Search results for: algorithms and data structure
29090 A Framework Based on Dempster-Shafer Theory of Evidence Algorithm for the Analysis of the TV-Viewers’ Behaviors
Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi
Abstract:
In this paper, we propose an approach of detecting the behavior of the viewers of a TV program in a non-controlled environment. The experiment we propose is based on the use of three types of connected objects (smartphone, smart watch, and a connected remote control). 23 participants were observed while watching their TV programs during three phases: before, during and after watching a TV program. Their behaviors were detected using an approach based on The Dempster Shafer Theory (DST) in two phases. The first phase is to approximate dynamically the mass functions using an approach based on the correlation coefficient. The second phase is to calculate the approximate mass functions. To approximate the mass functions, two approaches have been tested: the first approach was to divide each features data space into cells; each one has a specific probability distribution over the behaviors. The probability distributions were computed statistically (estimated by empirical distribution). The second approach was to predict the TV-viewing behaviors through the use of classifiers algorithms and add uncertainty to the prediction based on the uncertainty of the model. Results showed that mixing the fusion rule with the computation of the initial approximate mass functions using a classifier led to an overall of 96%, 95% and 96% success rate for the first, second and third TV-viewing phase respectively. The results were also compared to those found in the literature. This study aims to anticipate certain actions in order to maintain the attention of TV viewers towards the proposed TV programs with usual connected objects, taking into account the various uncertainties that can be generated.Keywords: Iot, TV-viewing behaviors identification, automatic classification, unconstrained environment
Procedia PDF Downloads 23129089 Impacts of Artificial Intelligence on the Doctor-Patient Relationship: Ethical Principles, Informed Consent and Medical Obligation
Authors: Rafaella Nogaroli
Abstract:
It is presented hypothetical cases in the context of AI algorithms to support clinical decisions, in order to discuss the importance of doctors to respect AI ethical principles. Regarding the principle of transparency and explanation, there is an impact on the new model of patient consent and on the understanding of qualified information. Besides, the human control of technology (AI as a tool) should guide the physician's activity; otherwise, he breaks the patient's legitimate expectation in a specific result, with the consequent transformation of the medical obligation nature.Keywords: medical law, artificial intelligence, ethical principles, patient´s informed consent, medical obligations
Procedia PDF Downloads 10629088 Relevant LMA Features for Human Motion Recognition
Authors: Insaf Ajili, Malik Mallem, Jean-Yves Didier
Abstract:
Motion recognition from videos is actually a very complex task due to the high variability of motions. This paper describes the challenges of human motion recognition, especially motion representation step with relevant features. Our descriptor vector is inspired from Laban Movement Analysis method. We propose discriminative features using the Random Forest algorithm in order to remove redundant features and make learning algorithms operate faster and more effectively. We validate our method on MSRC-12 and UTKinect datasets.Keywords: discriminative LMA features, features reduction, human motion recognition, random forest
Procedia PDF Downloads 20129087 Optimization of Real Time Measured Data Transmission, Given the Amount of Data Transmitted
Authors: Michal Kopcek, Tomas Skulavik, Michal Kebisek, Gabriela Krizanova
Abstract:
The operation of nuclear power plants involves continuous monitoring of the environment in their area. This monitoring is performed using a complex data acquisition system, which collects status information about the system itself and values of many important physical variables e.g. temperature, humidity, dose rate etc. This paper describes a proposal and optimization of communication that takes place in teledosimetric system between the central control server responsible for the data processing and storing and the decentralized measuring stations, which are measuring the physical variables. Analyzes of ongoing communication were performed and consequently the optimization of the system architecture and communication was done.Keywords: communication protocol, transmission optimization, data acquisition, system architecture
Procedia PDF Downloads 52229086 Design Modification in CNC Milling Machine to Reduce the Weight of Structure
Authors: Harshkumar K. Desai, Anuj K. Desai, Jay P. Patel, Snehal V. Trivedi, Yogendrasinh Parmar
Abstract:
The need of continuous improvement in a product or process in this era of global competition leads to apply value engineering for functional and aesthetic improvement in consideration with economic aspect too. Solar industries located at G.I.D.C., Makarpura, Vadodara, Gujarat, India; a manufacturer of variety of CNC Machines had a challenge to analyze the structural design of column, base, carriage and table of CNC Milling Machine in the account of reduction of overall weight of a machine without affecting the rigidity and accuracy at the time of operation. The identified task is the first attempt to validate and optimize the proposed design of ribbed structure statically using advanced modeling and analysis tools in a systematic way. Results of stress and deformation obtained using analysis software are validated with theoretical analysis and found quite satisfactory. Such optimized results offer a weight reduction of the final assembly which is desired by manufacturers in favor of reduction of material cost, processing cost and handling cost finally.Keywords: CNC milling machine, optimization, finite element analysis (FEA), weight reduction
Procedia PDF Downloads 28029085 Changes in the fecal Microbiome of Periparturient Dairy Cattle and Associations with the Onset of Salmonella Shedding
Authors: Lohendy Munoz-Vargas, Stephen O. Opiyo, Rose Digianantonio, Michele L. Williams, Asela Wijeratne, Gregory Habing
Abstract:
Non-typhoidal Salmonella enterica is a zoonotic pathogen with critical importance in animal and public health. The persistence of Salmonella on farms affects animal productivity and health, and represents a risk for food safety. The intestinal microbiota plays a fundamental role in the colonization and invasion of this ubiquitous microorganism. To overcome the colonization resistance imparted by the gut microbiome, Salmonella uses invasion strategies and the host inflammatory response to survive, proliferate, and establish infections with diverse clinical manifestations. Cattle serve as reservoirs of Salmonella, and periparturient cows have high prevalence of Salmonella shedding; however, to author`s best knowledge, little is known about the association between the gut microbiome and the onset of Salmonella shedding during the periparturient period. Thus, the objective of this study was to assess the association between changes in bacterial communities and the onset of Salmonella shedding in cattle approaching parturition. In a prospective cohort study, fecal samples from 98 dairy cows originating from four different farms were collected at four time points relative to calving (-3 wks, -1 wk, +1 wk, +3 wks). All 392 samples were cultured for Salmonella. Sequencing of the V4 region of the 16S rRNA gene using the Illumina platform was completed to evaluate the fecal microbiome in a selected sample subset. Analyses of microbial composition, diversity, and structure were performed according to time points, farm, and Salmonella onset status. Individual cow fecal microbiomes, predominated by Bacteroidetes, Firmicutes, Spirochaetes, and Proteobacteria phyla, significantly changed before and after parturition. Microbial communities from different farms were distinguishable based on multivariate analysis. Although there were significant differences in some bacterial taxa between Salmonella positive and negative samples, our results did not identify differences in the fecal microbial diversity or structure for cows with and without the onset of Salmonella shedding. These data suggest that determinants other than the significant changes in the fecal microbiome influence the periparturient onset of Salmonella shedding in dairy cattle.Keywords: dairy cattle, microbiome, periparturient, Salmonella
Procedia PDF Downloads 17729084 Low Temperature PVP Capping Agent Synthesis of ZnO Nanoparticles by a Simple Chemical Precipitation Method and Their Properties
Authors: V. P. Muhamed Shajudheen, K. Viswanathan, K. Anitha Rani, A. Uma Maheswari, S. Saravana Kumar
Abstract:
We are reporting a simple and low-cost chemical precipitation method adopted to prepare zinc oxide nanoparticles (ZnO) using polyvinyl pyrrolidone (PVP) as a capping agent. The Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) was applied on the dried gel sample to record the phase transformation temperature of zinc hydroxide Zn(OH)2 to zinc oxide (ZnO) to obtain the annealing temperature of 800C. The thermal, structure, morphology and optical properties have been employed by different techniques such as DSC-TGA, X-Ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Micro Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence spectroscopy (PL) and Field Effect Scanning Electron Microscopy (FESEM). X-ray diffraction results confirmed the wurtzite hexagonal structure of ZnO nanoparticles. The two intensive peaks at 160 and 432 cm-1 in the Raman Spectrum are mainly attributed to the first order modes of the wurtzite ZnO nanoparticles. The energy band gap obtained from the UV-Vis absorption spectra, shows a blue shift, which is attributed to increase in carrier concentration (Burstein Moss Effect). Photoluminescence studies of the single crystalline ZnO nanoparticles, show a strong peak centered at 385 nm, corresponding to the near band edge emission in ultraviolet range. The mixed shape of grapes, sphere, hexagonal and rock like structure has been noticed in FESEM. The results showed that PVP is a suitable capping agent for the preparation of ZnO nanoparticles by simple chemical precipitation method.Keywords: ZnO nanoparticles, simple chemical precipitation route, mixed shape morphology, UV-visible absorption, photoluminescence, Fourier transform infra-Red spectroscopy
Procedia PDF Downloads 44729083 Optimal Portfolio Selection under Treynor Ratio Using Genetic Algorithms
Authors: Imad Zeyad Ramadan
Abstract:
In this paper a genetic algorithm was developed to construct the optimal portfolio based on the Treynor method. The GA maximizes the Treynor ratio under budget constraint to select the best allocation of the budget for the companies in the portfolio. The results show that the GA was able to construct a conservative portfolio which includes companies from the three sectors. This indicates that the GA reduced the risk on the investor as it choose some companies with positive risks (goes with the market) and some with negative risks (goes against the market).Keywords: oOptimization, genetic algorithm, portfolio selection, Treynor method
Procedia PDF Downloads 45329082 Electronic and Optical Properties of Li₂S Antifluorite Material
Authors: Brahim Bahloul, Khatir Babesse, Azzedine Dkhira, Yacine Bahloul, Dalila Hammoutene
Abstract:
In this paper, we investigate with ab initio calculations some structural and optoelectronic properties of Li₂S compound. The structural and electronic properties of the Li₂S antifluorite structure have been studied by first-principles calculations within the density functional theory (DFT), whereas the optical properties have been obtained using empirical relationships such as the modified Moss relation. Our calculated lattice parameters are in good agreement with the experimental data and other theoretical calculations. The electronic band structures and density of states were obtained. The anti-fluorite Li₂S present an indirect band gap of 3.388 eV at equilibrium. The top of the valence bands reflects the p electronic character for both structures. The calculated energy gaps and optical constants are in good agreement with experimental measurements.Keywords: Ab initio calculations, antifluorite, electronic properties, optical properties
Procedia PDF Downloads 29529081 The Duty of Application and Connection Providers Regarding the Supply of Internet Protocol by Court Order in Brazil to Determine Authorship of Acts Practiced on the Internet
Authors: João Pedro Albino, Ana Cláudia Pires Ferreira de Lima
Abstract:
Humanity has undergone a transformation from the physical to the virtual world, generating an enormous amount of data on the world wide web, known as big data. Many facts that occur in the physical world or in the digital world are proven through records made on the internet, such as digital photographs, posts on social media, contract acceptances by digital platforms, email, banking, and messaging applications, among others. These data recorded on the internet have been used as evidence in judicial proceedings. The identification of internet users is essential for the security of legal relationships. This research was carried out on scientific articles and materials from courses and lectures, with an analysis of Brazilian legislation and some judicial decisions on the request of static data from logs and Internet Protocols (IPs) from application and connection providers. In this article, we will address the determination of authorship of data processing on the internet by obtaining the IP address and the appropriate judicial procedure for this purpose under Brazilian law.Keywords: IP address, digital forensics, big data, data analytics, information and communication technology
Procedia PDF Downloads 12829080 Near-Miss Deep Learning Approach for Neuro-Fuzzy Risk Assessment in Pipelines
Authors: Alexander Guzman Urbina, Atsushi Aoyama
Abstract:
The sustainability of traditional technologies employed in energy and chemical infrastructure brings a big challenge for our society. Making decisions related with safety of industrial infrastructure, the values of accidental risk are becoming relevant points for discussion. However, the challenge is the reliability of the models employed to get the risk data. Such models usually involve large number of variables and with large amounts of uncertainty. The most efficient techniques to overcome those problems are built using Artificial Intelligence (AI), and more specifically using hybrid systems such as Neuro-Fuzzy algorithms. Therefore, this paper aims to introduce a hybrid algorithm for risk assessment trained using near-miss accident data. As mentioned above the sustainability of traditional technologies related with energy and chemical infrastructure constitutes one of the major challenges that today’s societies and firms are facing. Besides that, the adaptation of those technologies to the effects of the climate change in sensible environments represents a critical concern for safety and risk management. Regarding this issue argue that social consequences of catastrophic risks are increasing rapidly, due mainly to the concentration of people and energy infrastructure in hazard-prone areas, aggravated by the lack of knowledge about the risks. Additional to the social consequences described above, and considering the industrial sector as critical infrastructure due to its large impact to the economy in case of a failure the relevance of industrial safety has become a critical issue for the current society. Then, regarding the safety concern, pipeline operators and regulators have been performing risk assessments in attempts to evaluate accurately probabilities of failure of the infrastructure, and consequences associated with those failures. However, estimating accidental risks in critical infrastructure involves a substantial effort and costs due to number of variables involved, complexity and lack of information. Therefore, this paper aims to introduce a well trained algorithm for risk assessment using deep learning, which could be capable to deal efficiently with the complexity and uncertainty. The advantage point of the deep learning using near-miss accidents data is that it could be employed in risk assessment as an efficient engineering tool to treat the uncertainty of the risk values in complex environments. The basic idea of using a Near-Miss Deep Learning Approach for Neuro-Fuzzy Risk Assessment in Pipelines is focused in the objective of improve the validity of the risk values learning from near-miss accidents and imitating the human expertise scoring risks and setting tolerance levels. In summary, the method of Deep Learning for Neuro-Fuzzy Risk Assessment involves a regression analysis called group method of data handling (GMDH), which consists in the determination of the optimal configuration of the risk assessment model and its parameters employing polynomial theory.Keywords: deep learning, risk assessment, neuro fuzzy, pipelines
Procedia PDF Downloads 29329079 Optical Emission Studies of Laser Produced Lead Plasma: Measurements of Transition Probabilities of the 6P7S → 6P2 Transitions Array
Authors: Javed Iqbal, R. Ahmed, M. A. Baig
Abstract:
We present new data on the optical emission spectra of the laser produced lead plasma using a pulsed Nd:YAG laser at 1064 nm (pulse energy 400 mJ, pulse width 5 ns, 10 Hz repetition rate) in conjunction with a set of miniature spectrometers covering the spectral range from 200 nm to 720 nm. Well resolved structure due to the 6p7s → 6p2 transition array of neutral lead and a few multiplets of singly ionized lead have been observed. The electron temperatures have been calculated in the range (9000 - 10800) ± 500 K using four methods; two line ratio, Boltzmann plot, Saha-Boltzmann plot and Morrata method whereas, the electron number densities have been determined in the range (2.0 – 8.0) ± 0.6 ×1016 cm-3 using the Stark broadened line profiles of neutral lead lines, singly ionized lead lines and hydrogen Hα-line. Full width at half maximum (FWHM) of a number of neutral and singly ionized lead lines have been extracted by the Lorentzian fit to the experimentally observed line profiles. Furthermore, branching fractions have been deduced for eleven lines of the 6p7s → 6p2 transition array in lead whereas the absolute values of the transition probabilities have been calculated by combining the experimental branching fractions with the life times of the excited levels The new results are compared with the existing data showing a good agreement.Keywords: LIBS, plasma parameters, transition probabilities, branching fractions, stark width
Procedia PDF Downloads 28429078 Modeling the Risk Perception of Pedestrians Using a Nested Logit Structure
Authors: Babak Mirbaha, Mahmoud Saffarzadeh, Atieh Asgari Toorzani
Abstract:
Pedestrians are the most vulnerable road users since they do not have a protective shell. One of the most common collisions for them is pedestrian-vehicle at intersections. In order to develop appropriate countermeasures to improve safety for them, researches have to be conducted to identify the factors that affect the risk of getting involved in such collisions. More specifically, this study investigates factors such as the influence of walking alone or having a baby while crossing the street, the observable age of pedestrian, the speed of pedestrians and the speed of approaching vehicles on risk perception of pedestrians. A nested logit model was used for modeling the behavioral structure of pedestrians. The results show that the presence of more lanes at intersections and not being alone especially having a baby while crossing, decrease the probability of taking a risk among pedestrians. Also, it seems that teenagers show more risky behaviors in crossing the street in comparison to other age groups. Also, the speed of approaching vehicles was considered significant. The probability of risk taking among pedestrians decreases by increasing the speed of approaching vehicle in both the first and the second lanes of crossings.Keywords: pedestrians, intersection, nested logit, risk
Procedia PDF Downloads 19029077 How to Modernise the ECN
Authors: Dorota Galeza
Abstract:
This paper argues that networks, such as the ECN and the American network, are affected by certain small events which are inherent to path dependence and preclude the full evolution towards efficiency. It is advocated that the American network is superior to the ECN in many respects due to its greater flexibility and longer history. This stems in particular from the creation of the American network, which was based on a small number of cases. Such structure encourages further changes and modifications which are not necessarily radical. The ECN, by contrast, was established by legislative action, which explains its rigid structure and resistance to change. It might be the case that the ECN is subject not so much to path dependence but to past dependence. It might have to be replaced, as happened to its predecessor. This paper is an attempt to transpose the superiority of the American network on to the ECN. It looks at concepts such as judicial cooperation, harmonization of procedure, peer review and regulatory impact assessments (RIAs), and dispute resolution procedures. The aim is to adopt these concepts into the EU setting without recourse to legal transplantation. The major difficulty is that many of these concepts have been tested only in the US and it is difficult to tell whether they could be modified to meet EU standards. Concepts such as judicial cooperation might be difficult due to different language traditions in EU member states. It is hoped that greater flexibility, as in the American network, would boost legitimacy and transparency.Keywords: ECN, networks, regulation, competition
Procedia PDF Downloads 43329076 Sourcing and Compiling a Maltese Traffic Dataset MalTra
Authors: Gabriele Borg, Alexei De Bono, Charlie Abela
Abstract:
There on a constant rise in the availability of high volumes of data gathered from multiple sources, resulting in an abundance of unprocessed information that can be used to monitor patterns and trends in user behaviour. Similarly, year after year, Malta is also constantly experiencing ongoing population growth and an increase in mobilization demand. This research takes advantage of data which is continuously being sourced and converting it into useful information related to the traffic problem on the Maltese roads. The scope of this paper is to provide a methodology to create a custom dataset (MalTra - Malta Traffic) compiled from multiple participants from various locations across the island to identify the most common routes taken to expose the main areas of activity. This use of big data is seen being used in various technologies and is referred to as ITSs (Intelligent Transportation Systems), which has been concluded that there is significant potential in utilising such sources of data on a nationwide scale.Keywords: Big Data, vehicular traffic, traffic management, mobile data patterns
Procedia PDF Downloads 11429075 Advanced Catechol-Modified Chitosan Hydrogels with the Inducement of Iron (III) Ion at Acidic Condition
Authors: Ngoc Quang Nguyen, Daewon Sohn
Abstract:
Chitosan (CS) is a natural polycationic polysaccharide and pH-sensitive polymer with incomplete deacetylation from claiming chitin. It is also a guaranteeing material in terms of pharmaceutical, chemical, and sustenance industry due to its exceptional structure (reactive –OH and –NH2 groups). In this study, a catechol-functionalized chitosan (CCS, for an eminent level for substitution) was synthesized and propelled by marine mussel cuticles in place on research those intricate connections between Fe³⁺ and catechol under acidic conditions. The ratios of catechol, chitosan and other reagents decide the structure of the hydrogel. The gel formation is then well-maintained by dual cross-linking through electrostatic interactions between Fe³⁺ and CCS and covalent catechol-coupling-based coordinate bonds. The hydrogels showed enhanced cohesiveness and shock-absorbing properties with increasing pH due to coordinate bonds inspired by mussel byssal threads. Thus, the gelation time, rheological properties, UV-vis and ¹H-Nuclear Magnetic Resonance spectroscopy, and the morphologic aspects were elucidated to describe those crosslinking components and the physical properties of the chitosan backbones and hydrogel frameworks.Keywords: catechol, chitosan, iron ion, gelation, hydrogel
Procedia PDF Downloads 14529074 Comparative Study of Accuracy of Land Cover/Land Use Mapping Using Medium Resolution Satellite Imagery: A Case Study
Authors: M. C. Paliwal, A. K. Jain, S. K. Katiyar
Abstract:
Classification of satellite imagery is very important for the assessment of its accuracy. In order to determine the accuracy of the classified image, usually the assumed-true data are derived from ground truth data using Global Positioning System. The data collected from satellite imagery and ground truth data is then compared to find out the accuracy of data and error matrices are prepared. Overall and individual accuracies are calculated using different methods. The study illustrates advanced classification and accuracy assessment of land use/land cover mapping using satellite imagery. IRS-1C-LISS IV data were used for classification of satellite imagery. The satellite image was classified using the software in fourteen classes namely water bodies, agricultural fields, forest land, urban settlement, barren land and unclassified area etc. Classification of satellite imagery and calculation of accuracy was done by using ERDAS-Imagine software to find out the best method. This study is based on the data collected for Bhopal city boundaries of Madhya Pradesh State of India.Keywords: resolution, accuracy assessment, land use mapping, satellite imagery, ground truth data, error matrices
Procedia PDF Downloads 51229073 Development of Hydrophobic Coatings on Aluminum Alloy 7075
Authors: Nauman A. Siddiqui
Abstract:
High performance requirement of aircrafts and marines industry demands to cater major industrial problems like wetting, high-speed efficiency, and corrosion resistance. These problems can be resolved by producing the hydrophobic surfaces on the metal substrate. By anodization process, the surface of AA 7075 has been modified and achieved a rough surface with a porous aluminum oxide (Al2O3) structure at nano-level. This surface modification process reduces the surface contact energy and increases the liquid contact angle which ultimately enhances the anti-icing properties. Later the Silane and Polyurethane (PU) coatings on the anodized surface have produced a contact angle of 130°. The results showed a good water repellency and self-cleaning properties. Using SEM analysis, micrographs revealed the round nano-porous oxide structure on the substrate. Therefore this technique can help in increasing the speed efficiency by reducing the friction with the outer interaction and can also be declared as a green technique since it is user-friendly.Keywords: AA 7075, hydrophobicity, silanes, polyurethane, anodization
Procedia PDF Downloads 28129072 Effect of Genuine Missing Data Imputation on Prediction of Urinary Incontinence
Authors: Suzan Arslanturk, Mohammad-Reza Siadat, Theophilus Ogunyemi, Ananias Diokno
Abstract:
Missing data is a common challenge in statistical analyses of most clinical survey datasets. A variety of methods have been developed to enable analysis of survey data to deal with missing values. Imputation is the most commonly used among the above methods. However, in order to minimize the bias introduced due to imputation, one must choose the right imputation technique and apply it to the correct type of missing data. In this paper, we have identified different types of missing values: missing data due to skip pattern (SPMD), undetermined missing data (UMD), and genuine missing data (GMD) and applied rough set imputation on only the GMD portion of the missing data. We have used rough set imputation to evaluate the effect of such imputation on prediction by generating several simulation datasets based on an existing epidemiological dataset (MESA). To measure how well each dataset lends itself to the prediction model (logistic regression), we have used p-values from the Wald test. To evaluate the accuracy of the prediction, we have considered the width of 95% confidence interval for the probability of incontinence. Both imputed and non-imputed simulation datasets were fit to the prediction model, and they both turned out to be significant (p-value < 0.05). However, the Wald score shows a better fit for the imputed compared to non-imputed datasets (28.7 vs. 23.4). The average confidence interval width was decreased by 10.4% when the imputed dataset was used, meaning higher precision. The results show that using the rough set method for missing data imputation on GMD data improve the predictive capability of the logistic regression. Further studies are required to generalize this conclusion to other clinical survey datasets.Keywords: rough set, imputation, clinical survey data simulation, genuine missing data, predictive index
Procedia PDF Downloads 17129071 Measurement of Solids Concentration in Hydrocyclone Using ERT: Validation Against CFD
Authors: Vakamalla Teja Reddy, Narasimha Mangadoddy
Abstract:
Hydrocyclones are used to separate particles into different size fractions in the mineral processing, chemical and metallurgical industries. High speed video imaging, Laser Doppler Anemometry (LDA), X-ray and Gamma ray tomography are previously used to measure the two-phase flow characteristics in the cyclone. However, investigation of solids flow characteristics inside the cyclone is often impeded by the nature of the process due to slurry opaqueness and solid metal wall vessels. In this work, a dual-plane high speed Electrical resistance tomography (ERT) is used to measure hydrocyclone internal flow dynamics in situ. Experiments are carried out in 3 inch hydrocyclone for feed solid concentrations varying in the range of 0-50%. ERT data analysis through the optimized FEM mesh size and reconstruction algorithms on air-core and solid concentration tomograms is assessed. Results are presented in terms of the air-core diameter and solids volume fraction contours using Maxwell’s equation for various hydrocyclone operational parameters. It is confirmed by ERT that the air core occupied area and wall solids conductivity levels decreases with increasing the feed solids concentration. Algebraic slip mixture based multi-phase computational fluid dynamics (CFD) model is used to predict the air-core size and the solid concentrations in the hydrocyclone. Validation of air-core size and mean solid volume fractions by ERT measurements with the CFD simulations is attempted.Keywords: air-core, electrical resistance tomography, hydrocyclone, multi-phase CFD
Procedia PDF Downloads 38329070 Synthesis and Characterization of LiCoO2 Cathode Material by Sol-Gel Method
Authors: Nur Azilina Abdul Aziz, Tuti Katrina Abdullah, Ahmad Azmin Mohamad
Abstract:
Lithium-transition metals and some of their oxides, such as LiCoO2, LiMn2O2, LiFePO4, and LiNiO2 have been used as cathode materials in high performance lithium-ion rechargeable batteries. Among the cathode materials, LiCoO2 has potential to been widely used as a lithium-ion battery because of its layered crystalline structure, good capacity, high cell voltage, high specific energy density, high power rate, low self-discharge, and excellent cycle life. This cathode material has been widely used in commercial lithium-ion batteries due to its low irreversible capacity loss and good cycling performance. However, there are several problems that interfere with the production of material that has good electrochemical properties, including the crystallinity, the average particle size and particle size distribution. In recent years, synthesis of nanoparticles has been intensively investigated. Powders prepared by the traditional solid-state reaction have a large particle size and broad size distribution. On the other hand, solution method can reduce the particle size to nanometer range and control the particle size distribution. In this study, LiCoO2 was synthesized using the sol–gel preparation method, which Lithium acetate and Cobalt acetate were used as reactants. The stoichiometric amounts of the reactants were dissolved in deionized water. The solutions were stirred for 30 hours using magnetic stirrer, followed by heating at 80°C under vigorous stirring until a viscous gel was formed. The as-formed gel was calcined at 700°C for 7 h under a room atmosphere. The structural and morphological analysis of LiCoO2 was characterized using X-ray diffraction and Scanning electron microscopy. The diffraction pattern of material can be indexed based on the α-NaFeO2 structure. The clear splitting of the hexagonal doublet of (006)/(102) and (108)/(110) in this patterns indicates materials are formed in a well-ordered hexagonal structure. No impurity phase can be seen in this range probably due to the homogeneous mixing of the cations in the precursor. Furthermore, SEM micrograph of the LiCoO2 shows the particle size distribution is almost uniform while particle size is between 0.3-0.5 microns. In conclusion, LiCoO2 powder was successfully synthesized using the sol–gel method. LiCoO2 showed a hexagonal crystal structure. The sample has been prepared clearly indicate the pure phase of LiCoO2. Meanwhile, the morphology of the sample showed that the particle size and size distribution of particles is almost uniform.Keywords: cathode material, LiCoO2, lithium-ion rechargeable batteries, Sol-Gel method
Procedia PDF Downloads 37729069 The Sembar Cretaceous Shale Gas Bearing Formation at Hajipur
Authors: Zakiullah Kalwar, Shabeer Ahmed Abbasi
Abstract:
This research encompasses the study of Cretaceous Sembar Formation Shale Gas potential at Hajipur area. This study has been done with the approach of geophysical data integration. The structure is NE – SW trending anticline with two map able compartments at Cretaceous Sembar level. The study area is located within proven petroleum system. Cretaceous Sembar/Goru formation is in a Wet gas window and Tertiary source is possibly in the oil window. Potential seals are present in Upper Ranikot shale beds and Intra-Lower Ranikot shales. The effectiveness and presence of source and reservoir rocks are favorable in the area of interest. Cretaceous Sembar Shale and Goru Shale beds with good organic content (TOC upto 4%, Type II/III) are currently in gas generation window in the area. Source rock intervals are also reported in Eocene Kirthar Group (TOC upto 8%, Type –II). Good reservoir quality Paleocene Lower Ranikot and Cretaceous Sembar shale beds exist in the area. The collision between Indian and Eurasian Plates during Tertiary initiated folding and thrusting. The first phase of thrusting involved ophiolite emplacement along the western margins of the Indian Plate (west of the area under review). The main phase of thrusting in the Sulaiman region was from Late Miocene to the present. The study area contains Permian to Recent clastics and carbonates. The succession generally is younger in the southeast than in northwest. Intraformational sedimentation breaks are pronounced in Permian and Jurassic. Sulaiman Range is bounded by the Western Sulaiman Transform Fault Zone (of which the Kingri Fault is the major fault) to the west and by the Domanda Fault to the east. The Domanda Fault also constitutes the western boundary of the Sulaiman Foredeep, lies in sulaiman foredeep where subsurface having prominent independent closure. Several reservoir horizons of Jurassic to Eocene are established hydrocarbon producers in the Hajipur area.Keywords: enough size, good potential, shale gas, structure closure
Procedia PDF Downloads 28329068 Collapse Analysis of Planar Composite Frame under Impact Loads
Authors: Lian Song, Shao-Bo Kang, Bo Yang
Abstract:
Concrete filled steel tubular (CFST) structure has been widely used in construction practices due to its superior performances under various loading conditions. However, limited studies are available when this type of structure is subjected to impact or explosive loads. Current methods in relevant design codes are not specific for preventing progressive collapse of CFST structures. Therefore, it is necessary to carry out numerical simulations on CFST structure under impact loads. In this study, finite element analyses are conducted on the mechanical behaviour of composite frames which composed of CFST columns and steel beams subject to impact loading. In the model, CFST columns are simulated using finite element software ABAQUS. The model is verified by test results of solid and hollow CFST columns under lateral impacts, and reasonably good agreement is obtained through comparisons. Thereafter, a multi-scale finite element modelling technique is developed to evaluate the behaviour of a five-storey three-span planar composite frame. Alternate path method and direct simulation method are adopted to perform the dynamic response of the frame when a supporting column is removed suddenly. In the former method, the reason for column removal is not considered and only the remaining frame is simulated, whereas in the latter, a specific impact load is applied to the frame to take account of the column failure induced by vehicle impact. Comparisons are made between these two methods in terms of displacement history and internal force redistribution, and design recommendations are provided for the design of CFST structures under impact loads.Keywords: planar composite frame, collapse analysis, impact loading, direct simulation method, alternate path method
Procedia PDF Downloads 52229067 Database Management System for Orphanages to Help Track of Orphans
Authors: Srivatsav Sanjay Sridhar, Asvitha Raja, Prathit Kalra, Soni Gupta
Abstract:
Database management is a system that keeps track of details about a person in an organisation. Not a lot of orphanages these days are shifting to a computer and program-based system, but unfortunately, most have only pen and paper-based records, which not only consumes space but it is also not eco-friendly. It comes as a hassle when one has to view a record of a person as they have to search through multiple records, and it will consume time. This program will organise all the data and can pull out any information about anyone whose data is entered. This is also a safe way of storage as physical data gets degraded over time or, worse, destroyed due to natural disasters. In this developing world, it is only smart enough to shift all data to an electronic-based storage system. The program comes with all features, including creating, inserting, searching, and deleting the data, as well as printing them.Keywords: database, orphans, programming, C⁺⁺
Procedia PDF Downloads 16229066 Marketing–Operations Alignment: A Systematic Literature and Citation Network Analysis Review
Authors: Kedwadee Sombultawee, Sakun Boon-Itt
Abstract:
This research demonstrates a systematic literature review of 62 peer-reviewed articles published in academic journals from 2000-2016 focusing on the operation and marketing interface area. The findings show the three major clusters of recent research domains, which is a review of the alignment between operations and marketing, identification of variables that impact the company and analysis of the effect of interface. Moreover, the Main Path Analysis (MPA) is mapped to show the knowledge structure of the operation and marketing interface issue. Most of the empirical research focused on company performance and new product development then analyzed the data by the structural equation model or regression. Whereas, some scholars studied the conflict of these two functions and proposed the requirement or step for alignment. Finally, the gaps in the literature are provided for future research directions.Keywords: operations management, marketing, interface, systematic literature review
Procedia PDF Downloads 28129065 Enhancing Quality Management Systems through Automated Controls and Neural Networks
Authors: Shara Toibayeva, Irbulat Utepbergenov, Lyazzat Issabekova, Aidana Bodesova
Abstract:
The article discusses the importance of quality assessment as a strategic tool in business and emphasizes the significance of the effectiveness of quality management systems (QMS) for enterprises. The evaluation of these systems takes into account the specificity of quality indicators, the multilevel nature of the system, and the need for optimal selection of the number of indicators and evaluation of the system state, which is critical for making rational management decisions. Methods and models of automated enterprise quality management are proposed, including an intelligent automated quality management system integrated with the Management Information and Control System. These systems make it possible to automate the implementation and support of QMS, increasing the validity, efficiency, and effectiveness of management decisions by automating the functions performed by decision makers and personnel. The paper also emphasizes the use of recurrent neural networks to improve automated quality management. Recurrent neural networks (RNNs) are used to analyze and process sequences of data, which is particularly useful in the context of document quality assessment and non-conformance detection in quality management systems. These networks are able to account for temporal dependencies and complex relationships between different data elements, which improves the accuracy and efficiency of automated decisions. The project was supported by a grant from the Ministry of Education and Science of the Republic of Kazakhstan under the Zhas Galym project No. AR 13268939, dedicated to research and development of digital technologies to ensure consistency of QMS regulatory documents.Keywords: automated control system, quality management, document structure, formal language
Procedia PDF Downloads 4529064 Evaluating the Methods of Retrofitting and Renovating of the Masonry Schools
Authors: Navid Khayat
Abstract:
This study investigates the retrofitting of schools in Ahvaz City. Three schools, namely, Enghelab, Sherafat, and Golchehreh, in Ahvaz City are initially examined through Schmidt hammer and ultrasonic tests. Given the tests and controls on the structures of these schools, the methods are presented for their reconstruction. The plan is presented for each school by estimating the cost and generally the feasibility and estimated the duration of project reconstruction. After reconstruction, the mentioned tests are re-performed for rebuilt parts and the results indicate a significant improvement in performance of structure because of reconstruction. According to the results, despite the fact that the use of fiber reinforced polymers (FRP) for structure retrofitting is costly, due to the low executive costs and also other benefits of FRP, it is generally considered as one of the most effective ways of retrofitting. Building the concrete coating on walls is another effective method in retrofitting the buildings. According to this method, a grid of horizontal and vertical bars is installed on the wall and then the concrete is poured on it. The use of concrete coating on the concrete and brick structures leads to the useful results and the experience indicates that the poured concrete filled the joints well and provides the appropriate binding and adhesion.Keywords: renovation, retrofitting, masonry structures, old school
Procedia PDF Downloads 28329063 Applications of Artificial Intelligence (AI) in Cardiac imaging
Authors: Angelis P. Barlampas
Abstract:
The purpose of this study is to inform the reader, about the various applications of artificial intelligence (AI), in cardiac imaging. AI grows fast and its role is crucial in medical specialties, which use large amounts of digital data, that are very difficult or even impossible to be managed by human beings and especially doctors.Artificial intelligence (AI) refers to the ability of computers to mimic human cognitive function, performing tasks such as learning, problem-solving, and autonomous decision making based on digital data. Whereas AI describes the concept of using computers to mimic human cognitive tasks, machine learning (ML) describes the category of algorithms that enable most current applications described as AI. Some of the current applications of AI in cardiac imaging are the follows: Ultrasound: Automated segmentation of cardiac chambers across five common views and consequently quantify chamber volumes/mass, ascertain ejection fraction and determine longitudinal strain through speckle tracking. Determine the severity of mitral regurgitation (accuracy > 99% for every degree of severity). Identify myocardial infarction. Distinguish between Athlete’s heart and hypertrophic cardiomyopathy, as well as restrictive cardiomyopathy and constrictive pericarditis. Predict all-cause mortality. CT Reduce radiation doses. Calculate the calcium score. Diagnose coronary artery disease (CAD). Predict all-cause 5-year mortality. Predict major cardiovascular events in patients with suspected CAD. MRI Segment of cardiac structures and infarct tissue. Calculate cardiac mass and function parameters. Distinguish between patients with myocardial infarction and control subjects. It could potentially reduce costs since it would preclude the need for gadolinium-enhanced CMR. Predict 4-year survival in patients with pulmonary hypertension. Nuclear Imaging Classify normal and abnormal myocardium in CAD. Detect locations with abnormal myocardium. Predict cardiac death. ML was comparable to or better than two experienced readers in predicting the need for revascularization. AI emerge as a helpful tool in cardiac imaging and for the doctors who can not manage the overall increasing demand, in examinations such as ultrasound, computed tomography, MRI, or nuclear imaging studies.Keywords: artificial intelligence, cardiac imaging, ultrasound, MRI, CT, nuclear medicine
Procedia PDF Downloads 8429062 Determination of the Effective Economic and/or Demographic Indicators in Classification of European Union Member and Candidate Countries Using Partial Least Squares Discriminant Analysis
Authors: Esra Polat
Abstract:
Partial Least Squares Discriminant Analysis (PLSDA) is a statistical method for classification and consists a classical Partial Least Squares Regression (PLSR) in which the dependent variable is a categorical one expressing the class membership of each observation. PLSDA can be applied in many cases when classical discriminant analysis cannot be applied. For example, when the number of observations is low and when the number of independent variables is high. When there are missing values, PLSDA can be applied on the data that is available. Finally, it is adapted when multicollinearity between independent variables is high. The aim of this study is to determine the economic and/or demographic indicators, which are effective in grouping the 28 European Union (EU) member countries and 7 candidate countries (including potential candidates Bosnia and Herzegovina (BiH) and Kosova) by using the data set obtained from database of the World Bank for 2014. Leaving the political issues aside, the analysis is only concerned with the economic and demographic variables that have the potential influence on country’s eligibility for EU entrance. Hence, in this study, both the performance of PLSDA method in classifying the countries correctly to their pre-defined groups (candidate or member) and the differences between the EU countries and candidate countries in terms of these indicators are analyzed. As a result of the PLSDA, the value of percentage correctness of 100 % indicates that overall of the 35 countries is classified correctly. Moreover, the most important variables that determine the statuses of member and candidate countries in terms of economic indicators are identified as 'external balance on goods and services (% GDP)', 'gross domestic savings (% GDP)' and 'gross national expenditure (% GDP)' that means for the 2014 economical structure of countries is the most important determinant of EU membership. Subsequently, the model validated to prove the predictive ability by using the data set for 2015. For prediction sample, %97,14 of the countries are correctly classified. An interesting result is obtained for only BiH, which is still a potential candidate for EU, predicted as a member of EU by using the indicators data set for 2015 as a prediction sample. Although BiH has made a significant transformation from a war-torn country to a semi-functional state, ethnic tensions, nationalistic rhetoric and political disagreements are still evident, which inhibit Bosnian progress towards the EU.Keywords: classification, demographic indicators, economic indicators, European Union, partial least squares discriminant analysis
Procedia PDF Downloads 28329061 Bioinformatics Approach to Support Genetic Research in Autism in Mali
Authors: M. Kouyate, M. Sangare, S. Samake, S. Keita, H. G. Kim, D. H. Geschwind
Abstract:
Background & Objectives: Human genetic studies can be expensive, even unaffordable, in developing countries, partly due to the sequencing costs. Our aim is to pilot the use of bioinformatics tools to guide scientifically valid, locally relevant, and economically sound autism genetic research in Mali. Methods: The following databases, NCBI, HGMD, and LSDB, were used to identify hot point mutations. Phenotype, transmission pattern, theoretical protein expression in the brain, the impact of the mutation on the 3D structure of the protein) were used to prioritize selected autism genes. We used the protein database, Modeller, and clustal W. Results: We found Mef2c (Gly27Ala/Leu38Gln), Pten (Thr131IIle), Prodh (Leu289Met), Nme1 (Ser120Gly), and Dhcr7 (Pro227Thr/Glu224Lys). These mutations were associated with endonucleases BseRI, NspI, PfrJS2IV, BspGI, BsaBI, and SpoDI, respectively. Gly27Ala/Leu38Gln mutations impacted the 3D structure of the Mef2c protein. Mef2c protein sequences across species showed a high percentage of similarity with a highly conserved MADS domain. Discussion: Mef2c, Pten, Prodh, Nme1, and Dhcr 7 gene mutation frequencies in the Malian population will be very informative. PCR coupled with restriction enzyme digestion can be used to screen the targeted gene mutations. Sanger sequencing will be used for confirmation only. This will cut down considerably the sequencing cost for gene-to-gene mutation screening. The knowledge of the 3D structure and potential impact of the mutations on Mef2c protein informed the protein family and altered function (ex. Leu38Gln). Conclusion & Future Work: Bio-informatics will positively impact autism research in Mali. Our approach can be applied to another neuropsychiatric disorder.Keywords: bioinformatics, endonucleases, autism, Sanger sequencing, point mutations
Procedia PDF Downloads 88