Search results for: linguistic features
1403 Lab Support: A Computer Laboratory Class Management Support System
Authors: Eugenia P. Ramirez, Kevin Matthe Caramancion, Mia Eleazar
Abstract:
Getting the attention of students is a constant challenge to the instructors/lecturers. Although in the computer laboratories some networking and entertainment websites are blocked, yet, these websites have unlimited ways of attracting students to get into it. Thus, when an instructor gives a specific set of instructions, some students may not be able to follow sequentially the steps that are given. The instructor has to physically go to the specific remote terminal and show the student the details. Sometimes, during an examination in laboratory set-up, a proctor may prefer to give detailed and text-written instructions rather than verbal instructions. Even the mere calling of a specific student at any time will distract the whole class especially when activities are being performed. What is needed is : An application software that is able to lock the student's monitor and at the same time display the instructor’s screen; a software that is powerful enough to process in its side alone and manipulate a specific user’s terminal in terms of free configuration that is, without restrictions at the server level is a required functionality for a modern and optimal server structure; a software that is able to send text messages to students, per terminal or in group will be a solution. These features are found in LabSupport. This paper outlines the LabSupport application software framework to efficiently manage computer laboratory sessions and will include different modules: screen viewer, demonstration mode, monitor locking system, text messaging, and class management. This paper's ultimate aim is to provide a system that increases instructor productivity.Keywords: application software, broadcast messaging, class management, locking system
Procedia PDF Downloads 4371402 Hindi Speech Synthesis by Concatenation of Recognized Hand Written Devnagri Script Using Support Vector Machines Classifier
Authors: Saurabh Farkya, Govinda Surampudi
Abstract:
Optical Character Recognition is one of the current major research areas. This paper is focussed on recognition of Devanagari script and its sound generation. This Paper consists of two parts. First, Optical Character Recognition of Devnagari handwritten Script. Second, speech synthesis of the recognized text. This paper shows an implementation of support vector machines for the purpose of Devnagari Script recognition. The Support Vector Machines was trained with Multi Domain features; Transform Domain and Spatial Domain or Structural Domain feature. Transform Domain includes the wavelet feature of the character. Structural Domain consists of Distance Profile feature and Gradient feature. The Segmentation of the text document has been done in 3 levels-Line Segmentation, Word Segmentation, and Character Segmentation. The pre-processing of the characters has been done with the help of various Morphological operations-Otsu's Algorithm, Erosion, Dilation, Filtration and Thinning techniques. The Algorithm was tested on the self-prepared database, a collection of various handwriting. Further, Unicode was used to convert recognized Devnagari text into understandable computer document. The document so obtained is an array of codes which was used to generate digitized text and to synthesize Hindi speech. Phonemes from the self-prepared database were used to generate the speech of the scanned document using concatenation technique.Keywords: Character Recognition (OCR), Text to Speech (TTS), Support Vector Machines (SVM), Library of Support Vector Machines (LIBSVM)
Procedia PDF Downloads 4961401 Exploring the Travel Preferences of Generation Z: A Look into the Next Generation of Tourists
Authors: M. Panidou, F. Kilipiris, E. Christou, K. Alexandris
Abstract:
This study focuses on Generation Z, the next generation of tourists born between 1996 and 2012. Given their significant population size, Generation Z is expected to have a substantial impact on the travel and tourism sector. Therefore, understanding their travel preferences is crucial for businesses in the hospitality and tourism industry. By examining their travel preferences, this research aims to identify the unique characteristics and motivations of this generation when it comes to travel. This study used a quantitative method, and primary data was collected through a survey (online questionnaire), while secondary data was gathered from academic literature, industry reports, and online sources to provide a comprehensive analysis of the topic. The sample of the study was 100 Greek individuals aged between 18-26 years old. The data was analyzed with the support of SPSS software. The findings of the research indicated that technology, sustainability, and budget-friendly options are essential components for attracting and retaining Generation Z tourists. These preferences highlight the importance of incorporating innovative technologies, promoting sustainable practices, and offering affordable travel options to effectively engage this market niche. This research contributes to the field of hospitality and tourism businesses by providing valuable insights into the travel preferences of Generation Z. By understanding their distinct features and preferences; businesses can tailor their strategies and marketing efforts to effectively engage and retain this market segment. Considering the limitations of the sample size, future studies could aim for a larger and more diverse sample to enhance the generalizability of the findings.Keywords: gen Z, technology, travel preferences, sustainability
Procedia PDF Downloads 851400 Improving Similarity Search Using Clustered Data
Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong
Abstract:
This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.Keywords: visual search, deep learning, convolutional neural network, machine learning
Procedia PDF Downloads 2141399 Uncertainty Assessment in Building Energy Performance
Authors: Fally Titikpina, Abderafi Charki, Antoine Caucheteux, David Bigaud
Abstract:
The building sector is one of the largest energy consumer with about 40% of the final energy consumption in the European Union. Ensuring building energy performance is of scientific, technological and sociological matter. To assess a building energy performance, the consumption being predicted or estimated during the design stage is compared with the measured consumption when the building is operational. When valuing this performance, many buildings show significant differences between the calculated and measured consumption. In order to assess the performance accurately and ensure the thermal efficiency of the building, it is necessary to evaluate the uncertainties involved not only in measurement but also those induced by the propagation of dynamic and static input data in the model being used. The evaluation of measurement uncertainty is based on both the knowledge about the measurement process and the input quantities which influence the result of measurement. Measurement uncertainty can be evaluated within the framework of conventional statistics presented in the \textit{Guide to the Expression of Measurement Uncertainty (GUM)} as well as by Bayesian Statistical Theory (BST). Another choice is the use of numerical methods like Monte Carlo Simulation (MCS). In this paper, we proposed to evaluate the uncertainty associated to the use of a simplified model for the estimation of the energy consumption of a given building. A detailed review and discussion of these three approaches (GUM, MCS and BST) is given. Therefore, an office building has been monitored and multiple sensors have been mounted on candidate locations to get required data. The monitored zone is composed of six offices and has an overall surface of 102 $m^2$. Temperature data, electrical and heating consumption, windows opening and occupancy rate are the features for our research work.Keywords: building energy performance, uncertainty evaluation, GUM, bayesian approach, monte carlo method
Procedia PDF Downloads 4571398 Synthesis and Characterization of Lactic Acid Grafted TiO2 Nanocomposites
Authors: Qasar Saleem
Abstract:
The aim of this project was to synthesize and analyze Polylactic acid-grafted TiO2 nanocomposite. When dispersed at the nanoscale TiO2 can behave as see through transparent UV filters and thermomechanical materials. The synthesis plan involved three stages. First, dispersion of TiO2 white powder in water/ethanol solvent system. Second grafting TiO2 surface by oligomers of lactic acid aimed at changing its surface features. Third polymerization of lactic acid monomer with grafted TiO2 in the presence of anhydrous stannous chloride as a catalyst. Polylactic acid grafted-TiO2 nanocomposite was synthesized by melt polycondensation in situ of lactic acid onto titanium oxide (TiO2) nanoparticles surface. The product was characterized by TGA, DSC, FTIR, and UV analysis and degradation observation. An idea regarding bonds between the grafting polymer and surface modified titanium oxide nanoparticles. Characteristics peaks of Ti–carbonyl bond, the related intensities of the Fourier transmission absorption peaks of graft composite, the melt and decomposition behavior stages of Polylactic acid-grafted TiO2 nanocomposite convinced that oligomers of polylactic acid were chemically bonded on the surface of TiO2 nanoparticles. Through grafting polylactic acid, the Polylactic acid grafted -TiO2 sample shown good absorption in UV region and degradation behavior under normal atmospheric conditions. Regaining transparency of degraded white opaque Polylactic acid-grafted TiO2 nanocomposite on heating was another character. Polylactic acid-grafted TiO2 nanocomposite will be a potential candidate in future for biomedical, UV shielding and environment friendly material.Keywords: condensation, nanocomposites, oligomers, polylactic
Procedia PDF Downloads 2081397 Optimization of Fused Deposition Modeling 3D Printing Process via Preprocess Calibration Routine Using Low-Cost Thermal Sensing
Authors: Raz Flieshman, Adam Michael Altenbuchner, Jörg Krüger
Abstract:
This paper presents an approach to optimizing the Fused Deposition Modeling (FDM) 3D printing process through a preprocess calibration routine of printing parameters. The core of this method involves the use of a low-cost thermal sensor capable of measuring tempera-tures within the range of -20 to 500 degrees Celsius for detailed process observation. The calibration process is conducted by printing a predetermined path while varying the process parameters through machine instructions (g-code). This enables the extraction of critical thermal, dimensional, and surface properties along the printed path. The calibration routine utilizes computer vision models to extract features and metrics from the thermal images, in-cluding temperature distribution, layer adhesion quality, surface roughness, and dimension-al accuracy and consistency. These extracted properties are then analyzed to optimize the process parameters to achieve the desired qualities of the printed material. A significant benefit of this calibration method is its potential to create printing parameter profiles for new polymer and composite materials, thereby enhancing the versatility and application range of FDM 3D printing. The proposed method demonstrates significant potential in enhancing the precision and reliability of FDM 3D printing, making it a valuable contribution to the field of additive manufacturing.Keywords: FDM 3D printing, preprocess calibration, thermal sensor, process optimization, additive manufacturing, computer vision, material profiles
Procedia PDF Downloads 391396 Determinants of the Shadow Economy with an Islamic Orientation: An Application to Organization of Islamic Cooperation and Non-Organization of Islamic Cooperation Countries
Authors: Shabeer Khan
Abstract:
The main objective of Islamic Finance is to promote social justice thorough financial inclusion and redistribution of economic resources between rich and poor. The approach of Islamic finance is more comprehensive in nature and covers both formal and informal sectors of the economy, first, through reducing the gap between both sectors, and second by using specific Islamic values to reallocate the wealth between formal and informal sectors. Applying Generalized Method of Movements (GMM) to the annual data spanning from 1995-2015 for 141 countries, this study explores the determinants of informal business sector in Organization of Islamic Cooperation (OIC) countries and then compares with Non-OIC countries. Economic freedom and institutions variables as well as economic growth and money supply are found to reduce informal business sector in both OIC and Non-OIC nations while government expenditure are found to increase informal business sector in both group of nations. Informal Business sector remain the same in both types of countries but still the majority Muslim population in OIC economies create main difference between both groups of nations and justify the potential role of Islamic Finance in informal business sector in OIC nations. The study suggests that institutions quality should be improved and entrepreneurs’ friendly business environment must be provided. This study refines the main features of informal business sector and discuss their implications on policy designing and implementation, particularly in the context of Islamic finance fight against poverty, inequality and improving living standards of informal sector participants in OIC countries.Keywords: Islamic finance, informal Business Sector, Generalized Method of Movements (GMM) and OIC
Procedia PDF Downloads 1471395 Bayesian Inference of Physicochemical Quality Elements of Tropical Lagoon Nokoué (Benin)
Authors: Hounyèmè Romuald, Maxime Logez, Mama Daouda, Argillier Christine
Abstract:
In view of the very strong degradation of aquatic ecosystems, it is urgent to set up monitoring systems that are best able to report on the effects of the stresses they undergo. This is particularly true in developing countries, where specific and relevant quality standards and funding for monitoring programs are lacking. The objective of this study was to make a relevant and objective choice of physicochemical parameters informative of the main stressors occurring on African lakes and to identify their alteration thresholds. Based on statistical analyses of the relationship between several driving forces and the physicochemical parameters of the Nokoué lagoon, relevant Physico-chemical parameters were selected for its monitoring. An innovative method based on Bayesian statistical modeling was used. Eleven Physico-chemical parameters were selected for their response to at least one stressor and their threshold quality standards were also established: Total Phosphorus (<4.5mg/L), Orthophosphates (<0.2mg/L), Nitrates (<0.5 mg/L), TKN (<1.85 mg/L), Dry Organic Matter (<5 mg/L), Dissolved Oxygen (>4 mg/L), BOD (<11.6 mg/L), Salinity (7.6 .), Water Temperature (<28.7 °C), pH (>6.2), and Transparency (>0.9 m). According to the System for the Evaluation of Coastal Water Quality, these thresholds correspond to” good to medium” suitability classes, except for total phosphorus. One of the original features of this study is the use of the bounds of the credibility interval of the fixed-effect coefficients as local weathering standards for the characterization of the Physico-chemical status of this anthropized African ecosystem.Keywords: driving forces, alteration thresholds, acadjas, monitoring, modeling, human activities
Procedia PDF Downloads 901394 Luminescence Dating of Ancient Agricultural Terraced Landscapes: Prospects for Heritage Protection
Authors: Lisa Snape, Andreas Lang, Tony Brown, Dan Fallu, Ben Pears
Abstract:
Agricultural terraced landscapes are widespread in mountainous areas in a variety of climatic zones around the World. The most famous are those found associated with the famous Inca site of Machu Pichu in the Andes, the arid lands in upland areas of Yemen, and the abundant rice terraces covering the hilltops in tropical areas such as Thailand, Vietnam, and China and also Bali. Terraces were designed using advanced engineered techniques, requiring specialist knowledge of bedrock geology, soil cultivation and maintenance, and ecosystem management to grow a variety of crops in specific environmental conditions. These enigmatic landscapes were often overlooked in the past but have now received widespread attention to further understand their age, origins, and evolution as the landscapes and environment changed over time. By understanding the age and chronologies of agricultural terrace technology, we can enhance our understanding of these unique features considered widely as important ecosystem services in the present day. We present distinct luminescence dating evidence from a variety of terraced systems found in different European environmental settings, such as the UK, Italy and Belgium, as part of the wider ERC-funded TerrACE Project. Our research aims to better understand their history and advocate for their protection and effective management as important cultural, heritage and environmental assets, creating new avenues for future scientific research.Keywords: terraces, agriculture, luminescence dating, heritage protection
Procedia PDF Downloads 521393 Predictive Analysis of Chest X-rays Using NLP and Large Language Models with the Indiana University Dataset and Random Forest Classifier
Authors: Azita Ramezani, Ghazal Mashhadiagha, Bahareh Sanabakhsh
Abstract:
This study researches the combination of Random. Forest classifiers with large language models (LLMs) and natural language processing (NLP) to improve diagnostic accuracy in chest X-ray analysis using the Indiana University dataset. Utilizing advanced NLP techniques, the research preprocesses textual data from radiological reports to extract key features, which are then merged with image-derived data. This improved dataset is analyzed with Random Forest classifiers to predict specific clinical results, focusing on the identification of health issues and the estimation of case urgency. The findings reveal that the combination of NLP, LLMs, and machine learning not only increases diagnostic precision but also reliability, especially in quickly identifying critical conditions. Achieving an accuracy of 99.35%, the model shows significant advancements over conventional diagnostic techniques. The results emphasize the large potential of machine learning in medical imaging, suggesting that these technologies could greatly enhance clinician judgment and patient outcomes by offering quicker and more precise diagnostic approximations.Keywords: natural language processing (NLP), large language models (LLMs), random forest classifier, chest x-ray analysis, medical imaging, diagnostic accuracy, indiana university dataset, machine learning in healthcare, predictive modeling, clinical decision support systems
Procedia PDF Downloads 421392 Novel Poly Schiff Bases as Corrosion Inhibitors for Carbon Steel in Sour Petroleum Conditions
Authors: Shimaa A. Higazy, Olfat E. El-Azabawy, Ahmed M. Al-Sabagh, Notaila M. Nasser, Eman A. Khamis
Abstract:
In this work, two novel Schiff base polymers (PSB1 and PSB₂) with extra-high protective barrier features were facilely prepared via Polycondensation reactions. They were applied for the first time as effective corrosion inhibitors in the sour corrosive media of petroleum environments containing hydrogen sulfide (H₂S) gas. For studying the polymers' inhibitive action on the carbon steel, numerous corrosion testing methods including potentiodynamic polarization (PDP), open circuit potential, and electrochemical impedance spectroscopy (EIS) have been employed at various temperatures (298-328 K) in the oil wells formation water with H₂S concentrations of 100, 400, and 700 ppm as aggressive media. The activation energy (Ea) and other thermodynamic parameters were computed to describe the mechanism of adsorption. The corrosion morphological traits and steel samples' surfaces composition were analyzed by field emission scanning electron microscope and energy dispersive X-ray analysis. The PSB2 inhibited sour corrosion more effectively than PSB1 when subjected to electrochemical testing. The 100 ppm concentration of PSB2 exhibited 82.18 % and 81.14 % inhibition efficiencies at 298 K in PDP and EIS measurements, respectively. While at 328 K, the inhibition efficiencies were 61.85 % and 67.4 % at the same dosage and measurements. These poly Schiff bases exhibited fascinating performance as corrosion inhibitors in sour environment. They provide a great corrosion inhibition platform for the sustainable future environment.Keywords: schiff base polymers, corrosion inhibitors, sour corrosive media, potentiodynamic polarization, H₂S concentrations
Procedia PDF Downloads 981391 Disseminated Tuberculosis: Experience from Tuberculosis Directly Observed Treatment Short Course Center at a Tertiary Care Teaching Hospital in the Philippines
Authors: Jamie R. Chua, Christina Irene D. Mejia, Regina P. Berba
Abstract:
Disseminated tuberculosis is an infectious disease caused by Mycobacterium tuberculosis involving two or more non-contiguous sites identified through bacteriologic confirmation or clinical diagnosis. Over the five year period included in the study, the UP-PGH TB DOTS clinic had total of 3,967 referrals, and the prevalence of disseminated tuberculosis is 1% (68/3967). The mean age was 33.9 years (range 19-64 years) with a male: female ratio of 1:1. 67% (52 patients) had no predisposing comorbid illness or immune disorder. The most common presenting symptoms were abdominal pain (19%), back pain (13%), abdominal enlargement (11%) and mass (10.2%). Anemia, leukocytosis, hypoalbuminemia, and high-normal serum calcium were common biochemical and hematologic findings. Around 36% (25) of patients were diagnosed clinically with disseminated tuberculosis despite lacking bacteriologic evidence of multi-organ involvement. The lungs (86%) is still the most commonly involved site, followed by intestinal (22%), vertebral/Pott’s (27%), and pelvic/genital (19%). The mean time from presentation to initiation of therapy was 22 days (SD 32.7). Only 18 patients (29.3%) were properly recorded to have been referred to local TB DOTs facilities. Of the 68 patients, only 16% (11 patients) continued follow-up at PGH, and all had documented treatment completion. Treatment outcomes of the remaining were unknown. Due to the variety of involved sites, a high index of suspicion is required. Knowledge on clinical features, common radiographic findings, and histopathologic characteristics of disseminated TB is important as bacteriologic evidence of infection is not always apparent.Keywords: disseminated tuberculosis, Mycobacterium tuberculosis, miliary tuberculosis, tuberculosis
Procedia PDF Downloads 2391390 Statistical Models and Time Series Forecasting on Crime Data in Nepal
Authors: Dila Ram Bhandari
Abstract:
Throughout the 20th century, new governments were created where identities such as ethnic, religious, linguistic, caste, communal, tribal, and others played a part in the development of constitutions and the legal system of victim and criminal justice. Acute issues with extremism, poverty, environmental degradation, cybercrimes, human rights violations, crime against, and victimization of both individuals and groups have recently plagued South Asian nations. Everyday massive number of crimes are steadfast, these frequent crimes have made the lives of common citizens restless. Crimes are one of the major threats to society and also for civilization. Crime is a bone of contention that can create a societal disturbance. The old-style crime solving practices are unable to live up to the requirement of existing crime situations. Crime analysis is one of the most important activities of the majority of intelligent and law enforcement organizations all over the world. The South Asia region lacks such a regional coordination mechanism, unlike central Asia of Asia Pacific regions, to facilitate criminal intelligence sharing and operational coordination related to organized crime, including illicit drug trafficking and money laundering. There have been numerous conversations in recent years about using data mining technology to combat crime and terrorism. The Data Detective program from Sentient as a software company, uses data mining techniques to support the police (Sentient, 2017). The goals of this internship are to test out several predictive model solutions and choose the most effective and promising one. First, extensive literature reviews on data mining, crime analysis, and crime data mining were conducted. Sentient offered a 7-year archive of crime statistics that were daily aggregated to produce a univariate dataset. Moreover, a daily incidence type aggregation was performed to produce a multivariate dataset. Each solution's forecast period lasted seven days. Statistical models and neural network models were the two main groups into which the experiments were split. For the crime data, neural networks fared better than statistical models. This study gives a general review of the applied statistics and neural network models. A detailed image of each model's performance on the available data and generalizability is provided by a comparative analysis of all the models on a comparable dataset. Obviously, the studies demonstrated that, in comparison to other models, Gated Recurrent Units (GRU) produced greater prediction. The crime records of 2005-2019 which was collected from Nepal Police headquarter and analysed by R programming. In conclusion, gated recurrent unit implementation could give benefit to police in predicting crime. Hence, time series analysis using GRU could be a prospective additional feature in Data Detective.Keywords: time series analysis, forecasting, ARIMA, machine learning
Procedia PDF Downloads 1641389 Mondoc: Informal Lightweight Ontology for Faceted Semantic Classification of Hypernymy
Authors: M. Regina Carreira-Lopez
Abstract:
Lightweight ontologies seek to concrete union relationships between a parent node, and a secondary node, also called "child node". This logic relation (L) can be formally defined as a triple ontological relation (LO) equivalent to LO in ⟨LN, LE, LC⟩, and where LN represents a finite set of nodes (N); LE is a set of entities (E), each of which represents a relationship between nodes to form a rooted tree of ⟨LN, LE⟩; and LC is a finite set of concepts (C), encoded in a formal language (FL). Mondoc enables more refined searches on semantic and classified facets for retrieving specialized knowledge about Atlantic migrations, from the Declaration of Independence of the United States of America (1776) and to the end of the Spanish Civil War (1939). The model looks forward to increasing documentary relevance by applying an inverse frequency of co-ocurrent hypernymy phenomena for a concrete dataset of textual corpora, with RMySQL package. Mondoc profiles archival utilities implementing SQL programming code, and allows data export to XML schemas, for achieving semantic and faceted analysis of speech by analyzing keywords in context (KWIC). The methodology applies random and unrestricted sampling techniques with RMySQL to verify the resonance phenomena of inverse documentary relevance between the number of co-occurrences of the same term (t) in more than two documents of a set of texts (D). Secondly, the research also evidences co-associations between (t) and their corresponding synonyms and antonyms (synsets) are also inverse. The results from grouping facets or polysemic words with synsets in more than two textual corpora within their syntagmatic context (nouns, verbs, adjectives, etc.) state how to proceed with semantic indexing of hypernymy phenomena for subject-heading lists and for authority lists for documentary and archival purposes. Mondoc contributes to the development of web directories and seems to achieve a proper and more selective search of e-documents (classification ontology). It can also foster on-line catalogs production for semantic authorities, or concepts, through XML schemas, because its applications could be used for implementing data models, by a prior adaptation of the based-ontology to structured meta-languages, such as OWL, RDF (descriptive ontology). Mondoc serves to the classification of concepts and applies a semantic indexing approach of facets. It enables information retrieval, as well as quantitative and qualitative data interpretation. The model reproduces a triple tuple ⟨LN, LE, LT, LCF L, BKF⟩ where LN is a set of entities that connect with other nodes to concrete a rooted tree in ⟨LN, LE⟩. LT specifies a set of terms, and LCF acts as a finite set of concepts, encoded in a formal language, L. Mondoc only resolves partial problems of linguistic ambiguity (in case of synonymy and antonymy), but neither the pragmatic dimension of natural language nor the cognitive perspective is addressed. To achieve this goal, forthcoming programming developments should target at oriented meta-languages with structured documents in XML.Keywords: hypernymy, information retrieval, lightweight ontology, resonance
Procedia PDF Downloads 1241388 Development of a Standardization Methodology Assessing the Comfort Performance for Hanok
Authors: Mi-Hyang Lee, Seung-Hoon Han
Abstract:
Korean traditional residences have been built with deep design issues for various values such as social, cultural, and environmental influences to be started from a few thousand years ago, but its meaning is being vanished due to the different lifestyles these days. It is necessary, therefore, to grasp the meaning of the Korea traditional building called Hanok and to get Korean people understand its real advantages. The purpose of this study is to propose a standardization methodology for evaluating comfort features towards Korean traditional houses. This paper is also trying to build an official standard evaluation system and to integrate aesthetic and psychological values induced from Hanok. Its comfort performance values could be divided into two large categories that are physical and psychological, and fourteen methods have been defined as the Korean Standards (KS). For this research, field survey data from representative Hanok types were collected for each method. This study also contains a qualitative in-depth analysis of the Hanok comfort index by the professions using AHP (Analytical Hierarchy Process) and has examined the effect of the methods. As a result, this paper could define what methods can provide trustful outcomes and how to evaluate the own strengths in aspects of spatial comfort of Hanok using suggested procedures towards the spatial configuration of the traditional dwellings. This study has finally proposed an integrated development of a standardization methodology assessing the comfort performance for Korean traditional residences, and it is expected that they could evaluate inhabitants of the residents and interior environmental conditions especially structured by wood materials like Hanok.Keywords: Hanok, comfort performance, human condition, analytical hierarchy process
Procedia PDF Downloads 1551387 Effects of Chemicals in Elderly
Authors: Ali Kuzu
Abstract:
There are about 800 thousand chemicals in our environment and the number is increasing more than a thousand every year. While most of these chemicals are used as components in various consumer products, some are faced as industrial waste in the environment. Unfortunately, many of these chemicals are hazardous and affect humans. According to the “International Program on Chemical Safety” of World Health Organization; Among the chronic health effects of chemicals, cancer is of major concern. Many substances have found in recent years to be carcinogenic in one or more species of laboratory animals. Especially with respect to long-term effects, the response to a chemical may vary, quantitatively or qualitatively, in different groups of individuals depending on predisposing conditions, such as nutritional status, disease status, current infection, climatic extremes, and genetic features, sex and age of the individuals. Understanding the response of such specific risk groups is an important area of toxicology research. People with age 65+ is defined as “aged (or elderly)”. The elderly population in the world is about 600 million, which corresponds to ~8 percent of the world population. While every 1 of each 4 people is aged in Japan, the elderly population is quite close to 20 percent in many developed countries. And elderly population in these countries is growing more rapidly than the total population. The negative effects of chemicals on elderly take an important place in health-care related issues in last decades. The aged population is more susceptible to the harmful effects of environmental chemicals. According to the poor health of the organ systems in elderly, the ability of their body to eliminate the harmful effects and chemical substances from their body is also poor. With the increasing life expectancy, more and more people will face problems associated with chemical residues.Keywords: elderly, chemicals’ effects, aged care, care need
Procedia PDF Downloads 4541386 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals
Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty
Abstract:
A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs, and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine-learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient but not the magnitude. A neural network with two hidden layers were then used to learn the coefficient magnitudes along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.Keywords: quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction
Procedia PDF Downloads 1121385 Distribution and Community Structure of Fish in Relation with Water Physico-chemical Parameters of Floodplain Rivers in the Alitash National Park, Ethiopia
Authors: Alamrew Eyayu
Abstract:
Riverine ecosystems are highly exposed to different forms of human activities, and different water features can affect fish distribution in such habitats. Tributaries of the Abbay and Tekeze Basins are supporting all life-requesting activities in Ethiopia. Fisheries of these habitats are also the mainstay of livelihoods. However, brutal human activities are affecting these ecosystems and the fish therein. This study was thus undertaken to examine fish distribution and community structure in relation to water parameters in Ayima, Gelegu and Shinfa Rivers. 2719 fish specimens identified into 43 species were sampled using gillnets, cast nets and electro-fishing on a seasonal campaign. Based on frequency of occurrence (%FO), 5 species fell in the ‘euconstant occurrence’ category or their FO was ≥75%, while many species were in the ‘constant occurrence’ category. Among others, site depth, total phosphorus, dissolved oxygen, and river channel diameter were key environmental factors determining fish community structure. Similarity percentage produced an overall average Bray-Curtis dissimilarity of 60.8% between the fish communities of the three rivers. The final model accounted for 77.2% of the total variance in fish composition, and all canonical axes were significant (Monte Carlo test 499, p =0.002). Generally, this study was conducted in areas where no ecological studies are undertaken, and the results obtained from this study could be important for the sustainable utilization of Ethiopian fisheries.Keywords: fish biology, fisheries socioeconomics, aquatic biodiversity, fisheries management
Procedia PDF Downloads 291384 Dem Based Surface Deformation in Jhelum Valley: Insights from River Profile Analysis
Authors: Syed Amer Mahmood, Rao Mansor Ali Khan
Abstract:
This study deals with the remote sensing analysis of tectonic deformation and its implications to understand the regional uplift conditions in the lower Jhelum and eastern Potwar. Identification and mapping of active structures is an important issue in order to assess seismic hazards and to understand the Quaternary deformation of the region. Digital elevation models (DEMs) provide an opportunity to quantify land surface geometry in terms of elevation and its derivatives. Tectonic movement along the faults is often reflected by characteristic geomorphological features such as elevation, stream offsets, slope breaks and the contributing drainage area. The river profile analysis in this region using SRTM digital elevation model gives information about the tectonic influence on the local drainage network. The steepness and concavity indices have been calculated by power law of scaling relations under steady state conditions. An uplift rate map is prepared after carefully analysing the local drainage network showing uplift rates in mm/year. The active faults in the region control local drainages and the deflection of stream channels is a further evidence of the recent fault activity. The results show variable relative uplift conditions along MBT and Riasi and represent a wonderful example of the recency of uplift, as well as the influence of active tectonics on the evolution of young orogens.Keywords: quaternary deformation, SRTM DEM, geomorphometric indices, active tectonics and MBT
Procedia PDF Downloads 3451383 Emerging Technologies in European Aeronautics: How Collaborative Innovation Efforts Are Shaping the Industry
Authors: Nikola Radovanovic, Petros Gkotsis, Mathieu Doussineau
Abstract:
Aeronautics is regarded as a strategically important sector for European competitiveness. It was at the heart of European entrepreneurial development since the industry was born. Currently, the EU is the world leader in the production of civil aircraft, including helicopters, aircraft engines, parts, and components. It is recording a surplus in trade relating to aerospace products, which are exported all over the globe. Also, this industry shows above-average investments in research and development, as demonstrated in the patent activity in this area. The post-pandemic recovery of the industry will partly depend on the possibilities to streamline collaboration in further research and innovation activities. Aeronautics features as one of the often selected priority domains in smart specialisation, which represents the main regional and national approach in developing and implementing innovation policies in Europe. The basis for the selection of priority domains for smart specialisation lies in the mapping of innovative potential, with research and patent activities being among the key elements of this analysis. This research is aimed at identifying characteristics of the trends in research and patent activities in the regions and countries that base their competitiveness on the aeronautics sector. It is also aimed at determining the scope and patterns of collaborations in aeronautics between innovators from the European regions, focusing on revealing new technology areas that emerge from these collaborations. For this purpose, we developed a methodology based on desk research and the analysis of the PATSTAT patent database as well as the databases of R&I framework programmes.Keywords: aeronautics, smart specialisation, innovation, research, regional policy
Procedia PDF Downloads 1051382 Multi-Dimension Threat Situation Assessment Based on Network Security Attributes
Authors: Yang Yu, Jian Wang, Jiqiang Liu, Lei Han, Xudong He, Shaohua Lv
Abstract:
As the increasing network attacks become more and more complex, network situation assessment based on log analysis cannot meet the requirements to ensure network security because of the low quality of logs and alerts. This paper addresses the lack of consideration of security attributes of hosts and attacks in the network. Identity and effectiveness of Distributed Denial of Service (DDoS) are hard to be proved in risk assessment based on alerts and flow matching. This paper proposes a multi-dimension threat situation assessment method based on network security attributes. First, the paper offers an improved Common Vulnerability Scoring System (CVSS) calculation, which includes confident risk, integrity risk, availability risk and a weighted risk. Second, the paper introduces deterioration rate of properties collected by sensors in hosts and network, which aimed at assessing the time and level of DDoS attacks. Third, the paper introduces distribution of asset value in security attributes considering features of attacks and network, which aimed at assessing and show the whole situation. Experiments demonstrate that the approach reflects effectiveness and level of DDoS attacks, and the result can show the primary threat in network and security requirement of network. Through comparison and analysis, the method reflects more in security requirement and security risk situation than traditional methods based on alert and flow analyzing.Keywords: DDoS evaluation, improved CVSS, network security attribute, threat situation assessment
Procedia PDF Downloads 2081381 Habitate Potentials of Human Societies in the Alluvial Cone of the Sistan Plain in the Bronze Age
Authors: Reza Mehrafarin, Nafiseh Mirshekari, Mahila Mehrafarin
Abstract:
Sistan is one of the ancient regions of Iran, which is located in the east of this country. 1660 ancient sites were identified in the archeological field surveys that we did in this area. Of these, about 900 sites belong to the Bronze Age, which are located in an area of about 3000 square kilometers. The Bronze Age in Iran began at the end of the fourth millennium BC and ended at the beginning of the second millennium BC. During this period, many cities and villages were established in Sistan, that the burnt city (Shahr-e Sokhta) was its most important center, with an area of about 150 hectares and a population of 5,000. In this article, we have tried to identify and introduce the most important features of the Bronze Age of Sistan, especially the burnt city. Another goal of the article is to identify the factors that led to the emergence of the Bronze Age, especially urbanization in Sistan at the end of the fourth millennium BCand then we want to know what factors caused the destruction of Bronze Age civilization and urbanization in Sistan. Studying and evaluating these factors are the most important goals of this article. The research method of this article is field research. As we surveyed all of Sistan with a large number of archaeologists for two years in order to identify its ancient sites and understanding its geographical space. The result of this survey led to the identification of a large number of ancient sites which were formed in three major terraces in Sistan. The most important factor in the emergence of these civilizations, especially the Bronze Age in Sistan, was the Hirmand River. On the other hand, the most important factor in the destruction of the Bronze Age and its cities in Sistan was the Hirmand River.As it was destroyed by the movement of the Hirmand River bed or the long droughts of the Bronze Age of Sistan.Keywords: archaeological survey, bronze age, sistan, urbanization
Procedia PDF Downloads 1081380 Amine Hardeners with Carbon Nanotubes Dispersing Ability for Epoxy Coating Systems
Authors: Szymon Kugler, Krzysztof Kowalczyk, Tadeusz Spychaj
Abstract:
An addition of carbon nanotubes (CNT) can simultaneously improve many features of epoxy coatings, i.e. electrical, mechanical, functional and thermal. Unfortunately, this nanofiller negatively affects visual properties of the coatings, such as transparency and gloss. The main reason for the low visual performance of CNT-modified epoxy coatings is the lack of compatibility between CNT and popular amine curing agents, although epoxy resins based on bisphenol A are indisputable good CNT dispersants. This is a serious obstacle in utilization of the coatings in advanced applications, demanding both high transparency and electrical conductivity. The aim of performed investigations was to find amine curing agents exhibiting affinity for CNT, and ensuring good performance of epoxy coatings with them. Commercially available CNT was dispersed in epoxy resin, as well as in different aliphatic, cycloaliphatic and aromatic amines, using one of two dispergation methods: ultrasonic or mechanical. The CNT dispersions were subsequently used in the preparation of epoxy coating compositions and coatings on a transparent substrate. It was found that amine derivative of bio-based cardanol, as well as modified o-tolylbiguanide exhibit significant CNT, dispersing properties, resulting in improved transparent/electroconductive performance of epoxy coatings. In one of prepared coating systems just 0.025 wt.% (250 ppm) of CNT was enough to obtain coatings with semi conductive properties, 83% of transparency as well as perfect chemical resistance to methyl-ethyl ketone and improved thermal stability. Additionally, a theory of the influence of amine chemical structure on CNT dispersing properties was proposed.Keywords: bio-based cardanol, carbon nanotubes, epoxy coatings, tolylbiguanide
Procedia PDF Downloads 2111379 Characteristics of Serum Exosomes after Burn Injury and Dermal Fibroblast Regulation by Exosomes in Vitro
Authors: Jie Ding, Yingying Pan, Shammy Raj, Lindy Schaffrick, Jolene Wong, Antoinette Nguyen, Sharada Manchikanti, Larry Unsworth, Peter Kwan, Edward E. Tredget
Abstract:
Background: Exosomes (EXOs) have been considered a new target that is thought to be involved in and treat wound healing. More research is needed to fully understand the EXO characteristics and mechanisms of EXO-mediated wound healing, especially wound healing after burn injury. Methods: Total EXOs were isolated from 85 serum samples of 29 burn patients and 13 healthy individuals. We characterized the EXOs for morphology and density, serum concentration, protein level, marker expression, size distribution, and cytokine content. After confirmation of EXO uptake by dermal fibroblasts, we also explored functional regulation of primary human normal skin and hypertrophic scar fibroblast cell lines by the EXOs in vitro, including cell proliferation and apoptosis. Results: EXOs dynamically changed their morphology, density, size, and cytokine level during wound healing in burn patients, which were correlated with burn severity and the stages of wound healing. EXOs from both burn patients and healthy individuals stimulated dermal fibroblast proliferation and apoptosis. Conclusion: EXO features may be important signals that influence wound healing after burn injury; however, to understand the mechanisms by which EXOs regulated the fibroblasts in healing wounds, further studies will be required in the future.Keywords: exosome, burn, wound healing, hypertrophic scarring, cytokines
Procedia PDF Downloads 801378 Automatic Classification of Lung Diseases from CT Images
Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari
Abstract:
Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.Keywords: CT scan, Covid-19, deep learning, image processing, lung disease classification
Procedia PDF Downloads 1531377 SIP Flooding Attacks Detection and Prevention Using Shannon, Renyi and Tsallis Entropy
Authors: Neda Seyyedi, Reza Berangi
Abstract:
Voice over IP (VOIP) network, also known as Internet telephony, is growing increasingly having occupied a large part of the communications market. With the growth of each technology, the related security issues become of particular importance. Taking advantage of this technology in different environments with numerous features put at our disposal, there arises an increasing need to address the security threats. Being IP-based and playing a signaling role in VOIP networks, Session Initiation Protocol (SIP) lets the invaders use weaknesses of the protocol to disable VOIP service. One of the most important threats is denial of service attack, a branch of which in this article we have discussed as flooding attacks. These attacks make server resources wasted and deprive it from delivering service to authorized users. Distributed denial of service attacks and attacks with a low rate can mislead many attack detection mechanisms. In this paper, we introduce a mechanism which not only detects distributed denial of service attacks and low rate attacks, but can also identify the attackers accurately. We detect and prevent flooding attacks in SIP protocol using Shannon (FDP-S), Renyi (FDP-R) and Tsallis (FDP-T) entropy. We conducted an experiment to compare the percentage of detection and rate of false alarm messages using any of the Shannon, Renyi and Tsallis entropy as a measure of disorder. Implementation results show that, according to the parametric nature of the Renyi and Tsallis entropy, by changing the parameters, different detection percentages and false alarm rates will be gained with the possibility to adjust the sensitivity of the detection mechanism.Keywords: VOIP networks, flooding attacks, entropy, computer networks
Procedia PDF Downloads 4041376 Effect of Joule Heating on Chemically Reacting Micropolar Fluid Flow over Truncated Cone with Convective Boundary Condition Using Spectral Quasilinearization Method
Authors: Pradeepa Teegala, Ramreddy Chetteti
Abstract:
This work emphasizes the effects of heat generation/absorption and Joule heating on chemically reacting micropolar fluid flow over a truncated cone with convective boundary condition. For this complex fluid flow problem, the similarity solution does not exist and hence using non-similarity transformations, the governing fluid flow equations along with related boundary conditions are transformed into a set of non-dimensional partial differential equations. Several authors have applied the spectral quasi-linearization method to solve the ordinary differential equations, but here the resulting nonlinear partial differential equations are solved for non-similarity solution by using a recently developed method called the spectral quasi-linearization method (SQLM). Comparison with previously published work on special cases of the problem is performed and found to be in excellent agreement. The influence of pertinent parameters namely Biot number, Joule heating, heat generation/absorption, chemical reaction, micropolar and magnetic field on physical quantities of the flow are displayed through graphs and the salient features are explored in detail. Further, the results are analyzed by comparing with two special cases, namely, vertical plate and full cone wherever possible.Keywords: chemical reaction, convective boundary condition, joule heating, micropolar fluid, spectral quasilinearization method
Procedia PDF Downloads 3461375 Design with Nature: Vernacular Buildings Adaptation to Sand Landforms in Sahara Desert
Authors: Mohammed Sherzad
Abstract:
The Sahara desert covers third of the total surface of Africa with a quarter of this area within the national boundaries of Algeria. Sand drift and deposition is considered one of the major factors of the desertification process in the area. It is estimated that a third of the world's hot arid lands are covered by aeolian sand deposits, forming extensive sand bedforms. The Gourrara region in the Grand Erg Occidental (west of Algerian Sahara) and the region of Souf in the Grand Erg Oriental (east of Algerian Sahara) have been chosen as case studies. These were significant cultural and trading centers for many centuries despite their remote location and their harsh desert environment particularly solar radiation and sand drift and deposition. The architecture of the sustained vernacular settlements in each of the two regions has unique design features for this environment. So do the irrigation systems used - palm groves and the foggara system for capturing and distributing groundwater. However, the ecological balance which enabled the Saharans to live with the desert has been upset. New buildings often use technology based on models imported or imposed from areas that climatically have little in common. These make the inhabitants live ‘in the desert’ rather than ‘with the desert’. This paper will describe the qualities of the vernacular architecture and demonstrate its effectiveness and adaptability to the region’s harsh desert environment in comparison with contemporary buildings. Developing design guides and approaches based on lessons from the traditional architecture is important to ensure sustained livelihoods of the inhabitants in these areas.Keywords: vernacular architecture, desert architecture, hot climate, aeolian sand deposition
Procedia PDF Downloads 4641374 INRAM-3DCNN: Multi-Scale Convolutional Neural Network Based on Residual and Attention Module Combined with Multilayer Perceptron for Hyperspectral Image Classification
Authors: Jianhong Xiang, Rui Sun, Linyu Wang
Abstract:
In recent years, due to the continuous improvement of deep learning theory, Convolutional Neural Network (CNN) has played a great superior performance in the research of Hyperspectral Image (HSI) classification. Since HSI has rich spatial-spectral information, only utilizing a single dimensional or single size convolutional kernel will limit the detailed feature information received by CNN, which limits the classification accuracy of HSI. In this paper, we design a multi-scale CNN with MLP based on residual and attention modules (INRAM-3DCNN) for the HSI classification task. We propose to use multiple 3D convolutional kernels to extract the packet feature information and fully learn the spatial-spectral features of HSI while designing residual 3D convolutional branches to avoid the decline of classification accuracy due to network degradation. Secondly, we also design the 2D Inception module with a joint channel attention mechanism to quickly extract key spatial feature information at different scales of HSI and reduce the complexity of the 3D model. Due to the high parallel processing capability and nonlinear global action of the Multilayer Perceptron (MLP), we use it in combination with the previous CNN structure for the final classification process. The experimental results on two HSI datasets show that the proposed INRAM-3DCNN method has superior classification performance and can perform the classification task excellently.Keywords: INRAM-3DCNN, residual, channel attention, hyperspectral image classification
Procedia PDF Downloads 77