Search results for: clinical decision support sytem
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13241

Search results for: clinical decision support sytem

10001 An Efficient Machine Learning Model to Detect Metastatic Cancer in Pathology Scans Using Principal Component Analysis Algorithm, Genetic Algorithm, and Classification Algorithms

Authors: Bliss Singhal

Abstract:

Machine learning (ML) is a branch of Artificial Intelligence (AI) where computers analyze data and find patterns in the data. The study focuses on the detection of metastatic cancer using ML. Metastatic cancer is the stage where cancer has spread to other parts of the body and is the cause of approximately 90% of cancer-related deaths. Normally, pathologists spend hours each day to manually classifying whether tumors are benign or malignant. This tedious task contributes to mislabeling metastasis being over 60% of the time and emphasizes the importance of being aware of human error and other inefficiencies. ML is a good candidate to improve the correct identification of metastatic cancer, saving thousands of lives and can also improve the speed and efficiency of the process, thereby taking fewer resources and time. So far, the deep learning methodology of AI has been used in research to detect cancer. This study is a novel approach to determining the potential of using preprocessing algorithms combined with classification algorithms in detecting metastatic cancer. The study used two preprocessing algorithms: principal component analysis (PCA) and the genetic algorithm, to reduce the dimensionality of the dataset and then used three classification algorithms: logistic regression, decision tree classifier, and k-nearest neighbors to detect metastatic cancer in the pathology scans. The highest accuracy of 71.14% was produced by the ML pipeline comprising of PCA, the genetic algorithm, and the k-nearest neighbor algorithm, suggesting that preprocessing and classification algorithms have great potential for detecting metastatic cancer.

Keywords: breast cancer, principal component analysis, genetic algorithm, k-nearest neighbors, decision tree classifier, logistic regression

Procedia PDF Downloads 82
10000 Quick off the Mark with Achilles Tendon Rupture

Authors: Emily Moore, Andrew Gaukroger, Matthew Solan, Lucy Bailey, Alexandra Boxall, Andrew Carne, Chintu Gadamsetty, Charlotte Morley, Katy Western, Iwona Kolodziejczyk

Abstract:

Introduction: Rupture of the Achilles tendon is common and has a long recovery period. Most cases are managed non-operatively. Foot and Ankle Surgeons advise an ultrasound scan to check the gap between the torn ends. A large gap (with the ankle in equinus) is a relative indication for surgery. The definitive decision regarding surgical versus non-operative management can only be made once an ultrasound scan is undertaken and the patient is subsequently reviewed by a Foot and Ankle surgeon. To get to this point, the patient journey involves several hospital departments. In nearby trusts, patients reattend for a scan and go to the plaster room both before and after the ultrasound for removal and re-application of the cast. At a third visit to the hospital, the surgeon and patient discuss options for definitive treatment. It may take 2-3 weeks from the initial Emergency Department visit before the final treatment decision is made. This “wasted time” is ultimately added to the recovery period for the patient. In this hospital, Achilles rupture patients are seen in a weekly multidisciplinary OneStop Heel Pain clinic. This pathway was already efficient but subject to occasional frustrating delays if a key staff member was absent. A new pathway was introduced with the goal to reduce delays to a definitive treatment plan. Method: A retrospective series of Achilles tendon ruptures managed according to the 2019 protocol was identified. Time taken from the Emergency Department to have both an ultrasound scan and specialist Foot and Ankle surgical review were calculated. 30 consecutive patients were treated with our new pathway and prospectively followed. The time taken for a scan and for specialist review were compared to the 30 consecutive cases from the 2019 (pre-COVID) cohort. The new pathway includes 1. A new contoured splint applied to the front of the injured limb held with a bandage. This can be removed and replaced (unlike a plaster cast) in the ultrasound department, removing the need for plaster room visits. 2. Urgent triage to a Foot and Ankle specialist. 3. Ultrasound scan for assessment of rupture gap and deep vein thrombosis check. 4. Early decision regarding surgery. Transfer to weight bearing in a prosthetic boot in equinuswithout waiting for the once-a-week clinic. 5. Extended oral VTE prophylaxis. Results: The time taken for a patient to have both an ultrasound scan and specialist review fell > 50%. All patients in the new pathway reached a definitive treatment decision within one week. There were no significant differences in patient demographics or rates of surgical vs non-operative treatment. The mean time from Emergency Department visit to specialist review and ultrasound scan fell from 8.7 days (old protocol) to 2.9 days (new pathway). The maximum time for this fell from 23 days (old protocol) to 6 days (new pathway). Conclusion: Teamwork and innovation have improved the experience for patients with an Achilles tendon rupture. The new pathway brings many advantages - reduced time in the Emergency Department, fewer hospital visits, less time using crutches and reduced overall recovery time.

Keywords: orthopaedics, achilles rupture, ultrasound, innovation

Procedia PDF Downloads 123
9999 A Review of the Handling and Disposal of Botulinum Toxin in a Maxillofacial Unit

Authors: Ashana Gupta

Abstract:

Aim: In the UK, Botulinum Toxin (botox) is authorised for treating chronic myofascial pain secondary to masseter muscle hypertrophy (Fedorowicz et al. 2013). This audit aimed to ensure the Maxillofacial Unit is meeting the trust guidelines for the safe storage and disposal of botox. Method: The trust upholds a strict policy for botox handling. The audit was designed to optimise several elements including Staff awareness of regulations around botox handling A questionnaire was designed to test knowledge of advised storage temperatures, reporting of adverse events, disposal procedures and regulatory authorities. Steps taken to safely delivertoxin and eliminate unused toxin. A checklist was completed. These include marks for storagetemperature, identification checks, disposal of sharps, deactivation of toxin, and disposal. Results: All staff correctly stated storage requirements for toxin. 75% staff (n=8) were unsure about reporting and regulations. Whilst all staff knew how to dispose of vials, 0% staff showed awareness for the crucial step of deactivating toxin. All checklists (n=20) scored 100% for adequate storage, ID checks, and toxin disposal. However, there were no steps taken to deactivate toxin in any cases. Staff training took place with revision to clinical protocols. In line with Trust guidelines, an additional clinical step has been introduced including use of 0.5% sodium hypochlorite to deactivate botox. Conclusion: Deactivation is crucial to ensure residual toxin is not misused. There are cases of stolen botox within South-Tees Hospital (Woodcock, 2014). This audit was successful in increasing compliance to safe handling and disposal of botox by 100% and ensured our hospitalmeets Trust guidance.

Keywords: botulinum toxin, aesthetics, handling, disposal

Procedia PDF Downloads 209
9998 Drug-related Problems and Associated Factors among Adult Psychiatric Inpatients in Northwest Ethiopia: Multicenter Cross-Sectional Study

Authors: Ephrem Mebratu Dagnew, Mohammed Biset Ayalew, Gizework Alemnew Mekonnen, Alehegn Bishaw Geremew, Ousman Abubeker Abdela

Abstract:

Objective: To assess the prevalence of drug-related problems and associated factors among adult psychiatric inpatients. Method: Hospital-based multicenter cross-sectional observational study was conducted from April to July 2021 at five randomly selected hospitals in North-west Ethiopia. A total of 325 consecutively sampled patients participated in the study. Clinical pharmacists assessed the DRPs based on clinical judgment supported by updated evidence-based diseases guidelines. A Medscape drug-interactions checker was used to check drug-drug interactions. The results were summarized using descriptive statistics, including frequency, mean, and standard deviation. Odds ratio (OR) with 95% confidence interval were also computed for each variable for the corresponding P-value. The value of P ≤ 0.05 was considered statistically significant. Result : From the total of 325 study participants, more than half of them (52.9%) were females and the mean age ± (standard deviation) was 30.8±11.3 years. At least one drug-related problem was recorded from 60.9%, 95% CI (55.7-65.8) of study participants with a mean of 0.6±0.49 per patient. Need additional drug therapy was the most common DRP (22.8%), followed by non-adherence to medicine (20.6%) and adverse drug reactions (11%), respectively. Factors independently associated with drug-related problems were rural residence [AOR=1.96,95%CI:1.01-2.84, P-value=0.046], self-employed [AOR=6.0 ,95% CI: 1.0-36.9, P-value=0.035] and alcohol drinkers [AOR=6.40,95%CI:1.12-37.5, p-value=0.034]. Conclusion: The prevalence of drug-related problems among adult psychiatric patients admitted to psychiatric wards was high. Healthcare providers give more attention to tackling these problems. Being a rural residence, self-employed, and Alcohol drinkers were associated with drug-related problems.

Keywords: psychiatric patients, drug-relatedproblems, multicenter, Ethiopia

Procedia PDF Downloads 163
9997 Visual Thing Recognition with Binary Scale-Invariant Feature Transform and Support Vector Machine Classifiers Using Color Information

Authors: Wei-Jong Yang, Wei-Hau Du, Pau-Choo Chang, Jar-Ferr Yang, Pi-Hsia Hung

Abstract:

The demands of smart visual thing recognition in various devices have been increased rapidly for daily smart production, living and learning systems in recent years. This paper proposed a visual thing recognition system, which combines binary scale-invariant feature transform (SIFT), bag of words model (BoW), and support vector machine (SVM) by using color information. Since the traditional SIFT features and SVM classifiers only use the gray information, color information is still an important feature for visual thing recognition. With color-based SIFT features and SVM, we can discard unreliable matching pairs and increase the robustness of matching tasks. The experimental results show that the proposed object recognition system with color-assistant SIFT SVM classifier achieves higher recognition rate than that with the traditional gray SIFT and SVM classification in various situations.

Keywords: color moments, visual thing recognition system, SIFT, color SIFT

Procedia PDF Downloads 470
9996 Traditional Medicine in Children: A Significant Cause of Morbidity and Mortality

Authors: Atitallah Sofien, Bouyahia Olfa, Romdhani Meriam, Missaoui Nada, Ben Rabeh Rania, Yahyaoui Salem, Mazigh Sonia, Boukthir Samir

Abstract:

Introduction: Traditional medicine refers to a diverse range of therapeutic practices and knowledge systems that have been employed by different cultures over an extended period to uphold and rejuvenate health. These practices can involve herbal remedies, acupuncture, massage, and alternative healing methods that deviate from conventional medical approaches. In Tunisia, we often use unidentified utensils to scratch the oral cavity internally in infants in order to widen the oral cavity for better breathing and swallowing. However, these practices can be risky and may jeopardize the patients' prognosis or even their lives. Aim: This is the case of a nine-month-old infant, admitted to the pediatric department and subsequently to the intensive care unit due to a peritonsillar abscess following the utilization of an unidentifiable tool to scrape the interior of the oral cavity. Case Report: This is a 9-month-old infant with no particular medical history, admitted for high respiratory distress and a fever persisting for 4 days. On clinical examination, he had a respiratory rate of 70 cycles per minute with an oxygen saturation of 97% and subcostal retractions, along with a heart rate of 175 beats per minute. His white blood cell count was 40,960/mm³, and his C-reactive protein was 250 mg/L. Given the severity of the clinical presentation, the infant was transferred to the intensive care unit, intubated, and mechanically ventilated. A cervical-thoracic CT scan was performed, revealing a ruptured 18 mm left peritonsillar abscess in the oropharynx associated with cellulitis of the retropharyngeal space. The oto-rhino-laryngoscopic examination revealed an asymmetry involving the left lateral wall of the oropharynx with the presence of a fistula behind the posterior pillar. Dissection of the collection cavity was performed, allowing the drainage of 2 ml of pus. The culture was negative. The patient received cefotaxime in combination with metronidazole and gentamicin for a duration of 10 days, followed by a switch to amoxicillin-clavulanic acid for 7 days. The patient was extubated after 4 days of treatment, and the clinical and radiological progress was favorable. Conclusions: Traditional medicine remains risky due to the lack of scientific evidence and the potential for injuries and transmission of infectious diseases, especially in children, who constitute a vulnerable population. Therefore, parents should consult healthcare professionals and rely on evidence-based care.

Keywords: children, peritonsillar abscess, traditional medicine, respiratory distress

Procedia PDF Downloads 64
9995 Competence of the Health Workers in Diagnosing and Managing Complicated Pregnancies: A Clinical Vignette Based Assessment in District and Sub-District Hospitals in Bangladesh

Authors: Abdullah Nurus Salam Khan, Farhana Karim, Mohiuddin Ahsanul Kabir Chowdhury, S. Masum Billah, Nabila Zaka, Alexander Manu, Shams El Arifeen

Abstract:

Globally, pre-eclampsia (PE) and ante-partum haemorrhage (APH) are two major causes of maternal mortality. Prompt identification and management of these conditions depend on competency of the birth attendants. Since these conditions are infrequent to be observed, clinical vignette based assessment could identify the extent of health worker’s competence in managing emergency obstetric care (EmOC). During June-August 2016, competence of 39 medical officers (MO) and 95 nurses working in obstetric ward of 15 government health facilities (3 district hospital, 12 sub-district hospital) was measured using clinical vignettes on PE and APH. The vignettes resulted in three outcome measures: total vignette scores, scores for diagnosis component, and scores for management component. T-test was conducted to compare mean vignette scores and linear regression was conducted to measure the strength and association of vignette scores with different cadres of health workers, facility’s readiness for EmOC and average annual utilization of normal deliveries after adjusting for type of health facility, health workers’ work experience, training status on managing maternal complication. For each of the seven component of EmOC items (administration of injectable antibiotics, oxytocic and anticonvulsant; manual removal of retained placenta, retained products of conception; blood transfusion and caesarean delivery), if any was practised in the facility within last 6 months, a point was added and cumulative EmOC readiness score (range: 0-7) was generated for each facility. The yearly utilization of delivery cases were identified by taking the average of all normal deliveries conducted during three years (2013-2015) preceding the survey. About 31% of MO and all nurses were female. Mean ( ± sd) age of the nurses were higher than the MO (40.0 ± 6.9 vs. 32.2 ± 6.1 years) and also longer mean( ± sd) working experience (8.9 ± 7.9 vs. 1.9 ± 3.9 years). About 80% health workers received any training on managing maternal complication, however, only 7% received any refresher’s training within last 12 months. The overall vignette score was 8.8 (range: 0-19), which was significantly higher among MO than nurses (10.7 vs. 8.1, p < 0.001) and the score was not associated with health facility types, training status and years of experience of the providers. Vignette score for management component (range: 0-9) increased with higher annual average number of deliveries in their respective working facility (adjusted β-coefficient 0.16, CI 0.03-0.28, p=0.01) and increased with each unit increase in EmOC readiness score (adjusted β-coefficient 0.44, CI 0.04-0.8, p=0.03). The diagnosis component of vignette score was not associated with any of the factors except it was higher among the MO than the nurses (adjusted β-coefficient 1.2, CI 0.13-2.18, p=0.03). Lack of competence in diagnosing and managing obstetric complication by the nurses than the MO is of concern especially when majority of normal deliveries are conducted by the nurses. Better EmOC preparedness of the facility and higher utilization of normal deliveries resulted in higher vignette score for the management component; implying the impact of experiential learning through higher case management. Focus should be given on improving the facility readiness for EmOC and providing the health workers periodic refresher’s training to make them more competent in managing obstetric cases.

Keywords: Bangladesh, emergency obstetric care, clinical vignette, competence of health workers

Procedia PDF Downloads 191
9994 Ex-vivo Bio-distribution Studies of a Potential Lung Perfusion Agent

Authors: Shabnam Sarwar, Franck Lacoeuille, Nadia Withofs, Roland Hustinx

Abstract:

After the development of a potential surrogate of MAA, and its successful application for the diagnosis of pulmonary embolism in artificially embolized rats’ lungs, this microparticulate system were radiolabelled with gallium-68 to synthesize 68Ga-SBMP with high radiochemical purity >99%. As a prerequisite step of clinical trials, 68Ga- labelled starch based microparticles (SBMP) were analysed for their in-vivo behavior in small animals. The purpose of the presented work includes the ex-vivo biodistribution studies of 68Ga-SBMP in order to assess the activity uptake in target organs with respect to time, excretion pathways of the radiopharmaceutical, %ID/g in major organs, T/NT ratios, in-vivo stability of the radiotracer and subsequently the microparticles in the target organs. Radiolabelling of starch based microparticles was performed by incubating it with 68Ga generator eluate (430±26 MBq) at room temperature and pressure without using any harsh reaction condition. For Ex-vivo biodistribution studies healthy White Wistar rats weighing between 345-460 g were injected intravenously 68Ga-SBMP 20±8 MBq, containing about 2,00,000-6,00,000 SBMP particles in a volume of 700µL. The rats were euthanized at predefined time intervals (5min, 30min, 60min and 120min) and their organ parts were cut, washed, and put in the pre-weighed tubes and measured for radioactivity counts through automatic Gamma counter. The 68Ga-SBMP produced >99% RCP just after 10-20 min incubation through a simple and robust procedure. Biodistribution of 68Ga-SBMP showed that initially just after 5 min post injection major uptake was observed in the lungs following by blood, heart, liver, kidneys, bladder, urine, spleen, stomach, small intestine, colon, skin and skeleton, thymus and at last the smallest activity was found in brain. Radioactivity counts stayed stable in lungs with gradual decrease with the passage of time, and after 2h post injection, almost half of the activity were seen in lungs. This is a sufficient time to perform PET/CT lungs scanning in humans while activity in the liver, spleen, gut and urinary system decreased with time. The results showed that urinary system is the excretion pathways instead of hepatobiliary excretion. There was a high value of T/NT ratios which suggest fine tune images for PET/CT lung perfusion studies henceforth further pre-clinical studies and then clinical trials should be planned in order to utilize this potential lung perfusion agent.

Keywords: starch based microparticles, gallium-68, biodistribution, target organs, excretion pathways

Procedia PDF Downloads 173
9993 Fuzzy-Machine Learning Models for the Prediction of Fire Outbreak: A Comparative Analysis

Authors: Uduak Umoh, Imo Eyoh, Emmauel Nyoho

Abstract:

This paper compares fuzzy-machine learning algorithms such as Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) for the predicting cases of fire outbreak. The paper uses the fire outbreak dataset with three features (Temperature, Smoke, and Flame). The data is pre-processed using Interval Type-2 Fuzzy Logic (IT2FL) algorithm. Min-Max Normalization and Principal Component Analysis (PCA) are used to predict feature labels in the dataset, normalize the dataset, and select relevant features respectively. The output of the pre-processing is a dataset with two principal components (PC1 and PC2). The pre-processed dataset is then used in the training of the aforementioned machine learning models. K-fold (with K=10) cross-validation method is used to evaluate the performance of the models using the matrices – ROC (Receiver Operating Curve), Specificity, and Sensitivity. The model is also tested with 20% of the dataset. The validation result shows KNN is the better model for fire outbreak detection with an ROC value of 0.99878, followed by SVM with an ROC value of 0.99753.

Keywords: Machine Learning Algorithms , Interval Type-2 Fuzzy Logic, Fire Outbreak, Support Vector Machine, K-Nearest Neighbour, Principal Component Analysis

Procedia PDF Downloads 182
9992 Downtime Modelling for the Post-Earthquake Building Assessment Phase

Authors: S. Khakurel, R. P. Dhakal, T. Z. Yeow

Abstract:

Downtime is one of the major sources (alongside damage and injury/death) of financial loss incurred by a structure in an earthquake. The length of downtime associated with a building after an earthquake varies depending on the time taken for the reaction (to the earthquake), decision (on the future course of action) and execution (of the decided course of action) phases. Post-earthquake assessment of buildings is a key step in the decision making process to decide the appropriate safety placarding as well as to decide whether a damaged building is to be repaired or demolished. The aim of the present study is to develop a model to quantify downtime associated with the post-earthquake building-assessment phase in terms of two parameters; i) duration of the different assessment phase; and ii) probability of different colour tagging. Post-earthquake assessment of buildings includes three stages; Level 1 Rapid Assessment including a fast external inspection shortly after the earthquake, Level 2 Rapid Assessment including a visit inside the building and Detailed Engineering Evaluation (if needed). In this study, the durations of all three assessment phases are first estimated from the total number of damaged buildings, total number of available engineers and the average time needed for assessing each building. Then, probability of different tag colours is computed from the 2010-11 Canterbury earthquake Sequence database. Finally, a downtime model for the post-earthquake building inspection phase is proposed based on the estimated phase length and probability of tag colours. This model is expected to be used for rapid estimation of seismic downtime within the Loss Optimisation Seismic Design (LOSD) framework.

Keywords: assessment, downtime, LOSD, Loss Optimisation Seismic Design, phase length, tag color

Procedia PDF Downloads 185
9991 Shared Decision-Making in Holistic Healthcare: Integrating Evidence-Based Medicine and Values-Based Medicine

Authors: Ling-Lang Huang

Abstract:

Research Background: Historically, the evolution of medicine has not only aimed to extend life but has also inadvertently introduced suffering in the process of maintaining life, presenting a contemporary challenge. We must carefully assess the conflict between the length of life and the quality of living. Evidence-Based Medicine (EBM) exists primarily to ensure the quality of cures. However, EBM alone does not fulfill our ultimate medical goals; we must also evaluate Value-Based Medicine (VBM) to find the best treatment for patients. Research Methodology: We can attempt to integrate EBM with VBM. Within the five steps of EBM, the first three steps (Ask—Acquire—Appraise) focus on the physical aspect of humans. However, in the fourth and fifth steps (Apply—Assess), the focus shifts from the physical to applying evidence-based treatment to the patient and assessing its effectiveness, considering a holistic approach to the individual. To consider VBM for patients, we can divide the process into three steps: The first step is "awareness," recognizing that each patient inhabits a different life-world and possesses unique differences. The second step is "integration," akin to the hermeneutic concept of the Fusion of Horizons. This means being aware of differences and also understanding the origins of these patient differences. The third step is "respect," which involves setting aside our adherence to medical objectivity and scientific rigor to respect the ultimate healthcare decisions made by individuals regarding their lives. Discussion and Conclusion: After completing these three steps of VBM, we can return to the fifth step of EBM: Assess. Our assessment can now transcend the physical treatment focus of the initial steps to align with a holistic care philosophy.

Keywords: shared decision-making, evidence-based medicine, values-based medicine, holistic healthcare

Procedia PDF Downloads 52
9990 The Relationship between Anthropometric Obesity Indices and Insulin in Children with Metabolic Syndrome

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

The number of indices developed for the evaluation of obesity both in adults and pediatric population is ever increasing. These indices are also used in cases with metabolic syndrome (MetS), mostly the ultimate form of morbid obesity. Aside from anthropometric measurements, formulas constituted using these parameters also find clinical use. These formulas can be listed as two groups; being weight-dependent and –independent. Some are extremely sophisticated equations and their clinical utility is questionable in routine clinical practice. The aim of this study is to compare presently available obesity indices and find the most practical one. Their associations with MetS components were also investigated to determine their capacities in differential diagnosis of morbid obesity with and without MetS. Children with normal body mass index (N-BMI) and morbid obesity were recruited for this study. Three groups were constituted. Age- and sex- dependent BMI percentiles for morbid obese (MO) children were above 99 according to World Health Organization tables. Of them, those with MetS findings were evaluated as MetS group. Children, whose values were between 85 and 15 were included in N-BMI group. The study protocol was approved by the Ethics Committee of the Institution. Parents filled out informed consent forms to participate in the study. Anthropometric measurements and blood pressure values were recorded. Body mass index, hip index (HI), conicity index (CI), triponderal mass index (TPMI), body adiposity index (BAI), body shape index (ABSI), body roundness index (BRI), abdominal volume index (AVI), waist-to-hip ratio (WHR) and waist circumference+hip circumference/2 ((WC+HC)/2) were the formulas examined within the scope of this study. Routine biochemical tests including fasting blood glucose (FBG), insulin (INS), triglycerides (TRG), high density lipoprotein-cholesterol (HDL-C) were performed. Statistical package program SPSS was used for the evaluation of study data. p<0.05 was accepted as the statistical significance degree. Hip index did not differ among the groups. A statistically significant difference was noted between N-BMI and MetS groups in terms of ABSI. All the other indices were capable of making discrimination between N-BMI-MO, N-BMI- MetS and MO-MetS groups. No correlation was found between FBG and any obesity indices in any groups. The same was true for INS in N-BMI group. Insulin was correlated with BAI, TPMI, CI, BRI, AVI and (WC+HC)/2 in MO group without MetS findings. In MetS group, the only index, which was correlated with INS was (WC+HC)/2. These findings have pointed out that complicated formulas may not be required for the evaluation of the alterations among N-BMI and various obesity groups including MetS. The simple easily computable weight-independent index, (WC+HC)/2, was unique, because it was the only index, which exhibits a valuable association with INS in MetS group. It did not exhibit any correlation with other obesity indices showing associations with INS in MO group. It was concluded that (WC+HC)/2 was pretty valuable practicable index for the discrimination of MO children with and without MetS findings.

Keywords: children, insulin, metabolic syndrome, obesity indices

Procedia PDF Downloads 77
9989 Comparison of Various Policies under Different Maintenance Strategies on a Multi-Component System

Authors: Demet Ozgur-Unluakin, Busenur Turkali, Ayse Karacaorenli

Abstract:

Maintenance strategies can be classified into two types, which are reactive and proactive, with respect to the time of the failure and maintenance. If the maintenance activity is done after a breakdown, it is called reactive maintenance. On the other hand, proactive maintenance, which is further divided as preventive and predictive, focuses on maintaining components before a failure occurs to prevent expensive halts. Recently, the number of interacting components in a system has increased rapidly and therefore, the structure of the systems have become more complex. This situation has made it difficult to provide the right maintenance decisions. Herewith, determining effective decisions has played a significant role. In multi-component systems, many methodologies and strategies can be applied when a component or a system has already broken down or when it is desired to identify and avoid proactively defects that could lead to future failure. This study focuses on the comparison of various maintenance strategies on a multi-component dynamic system. Components in the system are hidden, although there exists partial observability to the decision maker and they deteriorate in time. Several predefined policies under corrective, preventive and predictive maintenance strategies are considered to minimize the total maintenance cost in a planning horizon. The policies are simulated via Dynamic Bayesian Networks on a multi-component system with different policy parameters and cost scenarios, and their performances are evaluated. Results show that when the difference between the corrective and proactive maintenance cost is low, none of the proactive maintenance policies is significantly better than the corrective maintenance. However, when the difference is increased, at least one policy parameter for each proactive maintenance strategy gives significantly lower cost than the corrective maintenance.

Keywords: decision making, dynamic Bayesian networks, maintenance, multi-component systems, reliability

Procedia PDF Downloads 129
9988 Evaluating Generative Neural Attention Weights-Based Chatbot on Customer Support Twitter Dataset

Authors: Sinarwati Mohamad Suhaili, Naomie Salim, Mohamad Nazim Jambli

Abstract:

Sequence-to-sequence (seq2seq) models augmented with attention mechanisms are playing an increasingly important role in automated customer service. These models, which are able to recognize complex relationships between input and output sequences, are crucial for optimizing chatbot responses. Central to these mechanisms are neural attention weights that determine the focus of the model during sequence generation. Despite their widespread use, there remains a gap in the comparative analysis of different attention weighting functions within seq2seq models, particularly in the domain of chatbots using the Customer Support Twitter (CST) dataset. This study addresses this gap by evaluating four distinct attention-scoring functions—dot, multiplicative/general, additive, and an extended multiplicative function with a tanh activation parameter — in neural generative seq2seq models. Utilizing the CST dataset, these models were trained and evaluated over 10 epochs with the AdamW optimizer. Evaluation criteria included validation loss and BLEU scores implemented under both greedy and beam search strategies with a beam size of k=3. Results indicate that the model with the tanh-augmented multiplicative function significantly outperforms its counterparts, achieving the lowest validation loss (1.136484) and the highest BLEU scores (0.438926 under greedy search, 0.443000 under beam search, k=3). These results emphasize the crucial influence of selecting an appropriate attention-scoring function in improving the performance of seq2seq models for chatbots. Particularly, the model that integrates tanh activation proves to be a promising approach to improve the quality of chatbots in the customer support context.

Keywords: attention weight, chatbot, encoder-decoder, neural generative attention, score function, sequence-to-sequence

Procedia PDF Downloads 78
9987 Adenoid Cystic Carcinoma of the Lacrimal Gland (About a Case)

Authors: H. Hadjeris, R. B. Ghoul, Lekhlaf, M. Nebbal

Abstract:

Introduction: Adenoid cystic carcinomas of the lacrimal gland or orbital cylindroma constitute the second cause of epithelial tumors of this gland. It is a malignant tumor usually developed at the expense of the salivary glands; its orbital location is exceptional. It is a rare clinical entity, formidable by its malignancy and local aggressiveness; the recurrence rate is high. Materials and methods: Clinical case: 63 years old woman who presents with irreducible no pulsatile painful left exophthalmos with inflammatory chemosis and a decrease in visual acuity with a moderate intracranial hypertension syndrome that has been evolving for 03 months. Antecedent; a biopsy of the tumor was made; the histological examination was in favor of an adenoid cystic carcinoma of the lacrimal gland. Lesion assessment: computed tomography and brain MRI: show an intra and extra-conical mass; with sinus (ethmoido-frontal) and cerebral (left frontal) extension strongly enhanced after injection of contrast product surrounded by edema around the lesion, associated with left frontal bone lysis extension assessment: unremarkable treatment: Patient operated by left frontotemporal approach, a total exenteration was performed with macroscopically complete excision of the frontal lesion and wide frontal craniectomy with craniofacial reconstruction, followed by complementary radiotherapy. Results: The patient was seen again after 3 months in consultation; she does not present any signs in favor of a recurrence. Conclusion: Adenoid cystic carcinomas of the lacrimal gland are rare malignant tumors; they are very infiltrating and invasive. The prognosis is strongly linked to the treatment time.

Keywords: adenoid cystic, lacrimal gland, orbital location, fronto-temporal approac

Procedia PDF Downloads 71
9986 EMS Providers' Ability and Willingness to Respond to Bioterrorism

Authors: Ryan Houser

Abstract:

Introduction: Previous studies have found that public health systems within the United States are inadequately prepared for an act of biological terrorism. As the COVID-19 pandemic continues, few studies have evaluated bioterrorism preparedness of Emergency Medical Services, even in the accelerating environment of biothreats. Methods: This study utilized an Internet-based survey to assess the level of preparedness and willingness to respond to a bioterrorism attack and identify factors that predict preparedness and willingness among Nebraska EMS (Emergency Medical Services ) providers. The survey was available for one month in 2021, during which 190 EMS providers responded to the survey. Results: Only 56.8% of providers were able to recognize an illness or injury as potentially resulting from exposure to a CBRN agent. The provider Clinical Competency levels range from a low of 13.6% (ability to initiate patient care within his/her professional scope of practice and arrange for prompt referral appropriate to the identified condition(s)) to a high of 74% (the ability to respond to an emergency within the emergency management system of his/her practice, institution and community). Only 10% of the respondents are both willing and able to effectively function in a bioterror environment. Discussion: In order to effectively prepare for and respond to a bioterrorist attack, all levels of the healthcare system need to have the clinical skills, knowledge, and abilities necessary to treat patients exposed. Policy changes and increased focus on training and drills are needed to ensure a prepared EMS system which is crucial to a resilient state. EMS entities need to be aware of the extent of their available workforce so that the country can be prepared for the increasing threat of bioterrorism or other novel emerging infectious disease outbreaks. A resilient nation relies on a prepared set of EMS providers who are willing to respond to biological terrorism events.

Keywords: bioterrorism, prehospital, EMS, disaster, emergency, medicine, preparedness, policy

Procedia PDF Downloads 157
9985 Image Processing-Based Maize Disease Detection Using Mobile Application

Authors: Nathenal Thomas

Abstract:

In the food chain and in many other agricultural products, corn, also known as maize, which goes by the scientific name Zea mays subsp, is a widely produced agricultural product. Corn has the highest adaptability. It comes in many different types, is employed in many different industrial processes, and is more adaptable to different agro-climatic situations. In Ethiopia, maize is among the most widely grown crop. Small-scale corn farming may be a household's only source of food in developing nations like Ethiopia. The aforementioned data demonstrates that the country's requirement for this crop is excessively high, and conversely, the crop's productivity is very low for a variety of reasons. The most damaging disease that greatly contributes to this imbalance between the crop's supply and demand is the corn disease. The failure to diagnose diseases in maize plant until they are too late is one of the most important factors influencing crop output in Ethiopia. This study will aid in the early detection of such diseases and support farmers during the cultivation process, directly affecting the amount of maize produced. The diseases in maize plants, such as northern leaf blight and cercospora leaf spot, have distinct symptoms that are visible. This study aims to detect the most frequent and degrading maize diseases using the most efficiently used subset of machine learning technology, deep learning so, called Image Processing. Deep learning uses networks that can be trained from unlabeled data without supervision (unsupervised). It is a feature that simulates the exercises the human brain goes through when digesting data. Its applications include speech recognition, language translation, object classification, and decision-making. Convolutional Neural Network (CNN) for Image Processing, also known as convent, is a deep learning class that is widely used for image classification, image detection, face recognition, and other problems. it will also use this algorithm as the state-of-the-art for my research to detect maize diseases by photographing maize leaves using a mobile phone.

Keywords: CNN, zea mays subsp, leaf blight, cercospora leaf spot

Procedia PDF Downloads 74
9984 Practice Educators' Perspective: Placement Challenges in Social Work Education in England

Authors: Yuet Wah Echo Yeung

Abstract:

Practice learning is an important component of social work education. Practice educators are charged with the responsibility to support and enable learning while students are on placement. They also play a key role in teaching students to integrate theory and practice, as well as assessing their performance. Current literature highlights the structural factors that make it difficult for practice educators to create a positive learning environment for students. Practice educators find it difficult to give sufficient attention to their students because of the lack of workload relief, the increasing emphasis on managerialism and bureaucratisation, and a range of competing organisational and professional demands. This paper reports the challenges practice educators face and how they manage these challenges in this context. Semi-structured face-to-face interviews were conducted with thirteen practice educators who support students in statutory and voluntary social care settings in the Northwest of England. Interviews were conducted between April and July 2017 and each interview lasted about 40 minutes. All interviews were recorded and transcribed. All practice educators are experienced social work practitioners with practice experience ranging from 6 to 42 years. On average they have acted as practice educators for 13 years and all together have supported 386 students. Our findings reveal that apart from the structural factors that impact how practice educators perform their roles, they also faced other challenges when supporting students on placement. They include difficulty in engaging resistant students, complexity in managing power dynamics in the context of practice learning, and managing the dilemmas of fostering a positive relationship with students whilst giving critical feedback. Suggestions to enhance the practice educators’ role include support from organisations and social work teams; effective communication with university tutors, and a forum for practice educators to share good practice and discuss placement issues.

Keywords: social work education, placement challenges, practice educator, practice learning

Procedia PDF Downloads 191
9983 Comparison of Clinical Profiles of Patients Seen in a Women and Children Protection Unit in a Local Government Hospital in Makati, Philippines Before and During the COVID-19 Pandemic Between January 2018 to February 2020 and March 2020 to December 2021

Authors: Margaret Denise P. Del Rosario, Geraldine Alcantara

Abstract:

Background: The declaration of the COVID-19 pandemic has impacted hospital visits of child abuse cases with less consults but more severe injuries. Objective: The study aims to identify the clinical profiles of patients seen in the hospital ng Makati Women and Children Protection Unit before and during the pandemic. Design: A cross-sectional analytic study design through review of records that underwent quantitative analysis. Results: 264 cases pre-pandemic and 208 cases during the pandemic were reviewed. Most reported cases were neglect comprising of 47% of the pre-pandemic cases and 68% of cases during the pandemic. Supervisory neglect was most commonly reported. An equal distribution between males and females were seen among victims and alleged perpetrators. The age group of both victims and alleged perpetrators during the pandemic was significantly younger compared to the pre-pandemic period. Children belonging to larger family groups were commonly encountered with most of them being the eldest amongst siblings. Alleged perpetrators were mostly secondary graduates for both time periods. A significant increase of cases during the pandemic occurred at home. More patients required hospitalization during the pandemic period with 37% compared to the 23% of admissions prior to the pandemic. Furthermore, a three-fold increase of injuries sustained during the pandemic required intensive care. Conclusion: The study reflects increased severity of injuries related to abuse during the pandemic compared to pre-pandemic times. A significant increase in injuries requiring intensive care were also seen despite less reported cases.

Keywords: child abuse, COVID-19, violence against children, WCPU, neglect

Procedia PDF Downloads 56
9982 In Search of a Safe Haven-Sexual Violence Leading to a Change of Sexual Orientation

Authors: Medagedara Kaushalya Sewwandi Supun Gunarathne

Abstract:

This research explores the underlying motivations and consequences of individuals changing their sexual orientation as a response to sexual violence. The primary objective of the study is to unravel the psychological, emotional, and social factors that drive individuals, akin to Celie in Alice Walker’s ‘The Color Purple’, to contemplate and undergo changes in their sexual orientation following the trauma of sexual violence. Through an analytical and qualitative approach, the study employs in-depth textual and thematic analyses to scrutinize the complex interplay between sexual orientation and violence within the selected text. Through a close examination of Celie’s journey and experiences, the study reveals that her decision to switch sexual orientation arises from a desire for a more favorable and benevolent relationship driven by the absence of safety and refuge in her previous relationships. By establishing this bond between sexual orientation and violence, the research underscores how sexual violence can lead individuals to opt for a change in their sexual orientation. The findings highlight Celie’s transformation as a means to seek solace and security, thus concluding that sexual violence can prompt individuals to alter their sexual orientation. The ensuing discussion explores the implications of these findings, encompassing psychological, emotional, and social consequences, as well as the societal and cultural factors influencing the perception of sexual orientation. Additionally, it sheds light on the challenges and stigma faced by those who undergo such transformations. By comprehending the complex relationship between sexual violence and the decision to change sexual orientation, as exemplified by Celie in ‘The Color Purple’, a deeper understanding of the experiences of survivors who seek a safe haven through altering their sexual orientation can be attained.

Keywords: sexual violence, sexual orientation, refuge, transition

Procedia PDF Downloads 79
9981 The Importance of School Culture in Supporting Student Mental Health Following the COVID-19 Pandemic: Insights from a Qualitative Study

Authors: Rhiannon Barker, Gregory Hartwell, Matt Egan, Karen Lock

Abstract:

Background: Evidence suggests that mental health (MH) issues in children and young people (CYP) in the UK are on the rise. Of particular concern is data that indicates that the pandemic, together with the impact of school closures, have accentuated already pronounced inequalities; children from families on low incomes or from black and minority ethnic groups are reportedly more likely to have been adversely impacted. This study aimed to help identify specific support which may facilitate the building of a positive school climate and protect student mental health, particularly in the wake of school closures following the pandemic. It has important implications for integrated working between schools and statutory health services. Methods: The research comprised of three parts; scoping, case studies, and a stakeholder workshop to explore and consolidate results. The scoping phase included a literature review alongside interviews with a range of stakeholders from government, academia, and the third sector. Case studies were then conducted in two London state schools. Results: Our research identified how student MH was being impacted by a range of factors located at different system levels, both internal to the school and in the wider community. School climate, relating both to a shared system of beliefs and values, as well as broader factors including style of leadership, teaching, discipline, safety, and relationships -all played a role in the experience of school life and, consequently, the MH of both students and staff. Participants highlighted the importance of a whole school approach and ensuring that support for student MH was not separated from academic achievement, as well as the importance of identifying and applying universal measuring systems to establish levels of MH need. Our findings suggest that a school’s climate is influenced by the style and strength of its leadership, while this school climate - together with mechanisms put in place to respond to MH needs (both statutory and non-statutory) - plays a key role in supporting student MH. Implications: Schools in England have a responsibility to decide on the nature of MH support provided for their students, and there is no requirement for them to report centrally on the form this provision takes. The reality on the ground, as our study suggests, is that MH provision varies significantly between schools, particularly in relation to ‘lower’ levels of need which are not covered by statutory requirements. A valid concern may be that in the huge raft of possible options schools have to support CYP wellbeing, too much is left to chance. Work to support schools in rebuilding their cultures post-lockdowns must include the means to identify and promote appropriate tools and techniques to facilitate regular measurement of student MH. This will help establish both the scale of the problem and monitor the effectiveness of the response. A strong vision from a school’s leadership team that emphasises the importance of student wellbeing, running alongside (but not overshadowed by) academic attainment, should help shape a school climate to promote beneficial MH outcomes. The sector should also be provided with support to improve the consistency and efficacy of MH provision in schools across the country.

Keywords: mental health, schools, young people, whole-school culture

Procedia PDF Downloads 63
9980 Automated Facial Symmetry Assessment for Orthognathic Surgery: Utilizing 3D Contour Mapping and Hyperdimensional Computing-Based Machine Learning

Authors: Wen-Chung Chiang, Lun-Jou Lo, Hsiu-Hsia Lin

Abstract:

This study aimed to improve the evaluation of facial symmetry, which is crucial for planning and assessing outcomes in orthognathic surgery (OGS). Facial symmetry plays a key role in both aesthetic and functional aspects of OGS, making its accurate evaluation essential for optimal surgical results. To address the limitations of traditional methods, a different approach was developed, combining three-dimensional (3D) facial contour mapping with hyperdimensional (HD) computing to enhance precision and efficiency in symmetry assessments. The study was conducted at Chang Gung Memorial Hospital, where data were collected from 2018 to 2023 using 3D cone beam computed tomography (CBCT), a highly detailed imaging technique. A large and comprehensive dataset was compiled, consisting of 150 normal individuals and 2,800 patients, totaling 5,750 preoperative and postoperative facial images. These data were critical for training a machine learning model designed to analyze and quantify facial symmetry. The machine learning model was trained to process 3D contour data from the CBCT images, with HD computing employed to power the facial symmetry quantification system. This combination of technologies allowed for an objective and detailed analysis of facial features, surpassing the accuracy and reliability of traditional symmetry assessments, which often rely on subjective visual evaluations by clinicians. In addition to developing the system, the researchers conducted a retrospective review of 3D CBCT data from 300 patients who had undergone OGS. The patients’ facial images were analyzed both before and after surgery to assess the clinical utility of the proposed system. The results showed that the facial symmetry algorithm achieved an overall accuracy of 82.5%, indicating its robustness in real-world clinical applications. Postoperative analysis revealed a significant improvement in facial symmetry, with an average score increase of 51%. The mean symmetry score rose from 2.53 preoperatively to 3.89 postoperatively, demonstrating the system's effectiveness in quantifying improvements after OGS. These results underscore the system's potential for providing valuable feedback to surgeons and aiding in the refinement of surgical techniques. The study also led to the development of a web-based system that automates facial symmetry assessment. This system integrates HD computing and 3D contour mapping into a user-friendly platform that allows for rapid and accurate evaluations. Clinicians can easily access this system to perform detailed symmetry assessments, making it a practical tool for clinical settings. Additionally, the system facilitates better communication between clinicians and patients by providing objective, easy-to-understand symmetry scores, which can help patients visualize the expected outcomes of their surgery. In conclusion, this study introduced a valuable and highly effective approach to facial symmetry evaluation in OGS, combining 3D contour mapping, HD computing, and machine learning. The resulting system achieved high accuracy and offers a streamlined, automated solution for clinical use. The development of the web-based platform further enhances its practicality, making it a valuable tool for improving surgical outcomes and patient satisfaction in orthognathic surgery.

Keywords: facial symmetry, orthognathic surgery, facial contour mapping, hyperdimensional computing

Procedia PDF Downloads 27
9979 Trends in Practical Research on Universal Design for Learning (UDL) in Japanese Elementary Schools

Authors: Zolzaya Badmaavanchig, Shoko Miyamoto

Abstract:

In recent years, universal design for learning (hereinafter referred to as "UDL"), which aims to establish an inclusive education system and to make all children, regardless of their disabilities, experts in learning, has been attracting attention, and there have been some attempts to incorporate it into regular classrooms where children with developmental disabilities and those who show such tendencies are enrolled. The purpose of this study was to examine the effectiveness and challenges of implementing UDL in Japanese elementary schools based on the previous literature. As a method, we first searched for articles on UDL for learning and UDL in the classroom from 2010 to 2022. In addition, we selected practice studies that targeted children with special educational support needs and the classroom as a whole. In response to the extracted literature, this bridge examined the following five perspectives: (1) subjects and grades in which UDL was practiced, (2) methods to grasp the actual conditions of the children, (3) consideration for children with special needs during class, (4) form of class, and (5) effects of the practice. Based on the results, we would like to present issues related to future UDL efforts in Japanese elementary schools.

Keywords: universal design for learning, regular elementary school class, children with special education needs, special educational support

Procedia PDF Downloads 62
9978 New Chances of Reforming Pedagogical Approach In Secondary English Class in China under the New English Curriculum and National College Entrance Examination Reform

Authors: Yue Wang

Abstract:

Five years passed since the newest English curriculum reform policy was published in China, hand-wringing spread among teachers who accused that this is another 'Wearing New Shoes to Walk the Old Road' policy. This paper provides a thoroughly philosophical policy analysis of serious efforts that had been made to support this reform and reveals the hindrances that bridled the reform to yield the desired effect. Blame could be easily put on teachers for their insufficient pedagogical content knowledge, conservative resistance, and the handicaps of large class sizes and limited teaching times, and so on. However, the underlying causes for this implementation failure are the interrelated factors in the NCEE-centred education system, such as the reluctant from students, the lack of school and education bureau support, and insufficient teacher training. A further discussion of 2017 to 2020’s NCEE reform on English prompt new possibilities for the authentic pedagogical approach reform in secondary English classes. In all, the pedagogical approach reform at the secondary level is heading towards a brighter future with the initiation of new NCEE reform.

Keywords: English curriculum, failure, NCEE, new possibilities, pedagogical, policy analysis, reform

Procedia PDF Downloads 141
9977 Building Biodiversity Conservation Plans Robust to Human Land Use Uncertainty

Authors: Yingxiao Ye, Christopher Doehring, Angelos Georghiou, Hugh Robinson, Phebe Vayanos

Abstract:

Human development is a threat to biodiversity, and conservation organizations (COs) are purchasing land to protect areas for biodiversity preservation. However, COs have limited budgets and thus face hard prioritization decisions that are confounded by uncertainty in future human land use. This research proposes a data-driven sequential planning model to help COs choose land parcels that minimize the uncertain human impact on biodiversity. The proposed model is robust to uncertain development, and the sequential decision-making process is adaptive, allowing land purchase decisions to adapt to human land use as it unfolds. The cellular automata model is leveraged to simulate land use development based on climate data, land characteristics, and development threat index from NASA Socioeconomic Data and Applications Center. This simulation is used to model uncertainty in the problem. This research leverages state-of-the-art techniques in the robust optimization literature to propose a computationally tractable reformulation of the model, which can be solved routinely by off-the-shelf solvers like Gurobi or CPLEX. Numerical results based on real data from the Jaguar in Central and South America show that the proposed method reduces conservation loss by 19.46% on average compared to standard approaches such as MARXAN used in practice for biodiversity conservation. Our method may better help guide the decision process in land acquisition and thereby allow conservation organizations to maximize the impact of limited resources.

Keywords: data-driven robust optimization, biodiversity conservation, uncertainty simulation, adaptive sequential planning

Procedia PDF Downloads 210
9976 Molecular Epidemiology of Anthrax in Georgia

Authors: N. G. Vepkhvadze, T. Enukidze

Abstract:

Anthrax is a fatal disease caused by strains of Bacillus anthracis, a spore-forming gram-positive bacillus that causes the disease anthrax in animals and humans. Anthrax is a zoonotic disease that is also well-recognized as a potential agent of bioterrorism. Infection in humans is extremely rare in the developed world and is generally due to contact with infected animals or contaminated animal products. Testing of this zoonotic disease began in 1907 in Georgia and is still being tested routinely to provide accurate information and efficient testing results at the State Laboratory of Agriculture of Georgia. Each clinical sample is analyzed by RT-PCR and bacteriology methods; this study used Real-Time PCR assays for the detection of B. anthracis that rely on plasmid-encoded targets with a chromosomal marker to correctly differentiate pathogenic strains from non-anthracis Bacillus species. During the period of 2015-2022, the State Laboratory of Agriculture (SLA) tested 250 clinical and environmental (soil) samples from several different regions in Georgia. In total, 61 out of the 250 samples were positive during this period. Based on the results, Anthrax cases are mostly present in Eastern Georgia, with a high density of the population of livestock, specifically in the regions of Kakheti and Kvemo Kartli. All laboratory activities are being performed in accordance with International Quality standards, adhering to biosafety and biosecurity rules by qualified and experienced personnel handling pathogenic agents. Laboratory testing plays the largest role in diagnosing animals with anthrax, which helps pertinent institutions to quickly confirm a diagnosis of anthrax and evaluate the epidemiological situation that generates important data for further responses.

Keywords: animal disease, baccilus anthracis, edp, laboratory molecular diagnostics

Procedia PDF Downloads 88
9975 Decision-Making Strategies on Smart Dairy Farms: A Review

Authors: L. Krpalkova, N. O' Mahony, A. Carvalho, S. Campbell, G. Corkery, E. Broderick, J. Walsh

Abstract:

Farm management and operations will drastically change due to access to real-time data, real-time forecasting, and tracking of physical items in combination with Internet of Things developments to further automate farm operations. Dairy farms have embraced technological innovations and procured vast amounts of permanent data streams during the past decade; however, the integration of this information to improve the whole farm-based management and decision-making does not exist. It is now imperative to develop a system that can collect, integrate, manage, and analyse on-farm and off-farm data in real-time for practical and relevant environmental and economic actions. The developed systems, based on machine learning and artificial intelligence, need to be connected for useful output, a better understanding of the whole farming issue, and environmental impact. Evolutionary computing can be very effective in finding the optimal combination of sets of some objects and, finally, in strategy determination. The system of the future should be able to manage the dairy farm as well as an experienced dairy farm manager with a team of the best agricultural advisors. All these changes should bring resilience and sustainability to dairy farming as well as improving and maintaining good animal welfare and the quality of dairy products. This review aims to provide an insight into the state-of-the-art of big data applications and evolutionary computing in relation to smart dairy farming and identify the most important research and development challenges to be addressed in the future. Smart dairy farming influences every area of management, and its uptake has become a continuing trend.

Keywords: big data, evolutionary computing, cloud, precision technologies

Procedia PDF Downloads 189
9974 Impact of Human Resources Accounting on Employees' Performance in Organization

Authors: Hamid Saremi, Shida Hanafi

Abstract:

In an age of technology and economics, human capital has important and axial role in the organization and human resource accounting has a wide perception to key resources of organization i.e. human resources. Human resources accounting is new branch of accounting that has Short-lived and generally deals to a range of policies and measures that are related to various aspects of human resources and It gives importance to an organization's most important asset is its human resources and human resource management is the key to success in an organization and to achieve this important matter must review and evaluation of human resources data be with knowledge of accounting based on empirical studies and methods of measurement and reporting of human resources accounting information. Undoubtedly human resource management without information cannot be done and take decision and human resources accounting is practical way to inform the decision makers who are committed to harnessing human resources,, human resources accounting with applying accounting principles in the organization and is with conducting basic research on the extent of the of human resources accounting information" effect of employees' personal performance. In human resource accounting analysis and criteria and valuation of cost and manpower valuating is as the main resource in each Institute. Protection of human resources is a process that according to human resources accounting is for organization profitability. In fact, this type of accounting can be called as a major source in measurement and trends of costs and human resources valuation in each institution. What is the economic value of such assets? What is the amount of expenditures for education and training of professional individuals to value in asset account? What amount of funds spent should be considered as lost opportunity cost? In this paper, according to the literature of human resource accounting we have studied the human resources matter and its objectives and topic of the importance of human resource valuation on employee performance review and method of reporting of human resources according to different models.

Keywords: human resources, human resources, accounting, human capital, human resource management, valuation and cost of human resources, employees, performance, organization

Procedia PDF Downloads 548
9973 Digital Learning Repositories for Vocational Teaching and Knowledge Sharing

Authors: Prachyanun Nilsook, Panita Wannapiroon

Abstract:

The purpose of this research is to study a Digital Learning Repository System (DLRS) on vocational teachers and teaching in Thailand. The innobpcd.net is a DLRS being utilized by the Office of Vocational Education Commission and operationalized by the Bureau of Personnel Competency Development for vocational education teachers. The aim of the system is to support and enhance the process of vocational teaching and to improve staff development by providing teachers with a variety of network connections and information. The system provides centralized hosting and access to content, and the ability to share digital objects or files, to set permissions and controls for access to content that can be used vocational education teachers for their teaching and for their own development. The elements of DLRS include; Digital learning system, Media Library, Knowledge-based system and Mobile Application. The system aims to link vocational teachers to the most effective emerging technologies available for learning, so they are better resourced to support their vocational students. The initial results from this evaluation indicate that there is a range of services provided by the system being used by vocational teachers and this paper indicates which facilities have the greatest usage and impact on vocational teaching in Thailand.

Keywords: digital learning repositories, vocational education, knowledge sharing, learning objects

Procedia PDF Downloads 466
9972 Principal Component Analysis Combined Machine Learning Techniques on Pharmaceutical Samples by Laser Induced Breakdown Spectroscopy

Authors: Kemal Efe Eseller, Göktuğ Yazici

Abstract:

Laser-induced breakdown spectroscopy (LIBS) is a rapid optical atomic emission spectroscopy which is used for material identification and analysis with the advantages of in-situ analysis, elimination of intensive sample preparation, and micro-destructive properties for the material to be tested. LIBS delivers short pulses of laser beams onto the material in order to create plasma by excitation of the material to a certain threshold. The plasma characteristics, which consist of wavelength value and intensity amplitude, depends on the material and the experiment’s environment. In the present work, medicine samples’ spectrum profiles were obtained via LIBS. Medicine samples’ datasets include two different concentrations for both paracetamol based medicines, namely Aferin and Parafon. The spectrum data of the samples were preprocessed via filling outliers based on quartiles, smoothing spectra to eliminate noise and normalizing both wavelength and intensity axis. Statistical information was obtained and principal component analysis (PCA) was incorporated to both the preprocessed and raw datasets. The machine learning models were set based on two different train-test splits, which were 70% training – 30% test and 80% training – 20% test. Cross-validation was preferred to protect the models against overfitting; thus the sample amount is small. The machine learning results of preprocessed and raw datasets were subjected to comparison for both splits. This is the first time that all supervised machine learning classification algorithms; consisting of Decision Trees, Discriminant, naïve Bayes, Support Vector Machines (SVM), k-NN(k-Nearest Neighbor) Ensemble Learning and Neural Network algorithms; were incorporated to LIBS data of paracetamol based pharmaceutical samples, and their different concentrations on preprocessed and raw dataset in order to observe the effect of preprocessing.

Keywords: machine learning, laser-induced breakdown spectroscopy, medicines, principal component analysis, preprocessing

Procedia PDF Downloads 87