic disorder characterized by hyperglycemia, carbohydrates, altered lipids and proteins metabolism. In recent research nanotechnology is a blazing field for the researchers; latterly there has been prodigious excitement in the nanomedicine and nano pharmacological area for the study of silver nanoparticles synthesis using natural products. Biological methods have been used to synthesize silver nanoparticles in presence of medicinally active antidiabetic plants, and this intention made us assess the biologically synthesized silver nanoparticles from the seed extract of Psoralea corylfolia using 1 mM silver nitrate solution. The synthesized herbal mediated silver nanoparticles (HMSNP’s) then subjected to various characterization techniques such as XRD, SEM, EDX, TEM, DLS, UV and FT-IR respectively. In current study, the silver nanoparticles tested for in-vitro anti-diabetic activity and possible toxic effects in healthy female albino mice by following OECD guidelines-425. Herbal mediated silver nanoparticles were successfully obtained from bioreduction of silver nitrate using Psoralea corylifolia plant extract. Silver nanoparticles have been appropriately characterized and confirmed using different types of equipment viz., UV-vis spectroscopy, XRD, FTIR, DLS, SEM and EDX analysis. From the behavioral observations of the study, the female albino mice did not show sedation, respiratory arrest, and convulsions. Test compounds did not cause any mortality at the dose level tested (i.e., 2000 mg/kg body weight) doses till the end of 14 days of observation and were considered safe. It may be concluded that LD50 of the HMSNPs was 2000mg/kg body weight. Since LD50 of the HMSNPs was 2000mg/kg body weight, so the preferred dose range for HMSNPs falls between the levels of 200 and 400 mg/kg. Further In-vivo pharmacological models and biochemical investigations will clearly elucidate the mechanism of action and will be helpful in projecting the currently synthesized silver nanoparticles as a therapeutic target in treating chronic ailments.Keywords: herbal mediated silver nanoparticles, HMSNPs, toxicity of silver nanoparticles, PTP1B in-vitro anti-diabetic assay female albino mice, 425 OECD guidelines
Procedia PDF Downloads 273