Search results for: computer virus classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5003

Search results for: computer virus classification

1763 Computational Linguistic Implications of Gender Bias: Machines Reflect Misogyny in Society

Authors: Irene Yi

Abstract:

Machine learning, natural language processing, and neural network models of language are becoming more and more prevalent in the fields of technology and linguistics today. Training data for machines are at best, large corpora of human literature and at worst, a reflection of the ugliness in society. Computational linguistics is a growing field dealing with such issues of data collection for technological development. Machines have been trained on millions of human books, only to find that in the course of human history, derogatory and sexist adjectives are used significantly more frequently when describing females in history and literature than when describing males. This is extremely problematic, both as training data, and as the outcome of natural language processing. As machines start to handle more responsibilities, it is crucial to ensure that they do not take with them historical sexist and misogynistic notions. This paper gathers data and algorithms from neural network models of language having to deal with syntax, semantics, sociolinguistics, and text classification. Computational analysis on such linguistic data is used to find patterns of misogyny. Results are significant in showing the existing intentional and unintentional misogynistic notions used to train machines, as well as in developing better technologies that take into account the semantics and syntax of text to be more mindful and reflect gender equality. Further, this paper deals with the idea of non-binary gender pronouns and how machines can process these pronouns correctly, given its semantic and syntactic context. This paper also delves into the implications of gendered grammar and its effect, cross-linguistically, on natural language processing. Languages such as French or Spanish not only have rigid gendered grammar rules, but also historically patriarchal societies. The progression of society comes hand in hand with not only its language, but how machines process those natural languages. These ideas are all extremely vital to the development of natural language models in technology, and they must be taken into account immediately.

Keywords: computational analysis, gendered grammar, misogynistic language, neural networks

Procedia PDF Downloads 119
1762 Towards a Proof Acceptance by Overcoming Challenges in Collecting Digital Evidence

Authors: Lilian Noronha Nassif

Abstract:

Cybercrime investigation demands an appropriated evidence collection mechanism. If the investigator does not acquire digital proofs in a forensic sound, some important information can be lost, and judges can discard case evidence because the acquisition was inadequate. The correct digital forensic seizing involves preparation of professionals from fields of law, police, and computer science. This paper presents important challenges faced during evidence collection in different perspectives of places. The crime scene can be virtual or real, and technical obstacles and privacy concerns must be considered. All pointed challenges here highlight the precautions to be taken in the digital evidence collection and the suggested procedures contribute to the best practices in the digital forensics field.

Keywords: digital evidence, digital forensics process and procedures, mobile forensics, cloud forensics

Procedia PDF Downloads 404
1761 Application of Optical Method Based on Laser Devise as Non-Destructive Testing for Calculus of Mechanical Deformation

Authors: R. Daïra, V. Chalvidan

Abstract:

We present the speckle interferometry method to determine the deformation of a piece. This method of holographic imaging using a CCD camera for simultaneous digital recording of two states object and reference. The reconstruction is obtained numerically. This latest method has the advantage of being simpler than the methods currently available, and it does not suffer the holographic configuration faults online. Furthermore, it is entirely digital and avoids heavy analysis after recording the hologram. This work was carried out in the laboratory HOLO 3 (optical metrology laboratory in Saint Louis, France) and it consists in controlling qualitatively and quantitatively the deformation of object by using a camera CCD connected to a computer equipped with software of Fringe Analysis.

Keywords: speckle, nondestructive testing, interferometry, image processing

Procedia PDF Downloads 495
1760 Combining Multiscale Patterns of Weather and Sea States into a Machine Learning Classifier for Mid-Term Prediction of Extreme Rainfall in North-Western Mediterranean Sea

Authors: Pinel Sebastien, Bourrin François, De Madron Du Rieu Xavier, Ludwig Wolfgang, Arnau Pedro

Abstract:

Heavy precipitation constitutes a major meteorological threat in the western Mediterranean. Research has investigated the relationship between the states of the Mediterranean Sea and the atmosphere with the precipitation for short temporal windows. However, at a larger temporal scale, the precursor signals of heavy rainfall in the sea and atmosphere have drawn little attention. Moreover, despite ongoing improvements in numerical weather prediction, the medium-term forecasting of rainfall events remains a difficult task. Here, we aim to investigate the influence of early-spring environmental parameters on the following autumnal heavy precipitations. Hence, we develop a machine learning model to predict extreme autumnal rainfall with a 6-month lead time over the Spanish Catalan coastal area, based on i) the sea pattern (main current-LPC and Sea Surface Temperature-SST) at the mesoscale scale, ii) 4 European weather teleconnection patterns (NAO, WeMo, SCAND, MO) at synoptic scale, and iii) the hydrological regime of the main local river (Rhône River). The accuracy of the developed model classifier is evaluated via statistical analysis based on classification accuracy, logarithmic and confusion matrix by comparing with rainfall estimates from rain gauges and satellite observations (CHIRPS-2.0). Sensitivity tests are carried out by changing the model configuration, such as sea SST, sea LPC, river regime, and synoptic atmosphere configuration. The sensitivity analysis suggests a negligible influence from the hydrological regime, unlike SST, LPC, and specific teleconnection weather patterns. At last, this study illustrates how public datasets can be integrated into a machine learning model for heavy rainfall prediction and can interest local policies for management purposes.

Keywords: extreme hazards, sensitivity analysis, heavy rainfall, machine learning, sea-atmosphere modeling, precipitation forecasting

Procedia PDF Downloads 133
1759 Epistemic Uncertainty Analysis of Queue with Vacations

Authors: Baya Takhedmit, Karim Abbas, Sofiane Ouazine

Abstract:

The vacations queues are often employed to model many real situations such as computer systems, communication networks, manufacturing and production systems, transportation systems and so forth. These queueing models are solved at fixed parameters values. However, the parameter values themselves are determined from a finite number of observations and hence have uncertainty associated with them (epistemic uncertainty). In this paper, we consider the M/G/1/N queue with server vacation and exhaustive discipline where we assume that the vacation parameter values have uncertainty. We use the Taylor series expansions approach to estimate the expectation and variance of model output, due to epistemic uncertainties in the model input parameters.

Keywords: epistemic uncertainty, M/G/1/N queue with vacations, non-parametric sensitivity analysis, Taylor series expansion

Procedia PDF Downloads 432
1758 Deep Learning Based 6D Pose Estimation for Bin-Picking Using 3D Point Clouds

Authors: Hesheng Wang, Haoyu Wang, Chungang Zhuang

Abstract:

Estimating the 6D pose of objects is a core step for robot bin-picking tasks. The problem is that various objects are usually randomly stacked with heavy occlusion in real applications. In this work, we propose a method to regress 6D poses by predicting three points for each object in the 3D point cloud through deep learning. To solve the ambiguity of symmetric pose, we propose a labeling method to help the network converge better. Based on the predicted pose, an iterative method is employed for pose optimization. In real-world experiments, our method outperforms the classical approach in both precision and recall.

Keywords: pose estimation, deep learning, point cloud, bin-picking, 3D computer vision

Procedia PDF Downloads 159
1757 New Coordinate System for Countries with Big Territories

Authors: Mohammed Sabri Ali Akresh

Abstract:

The modern technologies and developments in computer and Global Positioning System (GPS) as well as Geographic Information System (GIS) and total station TS. This paper presents a new proposal for coordinates system by a harmonic equations “United projections”, which have five projections (Mercator, Lambert, Russell, Lagrange, and compound of projection) in one zone coordinate system width 14 degrees, also it has one degree for overlap between zones, as well as two standards parallels for zone from 10 S to 45 S. Also this paper presents two cases; first case is to compare distances between a new coordinate system and UTM, second case creating local coordinate system for the city of Sydney to measure the distances directly from rectangular coordinates using projection of Mercator, Lambert and UTM.

Keywords: harmonic equations, coordinate system, projections, algorithms, parallels

Procedia PDF Downloads 472
1756 Morphological and Molecular Characterization of Accessions of Black Fonio Millet (Digitaria Iburua Stapf) Grown in Selected Regions in Nigeria

Authors: Nwogiji Cletus Olando, Oselebe Happiness Ogba, Enoch Achigan-Dako

Abstract:

Digitaria iburua, commonly known as black fonio, is a cereal crop native to Africa and extensively cultivated by smallholder farmers in Northern Benin, Togo, and Nigeria. This crop holds immense nutritional and socio-cultural value. Unfortunately, limited knowledge about its genetic diversity exists due to a lack of scientific attention. As a result, its potential for improvement in food and agriculture remains largely untapped. To address this gap, a study was conducted using 41 accessions of D. iburua stored in the genebank of the Laboratory of Genetics, Biotechnology, and Seed Science at Abomey-Calavi University, Benin. The study employed both morphological and simple sequence repeat (SSR) markers to evaluate the genetic variability of the accessions. Agro-morphological assessments were carried out during the 2020 cropping season, utilizing an alpha lattice design with three replications. The collected data encompassed qualitative and quantitative traits. Additionally, molecular variability was assessed using eleven SSR markers. The results revealed significant phenotypic variability among the evaluated accessions, leading to their classification into three main clusters. Furthermore, the eleven SSR markers identified a total of 50 alleles, averaging 4.55 alleles per locus. The primers exhibited an average polymorphic information content value of 0.43, with the DE-ARC019 primer displaying the highest value (0.59). These findings suggest a substantial degree of genetic heterogeneity within the evaluated accessions, and the SSR markers employed in the study proved highly effective in detecting and characterizing this genetic variability. In conclusion, this study highlights the presence of significant genetic diversity in black fonio and provides valuable insights for future efforts aimed at its genetic improvement and conservation.

Keywords: genetic diversity, digitaria iburua, genetic improvement, simple sequence repeat markers, Nigeria, conservation

Procedia PDF Downloads 85
1755 Understanding Rural Teachers’ Perceived Intention of Using Play in ECCE Mathematics Classroom: Strength-Based Approach

Authors: Nyamela M. ‘Masekhohola, Khanare P. Fumane

Abstract:

The Lesotho downward trend in mathematics attainment at all levels is compounded by the absence of innovative approaches to teaching and learning in Early Childhood. However, studies have shown that play pedagogy can be used to mitigate the challenges of mathematics education. Despite the benefits of play pedagogy to rural learners, its full potential has not been realized in early childhood care and education classrooms to improve children’s performance in mathematics because the adoption of play pedagogy depends on a strength-based approach. The study explores the potential of play pedagogy to improve mathematics education in early childhood care and education in Lesotho. Strength-based approach is known for its advocacy of recognizing and utilizing children’s strengths, capacities and interests. However, this approach and its promisingattributes is not well-known in Lesotho. In particular, little is known about the attributes of play pedagogy that are essential to improve mathematic education in ECCE programs in Lesotho. To identify such attributes and strengthen mathematics education, this systematic review examines evidence published on the strengths of play pedagogy that supports the teaching and learning of mathematics education in ECCE. The purpose of this review is, therefore, to identify and define the strengths of play pedagogy that supports mathematics education. Moreover, the study intends to understand the rural teachers’ perceived intention of using play in ECCE math classrooms through a strength-based approach. Eight key strengths were found (cues for reflection, edutainment, mathematics language development, creativity and imagination, cognitive promotion, exploration, classification, and skills development). This study is the first to identify and define the strength-based attributes of play pedagogy to improve the teaching and learning of mathematics in ECCE centers in Lesotho. The findings reveal which opportunities teachers find important for improving the teaching of mathematics as early as in ECCE programs. We conclude by discussing the implications of the literature for stimulating dialogues towards formulating strength-based approaches to teaching mathematics, as well as reflecting on the broader contributions of play pedagogy as an asset to improve mathematics in Lesotho and beyond.

Keywords: early childhood education, mathematics education, lesotho, play pedagogy, strength-based approach.

Procedia PDF Downloads 141
1754 An Architectural Model of Multi-Agent Systems for Student Evaluation in Collaborative Game Software

Authors: Monica Hoeldtke Pietruchinski, Andrey Ricardo Pimentel

Abstract:

The teaching of computer programming for beginners has been presented to the community as a not simple or trivial task. Several methodologies and research tools have been developed; however, the problem still remains. This paper aims to present multi-agent system architecture to be incorporated to the educational collaborative game software for teaching programming that monitors, evaluates and encourages collaboration by the participants. A literature review has been made on the concepts of Collaborative Learning, Multi-agents systems, collaborative games and techniques to teach programming using these concepts simultaneously.

Keywords: architecture of multi-agent systems, collaborative evaluation, collaboration assessment, gamifying educational software

Procedia PDF Downloads 462
1753 Authoring of Augmented Reality Manuals for Not Physically Available Products

Authors: Vito M. Manghisi, Michele Gattullo, Alessandro Evangelista, Enricoandrea Laviola

Abstract:

In this work, we compared two solutions for displaying a demo version of an Augmented Reality (AR) manual when the real product is not available, opting to replace it with its computer-aided design (CAD) model. AR has been proved to be effective in maintenance and assembly operations by many studies in the literature. However, most of them present solutions for existing products, usually converting old, printed manuals into AR manuals. In this case, authoring consists of defining how to convey existing instructions through AR. It is not a simple choice, and demo versions are created to test the design goodness. However, this becomes impossible when the product is not physically available, as for new products. A solution could be creating an entirely virtual environment with the product and the instructions. However, in this way, user interaction is completely different from that in the real application, then it would be hard testing the usability of the AR manual. This work aims to propose and compare two different solutions for the displaying of a demo version of an AR manual to support authoring in case of a product that is not physically available. We used as a case study that of an innovative semi-hermetic compressor that has not yet been produced. The applications were developed for a handheld device, using Unity 3D. The main issue was how to show the compressor and attach instructions on it. In one approach, we used Vuforia natural feature tracking to attach a CAD model of the compressor to a 2D image that is a drawing in scale 1:1 of the top-view of the CAD model. In this way, during the AR manual demonstration, the 3D model of the compressor is displayed on the user's device in place of the real compressor, and all the virtual instructions are attached to it. In the other approach, we first created a support application that shows the CAD model of the compressor on a marker. Then, we registered a video of this application, moving around the marker, obtaining a video that shows the CAD model from every point of view. For the AR manual, we used the Vuforia model target (360° option) to track the CAD model of the compressor, as it was the real compressor. Then, during the demonstration, the video is shown on a fixed large screen, and instructions are displayed attached to it in the AR manual. The first solution presents the main drawback to keeping the printed image with everyone working on the authoring of the AR manual, but allows to show the product in a real scale and interaction during the demonstration is very simple. The second one does not need a printed marker during the demonstration but a screen. Still, the compressor model is resized, and interaction is awkward since the user has to play the video on the screen to rotate the compressor. The two solutions were evaluated together with the company, and the preferred was the first one due to a more natural interaction.

Keywords: augmented reality, human computer interaction, operating instructions, maintenance, assembly

Procedia PDF Downloads 126
1752 Anthropomorphism and Its Impact on the Implementation and Perception of AI

Authors: Marie Oldfield

Abstract:

Anthropomorphism is a technique used by humans to make sense of their surroundings. Anthropomorphism is a widely used technique used to influence consumers to purchase goods or services. These techniques can entice consumers into buying something to fulfill a gap or desire in their life, ranging from loneliness to the desire to be exclusive. By manipulating belief systems, consumer behaviour can be exploited. This paper examines a series of studies to show how anthropomorphism can be used as a basis for exploitation. The first set of studies in this paper examines how anthropomorphism is used in marketing and the effects on humans engaging with this technique. The second set of studies examines how humans can be potentially exploited by artificial agents. We then discuss the consequences of this type of activity within the context of dehumanisation. This research has found potential serious consequences for society and humanity, which indicate an urgent need for further research in this area.

Keywords: anthropomorphism, ethics, human-computer interaction, AI

Procedia PDF Downloads 88
1751 Comparing ITV Definitions From 4D CT-PET and Breath-Hold Technique with Abdominal Compression

Authors: R. D. Esposito, P. Dorado Rodriguez, D. Planes Meseguer

Abstract:

In this work, we compare the contour of Internal Target Volume (ITV), for Stereotactic Body Radiation Therapy (SBRT) of a patient affected by a single liver metastasis, obtained from two different patient data acquisition techniques. The first technique consists in a free breathing Computer Tomography (CT) scan acquisition, followed by exhalation breath-hold and inhalation breath-hold CT scans, all of them applying abdominal compression while the second technique consists in a free breathing 4D CT-PET (Positron Emission Tomography) scan. Results obtained with these two methods are consistent, which demonstrate that at least for this specific case, both techniques are adequate for ITV contouring in SBRT treatments.

Keywords: 4D CT-PET, abdominal compression, ITV, SBRT

Procedia PDF Downloads 440
1750 Positive Outcomes of Internship for Students Majoring in Mathematics

Authors: Irina Peterburgsky

Abstract:

We have been working on finding internship positions for our math and computer science majors. Among many other positive outcomes of internship for students majoring in mathematics, there are: students see new applications of mathematics to real life and see new scientific problems; they learn new methods, tools, etc. that they have not seen in their classes; they appreciate the power of mathematics that increases their interest in learning mathematics; they make decisions to take more advanced math courses; students understand better what their potentials, strong points, and limitations are; learn what work ethic is; learn how to work as a member of a team at a workplace; understand better how to offer their help and how to ask for help; start building their professional relationship; build self-confidence as young professionals, and what is the most important - they get a better understanding of their goals in their future professional careers.

Keywords: internship, mathematics, positive outcoms for students, workplace

Procedia PDF Downloads 179
1749 Simulating the Surface Runoff for the Urbanized Watershed of Mula-Mutha River from Western Maharashtra, India

Authors: Anargha A. Dhorde, Deshpande Gauri, Amit G. Dhorde

Abstract:

Mula-Mutha basin is one of the speedily urbanizing watersheds, wherein two major urban centers, Pune and Pimpri-Chinchwad, have developed at a shocking rate in the last two decades. Such changing land use/land cover (LULC) is prone to hydrological problems and flash floods are a frequent, eventuality in the lower reaches of the basin. The present research brings out the impact of varying LULC, impervious surfaces on urban surface hydrology and generates storm-runoff scenarios for the hydrological units. The two multi-temporal satellite images were processed and supervised classification is performed with > 75% accuracy. The built-up has increased from 14.4% to 34.37% in the 28 years span, which is concentrated in and around the Pune-PCMC region. Impervious surfaces that were obtained by population calibrated multiple regression models. Almost 50% area of the watershed is impervious, which attribute to increase surface runoff and flash floods. The SCS-CN method was employed to calculate surface runoff of the watershed. The comparison between calculated and measured values of runoff was performed in a statistically precise way which shows no significant difference. Increasing built-up areas, as well as impervious surface areas due to rapid urbanization and industrialization, may lead to generating high runoff volumes in the basin especially in the urbanized areas of the watershed and along the major transportation arteries. Simulations generated with 50 mm and 100 mm rainstorm depth conspicuously noted that most of the changes in terms of increased runoff are constricted to the highly urbanized areas. Considering whole watershed area, the runoff values 39 m³ generated with 1'' rainfall whereas only urbanized areas of the basin (Pune and Pimpari-Chinchwad) were generated 11154 m³ runoff. Such analysis is crucial in providing information regarding their intensity and location, which proves instrumental in their analysis in order to formulate proper mitigation measures and rehabilitation strategies.

Keywords: land use/land cover, LULC, impervious surfaces, surface hydrology, storm-runoff scenarios

Procedia PDF Downloads 217
1748 Epidemiology of Congenital Heart Defects in Kazakhstan: Data from Unified National Electronic Healthcare System 2014-2020

Authors: Dmitriy Syssoyev, Aslan Seitkamzin, Natalya Lim, Kamilla Mussina, Abduzhappar Gaipov, Dimitri Poddighe, Dinara Galiyeva

Abstract:

Background: Data on the epidemiology of congenital heart defects (CHD) in Kazakhstan is scarce. Therefore, the aim of this study was to describe the incidence, prevalence and all-cause mortality of patients with CHD in Kazakhstan, using national large-scale registry data from the Unified National Electronic Healthcare System (UNEHS) for the period of 2014-2020. Methods: In this retrospective cohort study, the included data pertained to all patients diagnosed with CHD in Kazakhstan and registered in UNEHS between January 2014 and December 2020. CHD was defined based on International Classification of Diseases 10th Revision (ICD-10) codes Q20-Q26. Incidence, prevalence, and all-cause mortality rates were calculated per 100,000 population. Survival analysis was performed using Cox proportional hazards regression modeling and the Kaplan-Meier method. Results: In total, 66,512 patients were identified. Among them, 59,534 (89.5%) were diagnosed with a single CHD, while 6,978 (10.5%) had more than two CHDs. The median age at diagnosis was 0.08 years (interquartile range (IQR) 0.01 – 0.66) for people with multiple CHD types and 0.39 years (IQR 0.04 – 8.38) for those with a single CHD type. The most common CHD types were atrial septal defect (ASD) and ventricular septal defect (VSD), accounting for 25.8% and 21.2% of single CHD cases, respectively. The most common multiple types of CHD were ASD with VSD (23.4%), ASD with patent ductus arteriosus (PDA) (19.5%), and VSD with PDA (17.7%). The incidence rate of CHD decreased from 64.6 to 47.1 cases per 100,000 population among men and from 68.7 to 42.4 among women. The prevalence rose from 66.1 to 334.1 cases per 100,000 population among men and from 70.8 to 328.7 among women. Mortality rates showed a slight increase from 3.5 to 4.7 deaths per 100,000 in men and from 2.9 to 3.7 in women. Median follow-up was 5.21 years (IQR 2.47 – 11.69). Male sex (HR 1.60, 95% CI 1.45 - 1.77), having multiple CHDs (HR 2.45, 95% CI 2.01 - 2.97), and living in a rural area (HR 1.32, 95% CI 1.19 - 1.47) were associated with a higher risk of all-cause mortality. Conclusion: The incidence of CHD in Kazakhstan has shown a moderate decrease between 2014 and 2020, while prevalence and mortality have increased. Male sex, multiple CHD types, and rural residence were significantly associated with a higher risk of all-cause mortality.

Keywords: congenital heart defects (CHD), epidemiology, incidence, Kazakhstan, mortality, prevalence

Procedia PDF Downloads 92
1747 The Amount of Conformity of Persian Subject Headlines with Users' Social Tagging

Authors: Amir Reza Asnafi, Masoumeh Kazemizadeh, Najmeh Salemi

Abstract:

Due to the diversity of information resources in the web0.2 environment, which is increasing in number from time to time, the social tagging system should be used to discuss Internet resources. Studying the relevance of social tags to thematic headings can help enrich resources and make them more accessible to resources. The present research is of applied-theoretical type and research method of content analysis. In this study, using the listing method and content analysis, the level of accurate, approximate, relative, and non-conformity of social labels of books available in the field of information science and bibliography of Kitabrah website with Persian subject headings was determined. The exact matching of subject headings with social tags averaged 22 items, the approximate matching of subject headings with social tags averaged 36 items, the relative matching of thematic headings with social tags averaged 36 social items, and the average matching titles did not match the title. The average is 116. According to the findings, the exact matching of subject headings with social labels is the lowest and the most inconsistent. This study showed that the average non-compliance of subject headings with social labels is even higher than the sum of the three types of exact, relative, and approximate matching. As a result, the relevance of thematic titles to social labels is low. Due to the fact that the subject headings are in the form of static text and users are not allowed to interact and insert new selected words and topics, and on the other hand, in websites based on Web 2 and based on the social classification system, this possibility is available for users. An important point of the present study and the studies that have matched the syntactic and semantic matching of social labels with thematic headings is that the degree of conformity of thematic headings with social labels is low. Therefore, these two methods can complement each other and create a hybrid cataloging that includes subject headings and social tags. The low level of conformity of thematic headings with social tags confirms the results of backgrounds and writings that have compared the social tags of books with the thematic headings of the Library of Congress. It is not enough to match social labels with thematic headings. It can be said that these two methods can be complementary.

Keywords: Web 2/0, social tags, subject headings, hybrid cataloging

Procedia PDF Downloads 159
1746 Using Eye-Tracking to Investigate TEM Validity and Design

Authors: Cao Xi

Abstract:

This paper reports a study which used eye-tracking to examine the cognitive validity of TEM 8(Test for English Majors, Band 8). The study investigated test takers' reading patterns on four -item types using eye-tracking, and interviews. Thirty participants completed 22 items on a computer, with the Tobii X2 Eye Tracker recording their eye movements on screen. Eleven students further participated in a recall interview while viewing video footage of their gaze patterns on the test. The findings will indicate that first, different reading item types will employ different cognitive processes; then different reading patterns for stronger and weaker test takers’on each item types. The implication of this study is to provide recommendations for the use of eye tracking technology in language research.

Keywords: eye tracking, reading patterns, test for english majors, cognitive validity

Procedia PDF Downloads 159
1745 The Impact of Training Method on Programming Learning Performance

Authors: Chechen Liao, Chin Yi Yang

Abstract:

Although several factors that affect learning to program have been identified over the years, there continues to be no indication of any consensus in understanding why some students learn to program easily and quickly while others have difficulty. Seldom have researchers considered the problem of how to help the students enhance the programming learning outcome. The research had been conducted at a high school in Taiwan. Students participating in the study consist of 330 tenth grade students enrolled in the Basic Computer Concepts course with the same instructor. Two types of training methods-instruction-oriented and exploration-oriented were conducted. The result of this research shows that the instruction-oriented training method has better learning performance than exploration-oriented training method.

Keywords: learning performance, programming learning, TDD, training method

Procedia PDF Downloads 426
1744 Application of Pattern Recognition Technique to the Quality Characterization of Superficial Microstructures in Steel Coatings

Authors: H. Gonzalez-Rivera, J. L. Palmeros-Torres

Abstract:

This paper describes the application of traditional computer vision techniques as a procedure for automatic measurement of the secondary dendrite arm spacing (SDAS) from microscopic images. The algorithm is capable of finding the lineal or curve-shaped secondary column of the main microstructure, measuring its length size in a micro-meter and counting the number of spaces between dendrites. The automatic characterization was compared with a set of 1728 manually characterized images, leading to an accuracy of −0.27 µm for the length size determination and a precision of ± 2.78 counts for dendrite spacing counting, also reducing the characterization time from 7 hours to 2 minutes.

Keywords: dendrite arm spacing, microstructure inspection, pattern recognition, polynomial regression

Procedia PDF Downloads 43
1743 Preliminary Experience in Multiple Green Health Hospital Construction

Authors: Ming-Jyh Chen, Wen-Ming Huang, Yi-Chu Liu, Li-Hui Yang

Abstract:

Introduction: Social responsibility is the key to sustainable organizational development. Under the ground Green Health Hospital Declaration signed by our superintendent, we have launched comprehensive energy conservation management in medical services, the community, and the staff’s life. To execute environment-friendly promotion with robust strategies, we build up a low-carbon medical system and community with smart green public construction promotion as well as intensifying energy conservation education and communication. Purpose/Methods: With the support of the board and the superintendent, we construct an energy management team, commencing with an environment-friendly system, management, education, and ISO 50001 energy management system; we have ameliorated energy performance and energy efficiency and continuing. Results: In the year 2021, we have achieved multiple goals. The energy management system efficiently controls diesel, natural gas, and electricity usage. About 5% of the consumption is saved when compared to the numbers from 2018 and 2021. Our company develops intelligent services and promotes various paperless electronic operations to provide people with a vibrant and environmentally friendly lifestyle. The goal is to save 68.6% on printing and photocopying by reducing 35.15 million sheets of paper yearly. We strengthen the concept of environmental protection classification among colleagues. In the past two years, the amount of resource recycling has reached more than 650 tons, and the resource recycling rate has reached 70%. The annual growth rate of waste recycling is about 28 metric tons. Conclusions: To build a green medical system with “high efficacy, high value, low carbon, low reliance,” energy stewardship, economic prosperity, and social responsibility are our principles when it comes to formulation of energy conservation management strategies, converting limited sources to efficient usage, developing clean energy, and continuing with sustainable energy.

Keywords: energy efficiency, environmental education, green hospital, sustainable development

Procedia PDF Downloads 78
1742 Natural Language News Generation from Big Data

Authors: Bastian Haarmann, Likas Sikorski

Abstract:

In this paper, we introduce an NLG application for the automatic creation of ready-to-publish texts from big data. The fully automatic generated stories have a high resemblance to the style in which the human writer would draw up a news story. Topics may include soccer games, stock exchange market reports, weather forecasts and many more. The generation of the texts runs according to the human language production. Each generated text is unique. Ready-to-publish stories written by a computer application can help humans to quickly grasp the outcomes of big data analyses, save time-consuming pre-formulations for journalists and cater to rather small audiences by offering stories that would otherwise not exist.

Keywords: big data, natural language generation, publishing, robotic journalism

Procedia PDF Downloads 430
1741 Research on the Conservation Strategy of Territorial Landscape Based on Characteristics: The Case of Fujian, China

Authors: Tingting Huang, Sha Li, Geoffrey Griffiths, Martin Lukac, Jianning Zhu

Abstract:

Territorial landscapes have experienced a gradual loss of their typical characteristics during long-term human activities. In order to protect the integrity of regional landscapes, it is necessary to characterize, evaluate and protect them in a graded manner. The study takes Fujian, China, as an example and classifies the landscape characters of the site at the regional scale, middle scale, and detailed scale. A multi-scale approach combining parametric and holistic approaches is used to classify and partition the landscape character types (LCTs) and landscape character areas (LCAs) at different scales, and a multi-element landscape assessment approach is adopted to explore the conservation strategies of the landscape character. Firstly, multiple fields and multiple elements of geography, nature and humanities were selected as the basis of assessment according to the scales. Secondly, the study takes a parametric approach to the classification and partitioning of landscape character, Principal Component Analysis, and two-stage cluster analysis (K-means and GMM) in MATLAB software to obtain LCTs, combines with Canny Operator Edge Detection Algorithm to obtain landscape character contours and corrects LCTs and LCAs by field survey and manual identification methods. Finally, the study adopts the Landscape Sensitivity Assessment method to perform landscape character conservation analysis and formulates five strategies for different LCAs: conservation, enhancement, restoration, creation, and combination. This multi-scale identification approach can efficiently integrate multiple types of landscape character elements, reduce the difficulty of broad-scale operations in the process of landscape character conservation, and provide a basis for landscape character conservation strategies. Based on the natural background and the restoration of regional characteristics, the results of landscape character assessment are scientific and objective and can provide a strong reference in regional and national scale territorial spatial planning.

Keywords: parameterization, multi-scale, landscape character identify, landscape character assessment

Procedia PDF Downloads 97
1740 Three Issues for Integrating Artificial Intelligence into Legal Reasoning

Authors: Fausto Morais

Abstract:

Artificial intelligence has been widely used in law. Programs are able to classify suits, to identify decision-making patterns, to predict outcomes, and to formalize legal arguments as well. In Brazil, the artificial intelligence victor has been classifying cases to supreme court’s standards. When those programs act doing those tasks, they simulate some kind of legal decision and legal arguments, raising doubts about how artificial intelligence can be integrated into legal reasoning. Taking this into account, the following three issues are identified; the problem of hypernormatization, the argument of legal anthropocentrism, and the artificial legal principles. Hypernormatization can be seen in the Brazilian legal context in the Supreme Court’s usage of the Victor program. This program generated efficiency and consistency. On the other hand, there is a feasible risk of over standardizing factual and normative legal features. Then legal clerks and programmers should work together to develop an adequate way to model legal language into computational code. If this is possible, intelligent programs may enact legal decisions in easy cases automatically cases, and, in this picture, the legal anthropocentrism argument takes place. Such an argument argues that just humans beings should enact legal decisions. This is so because human beings have a conscience, free will, and self unity. In spite of that, it is possible to argue against the anthropocentrism argument and to show how intelligent programs may work overcoming human beings' problems like misleading cognition, emotions, and lack of memory. In this way, intelligent machines could be able to pass legal decisions automatically by classification, as Victor in Brazil does, because they are binding by legal patterns and should not deviate from them. Notwithstanding, artificial intelligent programs can be helpful beyond easy cases. In hard cases, they are able to identify legal standards and legal arguments by using machine learning. For that, a dataset of legal decisions regarding a particular matter must be available, which is a reality in Brazilian Judiciary. Doing such procedure, artificial intelligent programs can support a human decision in hard cases, providing legal standards and arguments based on empirical evidence. Those legal features claim an argumentative weight in legal reasoning and should serve as references for judges when they must decide to maintain or overcome a legal standard.

Keywords: artificial intelligence, artificial legal principles, hypernormatization, legal anthropocentrism argument, legal reasoning

Procedia PDF Downloads 144
1739 Ultrasonic Measurement of Elastic Properties of Fiber Reinforced Composite Materials

Authors: Hatice Guzel, Imran Oral, Huseyin Isler

Abstract:

In this study, elastic constants, Young’s modulus, Poisson’s ratios, and shear moduli of orthotropic composite materials, consisting of E-glass/epoxy and carbon/epoxy, were calculated by ultrasonic velocities which were measured using ultrasonic pulse-echo method. 35 MHz computer controlled analyzer, 60 MHz digital oscilloscope, 5 MHz longitudinal probe, and 2,25 MHz transverse probe were used for the measurements of ultrasound velocities, the measurements were performed at ambient temperature. It was understood from the data obtained in this study that, measured ultrasound velocities and the calculated elasticity coefficients were depending on the fiber orientations.

Keywords: composite materials, elastic constants, orthotropic materials, ultrasound

Procedia PDF Downloads 290
1738 Association of Phosphorus and Magnesium with Fat Indices in Children with Metabolic Syndrome

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Metabolic syndrome (MetS) is a disease associated with obesity. It is a complicated clinical problem possibly affecting body composition as well as macrominerals. These parameters gain further attention, particularly in the pediatric population. The aim of this study is to investigate the amount of discrete body composition fractions in groups that differ in the severity of obesity. Also, the possible associations with calcium (Ca), phosphorus (P), magnesium (Mg) will be examined. The study population was divided into four groups. Twenty-eight, 29, 34, and 34 children were involved in Group 1 (healthy), 2 (obese), 3 (morbid obese), and 4 (MetS), respectively. Institutional Ethical Committee approved the study protocol. Informed consent forms were obtained from the participants. The classification of obese groups was performed based upon the recommendations of the World Health Organization. Metabolic syndrome components were defined. Serum Ca, P, Mg concentrations were measured. Within the scope of body composition, fat mass, fat-free mass, protein mass, mineral mass were determined by a body composition monitor using bioelectrical impedance analysis technology. Weight, height, waist circumference, hip circumference, head circumference, and neck circumference values were recorded. Body mass index, diagnostic obesity notation model assessment index, fat mass index, and fat-free mass index values were calculated. Data were statistically evaluated and interpreted. There was no statistically significant difference among the groups in terms of Ca and P concentrations. Magnesium concentrations differed between Group 1 and Group 4. Strong negative correlations were detected between P as well as Mg and fat mass index as well as diagnostic obesity notation model assessment index in Group 4, the group, which comprised morbid obese children with MetS. This study emphasized unique associations of P and Mg minerals with diagnostic obesity notation model assessment index and fat mass index during the evaluation of morbid obese children with MetS. It was also concluded that diagnostic obesity notation model assessment index and fat mass index were more proper indices in comparison with body mass index and fat-free mass index for the purpose of defining body composition in children.

Keywords: children, fat mass, fat-free mass, macrominerals, obesity

Procedia PDF Downloads 151
1737 New Advanced Medical Software Technology Challenges and Evolution of the Regulatory Framework in Expert Software, Artificial Intelligence, and Machine Learning

Authors: Umamaheswari Shanmugam, Silvia Ronchi

Abstract:

Software, artificial intelligence, and machine learning can improve healthcare through innovative and advanced technologies that can use the large amount and variety of data generated during healthcare services every day; one of the significant advantages of these new technologies is the ability to get experience and knowledge from real-world use and to improve their performance continuously. Healthcare systems and institutions can significantly benefit because the use of advanced technologies improves the efficiency and efficacy of healthcare. Software-defined as a medical device, is stand-alone software that is intended to be used for patients for one or more of these specific medical intended uses: - diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of a disease, any other health conditions, replacing or modifying any part of a physiological or pathological process–manage the received information from in vitro specimens derived from the human samples (body) and without principal main action of its principal intended use by pharmacological, immunological or metabolic definition. Software qualified as medical devices must comply with the general safety and performance requirements applicable to medical devices. These requirements are necessary to ensure high performance and quality and protect patients' safety. The evolution and the continuous improvement of software used in healthcare must consider the increase in regulatory requirements, which are becoming more complex in each market. The gap between these advanced technologies and the new regulations is the biggest challenge for medical device manufacturers. Regulatory requirements can be considered a market barrier, as they can delay or obstacle the device's approval. Still, they are necessary to ensure performance, quality, and safety. At the same time, they can be a business opportunity if the manufacturer can define the appropriate regulatory strategy in advance. The abstract will provide an overview of the current regulatory framework, the evolution of the international requirements, and the standards applicable to medical device software in the potential market all over the world.

Keywords: artificial intelligence, machine learning, SaMD, regulatory, clinical evaluation, classification, international requirements, MDR, 510k, PMA, IMDRF, cyber security, health care systems

Procedia PDF Downloads 86
1736 A Tool to Measure the Usability Guidelines for Arab E-Government Websites

Authors: Omyma Alosaimi, Asma Alsumait

Abstract:

The website developer and designer should follow usability guidelines to provide a user-friendly interface. Using tools to measure usability, the evaluator can evaluate automatically hundreds of links within few minutes. It has the advantage of detecting some violations that only machines can detect. For that using usability evaluating tool is important to find as many violations as possible. There are many websites usability testing tools, but none is developed to measure the usability of e-government website nor Arabic e-government websites. To measure the usability of the Arabic e-government websites, a tool is developed and tested in this paper. A comparison of using a tool specifically developed for e-government websites and general usability testing tool is presented.

Keywords: e-government, human computer interaction, usability evaluation, usability guidelines

Procedia PDF Downloads 422
1735 Computational Fluid Dynamics (CFD) Modeling of Local with a Hot Temperature in Sahara

Authors: Selma Bouasria, Mahi Abdelkader, Abbès Azzi, Herouz Keltoum

Abstract:

This paper reports concept was used into the computational fluid dynamics (CFD) code cfx through user-defined functions to assess ventilation efficiency inside (forced-ventilation local). CFX is a simulation tool which uses powerful computer and applied mathematics, to model fluid flow situations for the prediction of heat, mass and momentum transfer and optimal design in various heat transfer and fluid flow processes to evaluate thermal comfort in a room ventilated (highly-glazed). The quality of the solutions obtained from CFD simulations is an effective tool for predicting the behavior and performance indoor thermo-aéraulique comfort.

Keywords: ventilation, thermal comfort, CFD, indoor environment, solar air heater

Procedia PDF Downloads 632
1734 Project and Module Based Teaching and Learning

Authors: Jingyu Hou

Abstract:

This paper proposes a new teaching and learning approach-project and Module Based Teaching and Learning (PMBTL). The PMBTL approach incorporates the merits of project/problem based and module based learning methods, and overcomes the limitations of these methods. The correlation between teaching, learning, practice, and assessment is emphasized in this approach, and new methods have been proposed accordingly. The distinct features of these new methods differentiate the PMBTL approach from conventional teaching approaches. Evaluation of this approach on practical teaching and learning activities demonstrates the effectiveness and stability of the approach in improving the performance and quality of teaching and learning. The approach proposed in this paper is also intuitive to the design of other teaching units.

Keywords: computer science education, project and module based, software engineering, module based teaching and learning

Procedia PDF Downloads 489