Search results for: cylindrical cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3542

Search results for: cylindrical cells

302 Inf-γ and Il-2 Asses the Therapeutic Response in Anti-tuberculosis Patients at Jamot Hospital Yaounde, Cameroon

Authors: Alexandra Emmanuelle Membangbi, Jacky Njiki Bikoï, Esther Del-florence Moni Ndedi, Marie Joseph Nkodo Mindimi, Donatien Serge Mbaga, Elsa Nguiffo Makue, André Chris Mikangue Mbongue, Martha Mesembe, George Ikomey Mondinde, Eric Walter Perfura-yone, Sara Honorine Riwom Essama

Abstract:

Background: Tuberculosis (TB) is one of the top lethal infectious diseases worldwide. In recent years, interferon-γ (INF-γ) release assays (IGRAs) have been established as routine tests for diagnosing TB infection. However, produced INF-γ assessment failed to distinguish active TB (ATB) from latent TB infection (LTBI), especially in TB epidemic areas. In addition to IFN-γ, interleukin-2 (IL-2), another cytokine secreted by activated T cells, is also involved in immune response against Mycobacterium tuberculosis. The aim of the study was to assess the capacity of IFN-γ and IL2 to evaluate the therapeutic response of patients on anti-tuberculosis treatment. Material and Methods: We conducted a cross-sectional study in the Pneumonology Departments of the Jamot Hospital in Yaoundé between May and August 2021. After signed the informed consent, the sociodemographic data, as well as 5 mL of blood, were collected in the crook of the elbow of each participant. Sixty-one subjects were selected (n= 61) and divided into 4 groups as followed: group 1: resistant tuberculosis (n=13), group 2: active tuberculosis (n=19), group 3 cured tuberculosis (n=16), and group 4: presumed healthy persons (n=13). The cytokines of interest were determined using an indirect Enzyme-linked Immuno-Sorbent Assay (ELISA) according to the manufacturer's recommendations. P-values < 0.05 were interpreted as statistically significant. All statistical calculations were performed using SPSS version 22.0 Results: The results showed that men were more 14/61 infected (31,8%) with a high presence in active and resistant TB groups. The mean age was 41.3±13.1 years with a 95% CI = [38.2-44.7], the age group with the highest infection rate was ranged between 31 and 40 years. The IL-2 and INF-γ means were respectively 327.6±160.6 pg/mL and 26.6±13.0 pg/mL in active tuberculosis patients, 251.1±30.9 pg/mL and 21.4±9.2 pg/mL in patients with resistant tuberculosis, while it was 149.3±93.3 pg/mL and 17.9±9.4 pg/mL in cured patients, 15.1±8.4 pg/mL and 5.3±2.6 pg/mL in participants presumed healthy (p <0.0001). Significant differences in IFN-γ and IL-2 rates were observed between the different groups. Conclusion: Monitoring the serum levels of INF-γ and IL-2 would be useful to evaluate the therapeutic response of anti-tuberculosis patients, particularly in the both cytokines association case, that could improve the accuracy of routine examinations.

Keywords: antibiotic therapy, interferon gamma, interleukin 2, tuberculosis

Procedia PDF Downloads 124
301 Functionally Modified Melt-Electrospun Thermoplastic Polyurethane (TPU) Mats for Wound-Dressing Applications

Authors: Christoph Hacker, Zeynep Karahaliloglu, Gunnar Seide, Emir Baki Denkbas, Thomas Gries

Abstract:

A wound dressing material is designed to facilitate wound healing and minimize scarring. An ideal wound dressing material should protect the wound from any contaminations of exogeneous microorganism. In addition, the dressing material should provide a moist environment through extraction of body fluid from the wound area. Recently, wound dressing electrospun nanofibrous membranes are produced by electrospinning from a polymer solution or a polymer melt. These materials have a great potential as dressing materials for wound healing because of superior properties such as high surface-to-volume ratio, high porosity with excellent pore interconnectivity. Melt electrospinning is an attractive tissue engineering scaffold manufacturing process which eliminated the health risk posed by organic solvents used in electrospinning process and reduced the production costs. In this study, antibacterial wound dressing materials were prepared from TPU (Elastollan 1185A) by a melt-electrospinning technique. The electrospinning parameters for an efficient melt-electrospinning process of TPU were optimized. The surface of the fibers was modified with poly(ethylene glycol) (PEG) by radio-frequency glow discharge plasma deposition method and with silver nanoparticles (nAg) to improve their wettability and antimicrobial properties. TPU melt-electrospun mats were characterized using SEM, DSC, TGA and XPS. The cell viability and proliferation on modified melt-electrospun TPU mats were evaluated using a mouse fibroblast cell line (L929). Antibacterial effects of theirs against both Staphylococcus aureus strain and Escherichia coli were investigated by disk-diffusion method. TPU was successfully processed into a porous, fibrous network of beadless fibers in the micrometer range (4.896±0.94 µm) with a voltage of 50 kV, a working distance of 6 cm, a temperature of the thermocouple and hot coil of 225–230ºC, and a flow rate of 0.1 mL/h. The antibacterial test indicated that PEG-modified nAg-loaded TPU melt-electrospun structure had excellent antibacterial effects and cell study results demonstrated that nAg-loaded TPU mats had no cytotoxic effect on the fibroblast cells. In this work, the surface of a melt-electrospun TPU mats was modified via PEG monomer and then nAg. Results showed melt-electrospun TPU mats modified with PEG and nAg have a great potential for use as an antibacterial wound dressing material and thus, requires further investigation.

Keywords: melt electrospinning, nanofiber, silver nanoparticles, wound dressing

Procedia PDF Downloads 464
300 Identification of a Lead Compound for Selective Inhibition of Nav1.7 to Treat Chronic Pain

Authors: Sharat Chandra, Zilong Wang, Ru-Rong Ji, Andrey Bortsov

Abstract:

Chronic pain (CP) therapeutic approaches have limited efficacy. As a result, doctors are prescribing opioids for chronic pain, leading to opioid overuse, abuse, and addiction epidemic. Therefore, the development of effective and safe CP drugs remains an unmet medical need. Voltage-gated sodium (Nav) channels act as cardiovascular and neurological disorder’s molecular targets. Nav channels selective inhibitors are hard to design because there are nine closely-related isoforms (Nav1.1-1.9) that share the protein sequence segments. We are targeting the Nav1.7 found in the peripheral nervous system and engaged in the perception of pain. The objective of this project was to screen a 1.5 million compound library for identification of inhibitors for Nav1.7 with analgesic effect. In this study, we designed a protocol for identification of isoform-selective inhibitors of Nav1.7, by utilizing the prior information on isoform-selective antagonists. First, a similarity search was performed; then the identified hits were docked into a binding site on the fourth voltage-sensor domain (VSD4) of Nav1.7. We used the FTrees tool for similarity searching and library generation; the generated library was docked in the VSD4 domain binding site using FlexX and compounds were shortlisted using a FlexX score and SeeSAR hyde scoring. Finally, the top 25 compounds were tested with molecular dynamics simulation (MDS). We reduced our list to 9 compounds based on the MDS root mean square deviation plot and obtained them from a vendor for in vitro and in vivo validation. Whole-cell patch-clamp recordings in HEK-293 cells and dorsal root ganglion neurons were conducted. We used patch pipettes to record transient Na⁺ currents. One of the compounds reduced the peak sodium currents in Nav1.7-HEK-293 stable cell line in a dose-dependent manner, with IC50 values at 0.74 µM. In summary, our computer-aided analgesic discovery approach allowed us to develop pre-clinical analgesic candidate with significant reduction of time and cost.

Keywords: chronic pain, voltage-gated sodium channel, isoform-selective antagonist, similarity search, virtual screening, analgesics development

Procedia PDF Downloads 128
299 Comparison of Phytochemicals in Grapes and Wine from Shenton Park Winery

Authors: Amanda Sheard, Garry Lee, Katherine Stockham

Abstract:

Introduction: Health benefits associated with wine consumption have been well documented; these include anticancer, anti-inflammatory, and cardiovascular protection. The majority of these health benefits have been linked to polyphenols found within wine and grapes. Once consumed polyphenols exhibit free radical quenching capabilities. Environmental factors such as rainfall, temperature, CO2 levels and sunlight exposure have been shown to affect the polyphenol content of grapes. The objective of this work was to evaluate the effect of growing conditions on the antioxidant capacity of grapes obtained from a single plot vineyard in Perth. This was achieved through the analysis of samples using; oxygen radical antioxidant capacity (ORAC), cellular antioxidant activity (CAA) in human red blood cells, ICP-MS and ICP-OES, total polyphenols (PP’s), and total flavonoid’s (FLa). The data obtained was compared to observed climate data. The 14 Selected Vitis Vinefera L. cultivars included Cabernet franc, Cabernet Sauvignon, Carnelian, Chardonnay, Grenache, Melbec, Merlot, Orange muscat, Rousanne, Sauvignon Blanc, Shiraz, Tempernillo, Verdelho, and Voignier. Results: Notable variation’s between cultivars included results ranging from 125 mg/100 g-350 mg/100 g for PP’s, 93 mg/100 g–300 mg/100 g for FLa, 13 mM T.E/kg–33 mM T.E/kg for ORAC and 0.3 mM Q.E/kg–27 mM Q.E/kg CAA were found between red and white grape cultivars. No correlation was found between CAA and the ORAC obtained in this study; except that white cultivars were consistently lower than red. ICP analysis showed that seeds contained the highest concentration of copper followed by skins and flesh of the grape. A positive correlation between copper and ORAC was found. The ORAC, PP’s, and FLa in red grapes were consistently higher than white grape cultivars; these findings were supported by literature values. Significance: The cellular antioxidant activities of white and red wine cultivars were used to compare the bioactivity of these grapes against the chemical ORAC measurement. The common method of antioxidant activity measurement is the chemical value from ORAC analysis; however this may not reflect the activity within the human body. Hence, the measurements were also carried out using the cellular antioxidant activity to perform a comparison. Additionally, the study explored the influence of weather systems such as El Niño and La Niña on the polyphenol content of Australian wine cultivars grown in Perth.

Keywords: oxygen radical antioxidant activity, cellular antioxidant activity, total polyphenols, total flavonoids, wine grapes, climate

Procedia PDF Downloads 292
298 Polymeric Nanocarriers for Intranasal Delivery of Cannabidiol in Neurodevelopmental Disorders

Authors: Rania Awad, Avi Avital, Alejandro Sosnik

Abstract:

Neurodevelopmental disorders, including autism spectrum disorder (ASD), affect 5.9% of the global population. Recently, research indicated the potential therapeutic use of cannabidiol (CBD) to treat different neurodevelopmental disorders, including ASD. Intranasal drug delivery (IN) is a non-invasive and painless administration route that enhances drug bioavailability in the brain by bypassing the blood-brain barrier. However, IN has limited bioavailability due to the low nasal mucosa permeability. Various polymeric nanoparticles (NPs) have been investigated for IN delivery with different successes. In this study, we investigate the nanoencapsulation of CBD within self-assembled polymeric NPs for nose-to-brain delivery in ASD to increase the bioavailability of CBD in the brain. The nanoencapsulation of CBD within self-assembled polymeric NPs, namely poly (ethylene oxide)-b-poly (propylene oxide)-b-poly (ethylene oxide) (PEO-PPO-PEO) polymeric micelles, was assessed. The CBD-loaded system was characterized by different methods. The compatibility was assessed in the nasal septum epithelium cell line Rpmi 2650. In vitro, permeability studies were conducted using Rpmi2650 cell monolayers cultured in semipermeable membranes 2650. The accumulation of CBD-loaded NPs labeled with near-infra-red fluorescent dye in the brain was measured after IN and oral administration after 20 and 45 min using IVIS spectrum CT imaging (IVIS-CT). Pharmacokinetic (PK) studies were conducted to assess the CBD concentration in rat plasma and brain tissues at different time points, PK parameters were measured and analyzed. Then, the effect of IN and oral administration of CBD-loaded NPs on a social cooperation test, which is a relevant behavioral test in the ASD model in rats, was investigated. Initially, we produced Pluronic® F127 polymeric micelles loaded with 25% w/w of CBD, with a size of 23 ± 1 nm, with suitable physical properties for IN administration. Then, Pluronic® F127 nanoparticles (F127 NPs) in the medium showed good compatibility and permeability in Rpmi 2650 cells. In the IVIS-CT study, the accumulation of IN administration of CBD-loaded F127 in the rat's brains was higher than the oral. Pharmacokinetic analysis of rat brain tissues revealed that, 20 minutes after administration, the concentration of CBD was higher following a 5 mg/kg nasal administration compared to a 15 mg/kg oral administration of CBD-loaded F127. Followed by IN administration of CBD-loaded F127 improved the social cooperation performance of the ASD model in rats as compared to oral and control groups.

Keywords: drug delivery to the brain, Intranasal drug delivery, nanoencapsulation, neurodevelopmental disorders, polymeric nanoparticles.

Procedia PDF Downloads 19
297 The Staphylococcus aureus Exotoxin Recognition Using Nanobiosensor Designed by an Antibody-Attached Nanosilica Method

Authors: Hamed Ahari, Behrouz Akbari Adreghani, Vadood Razavilar, Amirali Anvar, Sima Moradi, Hourieh Shalchi

Abstract:

Considering the ever increasing population and industrialization of the developmental trend of humankind's life, we are no longer able to detect the toxins produced in food products using the traditional techniques. This is due to the fact that the isolation time for food products is not cost-effective and even in most of the cases, the precision in the practical techniques like the bacterial cultivation and other techniques suffer from operator errors or the errors of the mixtures used. Hence with the advent of nanotechnology, the design of selective and smart sensors is one of the greatest industrial revelations of the quality control of food products that in few minutes time, and with a very high precision can identify the volume and toxicity of the bacteria. Methods and Materials: In this technique, based on the bacterial antibody connection to nanoparticle, a sensor was used. In this part of the research, as the basis for absorption for the recognition of bacterial toxin, medium sized silica nanoparticles of 10 nanometer in form of solid powder were utilized with Notrino brand. Then the suspension produced from agent-linked nanosilica which was connected to bacterial antibody was positioned near the samples of distilled water, which were contaminated with Staphylococcus aureus bacterial toxin with the density of 10-3, so that in case any toxin exists in the sample, a connection between toxin antigen and antibody would be formed. Finally, the light absorption related to the connection of antigen to the particle attached antibody was measured using spectrophotometry. The gene of 23S rRNA that is conserved in all Staphylococcus spp., also used as control. The accuracy of the test was monitored by using serial dilution (l0-6) of overnight cell culture of Staphylococcus spp., bacteria (OD600: 0.02 = 107 cell). It showed that the sensitivity of PCR is 10 bacteria per ml of cells within few hours. Result: The results indicate that the sensor detects up to 10-4 density. Additionally, the sensitivity of the sensors was examined after 60 days, the sensor by the 56 days had confirmatory results and started to decrease after those time periods. Conclusions: Comparing practical nano biosensory to conventional methods like that culture and biotechnology methods(such as polymerase chain reaction) is accuracy, sensitiveness and being unique. In the other way, they reduce the time from the hours to the 30 minutes.

Keywords: exotoxin, nanobiosensor, recognition, Staphylococcus aureus

Procedia PDF Downloads 389
296 Exploring Attitudes and Experiences of the Cervical Screening Programme in Brighton, United Kingdom

Authors: Kirsty Biggs, Peter Larsen-Disney

Abstract:

Background: The UK cervical screening programme significantly reduces cancer mortality through the early detection of abnormal cells. Despite this, over a quarter of eligible women choose not to attend their appointment. Objective: To qualitatively explore patients’ barriers to attending cervical smear appointments and identify key trends of cervical screening behaviour, knowledge, and attitudes in primary and secondary care. Methods: A cross-sectional study was conducted to evaluate smear services in Brighton and Hove using questionnaires in general practice and colposcopy. 226 patients participated in the voluntary questionnaire between 10/11/2017 and 02/02/2018. 118 patients were recruited from general practice surgeries and 108 from the colposcopy department. Women were asked about their smear knowledge, self-perceived risks factors, prior experiences and reasons for non-attendance. Demographic data was also collected. Results: Approximately a third of women did not engage in smear testing services. This was consistent across primary and secondary care groups. Over 90% were aware of the role of the screening process in relation to cervical cancer; however, over two thirds believed the smear was also a tool to screen for other pathologies. The most commonly cited reasons for non-attendance were negative emotions or previous experiences. Inconvenient appointment times were also commonly described. In a comparison of attenders versus non-attenders previous negative experiences (p < 0.01) and number of identified risk factors (p = 0.02) were statistically significant with non-attenders describing more prior negative smears and identifying more risk factors. Smear knowledge, risk perception and perceived importance of screening were not significant. Negative previous experiences were described in relation to poor bedside manner, pain, embarrassment and staff competency. Conclusions: In contrary to the literature, our white Caucasian cohort experienced significant barriers to accessing smear services. Women’s prior negative experiences are overriding their perceived importance to attend the screening programme; therefore, efforts need to focus on improving clinical experiences through auditing tools, training and providing a supportive appointment setting. Positive changes can also be expected by improving appointment availabilities with extended hours and self-booking systems.

Keywords: barriers, cervical, Papanicolaou, screening, smear

Procedia PDF Downloads 151
295 Green and Cost-Effective Biofabrication of Copper Oxide Nanoparticles: Exploring Antimicrobial and Anticancer Applications

Authors: Yemane Tadesse Gebreslassie, Fisseha Guesh Gebremeskel

Abstract:

Nanotechnology has made remarkable advancements in recent years, revolutionizing various scientific fields, industries, and research institutions through the utilization of metal and metal oxide nanoparticles. Among these nanoparticles, copper oxide nanoparticles (CuO NPs) have garnered significant attention due to their versatile properties and wide-range applications, particularly, as effective antimicrobial and anticancer agents. CuO NPs can be synthesized using different methods, including physical, chemical, and biological approaches. However, conventional chemical and physical approaches are expensive, resource-intensive, and involve the use of hazardous chemicals, which can pose risks to human health and the environment. In contrast, biological synthesis provides a sustainable and cost-effective alternative by eliminating chemical pollutants and allowing for the production of CuO NPs of tailored sizes and shapes. This comprehensive review focused on the green synthesis of CuO NPs using various biological resources, such as plants, microorganisms, and other biological derivatives. Current knowledge and recent trends in green synthesis methods for CuO NPs are discussed, with a specific emphasis on their biomedical applications, particularly in combating cancer and microbial infections. This review highlights the significant potential of CuO NPs in addressing these diseases. By capitalizing on the advantages of biological synthesis, such as environmental safety and the ability to customize nanoparticle characteristics, CuO NPs have emerged as promising therapeutic agents for a wide range of conditions. This review presents compelling findings, demonstrating the remarkable achievements of biologically synthesized CuO NPs as therapeutic agents. Their unique properties and mechanisms enable effective combating against cancer cells and various harmful microbial infections. CuO NPs exhibit potent anticancer activity through diverse mechanisms, including induction of apoptosis, inhibition of angiogenesis, and modulation of signaling pathways. Additionally, their antimicrobial activity manifests through various mechanisms, such as disrupting microbial membranes, generating reactive oxygen species, and interfering with microbial enzymes. This review offers valuable insights into the substantial potential of biologically synthesized CuO NPs as an alternative approach for future therapeutic interventions against cancer and microbial infections.

Keywords: biological synthesis, copper oxide nanoparticles, microbial infection, nanotechnology

Procedia PDF Downloads 65
294 Impact of Alternative Fuel Feeding on Fuel Cell Performance and Durability

Authors: S. Rodosik, J. P. Poirot-Crouvezier, Y. Bultel

Abstract:

With the expansion of the hydrogen economy, Proton Exchange Membrane Fuel Cell (PEMFC) systems are often presented as promising energy converters suitable for transport applications. However, reaching a durability of 5000 h recommended by the U.S. Department of Energy and decreasing system cost are still major hurdles to their development. In order to increase the system efficiency and simplify the system without affecting the fuel cell lifetime, an architecture called alternative fuel feeding has been developed. It consists in a fuel cell stack divided into two parts, alternatively fed, implemented on a 5-kW system for real scale testing. The operation strategy can be considered close to Dead End Anode (DEA) with specific modifications to avoid water and nitrogen accumulation in the cells. The two half-stacks are connected in series to enable each stack to be alternatively fed. Water and nitrogen accumulated can be shifted from one half-stack to the other one according to the alternative feeding frequency. Thanks to the homogenization of water vapor along the stack, water management was improved. The operating conditions obtained at system scale are close to recirculation without the need of a pump or an ejector. In a first part, a performance comparison with the DEA strategy has been performed. At high temperature and low pressure (80°C, 1.2 bar), performance of alternative fuel feeding was higher, and the system efficiency increased. In a second part, in order to highlight the benefits of the architecture on the fuel cell lifetime, two durability tests, lasting up to 1000h, have been conducted. A test on the 5-kW system has been compared to a reference test performed on a test bench with a shorter stack, conducted with well-controlled operating parameters and flow-through hydrogen strategy. The durability test is based upon the Fuel Cell Dynamic Load Cycle (FC-DLC) protocol but adapted to the system limitations: without OCV steps and a maximum current density of 0.4 A/cm². In situ local measurements with a segmented S++® plate performed all along the tests, showed a more homogeneous distribution of the current density with alternative fuel feeding than in flow-through strategy. Tests performed in this work enabled the understanding of this architecture advantages and drawbacks. Alternative fuel feeding architecture appeared to be a promising solution to ensure the humidification function at the anode side with a simplified fuel cell system.

Keywords: automotive conditions, durability, fuel cell system, proton exchange membrane fuel cell, stack architecture

Procedia PDF Downloads 144
293 Bovine Sperm Capacitation Promoters: The Comparison between Serum and Non-serum Albumin originated from Fish

Authors: Haris Setiawan, Phongsakorn Chuammitri, Korawan Sringarm, Montira Intanon, Anucha Sathanawongs

Abstract:

Capacitation is a prerequisite to achieving sperm competency to penetrate the oocyte naturally occurring in vivo throughout the female reproductive tract and entangling secretory fluid and epithelial cells. One of the crucial compounds in the oviductal fluid which promotes capacitation is albumin, secreted in major concentrations. However, the difficulties in the collection and the inconsistency of the oviductal fluid composition throughout the estrous cycle have replaced its function with serum-based albumins such as bovine serum albumin (BSA). BSA has been primarily involved and evidenced for their stabilizing effect to maintain the acrosome intact during the capacitation process, modulate hyperactivation, and elevate the number of sperm bound to zona pellucida. Contrary to its benefits, the use of blood-derived products in the culture system is not sustainable and increases the risk of disease transmissions, such as Creutzfeldt-Jakob disease (CJD) and bovine spongiform encephalopathy (BSE). Moreover, it has been asserted that this substance is an aeroallergen that produces allergies and respiratory problems. In an effort to identify an alternative sustainable and non-toxic albumin source, the present work evaluated sperm reactions to a capacitation medium containing albumin derived from the flesh of the snakehead fish (Channa striata). Before examining the ability of this non-serum albumin to promote capacitation in bovine sperm, the presence of albumin was detected using bromocresol purple (BCP) at the level of 25% from snakehead fish extract. Following the SDS-PAGE and densitometric analysis, two major bands at 40 kDa and 47 kDa consisting of 57% and 16% of total protein loaded were detected as the potential albumin-related bands. Significant differences were observed in all kinematic parameters upon incubation in the capacitation medium. Moreover, consistently higher values were shown for the kinematic parameters related to hyperactivation, such as amplitude lateral head (ALH), velocity curve linear (VCL), and linearity (LIN) when sperm were treated with 3 mg/mL of snakehead fish albumin among other treatments. Likewise, substantial differences of higher acrosome intact presented in sperm upon incubation with various concentrations of snakehead fish albumin for 90 minutes, indicating that this level of snakehead fish albumin can be used to replace the bovine serum albumin. However, further study is highly required to purify the albumin from snakehead fish extract for more reliable findings.

Keywords: capacitation promoter, snakehead fish, non-serum albumin, bovine sperm

Procedia PDF Downloads 117
292 Modeling Spatio-Temporal Variation in Rainfall Using a Hierarchical Bayesian Regression Model

Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Gundula Bartzke, Hans-Peter Piepho

Abstract:

Rainfall is a critical component of climate governing vegetation growth and production, forage availability and quality for herbivores. However, reliable rainfall measurements are not always available, making it necessary to predict rainfall values for particular locations through time. Predicting rainfall in space and time can be a complex and challenging task, especially where the rain gauge network is sparse and measurements are not recorded consistently for all rain gauges, leading to many missing values. Here, we develop a flexible Bayesian model for predicting rainfall in space and time and apply it to Narok County, situated in southwestern Kenya, using data collected at 23 rain gauges from 1965 to 2015. Narok County encompasses the Maasai Mara ecosystem, the northern-most section of the Mara-Serengeti ecosystem, famous for its diverse and abundant large mammal populations and spectacular migration of enormous herds of wildebeest, zebra and Thomson's gazelle. The model incorporates geographical and meteorological predictor variables, including elevation, distance to Lake Victoria and minimum temperature. We assess the efficiency of the model by comparing it empirically with the established Gaussian process, Kriging, simple linear and Bayesian linear models. We use the model to predict total monthly rainfall and its standard error for all 5 * 5 km grid cells in Narok County. Using the Monte Carlo integration method, we estimate seasonal and annual rainfall and their standard errors for 29 sub-regions in Narok. Finally, we use the predicted rainfall to predict large herbivore biomass in the Maasai Mara ecosystem on a 5 * 5 km grid for both the wet and dry seasons. We show that herbivore biomass increases with rainfall in both seasons. The model can handle data from a sparse network of observations with many missing values and performs at least as well as or better than four established and widely used models, on the Narok data set. The model produces rainfall predictions consistent with expectation and in good agreement with the blended station and satellite rainfall values. The predictions are precise enough for most practical purposes. The model is very general and applicable to other variables besides rainfall.

Keywords: non-stationary covariance function, gaussian process, ungulate biomass, MCMC, maasai mara ecosystem

Procedia PDF Downloads 298
291 Non-Cytotoxic Natural Sourced Inorganic Hydroxyapatite (HAp) Scaffold Facilitate Bone-like Mechanical Support and Cell Proliferation

Authors: Sudip Mondal, Biswanath Mondal, Sudit S. Mukhopadhyay, Apurba Dey

Abstract:

Bioactive materials improve devices for a long lifespan but have mechanical limitations. Mechanical characterization is one of the very important characteristics to evaluate the life span and functionality of the scaffold material. After implantation of scaffold material the primary stage rejection of scaffold occurs due to non biocompatible effect of host body system. The second major problems occur due to the effect of mechanical failure. The mechanical and biocompatibility failure of the scaffold materials can be overcome by the prior evaluation of the scaffold materials. In this study chemically treated Labeo rohita scale is used for synthesizing hydroxyapatite (HAp) biomaterial. Thermo-gravimetric and differential thermal analysis (TG-DTA) is carried out to ensure thermal stability. The chemical composition and bond structures of wet ball-milled calcined HAp powder is characterized by Fourier Transform Infrared spectroscopy (FTIR), X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray (EDX) analysis. Fish scale derived apatite materials consists of nano-sized particles with Ca/P ratio of 1.71. The biocompatibility through cytotoxicity evaluation and MTT assay are carried out in MG63 osteoblast cell lines. In the cell attachment study, the cells are tightly attached with HAp scaffolds developed in the laboratory. The result clearly suggests that HAp material synthesized in this study do not have any cytotoxic effect, as well as it has a natural binding affinity for mammalian cell lines. The synthesized HAp powder further successfully used to develop porous scaffold material with suitable mechanical property of ~0.8GPa compressive stress, ~1.10 GPa a hardness and ~ 30-35% porosity which is acceptable for implantation in trauma region for animal model. The histological analysis also supports the bio-affinity of processed HAp biomaterials in Wistar rat model for investigating the contact reaction and stability at the artificial or natural prosthesis interface for biomedical function. This study suggests the natural sourced fish scale-derived HAp material could be used as a suitable alternative biomaterial for tissue engineering application in near future.

Keywords: biomaterials, hydroxyapatite, scaffold, mechanical property, tissue engineering

Procedia PDF Downloads 457
290 Luteolin Exhibits Anti-Diabetic Effects by Increasing Oxidative Capacity and Regulating Anti-Oxidant Metabolism

Authors: Eun-Young Kwon, Myung-Sook Choi, Su-Jung Cho, Ji-Young Choi, So Young Kim, Youngji Han

Abstract:

Overweight and obesity have been linked to a low-grade chronic inflammatory response and an increased risk of developing metabolic syndrome including insulin resistance, type 2 diabetes mellitus and certain types of cancers. Luteolin is a dietary flavonoid with anti-inflammatory, anti-oxidant, anti-cancer and anti-diabetic properties. However, little is known about the detailed mechanism associated with the effect of luteolin on inflammation-related obesity and its complications. The aim of the present study was to reveal the anti-diabetic effect of luteolin in diet-induced obesity mice using “transcriptomics” tool. Thirty-nine male C57BL/6J mice (4-week-old) were randomly divided into 3 groups and were fed normal diet, high-fat diet (HFD, 20% fat) and HFD+0.005% (w/w) luteolin for 16 weeks. Luteolin improved insulin resistance, as measured by HOMA-IR and glucose tolerance, along with preservation action of pancreatic β-cells, compared to the HFD group. Luteoiln was significantly decreased the levels of leptin and ghrelin that play a pivotal role in energy balance, and the macrophage low-grade inflammation marker sCD163 (soluble Cd antigen 163) in plasma. Activities of hepatic anti-oxidant enzymes (catalase and glutathione peroxidase) were increased, while the levels of plasma transaminase (GOT and GPT) and oxidative damage markers (hepatic mitochondria H2O2 and TBARS) were markedly decreased by luteolin supplementation. In addition, luteolin increased oxidative capacity and fatty acid utilization by presenting decrease in enzyme activities of citrate synthase, cytochrome C oxidase and β-hydroxyacyl CoA dehydrogenase and UCP3 gene expression compared to high-fat diet. Moreover, our microarray results of muscle also revealed down-regulated gene expressions associated with TCA cycle by HFD were reversed to normal level by luteolin treatment. Taken together, our results indicate that luteolin is one of bioactive components for improving insulin resistance by increasing oxidative capacity, modulating anti-oxidant metabolism and suppressing inflammatory signaling cascades in diet-induced obese mice. These results provide possible therapeutic targets for prevention and treatment of diet-induced obesity and its complications.

Keywords: anti-oxidant metabolism, diabetes, luteolin, oxidative capacity

Procedia PDF Downloads 339
289 Effects of Sacubitril and Valsartan on Gut Microbiome

Authors: Wei-Ju Huang, Hung-Pin Hsu

Abstract:

[Background] In congestive heart failure (CHF), it has always been the principle of clinical treatment to control the water retention mechanism in the body to prevent excessive fluid retention. Early control of sympathetic nerves, Renin-Angiotensin-Aldosterone system (RAA system, RAAS), or strengthening of Atrial Natriuretic Peptide (ANP) was the point. In RAA system, related hormones, such as angiotensin, or enzymes in the pathway, such as ACE-I, can be used with corresponding inhibitors to reduce water content.[Aim] In recent years, clinical studies have pointed out that if different mechanisms are combined, the control effect seems to be better. For example, recent studies showed that ENTRESTO, a combination of Sacubitril and Valsartan, is a good new drug for CHF. Sacubitril is a prodrug. After activation, it can inhibit neprilysin and act as a neprilysin inhibitor (ARNI) to reduce the breakdown of natriuretic peptides(ANP). Valsartan is a kind of angiotensin receptor blocker (ARB), both of which are used to treat heart failure at the same time, have excellent curative effects.[Materials and Methods] Considering the side effects of this drug, coughing and a few cases of diarrhea were observed. However, the effect of this drug on the patient's intestinal tract has not been confirmed. On the other hand, studies have pointed out that ANP supplement can improve the CHF and increase the inhibitory effect on cancer cells. Therefore, the purpose of this study is to use a special microbial detection method to prove that whether oral drugs have an effect on microorganisms.The experimental method uses Nissui Compact Dry to observe the situation in different types of microorganisms. After the drug is dissolved in water, it is implanted in a petri dish, and the presence of different microorganisms is detected through different antibody reactions to confirm whether the drug has some toxicology in the gut.[Results and Discussion]From the above experimental results, it can be known that among the effects of Sacubitril and Valsartan on the basic microbial flora of the human body, low doses had no significant effect on Escherichia coli or intestinal bacteria. If Sacubitril or Valsartan with a high concentration of 3mg/ml is used alone or under the stimulation of a high concentration of the two drugs, it has a significant inhibitory effect on Escherichia coli. However, in terms of the effect on intestinal bacteria, high concentration of Sacubitril has a more significant inhibitory effect on intestinal bacteria, while high concentration of Valsartan has a less significant inhibitory effect on intestinal bacteria. The inhibitory effect of the combination of the two drugs on intestinal bacteria is also less significant.[Conclusion]The results of this study can be used as a further reference for the possible side effects of the clinical use of Sacubitril and Valsartan on the intestinal tract of patients,

Keywords: sacubitril, valsartan, entresto, congestive heart failure (CHF)

Procedia PDF Downloads 74
288 Monitoring the Pollution Status of the Goan Coast Using Genotoxicity Biomarkers in the Bivalve, Meretrix ovum

Authors: Avelyno D'Costa, S. K. Shyama, M. K. Praveen Kumar

Abstract:

The coast of Goa, India receives constant anthropogenic stress through its major rivers which carry mining rejects of iron and manganese ores from upstream mining sites and petroleum hydrocarbons from shipping and harbor-related activities which put the aquatic fauna such as bivalves at risk. The present study reports the pollution status of the Goan coast by the above xenobiotics employing genotoxicity studies. This is further supplemented by the quantification of total petroleum hydrocarbons (TPHs) and various trace metals (iron, manganese, copper, cadmium, and lead) in gills of the estuarine clam, Meretrix ovum as well as from the surrounding water and sediment, over a two-year sampling period, from January 2013 to December 2014. Bivalves were collected from a probable unpolluted site at Palolem and a probable polluted site at Vasco, based upon the anthropogenic activities at these sites. Genotoxicity was assessed in the gill cells using the comet assay and micronucleus test. The quantity of TPHs and trace metals present in gill tissue, water and sediments were analyzed using spectrofluorometry and atomic absorption spectrophotometry (AAS), respectively. The statistical significance of data was analyzed employing Student’s t-test. The relationship between DNA damage and pollutant concentrations was evaluated using multiple regression analysis. Significant DNA damage was observed in the bivalves collected from Vasco which is a region of high industrial activity. Concentrations of TPHs and trace metals (iron, manganese, and cadmium) were also found to be significantly high in gills of the bivalves collected from Vasco compared to those collected from Palolem. Further, the concentrations of these pollutants were also found to be significantly high in the water and sediments at Vasco compared to that of Palolem. This may be due to the lack of industrial activity at Palolem. A high positive correlation was observed between the pollutant levels and DNA damage in the bivalves collected from Vasco suggesting the genotoxic nature of these pollutants. Further, M. ovum can be used as a bioindicator species for monitoring the level of pollution of the estuarine/coastal regions by TPHs and trace metals.

Keywords: comet assay, metals, micronucleus test, total petroleum Hydrocarbons

Procedia PDF Downloads 240
287 Development of a Stable RNAi-Based Biological Control for Sheep Blowfly Using Bentonite Polymer Technology

Authors: Yunjia Yang, Peng Li, Gordon Xu, Timothy Mahony, Bing Zhang, Neena Mitter, Karishma Mody

Abstract:

Sheep flystrike is one of the most economically important diseases affecting the Australian sheep and wool industry (>356M/annually). Currently, control of Lucillia cuprina relies almost exclusively on chemicals controls and the parasite has developed resistance to nearly all control chemicals used in the past. It is therefore critical to develop an alternative solution for the sustainable control and management of flystrike. RNA interference (RNAi) technologies have been successfully explored in multiple animal industries for developing parasites controls. This research project aims to develop a RNAi based biological control for sheep blowfly. Double-stranded RNA (dsRNA) has already proven successful against viruses, fungi and insects. However, the environmental instability of dsRNA is a major bottleneck for successful RNAi. Bentonite polymer (BenPol) technology can overcome this problem, as it can be tuned for the controlled release of dsRNA in the gut challenging pH environment of the blowfly larvae, prolonging its exposure time to and uptake by target cells. To investigate the potential of BenPol technology for dsRNA delivery, four different BenPol carriers were tested for their dsRNA loading capabilities, and three of them were found to be capable of affording dsRNA stability under multiple temperatures (4°C, 22°C, 40°C, 55°C) in sheep serum. Based on stability results, dsRNA from potential targeted genes was loaded onto BenPol carriers and tested in larvae feeding assays, three genes resulting in knockdowns. Meanwhile, a primary blowfly embryo cell line (BFEC) derived from L. cuprina embryos was successfully established, aim for an effective insect cell model for testing RNAi efficacy for preliminary assessments and screening. The results of this study establish that the dsRNA is stable when loaded on BenPol particles, unlike naked dsRNA rapidly degraded in sheep serum. The stable nanoparticle delivery system offered by BenPol technology can protect and increase the inherent stability of dsRNA molecules at higher temperatures in a complex biological fluid like serum, providing promise for its future use in enhancing animal protection.

Keywords: flystrike, RNA interference, bentonite polymer technology, Lucillia cuprina

Procedia PDF Downloads 94
286 Suture Biomaterials Development from Natural Fibers: Muga Silk (Antheraea assama) and Ramie (Boehmeria nivea)

Authors: Raghuram Kandimalla, Sanjeeb Kalita, Bhaswati Choudhury, Jibon Kotoky

Abstract:

The quest for developing an ideal suture material prompted our interest to develop a novel suture with advantageous characteristics to market available ones. We developed novel suture biomaterial from muga silk (Antheraea assama) and ramie (Boehmeria nivea) plant fiber. Field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR) and thermo gravimetric analysis (TGA) results revealed the physicochemical properties of the fibers which supports the suitability of fibers for suture fabrication. Tensile properties of the prepared sutures were comparable with market available sutures and it found to be biocompatible towards human erythrocytes and nontoxic to mammalian cells. The prepared sutures completely healed the superficial deep wound incisions within seven days in adult male wister rats leaving no rash and scar. Histopathology studies supports the wound healing ability of sutures, as rapid synthesis of collagen, connective tissue and other skin adnexal structures were observed within seven days of surgery. Further muga suture surface modified by exposing the suture to oxygen plasma which resulted in formation of nanotopography on suture surface. Broad spectrum antibiotic amoxicillin was functionalized on the suture surface to prepare an advanced antimicrobial muga suture. Surface hydrophilicity induced by oxygen plasma results in an increase in drug-impregnation efficiency of modified muga suture by 16.7%. In vitro drug release profiles showed continuous and prolonged release of amoxicillin from suture up to 336 hours. The advanced muga suture proves to be effective against growth inhibition of Staphylococcus aureus and Escherichia coli, whereas normal muga suture offers no antibacterial activity against both types of bacteria. In vivo histopathology studies and colony-forming unit count data revealed accelerated wound healing activity of advanced suture over normal one through rapid synthesis and proliferation of collagen, hair follicle and connective tissues.

Keywords: sutures, biomaterials, silk, Ramie

Procedia PDF Downloads 317
285 In vitro Study of Inflammatory Gene Expression Suppression of Strawberry and Blackberry Extracts

Authors: Franco Van De Velde, Debora Esposito, Maria E. Pirovani, Mary A. Lila

Abstract:

The physiology of various inflammatory diseases is a complex process mediated by inflammatory and immune cells such as macrophages and monocytes. Chronic inflammation, as observed in many cardiovascular and autoimmune disorders, occurs when the low-grade inflammatory response fails to resolve with time. Because of the complexity of the chronic inflammatory disease, major efforts have focused on identifying novel anti-inflammatory agents and dietary regimes that prevent the pro-inflammatory process at the early stage of gene expression of key pro-inflammatory mediators and cytokines. The ability of the extracts of three blackberry cultivars (‘Jumbo’, ‘Black Satin’ and ‘Dirksen’), and one strawberry cultivar (‘Camarosa’) to inhibit four well-known genetic biomarkers of inflammation: inducible nitric oxide synthase (iNOS), cyclooxynase-2 (Cox-2), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in an in vitro lipopolysaccharide-stimulated murine RAW 264.7 macrophage model were investigated. Moreover, the effect of latter extracts on the intracellular reactive oxygen species (ROS) and nitric oxide (NO) production was assessed. Assay was conducted with 50 µg/mL crude extract concentration, an amount that is easily achievable in the gastrointestinal tract after berries consumption. The mRNA expression levels of Cox-2 and IL-6 were reduced consistently (more than 30%) by extracts of ‘Jumbo’ and ‘Black Satin’ blackberries. Strawberry extracts showed high reduction in mRNA expression levels of IL-6 (more than 65%) and exhibited moderate reduction in mRNA expression of Cox-2 (more than 35%). The latter behavior mirrors the intracellular ROS production of the LPS stimulated RAW 264.7 macrophages after the treatment with blackberry ‘Black Satin’ and ‘Jumbo’, and strawberry ‘Camarosa’ extracts, suggesting that phytochemicals from these fruits may play a role in the health maintenance by reducing oxidative stress. On the other hand, effective inhibition in the gene expression of IL-1β and iNOS was not observed by any of blackberry and strawberry extracts. However, suppression in the NO production in the activated macrophages among 5–25% was observed by ‘Jumbo’ and ‘Black Satin’ blackberry extracts and ‘Camarosa’ strawberry extracts, suggesting a higher NO suppression property by phytochemicals of these fruits. All these results suggest the potential beneficial effects of studied berries as functional foods with antioxidant and anti-inflammatory roles. Moreover, the underlying role of phytochemicals from these fruits in the protection of inflammatory process will deserve to be further explored.

Keywords: cyclooxygenase-2, functional foods, interleukin-6, reactive oxygen species

Procedia PDF Downloads 241
284 Computational Characterization of Electronic Charge Transfer in Interfacial Phospholipid-Water Layers

Authors: Samira Baghbanbari, A. B. P. Lever, Payam S. Shabestari, Donald Weaver

Abstract:

Existing signal transmission models, although undoubtedly useful, have proven insufficient to explain the full complexity of information transfer within the central nervous system. The development of transformative models will necessitate a more comprehensive understanding of neuronal lipid membrane electrophysiology. Pursuant to this goal, the role of highly organized interfacial phospholipid-water layers emerges as a promising case study. A series of phospholipids in neural-glial gap junction interfaces as well as cholesterol molecules have been computationally modelled using high-performance density functional theory (DFT) calculations. Subsequent 'charge decomposition analysis' calculations have revealed a net transfer of charge from phospholipid orbitals through the organized interfacial water layer before ultimately finding its way to cholesterol acceptor molecules. The specific pathway of charge transfer from phospholipid via water layers towards cholesterol has been mapped in detail. Cholesterol is an essential membrane component that is overrepresented in neuronal membranes as compared to other mammalian cells; given this relative abundance, its apparent role as an electronic acceptor may prove to be a relevant factor in further signal transmission studies of the central nervous system. The timescales over which this electronic charge transfer occurs have also been evaluated by utilizing a system design that systematically increases the number of water molecules separating lipids and cholesterol. Memory loss through hydrogen-bonded networks in water can occur at femtosecond timescales, whereas existing action potential-based models are limited to micro or nanosecond scales. As such, the development of future models that attempt to explain faster timescale signal transmission in the central nervous system may benefit from our work, which provides additional information regarding fast timescale energy transfer mechanisms occurring through interfacial water. The study possesses a dataset that includes six distinct phospholipids and a collection of cholesterol. Ten optimized geometric characteristics (features) were employed to conduct binary classification through an artificial neural network (ANN), differentiating cholesterol from the various phospholipids. This stems from our understanding that all lipids within the first group function as electronic charge donors, while cholesterol serves as an electronic charge acceptor.

Keywords: charge transfer, signal transmission, phospholipids, water layers, ANN

Procedia PDF Downloads 80
283 Anti-Arthritic Effect of a Herbal Diet Formula Comprising Fruits of Rosa Multiflora and Flowers of Lonicera Japonica

Authors: Brian Chi Yan Cheng, Hui Guo, Tao Su, Xiu‐qiong Fu, Ting Li, Zhi‐ling Yu

Abstract:

Rheumatoid arthritis (RA) affects around 1% of the globe population. Yet, there is still no cure for RA. Toll-like receptor 4 (TLR4) signalling has been found to be involved in the pathogenesis of RA, making it a potential therapeutic target for RA treatment. A herbal formula (RL) consisting of fruits of Rosa Multiflora (Eijitsu rose) and flowers of Lonicera Japonica (Japanese honeysuckle) has been used in treating various inflammatory disorders for more than a thousand year. Both of them are rich sources of nutrients and bioactive phytochemicals, which can be used in producing different food products and supplements. In this study, we would evaluate the anti-arthritic effect of RL on collagen-induced arthritis (CIA) in rats and investigate the involvement of TLR4 signaling in the mode of action of RL. Anti-arthritic efficacy was evaluated using CIA rats induced by bovine type II collagen. The treatment groups were treated with RL (82.5, 165, and 330 mg/kg bw per day, p.o.) or positive control indomethacin (0.25 mg/kg bw per day, p.o.) for 35 days. Clinical signs (hind paw volume and arthritis severity scores), changes in serum inflammatory mediators, pro-/antioxidant status, histological and radiographic changes of joints were investigated. Spleens and peritoneal macrophages were used to determine the effects of RL on innate and adaptive immune responses in CIA rats. The involvement of TLR4 signalling pathways in the anti-arthritic effect of RL was examined in cartilage tissue of CIA rats, murine RAW264.7 macrophages and human THP-1 monocytic cells. The severity of arthritis in the CIA rats was significantly attenuated by RL. Antioxidant status, histological score and radiographic score were efficiently improved by RL. RL could also dose-dependently inhibit pro-inflammatory cytokines in serum of CIA rats. RL significantly inhibited the production of various pro-inflammatory mediators, the expression and/or activity of the components of TLR4 signalling pathways in animal tissue and cell lines. RL possesses anti-arthritic effect on collagen-induced arthritis in rats. The therapeutic effect of RL may be related to its inhibition on pro-inflammatory cytokines in serum. The inhibition of the TAK1/NF-κB and TAK1/MAPK pathways participate in the anti-arthritic effects of RL. This provides a pharmacological justification for the dietary use of RL in the control of various arthritic diseases. Further investigation should be done to develop RL into a anti-arthritic food products and/or supplements.

Keywords: japanese honeysuckle, rheumatoid arthritis, rosa multiflora, rosehip

Procedia PDF Downloads 435
282 Acrylic Microspheres-Based Microbial Bio-Optode for Nitrite Ion Detection

Authors: Siti Nur Syazni Mohd Zuki, Tan Ling Ling, Nina Suhaity Azmi, Chong Kwok Feng, Lee Yook Heng

Abstract:

Nitrite (NO2-) ion is used prevalently as a preservative in processed meat. Elevated levels of nitrite also found in edible bird’s nests (EBNs). Consumption of NO2- ion at levels above the health-based risk may cause cancer in humans. Spectrophotometric Griess test is the simplest established standard method for NO2- ion detection, however, it requires careful control of pH of each reaction step and susceptible to strong oxidants and dyeing interferences. Other traditional methods rely on the use of laboratory-scale instruments such as GC-MS, HPLC and ion chromatography, which cannot give real-time response. Therefore, it is of significant need for devices capable of measuring nitrite concentration in-situ, rapidly and without reagents, sample pretreatment or extraction step. Herein, we constructed a microspheres-based microbial optode for visual quantitation of NO2- ion. Raoutella planticola, the bacterium expressing NAD(P)H nitrite reductase (NiR) enzyme has been successfully extracted by microbial technique from EBN collected from local birdhouse. The whole cells and the lipophilic Nile Blue chromoionophore were physically absorbed on the photocurable poly(n-butyl acrylate-N-acryloxysuccinimide) [poly (nBA-NAS)] microspheres, whilst the reduced coenzyme NAD(P)H was covalently immobilized on the succinimide-functionalized acrylic microspheres to produce a reagentless biosensing system. Upon the NiR enzyme catalyzes the oxidation of NAD(P)H to NAD(P)+, NO2- ion is reduced to ammonium hydroxide, and that a colour change from blue to pink of the immobilized Nile Blue chromoionophore is perceived as a result of deprotonation reaction increasing the local pH in the microspheres membrane. The microspheres-based optosensor was optimized with a reflectance spectrophotometer at 639 nm and pH 8. The resulting microbial bio-optode membrane could quantify NO2- ion at 0.1 ppm and had a linear response up to 400 ppm. Due to the large surface area to mass ratio of the acrylic microspheres, it allows efficient solid state diffusional mass transfer of the substrate to the bio-recognition phase, and achieve the steady state response as fast as 5 min. The proposed optical microbial biosensor requires no sample pre-treatment step and possesses high stability as the whole cell biocatalyst provides protection to the enzymes from interfering substances, hence it is suitable for measurements in contaminated samples.

Keywords: acrylic microspheres, microbial bio-optode, nitrite ion, reflectometric

Procedia PDF Downloads 454
281 Sphere in Cube Grid Approach to Modelling of Shale Gas Production Using Non-Linear Flow Mechanisms

Authors: Dhruvit S. Berawala, Jann R. Ursin, Obrad Slijepcevic

Abstract:

Shale gas is one of the most rapidly growing forms of natural gas. Unconventional natural gas deposits are difficult to characterize overall, but in general are often lower in resource concentration and dispersed over large areas. Moreover, gas is densely packed into the matrix through adsorption which accounts for large volume of gas reserves. Gas production from tight shale deposits are made possible by extensive and deep well fracturing which contacts large fractions of the formation. The conventional reservoir modelling and production forecasting methods, which rely on fluid-flow processes dominated by viscous forces, have proved to be very pessimistic and inaccurate. This paper presents a new approach to forecast shale gas production by detailed modeling of gas desorption, diffusion and non-linear flow mechanisms in combination with statistical representation of these processes. The representation of the model involves a cube as a porous media where free gas is present and a sphere (SiC: Sphere in Cube model) inside it where gas is adsorbed on to the kerogen or organic matter. Further, the sphere is considered consisting of many layers of adsorbed gas in an onion-like structure. With pressure decline, the gas desorbs first from the outer most layer of sphere causing decrease in its molecular concentration. The new available surface area and change in concentration triggers the diffusion of gas from kerogen. The process continues until all the gas present internally diffuses out of the kerogen, gets adsorbs onto available surface area and then desorbs into the nanopores and micro-fractures in the cube. Each SiC idealizes a gas pathway and is characterized by sphere diameter and length of the cube. The diameter allows to model gas storage, diffusion and desorption; the cube length takes into account the pathway for flow in nanopores and micro-fractures. Many of these representative but general cells of the reservoir are put together and linked to a well or hydraulic fracture. The paper quantitatively describes these processes as well as clarifies the geological conditions under which a successful shale gas production could be expected. A numerical model has been derived which is then compiled on FORTRAN to develop a simulator for the production of shale gas by considering the spheres as a source term in each of the grid blocks. By applying SiC to field data, we demonstrate that the model provides an effective way to quickly access gas production rates from shale formations. We also examine the effect of model input properties on gas production.

Keywords: adsorption, diffusion, non-linear flow, shale gas production

Procedia PDF Downloads 167
280 Surface Modified Core–Shell Type Lipid–Polymer Hybrid Nanoparticles of Trans-Resveratrol, an Anticancer Agent, for Long Circulation and Improved Efficacy against MCF-7 Cells

Authors: M. R. Vijayakumar, K. Priyanka, Ramoji Kosuru, Lakshmi, Sanjay Singh

Abstract:

Trans resveratrol (RES) is a non-flavonoid poly-phenolic compound proved for its therapeutic and preventive effect against various types of cancer. However, the practical application of RES in cancer treatment is limited because of its higher dose (up to 7.5 g/day in humans), low biological half life, rapid metabolism and faster elimination in mammals. PEGylated core-shell type lipid polymer hybrid nanoparticles are the novel drug delivery systems for long circulation and improved anti cancer effect of its therapeutic payloads. Therefore, the main objective of this study is to extend the biological half life (long circulation) and improve the therapeutic efficacy of RES through core shell type of nanoparticles. D-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS), a novel surfactant is applied for the preparation of PEGylated lipid polymer hybrid nanoparticles. The prepared nanoparticles were evaluated by various state of the art techniques such as dynamic light scattering (DLS) technique for particle size and zeta potential, TEM for shape, differential scanning calorimetry (DSC) for interaction analysis and XRD for crystalline changes of drug. Entrapment efficiency and invitro drug release were determined by ultracentrifugation method and dialysis bag method, respectively. Cancer cell viability studies were performed by MTT assay, respectively. Pharmacokinetic studies after i.v administration were performed in sprague dawley rats. The prepared NPs were found to be spherical in shape with smooth surfaces. Particle size and zeta potential of prepared NPs were found to be in the range of 179.2±7.45 to 266.8±9.61 nm and -0.63 to -48.35 mV, respectively. DSC revealed absence of potential interaction. XRD study revealed presence of amorphous form in nanoparticles. Entrapment efficiency was found to be 83.7 % and drug release was found to be in controlled manner. MTT assay showed low MEC and pharmacokinetic studies showed higher AUC of nanoformulaition than its pristine drug. All these studies revealed that the RES loaded PEG modified core-shell type lipid polymer hybrid nanoparticles can be an alternative tool for chemopreventive and therapeutic application of RES in cancer.

Keywords: trans resveratrol, cancer nanotechnology, long circulating nanoparticles, bioavailability enhancement, core shell nanoparticles, lipid polymer hybrid nanoparticles

Procedia PDF Downloads 474
279 The Balancing of the Parental Responsibilities and Right and the Best Interest of the Child within the Parent-Child Relationship

Authors: R. Prinsloo

Abstract:

Amniotic fluid stem cells (AFSC) have been shown to contribute towards the amelioration of Acute Renal Failure (ARF), but the mechanisms underlying the renoprotective effect are largely unknown. Therefore, the main goal of the current study was to evaluate the therapeutic efficacy of AFSC in a cisplatin-induced rat model of ARF and to investigate the underlying mechanisms responsible for its renoprotective effect. To study the therapeutic efficacy of AFSC, ARF was induced in Wistar rats by an intra-peritoneal injection of cisplatin, and five days after administration, the rats were randomized into two groups and injected with either AFSC or normal saline intravenously. On day 8 and 12 after cisplatin injection, i.e., day 3 and day7 post-therapy respectively, the blood biochemical parameters, histopathological changes, apoptosis, and expression of pro-apoptotic, anti-apoptotic and autophagy-related proteins in renal tissues were studied in both groups of rats. Administration of AFSC in ARF rats resulted in improvement of renal function and attenuation of renal damage as reflected by significant decrease in blood urea nitrogen, serum creatinine levels, tubular cell apoptosis as assessed by Bax/Bcl2 ratio, and expression of the pro-apoptotic proteins viz. PUMA, Bax, cleaved caspase-3 and cleaved caspase-9 as compared to saline-treated group. Furthermore, in the AFSC-treated group as compared to saline-treated group, there was a significant increase in the activation of autophagy as evident by increased expression of LC3-II, ATG5, ATG7, Beclin1 and phospho-AMPK levels with a concomitant decrease in phospho-p70S6K and p62 expression levels. To further confirm whether the protective effects of AFSC on cisplatin-induced apoptosis were dependent on autophagy, chloroquine, an autophagy inhibitor was administered by the intra-peritoneal route. Chloroquine administration led to significant reduction in the anti-apoptotic effects of the AFSC therapy and further deterioration in the renal structure and function caused by cisplatin. Collectively, our results put forth that AFSC ameliorates cisplatin-induced ARF through induction of autophagy and inhibition of apoptosis. Furthermore, the protective effects of AFSC were blunted by chloroquine, highlighting that activation of autophagy is an important mechanism of action for the protective role of AFSC in cisplatin-induced renal injury.

Keywords: best interest of the child, children's rights, parent and child relationship, parental responsibilities and rights

Procedia PDF Downloads 107
278 Tuning the Emission Colour of Phenothiazine by Introduction of Withdrawing Electron Groups

Authors: Andrei Bejan, Luminita Marin, Dalila Belei

Abstract:

Phenothiazine with electron-rich nitrogen and sulfur heteroatoms has a high electron-donating ability which promotes a good conjugation and therefore low band-gap with consequences upon charge carrier mobility improving and shifting of light emission in visible domain. Moreover, its non-planar butterfly conformation inhibits molecular aggregation and thus preserves quite well the fluorescence quantum yield in solid state compared to solution. Therefore phenothiazine and its derivatives are promising hole transport materials for use in organic electronic and optoelectronic devices as light emitting diodes, photovoltaic cells, integrated circuit sensors or driving circuits for large area display devices. The objective of this paper was to obtain a series of new phenothiazine derivatives by introduction of different electron withdrawing substituents as formyl, carboxyl and cyanoacryl units in order to create a push pull system which has potential to improve the electronic and optical properties. Bromine atom was used as electrono-donor moiety to extend furthermore the existing conjugation. The understudy compounds were structural characterized by FTIR and 1H-NMR spectroscopy and single crystal X-ray diffraction. Besides, the single crystal X-ray diffraction brought information regarding the supramolecular architecture of the compounds. Photophysical properties were monitored by UV-vis and photoluminescence spectroscopy, while the electrochemical behavior was established by cyclic voltammetry. The absorption maxima of the studied compounds vary in a large range (322-455 nm), reflecting the different electronic delocalization degree, depending by the substituent nature. In a similar manner, the emission spectra reveal different color of emitted light, a red shift being evident for the groups with higher electron withdrawing ability. The emitted light is pure and saturated for the compounds containing strong withdrawing formyl or cyanoacryl units and reach the highest quantum yield of 71% for the compound containing bromine and cyanoacrilic units. Electrochemical study show reversible oxidative and reduction processes for all the compounds and a close correlation of the HOMO-LUMO band gap with substituent nature. All these findings suggest the obtained compounds as promising materials for optoelectronic devices.

Keywords: electrochemical properties, phenothiazine derivatives, photoluminescence, quantum yield

Procedia PDF Downloads 332
277 Understanding Neuronal and Glial Cell Behaviour in Multi-Layer Nanofibre Systems to Support the Development of an in vitro Model of Spinal Cord Injury and Personalised Prostheses for Repair

Authors: H. Pegram, R. Stevens, L. De Girolamo

Abstract:

Aligned electrospun nanofibres act as effective neuronal and glial cell scaffolds that can be layered to contain multiple sheets harboring different cell populations. This allows personalised biofunctional prostheses to be manufactured with both acellular and cellularised layers for the treatment of spinal cord injury. Additionally, the manufacturing route may be configured to produce in-vitro 3D cell based model of spinal cord injury to aid drug development and enhance prosthesis performance. The goal of this investigation was to optimise the multi-layer scaffold design parameters for prosthesis manufacture, to enable the development of multi-layer patient specific implant therapies. The work has also focused on the fabricating aligned nanofibre scaffolds that promote in-vitro neuronal and glial cell population growth, cell-to-cell interaction and long-term survival following trauma to mimic an in-vivo spinal cord lesion. The approach has established reproducible lesions and has identified markers of trauma and regeneration marked by effective neuronal migration across the lesion with glial support. The investigation has advanced the development of an in-vitro model of traumatic spinal cord injury and has identified a route to manufacture prostheses which target the repair spinal cord injury. Evidence collated to investigate the multi-layer concept suggests that physical cues provided by nanofibres provide both a natural extra-cellular matrix (ECM) like environment and controls cell proliferation and migration. Specifically, aligned nanofibre layers act as a guidance system for migrating and elongating neurons. On a larger scale, material type in multi-layer systems also has an influence in inter-layer migration as cell types favour different material types. Results have shown that layering nanofibre membranes create a multi-level scaffold system which can enhance or prohibit cell migration between layers. It is hypothesised that modifying nanofibre layer material permits control over neuronal/glial cell migration. Using this concept, layering of neuronal and glial cells has become possible, in the context of tissue engineering and also modelling in-vitro induced lesions.

Keywords: electrospinning, layering, lesion, modeling, nanofibre

Procedia PDF Downloads 140
276 Biomedicine, Suffering, and Sacrifice: Myths and Prototypes in Cell and Gene Therapies

Authors: Edison Bicudo

Abstract:

Cell and gene therapies (CGTs) result from the intense manipulation of cells or the use of techniques such as gene editing. They have been increasingly used to tackle rare diseases or conditions of genetic origin, such as cancer. One might expect such a complex scientific field to be dominated by scientific findings and evidence-based explanations. However, people engaged in scientific argumentation also mobilize a range of cognitive operations of which they are not fully aware, in addition to drawing on widely available oral traditions. This paper analyses how experts discussing the potentialities and challenges of CGTs have recourse to a particular kind of prototypical myth. This sociology study, conducted at the University of Sussex (UK), involved interviews with scientists, regulators, and entrepreneurs involved in the development or governance of CGTs. It was observed that these professionals, when voicing their views, sometimes have recourse to narratives where CGTs appear as promising tools for alleviating or curing diseases. This is said to involve much personal, scientific, and financial sacrifice. In his study of traditional narratives, Hogan identified three prototypes: the romantic narrative, moved by the ideal of romantic union; the heroic narrative, moved by the desire for political power; and the sacrificial narrative, where the ideal is plenty, well-being, and health. It is argued here that discourses around CGTs often involve some narratives – or myths – that have a sacrificial nature. In this sense, the development of innovative therapies is depicted as a huge sacrificial endeavor involving biomedical scientists, biotech and pharma companies, and decision-makers. These sacrificial accounts draw on oral traditions and benefit from an emotional intensification that can be easily achieved in stories of serious diseases and physical suffering. Furthermore, these accounts draw on metaphorical understandings where diseases and vectors of diseases are considered enemies or invaders while therapies are framed as shields or protections. In this way, this paper aims to unravel the cognitive underpinnings of contemporary science – and, more specifically, biomedicine – revealing how myths, prototypes, and metaphors are highly operative even when complex reasoning is at stake. At the same time, this paper demonstrates how such hidden cognitive operations underpin the construction of powerful ideological discourses aimed at defending certain ways of developing, disseminating, and governing technologies and therapies.

Keywords: cell and gene therapies, myths, prototypes, metaphors

Procedia PDF Downloads 23
275 Effects of Probiotic Pseudomonas fluorescens on the Growth Performance, Immune Modulation, and Histopathology of African Catfish (Clarias gariepinus)

Authors: Nelson R. Osungbemiro, O. A. Bello-Olusoji, M. Oladipupo

Abstract:

This study was carried out to determine the effects of probiotics Pseudomonas fluorescens on the growth performance, histology examination and immune modulation of African Catfish, (Clarias gariepinus) challenged with Clostridium botulinum. P. fluorescens, and C. botulinum isolates were removed from the gut, gill and skin organs of procured adult samples of Clarias gariepinus from commercial fish farms in Akure, Ondo State, Nigeria. The physical and biochemical tests were performed on the bacterial isolates using standard microbiological techniques for their identification. Antibacterial activity tests on P. fluorescens showed inhibition zone with mean value of 3.7 mm which indicates high level of antagonism. The experimental diets were prepared at different probiotics bacterial concentration comprises of five treatments of different bacterial suspension, including the control (T1), T2 (10³), T3 (10⁵), T4 (10⁷) and T5 (10⁹). Three replicates for each treatment type were prepared. Growth performance and nutrients utilization indices were calculated. The proximate analysis of fish carcass and experimental diet was carried out using standard methods. After feeding for 70 days, haematological values and histological test were done following standard methods; also a subgroup from each experimental treatment was challenged by inoculating Intraperitonieally (I/P) with different concentration of pathogenic C. botulinum. Statistically, there were significant differences (P < 0.05) in the growth performance and nutrient utilization of C. gariepinus. Best weight gain and feed conversion ratio were recorded in fish fed T4 (10⁷) and poorest value obtained in the control. Haematological analyses of C. gariepinus fed the experimental diets indicated that all the fish fed diets with P. fluorescens had marked significantly (p < 0.05) higher White Blood Cell than the control diet. The results of the challenge test showed that fish fed the control diet had the highest mortality rate. Histological examination of the gill, intestine, and liver of fish in this study showed several histopathological alterations in fish fed the control diets compared with those fed the P. fluorescens diets. The study indicated that the optimum level of P. fluorescens required for C. gariepinus growth and white blood cells formation is 10⁷ CFU g⁻¹, while carcass protein deposition required 10⁵ CFU g⁻¹ of P. fluorescens concentration. The study also confirmed P. fluorescens as efficient probiotics that is capable of improving the immune response of C. gariepinus against the attack of a virulent fish pathogen, C. botulinum.

Keywords: Clarias gariepinus, Clostridium botulinum, probiotics, Pseudomonas fluorescens

Procedia PDF Downloads 166
274 Determination of Activation Energy for Thermal Decomposition of Selected Soft Tissues Components

Authors: M. Ekiert, T. Uhl, A. Mlyniec

Abstract:

Tendons are the biological soft tissue structures composed of collagen, proteoglycan, glycoproteins, water and cells of extracellular matrix (ECM). Tendons, which primary function is to transfer force generated by the muscles to the bones causing joints movement, are exposed to many micro and macro damages. In fact, tendons and ligaments trauma are one of the most numerous injuries of human musculoskeletal system, causing for many people (particularly for athletes and physically active people), recurring disorders, chronic pain or even inability of movement. The number of tendons reconstruction and transplantation procedures is increasing every year. Therefore, studies on soft tissues storage conditions (influencing i.e. tissue aging) seem to be an extremely important issue. In this study, an atomic-scale investigation on the kinetics of decomposition of two selected tendon components – collagen type I (which forms a 60-85% of a tendon dry mass) and elastin protein (which combine with ECM creates elastic fibers of connective tissues) is presented. A molecular model of collagen and elastin was developed based on crystal structure of triple-helical collagen-like 1QSU peptide and P15502 human elastin protein, respectively. Each model employed 4 linear strands collagen/elastin strands per unit cell, distributed in 2x2 matrix arrangement, placed in simulation box filled with water molecules. A decomposition phenomena was simulated with molecular dynamics (MD) method using ReaxFF force field and periodic boundary conditions. A set of NVT-MD runs was performed for 1000K temperature range in order to obtained temperature-depended rate of production of decomposition by-products. Based on calculated reaction rates activation energies and pre-exponential factors, required to formulate Arrhenius equations describing kinetics of decomposition of tested soft tissue components, were calculated. Moreover, by adjusting a model developed for collagen, system scalability and correct implementation of the periodic boundary conditions were evaluated. An obtained results provide a deeper insight into decomposition of selected tendon components. A developed methodology may also be easily transferred to other connective tissue elements and therefore might be used for further studies on soft tissues aging.

Keywords: decomposition, molecular dynamics, soft tissue, tendons

Procedia PDF Downloads 212
273 Poly(ε-caprolactone)/Halloysite Nanotube Nanocomposites Scaffolds for Tissue Engineering

Authors: Z. Terzopoulou, I. Koliakou, D. Bikiaris

Abstract:

Tissue engineering offers a new approach to regenerate diseased or damaged tissues such as bone. Great effort is devoted to eliminating the need of removing non-degradable implants at the end of their life span, with biodegradable polymers playing a major part. Poly(ε-caprolactone) (PCL) is one of the best candidates for this purpose due to its high permeability, good biodegradability and exceptional biocompatibility, which has stimulated extensive research into its potential application in the biomedical fields. However, PCL degrades much slower than other known biodegradable polymers and has a total degradation of 2-4 years depending on the initial molecular weight of the device. This is due to its relatively hydrophobic character and high crystallinity. Consequently, much attention has been given to the tunable degradation of PCL to meet the diverse requirements of biomedicine. Poly(ε-caprolactone) (PCL) is a biodegradable polyester that lacks bioactivity, so when used in bone tissue engineering, new bone tissue cannot bond tightly on the polymeric surface. Therefore, it is important to incorporate reinforcing fillers into PCL matrix in order to result in a promising combination of bioactivity, biodegradability, and strength. Natural clay halloysite nanotubes (HNTs) were incorporated into PCL polymeric matrix, via in situ ring-opening polymerization of caprolactone, in concentrations 0.5, 1 and 2.5 wt%. Both unmodified and modified with aminopropyltrimethoxysilane (APTES) HNTs were used in this study. The effect of nanofiller concentration and functionalization with end-amino groups on the physicochemical properties of the prepared nanocomposites was studied. Mechanical properties were found enhanced after the incorporation of nanofillers, while the modification increased further the values of tensile and impact strength. Thermal stability of PCL was not affected by the presence of nanofillers, while the crystallization rate that was studied by Differential Scanning Calorimetry (DSC) and Polarized Light Optical Microscopy (POM) increased. All materials were subjected to enzymatic hydrolysis in phosphate buffer in the presence of lipases. Due to the hydrophilic nature of HNTs, the biodegradation rate of nanocomposites was higher compared to neat PCL. In order to confirm the effect of hydrophilicity, contact angle measurements were also performed. In vitro biomineralization test confirmed that all samples were bioactive as mineral deposits were detected by X-ray diffractometry after incubation in SBF. All scaffolds were tested in relevant cell culture using osteoblast-like cells (MG-63) to demonstrate their biocompatibility

Keywords: biomaterials, nanocomposites, scaffolds, tissue engineering

Procedia PDF Downloads 320