Search results for: peak detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4628

Search results for: peak detection

1388 Knowledge of Pap Smear Test and Visual Inspection with Acetic Acid in Cervical Cancer Patients in Manado

Authors: Eric Ng, Freddy W. Wagey, Frank M. M. Wagey

Abstract:

Background: Cervical cancer is the fourth most common cancer in women worldwide and the most common cancer in many low- and middle-income countries. The main causes are the lack of prevention programs and effective therapy, as well as the lack of knowledge about cervical cancer and awareness for early detection. The Pap smear test and visual inspection with acetic acid (VIA) allow the cervical lesion to be detected so that progression to cervical cancer can be avoided. Objective: The purpose of this study was to evaluate the knowledge of Pap smear test and VIA in cervical cancer patients. Methodology: A total of 67 cervical cancer patients in Manado who volunteered to participate in the research were identified as the sample. The data were collected during the month of November 2019-January 2020 with a questionnaire about the respondents' knowledge relating to Pap smear test and VIA. Questionnaire data were analysed using descriptive statistics. Results: Knowledge of pap smear among cervical cancer patients were good in 9 respondents (13.4%), moderate in 20 respondents (29.9%), and bad in 38 respondents (56.7%), whereas the knowledge of VIA was good in 13 respondents (19.4%), moderate in 15 respondents (22.4%), and bad in 39 respondents (58.2%). Conclusion: Majority of cervical cancer patients in Manado still had bad knowledge about Pap smear tests and VIA.

Keywords: cervical cancer, knowledge, pap smear test, visual inspection with acetic acid

Procedia PDF Downloads 144
1387 On the Network Packet Loss Tolerance of SVM Based Activity Recognition

Authors: Gamze Uslu, Sebnem Baydere, Alper K. Demir

Abstract:

In this study, data loss tolerance of Support Vector Machines (SVM) based activity recognition model and multi activity classification performance when data are received over a lossy wireless sensor network is examined. Initially, the classification algorithm we use is evaluated in terms of resilience to random data loss with 3D acceleration sensor data for sitting, lying, walking and standing actions. The results show that the proposed classification method can recognize these activities successfully despite high data loss. Secondly, the effect of differentiated quality of service performance on activity recognition success is measured with activity data acquired from a multi hop wireless sensor network, which introduces high data loss. The effect of number of nodes on the reliability and multi activity classification success is demonstrated in simulation environment. To the best of our knowledge, the effect of data loss in a wireless sensor network on activity detection success rate of an SVM based classification algorithm has not been studied before.

Keywords: activity recognition, support vector machines, acceleration sensor, wireless sensor networks, packet loss

Procedia PDF Downloads 454
1386 Daye™ Tampon as a Tool for Vaginal Sample Collection Towards the Detection of Genital Infections

Authors: Valentina Milanova, Kalina Mihaylova, Iva Lazarova

Abstract:

The mechanisms by which female genital infections are detected are varied and include clinician-collected high vaginal swabs, clinician-collected endocervical swabs, patient-collected vaginal swabs, and first-pass urine samples. Vaginal health screening has chronically low rates of uptake. This highlights the unmet need for a screening tool with comparable diagnostic accuracy which is familiar, convenient and easy to use for people. The Daye™ medical grade tampon offers an alternative to traditional sampling methods with the potential of increasing screening uptake among people previously too embarrassed or busy to attend gynecological appointments. In this white paper, the results of stability studies and a comparative clinical trial are discussed to assess the suitability of the device for the collection of vaginal samples for various clinical assessments. The tampon has demonstrated good sample stability and comparable sample quality compared to a self-collected vaginal swab and a clinician-collected cervical swab.

Keywords: vaginal microbiome, vaginal infections, gynaecological infections, female health, menstrual tampons, in vitro diagnostics

Procedia PDF Downloads 75
1385 Assessment of Exploitation Vulnerability of Quantum Communication Systems with Phase Encryption

Authors: Vladimir V. Nikulin, Bekmurza H. Aitchanov, Olimzhon A. Baimuratov

Abstract:

Quantum communication technology takes advantage of the intrinsic properties of laser carriers, such as very high data rates and low power requirements, to offer unprecedented data security. Quantum processes at the physical layer of encryption are used for signal encryption with very competitive performance characteristics. The ultimate range of applications for QC systems spans from fiber-based to free-space links and from secure banking operations to mobile airborne and space-borne networking where they are subjected to channel distortions. Under practical conditions, the channel can alter the optical wave front characteristics, including its phase. In addition, phase noise of the communication source and photo-detection noises alter the signal to bring additional ambiguity into the measurement process. If quantized values of photons are used to encrypt the signal, exploitation of quantum communication links becomes extremely difficult. In this paper, we present the results of analysis and simulation studies of the effects of noise on phase estimation for quantum systems with different number of encryption bases and operating at different power levels.

Keywords: encryption, phase distortion, quantum communication, quantum noise

Procedia PDF Downloads 534
1384 A Survey of Recognizing of Daily Living Activities in Multi-User Smart Home Environments

Authors: Kulsoom S. Bughio, Naeem K. Janjua, Gordana Dermody, Leslie F. Sikos, Shamsul Islam

Abstract:

The advancement in information and communication technologies (ICT) and wireless sensor networks have played a pivotal role in the design and development of real-time healthcare solutions, mainly targeting the elderly living in health-assistive smart homes. Such smart homes are equipped with sensor technologies to detect and record activities of daily living (ADL). This survey reviews and evaluates existing approaches and techniques based on real-time sensor-based modeling and reasoning in single-user and multi-user environments. It classifies the approaches into three main categories: learning-based, knowledge-based, and hybrid, and evaluates how they handle temporal relations, granularity, and uncertainty. The survey also highlights open challenges across various disciplines (including computer and information sciences and health sciences) to encourage interdisciplinary research for the detection and recognition of ADLs and discusses future directions.

Keywords: daily living activities, smart homes, single-user environment, multi-user environment

Procedia PDF Downloads 119
1383 A Gendered Perspective on the Influences of Transport Infrastructure on User Access

Authors: Ajeni Ari

Abstract:

In addressing gender and transport, considerations of mobility disparities amongst users are important. Public transport (PT) policy and design do not efficiently account for the varied mobility practices between men and women, with literature only recently showing a movement towards gender inclusion in transport. Arrantly, transport policy and designs remain gender-blind to the variation of mobility needs. The global movement towards sustainability highlights the need for expeditious strategies that could mitigate biases within the existing system. At the forefront of such plan of action may, in part, be mandated inclusive infrastructural designs that stimulate user engagement with the transport system. Fundamentally access requires a means or an opportunity to entity, which for PT is an establishment of its physical environment and/or infrastructural design. Its practicality may be utilised with knowledge of shortcomings in tangible or intangible aspects of the service offerings allowing access to opportunities. To inform on existing biases in PT planning and design, this study analyses qualitative data to examine the opinions and lived experiences among transport user in Ireland. Findings show that infrastructural design plays a significant role in users’ engagement with the service. Paramount to accessibility are service provisions that cater to both user interactions and those of their dependents. Apprehension to use the service is more so evident with women in comparison to men, particularly while carrying out household duties and caring responsibilities at peak times or dark hours. Furthermore, limitations are apparent with infrastructural service offerings that do not accommodate the physical (dis)ability of users, especially universal design. There are intersecting factors that impinge on accessibility, e.g., safety and security, yet essentially, infrastructural design is an important influencing parameter to user perceptual conditioning. Additionally, data discloses the need for user intricacies to be factored in transport planning geared towards gender inclusivity, including mobility practices, travel purpose, transit time or location, and system integration.

Keywords: public transport, accessibility, women, transport infrastructure

Procedia PDF Downloads 60
1382 Structural Health Monitoring and Damage Structural Identification Using Dynamic Response

Authors: Reza Behboodian

Abstract:

Monitoring the structural health and diagnosing their damage in the early stages has always been one of the topics of concern. Nowadays, research on structural damage detection methods based on vibration analysis is very extensive. Moreover, these methods can be used as methods of permanent and timely inspection of structures and prevent further damage to structures. Non-destructive methods are the low-cost and economical methods for determining the damage of structures. In this research, a non-destructive method for detecting and identifying the failure location in structures based on dynamic responses resulting from time history analysis is proposed. When the structure is damaged due to the reduction of stiffness, and due to the applied loads, the displacements in different parts of the structure were increased. In the proposed method, the damage position is determined based on the calculation of the strain energy difference in each member of the damaged structure and the healthy structure at any time. Defective members of the structure are indicated by the amount of strain energy relative to the healthy state. The results indicated that the proper accuracy and performance of the proposed method for identifying failure in structures.

Keywords: failure, time history analysis, dynamic response, strain energy

Procedia PDF Downloads 109
1381 Use of Fabric Phase Sorptive Extraction with Gas Chromatography-Mass Spectrometry for the Determination of Organochlorine Pesticides in Various Aqueous and Juice Samples

Authors: Ramandeep Kaur, Ashok Kumar Malik

Abstract:

Fabric Phase Sorptive Extraction (FPSE) combined with Gas chromatography Mass Spectrometry (GCMS) has been developed for the determination of nineteen organochlorine pesticides in various aqueous samples. The method consolidates the features of sol-gel derived microextraction sorbents with rich surface chemistry of cellulose fabric substrate which could directly extract sample from complex sample matrices and incredibly improve the operation with decreased pretreatment time. Some vital parameters such as kind and volume of extraction solvent and extraction time were examinedand optimized. Calibration curves were obtained in the concentration range 0.5-500 ng/mL. Under the optimum conditions, the limits of detection (LODs) were in the range 0.033 ng/mL to 0.136 ng/mL. The relative standard deviations (RSDs) for extraction of 10 ng/mL 0f OCPs were less than 10%. The developed method has been applied for the quantification of these compounds in aqueous and fruit juice samples. The results obtained proved the present method to be rapid and feasible for the determination of organochlorine pesticides in aqueous samples.

Keywords: fabric phase sorptive extraction, gas chromatography-mass spectrometry, organochlorine pesticides, sample pretreatment

Procedia PDF Downloads 464
1380 3D Modeling of Flow and Sediment Transport in Tanks with the Influence of Cavity

Authors: A. Terfous, Y. Liu, A. Ghenaim, P. A. Garambois

Abstract:

With increasing urbanization worldwide, it is crucial to sustainably manage sediment flows in urban networks and especially in stormwater detention basins. One key aspect is to propose optimized designs for detention tanks in order to best reduce flood peak flows and in the meantime settle particles. It is, therefore, necessary to understand complex flows patterns and sediment deposition conditions in stormwater detention basins. The aim of this paper is to study flow structure and particle deposition pattern for a given tank geometry in view to control and maximize sediment deposition. Both numerical simulation and experimental works were done to investigate the flow and sediment distribution in a storm tank with a cavity. As it can be indicated, the settle distribution of the particle in a rectangular tank is mainly determined by the flow patterns and the bed shear stress. The flow patterns in a rectangular tank differ with different geometry, entrance flow rate and the water depth. With the changing of flow patterns, the bed shear stress will change respectively, which also play an influence on the particle settling. The accumulation of the particle in the bed changes the conditions at the bottom, which is ignored in the investigations, however it worth much more attention, the influence of the accumulation of the particle on the sedimentation should be important. The approach presented here is based on the resolution of the Reynolds averaged Navier-Stokes equations to account for turbulent effects and also a passive particle transport model. An analysis of particle deposition conditions is presented in this paper in terms of flow velocities and turbulence patterns. Then sediment deposition zones are presented thanks to the modeling with particle tracking method. It is shown that two recirculation zones seem to significantly influence sediment deposition. Due to the possible overestimation of particle trap efficiency with standard wall functions and stick conditions, further investigations seem required for basal boundary conditions based on turbulent kinetic energy and shear stress. These observations are confirmed by experimental investigations processed in the laboratory.

Keywords: storm sewers, sediment deposition, numerical simulation, experimental investigation

Procedia PDF Downloads 297
1379 Delineating Floodplain along the Nasia River in Northern Ghana Using HAND Contour

Authors: Benjamin K. Ghansah, Richard K. Appoh, Iliya Nababa, Eric K. Forkuo

Abstract:

The Nasia River is an important source of water for domestic and agricultural purposes to the inhabitants of its catchment. Major farming activities takes place within the floodplain of the river and its network of tributaries. The actual inundation extent of the river system is; however, unknown. Reasons for this lack of information include financial constraints and inadequate human resources as flood modelling is becoming increasingly complex by the day. Knowledge of the inundation extent will help in the assessment of risk posed by the annual flooding of the river, and help in the planning of flood recession agricultural activities. This study used a simple terrain based algorithm, Height Above Nearest Drainage (HAND), to delineate the floodplain of the Nasia River and its tributaries. The HAND model is a drainage normalized digital elevation model, which has its height reference based on the local drainage systems rather than the average mean sea level (AMSL). The underlying principle guiding the development of the HAND model is that hillslope flow paths behave differently when the reference gradient is to the local drainage network as compared to the seaward gradient. The new terrain model of the catchment was created using the NASA’s SRTM Digital Elevation Model (DEM) 30m as the only data input. Contours (HAND Contour) were then generated from the normalized DEM. Based on field flood inundation survey, historical information of flooding of the area as well as satellite images, a HAND Contour of 2m was found to best correlates with the flood inundation extent of the river and its tributaries. A percentage accuracy of 75% was obtained when the surface area created by the 2m contour was compared with surface area of the floodplain computed from a satellite image captured during the peak flooding season in September 2016. It was estimated that the flooding of the Nasia River and its tributaries created a floodplain area of 1011 km².

Keywords: digital elevation model, floodplain, HAND contour, inundation extent, Nasia River

Procedia PDF Downloads 432
1378 Track Initiation Method Based on Multi-Algorithm Fusion Learning of 1DCNN And Bi-LSTM

Authors: Zhe Li, Aihua Cai

Abstract:

Aiming at the problem of high-density clutter and interference affecting radar detection target track initiation in ECM and complex radar mission, the traditional radar target track initiation method has been difficult to adapt. To this end, we propose a multi-algorithm fusion learning track initiation algorithm, which transforms the track initiation problem into a true-false track discrimination problem, and designs an algorithm based on 1DCNN(One-Dimensional CNN)combined with Bi-LSTM (Bi-Directional Long Short-Term Memory )for fusion classification. The experimental dataset consists of real trajectories obtained from a certain type of three-coordinate radar measurements, and the experiments are compared with traditional trajectory initiation methods such as rule-based method, logical-based method and Hough-transform-based method. The simulation results show that the overall performance of the multi-algorithm fusion learning track initiation algorithm is significantly better than that of the traditional method, and the real track initiation rate can be effectively improved under high clutter density with the average initiation time similar to the logical method.

Keywords: track initiation, multi-algorithm fusion, 1DCNN, Bi-LSTM

Procedia PDF Downloads 55
1377 Quality Assessment of the Essential Oil from Eucalyptus globulus Labill of Blida (Algeria) Origin

Authors: M. A. Ferhat, M. N. Boukhatem, F. Chemat

Abstract:

Eucalyptus essential oil is extracted from Eucalyptus globulus of the Myrtaceae family and is also known as Tasmanian blue gum or blue gum. Despite the reputation earned by aromatic and medicinal plants of Algeria. The objectives of this study were: (i) the extraction of the essential oil from the leaves of Eucalyptus globulus Labill., Myrtaceae grown in Algeria, and the quantification of the yield thereof, (ii) the identification and quantification of the compounds in the essential oil obtained, and (iii) the determination of physical and chemical properties of EGEO. The chemical constituents of Eucalyptus globulus essential oil (EGEO) of Blida origin has not previously been investigated. Thus, the present study has been conducted for the determination of chemical constituents and different physico-chemical properties of the EGEO. Chemical composition of the EGEO, grown in Algeria, was analysed by Gas Chromatography-Mass Spectrometry. The chemical components were identified on the basis of Retention Time and comparing with mass spectral database of standard compounds. Relative amounts of detected compounds were calculated on the basis of GC peak areas. Fresh leaves of E. globulus on steam distillation yielded 0.96% (v/w) of essential oil whereas the analysis resulted in the identification of a total of 11 constituents, 1.8 cineole (85.8%), α-pinene (7.2%), and β-myrcene (1.5%) being the main components. Other notable compounds identified in the oil were β-pinene, limonene, α-phellandrene, γ-terpinene, linalool, pinocarveol, terpinen-4-ol, and α-terpineol. The physical properties such as specific gravity, refractive index and optical rotation and the chemical properties such as saponification value, acid number and iodine number of the EGEO were examined. The oil extracted has been analyzed to have 1.4602-1.4623 refractive index value, 0.918-0.919 specific gravity (sp.gr.), +9 - +10 optical rotation that satisfy the standards stipulated by European Pharmacopeia. All the physical and chemical parameters were in the range indicated by the ISO standards. Our findings will help to access the quality of the Eucalyptus oil which is important in the production of high value essential oils that will help to improve the economic condition of the community as well as the nation.

Keywords: chemical composition, essential oil, eucalyptol, gas chromatography

Procedia PDF Downloads 297
1376 Deep Cryogenic Treatment With Subsequent Aging Applied to Martensitic Stainless Steel: Evaluation of Hardness, Tenacity and Microstructure

Authors: Victor Manuel Alcántara Alza

Abstract:

The way in which the application of the deep cryogenic treatment DCT(-196°C) affects, applied with subsequent aging, was investigated, regarding the mechanical properties of hardness, toughness and microstructure, applied to martensitic stainless steels, with the aim of establishing a different methodology compared to the traditional DCT cryogenic treatment with subsequent tempering. For this experimental study, a muffle furnace was used, first subjecting the specimens to deep cryogenization in a liquid Nitrogen bath/4h, after being previously austenitized at the following temperatures: 1020-1030-1040-1050 (°C) / 1 hour; and then tempered in oil. A first group of cryogenic samples were subjected to subsequent aging at 150°C, with immersion times: 2.5 -5- 10 - 20 - 50 – 100 (h). The next group was subjected to subsequent tempering at temperatures: 480-500-510-520-530-540 (°C)/ 2h. The hardness tests were carried out under standards, using a Universal Durometer, and the readings were made on the HRC scale. The Impact Resistance tests were carried out in a Charpy machine following the ASTM E 23 – 93ª standard. Measurements were taken in joules. Microscopy was performed at the optical level using a 1000X microscope. It was found: For the entire aging interval, the samples austenitized at 1050°C present greater hardness than austenitized at 1040°C, with the maximum peak aged being at 30h. In all cases, the aged samples exceed the hardness of the tempered samples, even in their minimum values. In post-tempered samples, the tempering temperature hardly have effect on the impact strength of material. In the Cryogenic Treatment: DCT + subsequent aging, the maximum hardness value (58.7 HRC) is linked to an impact toughness value (54J) obtained with aging time of 39h, which is considered an optimal condition. The higher hardness of steel after the DCT treatment is attributed to the transformation of retained austenite into martensite. The microstructure is composed mainly of lath martensite; and the original grain size of the austenite can be appreciated. The choice of the combination: Hardness-toughness, is subject to the required service conditions of steel.

Keywords: deep cryogenic treatment; aged precipitation; martensitic steels;, mechanical properties; martensitic steels, hardness, carbides precipitaion

Procedia PDF Downloads 60
1375 Spatial Variability of Brahmaputra River Flow Characteristics

Authors: Hemant Kumar

Abstract:

Brahmaputra River is known according to the Hindu mythology the son of the Lord Brahma. According to this name, the river Brahmaputra creates mass destruction during the monsoon season in Assam, India. It is a state situated in North-East part of India. This is one of the essential states out of the seven countries of eastern India, where almost all entire Brahmaputra flow carried out. The other states carry their tributaries. In the present case study, the spatial analysis performed in this specific case the number of MODIS data are acquired. In the method of detecting the change, the spray content was found during heavy rainfall and in the flooded monsoon season. By this method, particularly the analysis over the Brahmaputra outflow determines the flooded season. The charged particle-associated in aerosol content genuinely verifies the heavy water content below the ground surface, which is validated by trend analysis through rainfall spectrum data. This is confirmed by in-situ sampled view data from a different position of Brahmaputra River. Further, a Hyperion Hyperspectral 30 m resolution data were used to scan the sediment deposits, which is also confirmed by in-situ sampled view data from a different position.

Keywords: aerosol, change detection, spatial analysis, trend analysis

Procedia PDF Downloads 129
1374 An Experimental Investigation on Explosive Phase Change of Liquefied Propane During a Bleve Event

Authors: Frederic Heymes, Michael Albrecht Birk, Roland Eyssette

Abstract:

Boiling Liquid Expanding Vapor Explosion (BLEVE) has been a well know industrial accident for over 6 decades now, and yet it is still poorly predicted and avoided. BLEVE is created when a vessel containing a pressure liquefied gas (PLG) is engulfed in a fire until the tank rupture. At this time, the pressure drops suddenly, leading the liquid to be in a superheated state. The vapor expansion and the violent boiling of the liquid produce several shock waves. This works aimed at understanding the contribution of vapor ad liquid phases in the overpressure generation in the near field. An experimental work was undertaken at a small scale to reproduce realistic BLEVE explosions. Key parameters were controlled through the experiments, such as failure pressure, fluid mass in the vessel, and weakened length of the vessel. Thirty-four propane BLEVEs were then performed to collect data on scenarios similar to common industrial cases. The aerial overpressure was recorded all around the vessel, and also the internal pressure changed during the explosion and ground loading under the vessel. Several high-speed cameras were used to see the vessel explosion and the blast creation by shadowgraph. Results highlight how the pressure field is anisotropic around the cylindrical vessel and highlights a strong dependency between vapor content and maximum overpressure from the lead shock. The time chronology of events reveals that the vapor phase is the main contributor to the aerial overpressure peak. A prediction model is built upon this assumption. Secondary flow patterns are observed after the lead. A theory on how the second shock observed in experiments forms is exposed thanks to an analogy with numerical simulation. The phase change dynamics are also discussed thanks to a window in the vessel. Ground loading measurements are finally presented and discussed to give insight into the order of magnitude of the force.

Keywords: phase change, superheated state, explosion, vapor expansion, blast, shock wave, pressure liquefied gas

Procedia PDF Downloads 55
1373 Adaptive Envelope Protection Control for the below and above Rated Regions of Wind Turbines

Authors: Mustafa Sahin, İlkay Yavrucuk

Abstract:

This paper presents a wind turbine envelope protection control algorithm that protects Variable Speed Variable Pitch (VSVP) wind turbines from damage during operation throughout their below and above rated regions, i.e. from cut-in to cut-out wind speed. The proposed approach uses a neural network that can adapt to turbines and their operating points. An algorithm monitors instantaneous wind and turbine states, predicts a wind speed that would push the turbine to a pre-defined envelope limit and, when necessary, realizes an avoidance action. Simulations are realized using the MS Bladed Wind Turbine Simulation Model for the NREL 5 MW wind turbine equipped with baseline controllers. In all simulations, through the proposed algorithm, it is observed that the turbine operates safely within the allowable limit throughout the below and above rated regions. Two example cases, adaptations to turbine operating points for the below and above rated regions and protections are investigated in simulations to show the capability of the proposed envelope protection system (EPS) algorithm, which reduces excessive wind turbine loads and expectedly increases the turbine service life.

Keywords: adaptive envelope protection control, limit detection and avoidance, neural networks, ultimate load reduction, wind turbine power control

Procedia PDF Downloads 114
1372 Study of Early Diagnosis of Oral Cancer by Non-invasive Saliva-On-Chip Device: A Microfluidic Approach

Authors: Ragini Verma, J. Ponmozhi

Abstract:

The oral cavity is home to a wide variety of microorganisms that lead to various diseases and even oral cancer. Despite advancements in the diagnosis and detection at the initial phase, the situation hasn’t improved much. Saliva-on-a-chip is an innovative point-of-care platform for early diagnosis of oral cancer and other oral diseases in live and dead cells using a microfluidic device with a current perspective. Some of the major challenges, like real-time imaging of the oral cancer microbes, high throughput values, obtaining a high spatiotemporal resolution, etc. were faced by the scientific community. Integrated microfluidics and microscopy provide powerful approaches to studying the dynamics of oral pathology, microbe interaction, and the oral microenvironment. Here we have developed a saliva-on-chip (salivary microbes) device to monitor the effect on oral cancer. Adhesion of cancer-causing F. nucleatum; subsp. Nucleatum and Prevotella intermedia in the device was observed. We also observed a significant reduction in the oral cancer growth rate when mortality and morbidity were induced. These results show that this approach has the potential to transform the oral cancer and early diagnosis study.

Keywords: microfluidic device, oral cancer microbes, early diagnosis, saliva-on-chip

Procedia PDF Downloads 68
1371 Understanding the Impact of Spatial Light Distribution on Object Identification in Low Vision: A Pilot Psychophysical Study

Authors: Alexandre Faure, Yoko Mizokami, éRic Dinet

Abstract:

These recent years, the potential of light in assisting visually impaired people in their indoor mobility has been demonstrated by different studies. Implementing smart lighting systems for selective visual enhancement, especially designed for low-vision people, is an approach that breaks with the existing visual aids. The appearance of the surface of an object is significantly influenced by the lighting conditions and the constituent materials of the objects. Appearance of objects may appear to be different from expectation. Therefore, lighting conditions lead to an important part of accurate material recognition. The main objective of this work was to investigate the effect of the spatial distribution of light on object identification in the context of low vision. The purpose was to determine whether and what specific lighting approaches should be preferred for visually impaired people. A psychophysical experiment was designed to study the ability of individuals to identify the smallest cube of a pair under different lighting diffusion conditions. Participants were divided into two distinct groups: a reference group of observers with normal or corrected-to-normal visual acuity and a test group, in which observers were required to wear visual impairment simulation glasses. All participants were presented with pairs of cubes in a "miniature room" and were instructed to estimate the relative size of the two cubes. The miniature room replicates real-life settings, adorned with decorations and separated from external light sources by black curtains. The correlated color temperature was set to 6000 K, and the horizontal illuminance at the object level at approximately 240 lux. The objects presented for comparison consisted of 11 white cubes and 11 black cubes of different sizes manufactured with a 3D printer. Participants were seated 60 cm away from the objects. Two different levels of light diffuseness were implemented. After receiving instructions, participants were asked to judge whether the two presented cubes were the same size or if one was smaller. They provided one of five possible answers: "Left one is smaller," "Left one is smaller but unsure," "Same size," "Right one is smaller," or "Right one is smaller but unsure.". The method of constant stimuli was used, presenting stimulus pairs in a random order to prevent learning and expectation biases. Each pair consisted of a comparison stimulus and a reference cube. A psychometric function was constructed to link stimulus value with the frequency of correct detection, aiming to determine the 50% correct detection threshold. Collected data were analyzed through graphs illustrating participants' responses to stimuli, with accuracy increasing as the size difference between cubes grew. Statistical analyses, including 2-way ANOVA tests, showed that light diffuseness had no significant impact on the difference threshold, whereas object color had a significant influence in low vision scenarios. The first results and trends derived from this pilot experiment clearly and strongly suggest that future investigations could explore extreme diffusion conditions to comprehensively assess the impact of diffusion on object identification. For example, the first findings related to light diffuseness may be attributed to the range of manipulation, emphasizing the need to explore how other lighting-related factors interact with diffuseness.

Keywords: Lighting, Low Vision, Visual Aid, Object Identification, Psychophysical Experiment

Procedia PDF Downloads 45
1370 Evaluation of Video Quality Metrics and Performance Comparison on Contents Taken from Most Commonly Used Devices

Authors: Pratik Dhabal Deo, Manoj P.

Abstract:

With the increasing number of social media users, the amount of video content available has also significantly increased. Currently, the number of smartphone users is at its peak, and many are increasingly using their smartphones as their main photography and recording devices. There have been a lot of developments in the field of Video Quality Assessment (VQA) and metrics like VMAF, SSIM etc. are said to be some of the best performing metrics, but the evaluation of these metrics is dominantly done on professionally taken video contents using professional tools, lighting conditions etc. No study particularly pinpointing the performance of the metrics on the contents taken by users on very commonly available devices has been done. Datasets that contain a huge number of videos from different high-end devices make it difficult to analyze the performance of the metrics on the content from most used devices even if they contain contents taken in poor lighting conditions using lower-end devices. These devices face a lot of distortions due to various factors since the spectrum of contents recorded on these devices is huge. In this paper, we have presented an analysis of the objective VQA metrics on contents taken only from most used devices and their performance on them, focusing on full-reference metrics. To carry out this research, we created a custom dataset containing a total of 90 videos that have been taken from three most commonly used devices, and android smartphone, an IOS smartphone and a DSLR. On the videos taken on each of these devices, the six most common types of distortions that users face have been applied on addition to already existing H.264 compression based on four reference videos. These six applied distortions have three levels of degradation each. A total of the five most popular VQA metrics have been evaluated on this dataset and the highest values and the lowest values of each of the metrics on the distortions have been recorded. Finally, it is found that blur is the artifact on which most of the metrics didn’t perform well. Thus, in order to understand the results better the amount of blur in the data set has been calculated and an additional evaluation of the metrics was done using HEVC codec, which is the next version of H.264 compression, on the camera that proved to be the sharpest among the devices. The results have shown that as the resolution increases, the performance of the metrics tends to become more accurate and the best performing metric among them is VQM with very few inconsistencies and inaccurate results when the compression applied is H.264, but when the compression is applied is HEVC, SSIM and VMAF have performed significantly better.

Keywords: distortion, metrics, performance, resolution, video quality assessment

Procedia PDF Downloads 187
1369 Discriminant Function Based on Circulating Tumor Cells for Accurate Diagnosis of Metastatic Breast Cancer

Authors: Hatem A. El-Mezayen, Ahmed Abdelmajeed, Fatehya Metwally, Usama Elsaly, Salwa Atef

Abstract:

Tumor metastasis involves the dissemination of malignant cells into the basement membrane and vascular system contributes to the circulating pool of these markers. In this context our aim has been focused on development of a non-invasive. Circulating tumor cells (CTCs) represent a unique liquid biopsy carrying comprehensive biological information of the primary tumor. Herein, we sought to develop a novel score based on the combination of the most significant CTCs biomarkers with and routine laboratory tests for accurate detection of metastatic breast cancer. Methods: Cytokeratin 18 (CK18), Cytokeratin 19 (CK19), and CA15.3 were assayed in metastatic breast cancer (MBC) patients (75), non-MBC patients (50) and healthy control (20). Results: Areas under receiving operating curve (AUCs) were calculated and used for construction on novel score. A novel score named MBC-CTCs = CA15.3 (U/L) × 0.08 + CK 18 % × 2.9 + CK19 × 3.1– 510. That function correctly classified 87% of metastatic breast cancer at cut-off value = 0.55. (i.e great than 0.55 indicates patients with metastatic breast cancer and less than 0.55 indicates patients with non-metastatic breast cancer). Conclusion: MBC-CTCs is a novel, non-invasive and simple can applied to discriminate patients with metastatic breast cancer.

Keywords: metastatic breast cancer, circulating tumor cells, cytokeratin, EpiCam

Procedia PDF Downloads 196
1368 Neural Correlates of Diminished Humor Comprehension in Schizophrenia: A Functional Magnetic Resonance Imaging Study

Authors: Przemysław Adamczyk, Mirosław Wyczesany, Aleksandra Domagalik, Artur Daren, Kamil Cepuch, Piotr Błądziński, Tadeusz Marek, Andrzej Cechnicki

Abstract:

The present study aimed at evaluation of neural correlates of humor comprehension impairments observed in schizophrenia. To investigate the nature of this deficit in schizophrenia and to localize cortical areas involved in humor processing we used functional magnetic resonance imaging (fMRI). The study included chronic schizophrenia outpatients (SCH; n=20), and sex, age and education level matched healthy controls (n=20). The task consisted of 60 stories (setup) of which 20 had funny, 20 nonsensical and 20 neutral (not funny) punchlines. After the punchlines were presented, the participants were asked to indicate whether the story was comprehensible (yes/no) and how funny it was (1-9 Likert-type scale). fMRI was performed on a 3T scanner (Magnetom Skyra, Siemens) using 32-channel head coil. Three contrasts in accordance with the three stages of humor processing were analyzed in both groups: abstract vs neutral stories - incongruity detection; funny vs abstract - incongruity resolution; funny vs neutral - elaboration. Additionally, parametric modulation analysis was performed using both subjective ratings separately in order to further differentiate the areas involved in incongruity resolution processing. Statistical analysis for behavioral data used U Mann-Whitney test and Bonferroni’s correction, fMRI data analysis utilized whole-brain voxel-wise t-tests with 10-voxel extent threshold and with Family Wise Error (FWE) correction at alpha = 0.05, or uncorrected at alpha = 0.001. Between group comparisons revealed that the SCH subjects had attenuated activation in: the right superior temporal gyrus in case of irresolvable incongruity processing of nonsensical puns (nonsensical > neutral); the left medial frontal gyrus in case of incongruity resolution processing of funny puns (funny > nonsensical) and the interhemispheric ACC in case of elaboration of funny puns (funny > neutral). Additionally, the SCH group revealed weaker activation during funniness ratings in the left ventro-medial prefrontal cortex, the medial frontal gyrus, the angular and the supramarginal gyrus, and the right temporal pole. In comprehension ratings the SCH group showed suppressed activity in the left superior and medial frontal gyri. Interestingly, these differences were accompanied by protraction of time in both types of rating responses in the SCH group, a lower level of comprehension for funny punchlines and a higher funniness for absurd punchlines. Presented results indicate that, in comparison to healthy controls, schizophrenia is characterized by difficulties in humor processing revealed by longer reaction times, impairments of understanding jokes and finding nonsensical punchlines more funny. This is accompanied by attenuated brain activations, especially in the left fronto-parietal and the right temporal cortices. Disturbances of the humor processing seem to be impaired at the all three stages of the humor comprehension process, from incongruity detection, through its resolution to elaboration. The neural correlates revealed diminished neural activity of the schizophrenia brain, as compared with the control group. The study was supported by the National Science Centre, Poland (grant no 2014/13/B/HS6/03091).

Keywords: communication skills, functional magnetic resonance imaging, humor, schizophrenia

Procedia PDF Downloads 196
1367 Distributed Processing for Content Based Lecture Video Retrieval on Hadoop Framework

Authors: U. S. N. Raju, Kothuri Sai Kiran, Meena G. Kamal, Vinay Nikhil Pabba, Suresh Kanaparthi

Abstract:

There is huge amount of lecture video data available for public use, and many more lecture videos are being created and uploaded every day. Searching for videos on required topics from this huge database is a challenging task. Therefore, an efficient method for video retrieval is needed. An approach for automated video indexing and video search in large lecture video archives is presented. As the amount of video lecture data is huge, it is very inefficient to do the processing in a centralized computation framework. Hence, Hadoop Framework for distributed computing for Big Video Data is used. First, step in the process is automatic video segmentation and key-frame detection to offer a visual guideline for the video content navigation. In the next step, we extract textual metadata by applying video Optical Character Recognition (OCR) technology on key-frames. The OCR and detected slide text line types are adopted for keyword extraction, by which both video- and segment-level keywords are extracted for content-based video browsing and search. The performance of the indexing process can be improved for a large database by using distributed computing on Hadoop framework.

Keywords: video lectures, big video data, video retrieval, hadoop

Procedia PDF Downloads 510
1366 Method Validation for Determining Platinum and Palladium in Catalysts Using Inductively Coupled Plasma Optical Emission Spectrometry

Authors: Marin Senila, Oana Cadar, Thorsten Janisch, Patrick Lacroix-Desmazes

Abstract:

The study presents the analytical capability and validation of a method based on microwave-assisted acid digestion for quantitative determination of platinum and palladium in catalysts using inductively coupled plasma optical emission spectrometry (ICP-OES). In order to validate the method, the main figures of merit such as limit of detection and limit of quantification, precision and accuracy were considered and the measurement uncertainty was estimated based on the bottom-up approach according to the international guidelines of ISO/IEC 17025. Limit of detections, estimated from blank signal using 3 s criterion, were 3.0 mg/kg for Pt and respectively 3.6 mg/kg for Pd, while limits of quantification were 9.0 mg/kg for Pt and respectively 10.8 mg/kg for Pd. Precisions, evaluated as standard deviations of repeatability (n=5 parallel samples), were less than 10% for both precious metals. Accuracies of the method, verified by recovery estimation certified reference material NIST SRM 2557 - pulverized recycled monolith, were 99.4 % for Pt and 101% for Pd. The obtained limit of quantifications and accuracy were satisfactory for the intended purpose. The paper offers all the steps necessary to validate the determination method for Pt and Pd in catalysts using inductively coupled plasma optical emission spectrometry.

Keywords: catalyst analysis, ICP-OES, method validation, platinum, palladium

Procedia PDF Downloads 152
1365 Selective Effect of Occipital Alpha Transcranial Alternating Current Stimulation in Perception and Working Memory

Authors: Andreina Giustiniani, Massimiliano Oliveri

Abstract:

Rhythmic activity in different frequencies could subserve distinct functional roles during visual perception and visual mental imagery. In particular, alpha band activity is thought to play a role in active inhibition of both task-irrelevant regions and processing of non-relevant information. In the present blind placebo-controlled study we applied alpha transcranial alternating current stimulation (tACS) in the occipital cortex both during a basic visual perception and a visual working memory task. To understand if the role of alpha is more related to a general inhibition of distractors or to an inhibition of task-irrelevant regions, we added a non visual distraction to both the tasks.Sixteen adult volunteers performed both a simple perception and a working memory task during 10 Hz tACS. The electrodes were placed over the left and right occipital cortex, the current intensity was 1 mA peak-to-baseline. Sham stimulation was chosen as control condition and in order to elicit the skin sensation similar to the real stimulation, electrical stimulation was applied for short periods (30 s) at the beginning of the session and then turned off. The tasks were split in two sets, in one set distracters were included and in the other set, there were no distracters. Motor interference was added by changing the answer key after subjects completed the first set of trials.The results show that alpha tACS improves working memory only when no motor distracters are added, suggesting a role of alpha tACS in inhibiting non-relevant regions rather than in a general inhibition of distractors. Additionally, we found that alpha tACS does not affect accuracy and hit rates during the visual perception task. These results suggest that alpha activity in the occipital cortex plays a different role in perception and working memory and it could optimize performance in tasks in which attention is internally directed, as in this working memory paradigm, but only when there is not motor distraction. Moreover, alpha tACS improves working memory performance by means of inhibition of task-irrelevant regions while it does not affect perception.

Keywords: alpha activity, interference, perception, working memory

Procedia PDF Downloads 232
1364 Effect of Acoustical Performance Detection and Evaluation in Music Practice Rooms on Teaching

Authors: Hsu-Hui Cheng, Peng-Chian Chen, Shu-Yuan Chang, Jie-Ying Zhang

Abstract:

Activities in the music practice rooms range from playing, listening, rehearsing to music performing. The good room acoustics in a music practice room enables a music teacher to teach more effectively subtle concepts such as intonation, articulation, balance, dynamics and tone production. A poor acoustical environment would deeply affect the development of basic musical skills of music students. Practicing in the music practice room is an essential daily activity for music students; consequently, music practice rooms are very important facilities in a music school or department. The purpose of this survey is to measure and analyze the acoustic condition of piano practice rooms at the department of music in Zhaoqing University and accordingly apply a more effective teaching method to music students. The volume of the music practice room is approximately 25 m³, and it has existing curtains and some wood hole sound-absorbing panels. When all small music practice rooms are in constant use for teaching, it was found that the values of the background noise at 45, 46, 42, 46, 45 dB(A) in the small music practice room ( the doors and windows were close), respectively. The noise levels in the small music practice room to higher than standard levels (35dB(A)).

Keywords: acoustical performance, music practice room, noise level, piano room

Procedia PDF Downloads 209
1363 Synthesis and Characterization of Mass Catalysts Based on Cobalt and Molybdenum

Authors: Nassira Ouslimani

Abstract:

The electronic structure of transition metals gives them many catalytic possibilities in many types of reactions, particularly cobalt and molybdenum. It is in this context that this study is part of the synthesis and characterization of mass catalysts based on cobalt and molybdenum Co1₋xMoO4 (X=0 and X=0.5 and X=1). The two catalysts were prepared by Co-precipitation using ammonia as a precipitating agent and one by precipitation. The samples obtained were analyzed by numerous physic-chemical analysis techniques: ATG-ATD-DSC, DRX-HT, SEM-EDX, and the elemental composition of the catalysts was verified by SAA as well as the FTIR. The ATG-DSC shows a mass loss for all the catalysts of approximately 8%, corresponding to the loss of water and the decomposition of nitrates. The DRX-HT analysis allows the detection of the two CoMoO4 phases with diffraction peaks which increase with the increase in temperature. The results of the FTIR analysis made it possible to highlight the vibration modes of the bonds of the structure of the prepared catalysts. The SEM images of the solids show very different textures with almost homogeneous surfaces with a more regular particle size distribution and a more defined grain shape. The EDX analysis showed the presence of the elements Co, Mo, and O in proportions very close to the nominal proportions. Finally, the actual composition, evaluated by SAA, is close to the theoretical composition fixed during the preparation. This testifies to the good conditions for the preparation of the catalysts by the co-precipitation method.

Keywords: catalytic, molybdenum, coprecipitation, cobalt, ammonia

Procedia PDF Downloads 66
1362 Pattern Recognition Approach Based on Metabolite Profiling Using In vitro Cancer Cell Line

Authors: Amanina Iymia Jeffree, Reena Thriumani, Mohammad Iqbal Omar, Ammar Zakaria, Yumi Zuhanis Has-Yun Hashim, Ali Yeon Md Shakaff

Abstract:

Metabolite profiling is a strategy to be approached in the pattern recognition method focused on three types of cancer cell line that driving the most to death specifically lung, breast, and colon cancer. The purpose of this study was to discriminate the VOCs pattern among cancerous and control group based on metabolite profiling. The sampling was executed utilizing the cell culture technique. All culture flasks were incubated till 72 hours and data collection started after 24 hours. Every running sample took 24 minutes to be completed accordingly. The comparative metabolite patterns were identified by the implementation of headspace-solid phase micro-extraction (HS-SPME) sampling coupled with gas chromatography-mass spectrometry (GCMS). The optimizations of the main experimental variables such as oven temperature and time were evaluated by response surface methodology (RSM) to get the optimal condition. Volatiles were acknowledged through the National Institute of Standards and Technology (NIST) mass spectral database and retention time libraries. To improve the reliability of significance, it is of crucial importance to eliminate background noise which data from 3rd minutes to 17th minutes were selected for statistical analysis. Targeted metabolites, of which were annotated as known compounds with the peak area greater than 0.5 percent were highlighted and subsequently treated statistically. Volatiles produced contain hundreds to thousands of compounds; therefore, it will be optimized by chemometric analysis, such as principal component analysis (PCA) as a preliminary analysis before subjected to a pattern classifier for identification of VOC samples. The volatile organic compound profiling has shown to be significantly distinguished among cancerous and control group based on metabolite profiling.

Keywords: in vitro cancer cell line, metabolite profiling, pattern recognition, volatile organic compounds

Procedia PDF Downloads 346
1361 Pitch Processing in Autistic Mandarin-Speaking Children with Hypersensitivityand Hypo-Sensitivity: An Event-Related Potential Study

Authors: Kaiying Lai, Suiping Wang, Luodi Yu, Yang Zhang, Pengmin Qin

Abstract:

Abnormalities in auditory processing are one of the most commonly reported sensory processing impairments in children with Autism Spectrum Disorder (ASD). Tonal language speaker with autism has enhanced neural sensitivity to pitch changes in pure tone. However, not all children with ASD exhibit the same performance in pitch processing due to different auditory sensitivity. The current study aimed to examine auditory change detection in ASD with different auditory sensitivity. K-means clustering method was adopted to classify ASD participants into two groups according to the auditory processing scores of the Sensory Profile, 11 autism with hypersensitivity (mean age = 11.36 ; SD = 1.46) and 18 with hypo-sensitivity (mean age = 10.64; SD = 1.89) participated in a passive auditory oddball paradigm designed for eliciting mismatch negativity (MMN) under the pure tone condition. Results revealed that compared to hypersensitive autism, the children with hypo-sensitivity showed smaller MMN responses to pure tone stimuli. These results suggest that ASD with auditory hypersensitivity and hypo-sensitivity performed differently in processing pure tone, so neural responses to pure tone hold promise for predicting the auditory sensitivity of ASD and targeted treatment in children with ASD.

Keywords: ASD, sensory profile, pitch processing, mismatch negativity, MMN

Procedia PDF Downloads 366
1360 A Different Approach to Smart Phone-Based Wheat Disease Detection System Using Deep Learning for Ethiopia

Authors: Nathenal Thomas Lambamo

Abstract:

Based on the fact that more than 85% of the labor force and 90% of the export earnings are taken by agriculture in Ethiopia and it can be said that it is the backbone of the overall socio-economic activities in the country. Among the cereal crops that the agriculture sector provides for the country, wheat is the third-ranking one preceding teff and maize. In the present day, wheat is in higher demand related to the expansion of industries that use them as the main ingredient for their products. The local supply of wheat for these companies covers only 35 to 40% and the rest 60 to 65% percent is imported on behalf of potential customers that exhaust the country’s foreign currency reserves. The above facts show that the need for this crop in the country is too high and in reverse, the productivity of the crop is very less because of these reasons. Wheat disease is the most devastating disease that contributes a lot to this unbalance in the demand and supply status of the crop. It reduces both the yield and quality of the crop by 27% on average and up to 37% when it is severe. This study aims to detect the most frequent and degrading wheat diseases, Septoria and Leaf rust, using the most efficiently used subset of machine learning technology, deep learning. As a state of the art, a deep learning class classification technique called Convolutional Neural Network (CNN) has been used to detect diseases and has an accuracy of 99.01% is achieved.

Keywords: septoria, leaf rust, deep learning, CNN

Procedia PDF Downloads 56
1359 Analysis of Microbiological Quality and Detection of Antibiotic Residue in Bovine Raw Milk Produced in Blida State, Algeria

Authors: M. N. Boukhatem, M. A. Ferhat, K. Mansour

Abstract:

Bovine raw milk represents a favorable environment for the growth of several food-spoilage strains and some pathogens. It must meet stringent standards to ensure the highest microbiological and toxicological qualities.In order to assess the microbiological risks associated with the consumption of this food, we conducted this study to determine the microbiological quality of bovine raw milk (54 samples) commercialized at the state of Blida (Algeria). The samples analyzed were unsatisfactory in terms of total flora where 61.11% of samples were considered as non acceptable in terms of quality standards, fecal coliforms (40.74%), fecal streptococci (55.55%) and staphylococci (74.07%). Salmonella and Clostridium strains were not detected in all the samples. Furthermore, antibiotic residues were found in 26% of analysed samples. These results reflect non-compliance with the rules of good hygiene practices at milking, storage, transportatio, and sale of milk. Bovine raw milk consumed presents a serious health risk to the population of the study areas.The livestock coaching actors and dissemination of good hygiene practices throughout the production chain are needed to improve the quality of local milk.

Keywords: bovine raw milk, microbiological quality, fecal coliforms, antibiotic residue, Blida state

Procedia PDF Downloads 217