Search results for: ERA-5 analysis data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 42390

Search results for: ERA-5 analysis data

39150 Lightweight Concrete Fracture Energy Derived by Inverse Analysis

Authors: Minho Kwon, Seonghyeok Lee, Wooyoung Jung

Abstract:

In recent years, with increase of construction of skyscraper structures, the study of concrete materials to improve their weight and performance has been emerging as a key of research area. Typically, the concrete structures has disadvantage of increasing the weight due to its mass in comparison to the strength of the materials. Therefore, in order to improve such problems, the light-weight aggregate concrete and high strength concrete materials have been studied during the past decades. On the other hand, the study of light-weight aggregate concrete materials has lack of data in comparison to the concrete structure using high strength materials, relatively. Consequently, this study presents the performance characteristics of light-weight aggregate concrete materials due to the material properties and strength. Also, this study conducted the experimental tests with respect to normal and lightweight aggregate materials, in order to indentify the tensile crack failure of the concrete structures. As a result, the Crack Mouth Opening Displacement (CMOD) from the experimental tests was constructed and the fracture energy using inverse problem analysis was developed from the force-CMOD relationship in this study, respectively.

Keywords: lightweight aggregate concrete, crack mouth opening displacement, inverse analysis, fracture energy

Procedia PDF Downloads 360
39149 Assessment of the Masticatory Muscle Function in Young Adults Following SARS-CoV-2 Infection

Authors: Mimoza Canga, Edit Xhajanka, Irene Malagnino

Abstract:

The COVID-19 pandemic has had a significant influence on the lives of millions of people and is a threat to public health. SARS-CoV-2 infection has been associated with a number of health problems, including damage to the lungs and central nervous system damage. Additionally, it can also cause oral health problems, such as pain and weakening of the chewing muscles. The purpose of the study is the assessment of the masticatory muscle function in young adults between 18 and 29 years old following SARS-CoV-2 infection. Materials and methods: This study is quantitative cross-sectional research conducted in Albania between March 2023 and September 2023. Our research involved a total of 104 students who participated in our research, of which 64 were female (61.5%) and 40 were male (38.5%). They were divided into four age groups: 18-20, 21-23, 24-26, and 27-29 years old. In this study, the students willingly consented to take part in this study and were guaranteed that their participation would remain anonymous. The study recorded no dropouts, and it was carried out in compliance with the Declaration of Helsinki. Statistical analysis was conducted using IBM SPSS Statistics Version 23.0 on Microsoft Windows Linux, Chicago, IL, USA. Data were evaluated utilizing analysis of variance (ANOVA), with a significance level set at P ≤ 0.05. Results: 80 (76.9%) of the participants who had passed COVID-19 reported chronic masticatory muscle pain (P < 0.0001) and masticatory muscle spasms (P = 0.002). According to data analysis, 70 (67.3%) of the participants had a sore throat (P=0.007). 74% of the students reported experiencing weakness in their chewing muscles (P=0.003). The participants reported having undergone the following treatments: azithromycin (500 mg daily), prednisolone sodium phosphate (15 mg/5 mL daily), Augmentin tablets (625 mg), vitamin C (1000 mg), magnesium sulfate (4 g/100 mL), oral vitamin D3 supplementation of 5000 IU daily, ibuprofen (400 mg every 6 hours), and tizanidine (2 mg every 6 hours). Conclusion: This study, conducted in Albania, has limitations, but it can be concluded that COVID-19 directly affects the functioning of the masticatory muscles.

Keywords: Albania, chronic pain, COVID-19, cross-sectional study, masticatory muscles, spasm

Procedia PDF Downloads 39
39148 Predicting the Human Impact of Natural Onset Disasters Using Pattern Recognition Techniques and Rule Based Clustering

Authors: Sara Hasani

Abstract:

This research focuses on natural sudden onset disasters characterised as ‘occurring with little or no warning and often cause excessive injuries far surpassing the national response capacities’. Based on the panel analysis of the historic record of 4,252 natural onset disasters between 1980 to 2015, a predictive method was developed to predict the human impact of the disaster (fatality, injured, homeless) with less than 3% of errors. The geographical dispersion of the disasters includes every country where the data were available and cross-examined from various humanitarian sources. The records were then filtered into 4252 records of the disasters where the five predictive variables (disaster type, HDI, DRI, population, and population density) were clearly stated. The procedure was designed based on a combination of pattern recognition techniques and rule-based clustering for prediction and discrimination analysis to validate the results further. The result indicates that there is a relationship between the disaster human impact and the five socio-economic characteristics of the affected country mentioned above. As a result, a framework was put forward, which could predict the disaster’s human impact based on their severity rank in the early hours of disaster strike. The predictions in this model were outlined in two worst and best-case scenarios, which respectively inform the lower range and higher range of the prediction. A necessity to develop the predictive framework can be highlighted by noticing that despite the existing research in literature, a framework for predicting the human impact and estimating the needs at the time of the disaster is yet to be developed. This can further be used to allocate the resources at the response phase of the disaster where the data is scarce.

Keywords: disaster management, natural disaster, pattern recognition, prediction

Procedia PDF Downloads 157
39147 Block Mining: Block Chain Enabled Process Mining Database

Authors: James Newman

Abstract:

Process mining is an emerging technology that looks to serialize enterprise data in time series data. It has been used by many companies and has been the subject of a variety of research papers. However, the majority of current efforts have looked at how to best create process mining from standard relational databases. This paper is the first pass at outlining a database custom-built for the minimal viable product of process mining. We present Block Miner, a blockchain protocol to store process mining data across a distributed network. We demonstrate the feasibility of storing process mining data on the blockchain. We present a proof of concept and show how the intersection of these two technologies helps to solve a variety of issues, including but not limited to ransomware attacks, tax documentation, and conflict resolution.

Keywords: blockchain, process mining, memory optimization, protocol

Procedia PDF Downloads 110
39146 A Fast Parallel and Distributed Type-2 Fuzzy Algorithm Based on Cooperative Mobile Agents Model for High Performance Image Processing

Authors: Fatéma Zahra Benchara, Mohamed Youssfi, Omar Bouattane, Hassan Ouajji, Mohamed Ouadi Bensalah

Abstract:

The aim of this paper is to present a distributed implementation of the Type-2 Fuzzy algorithm in a parallel and distributed computing environment based on mobile agents. The proposed algorithm is assigned to be implemented on a SPMD (Single Program Multiple Data) architecture which is based on cooperative mobile agents as AVPE (Agent Virtual Processing Element) model in order to improve the processing resources needed for performing the big data image segmentation. In this work we focused on the application of this algorithm in order to process the big data MRI (Magnetic Resonance Images) image of size (n x m). It is encapsulated on the Mobile agent team leader in order to be split into (m x n) pixels one per AVPE. Each AVPE perform and exchange the segmentation results and maintain asynchronous communication with their team leader until the convergence of this algorithm. Some interesting experimental results are obtained in terms of accuracy and efficiency analysis of the proposed implementation, thanks to the mobile agents several interesting skills introduced in this distributed computational model.

Keywords: distributed type-2 fuzzy algorithm, image processing, mobile agents, parallel and distributed computing

Procedia PDF Downloads 433
39145 The Potential of Sentiment Analysis to Categorize Social Media Comments Using German Libraries

Authors: Felix Boehnisch, Alexander Lutz

Abstract:

Based on the number of users and the amount of content posted daily, Facebook is considered the largest social network in the world. This content includes images or text posts from companies but also private persons, which are also commented on by other users. However, it can sometimes be difficult for companies to keep track of all the posts and the reactions to them, especially when there are several posts a day that contain hundreds to thousands of comments. To facilitate this, the following paper deals with the possible applications of sentiment analysis to social media comments in order to be able to support the work in social media marketing. In a first step, post comments were divided into positive and negative by a subjective rating, then the same comments were checked for their polarity value by the two german python libraries TextBlobDE and SentiWS and also grouped into positive, negative, or even neutral. As a control, the subjective classifications were compared with the machine-generated ones by a confusion matrix, and relevant quality criteria were determined. The accuracy of both libraries was not really meaningful, with 60% to 66%. However, many words or sentences were not evaluated at all, so there seems to be room for optimization to possibly get more accurate results. In future studies, the use of these specific German libraries can be optimized to gain better insights by either applying them to stricter cleaned data or by adding a sentiment value to emojis, which have been removed from the comments in advance, as they are not contained in the libraries.

Keywords: Facebook, German libraries, polarity, sentiment analysis, social media comments

Procedia PDF Downloads 185
39144 Online Learning Management System for Teaching

Authors: Somchai Buaroong

Abstract:

This research aims to investigating strong points and challenges in application of an online learning management system to an English course. Data were collected from observation, learners’ oral and written reports, and the teacher’s journals. A questionnaire was utilized as a tool to collect data. Statistics utilized in this research included frequency, percentage, mean, standard deviation, and multiple regression analysis. The findings show that the system was an additional channel to enhance English language learning through written class assignments that were digitally accessible by any group members, and through communication between the teacher and learners and among learners themselves. Thus, the learning management system could be a promising tool for foreign language teachers. Also revealed in the study were difficulties in its use. The article ends with discussions of findings of the system for foreign language classes in association to pedagogy are also included and in the level of signification.

Keywords: english course, foreign language system, online learning management system, teacher’s journals

Procedia PDF Downloads 286
39143 Productivity, Labour Flexibility, and Migrant Workers in Hotels: An Establishment and Departmental Level Analysis

Authors: Natina Yaduma, Allan Williams, Sangwon Park, Andrew Lockwood

Abstract:

This paper analyses flexible working, and the employment of migrants, as determinants of productivity in hotels. Controlling for the institutional environment, by focussing on a single firm, it analyses data on actual hours worked and outputs, on a weekly basis, over an 8 year period. The unusually disaggregated data allows the paper to examine not only inter-establishment, but also intra-establishment (departmental) variations in productivity, and to compare financial versus physical measures. The findings emphasise the complexity of productivity findings, sometimes contrasting evidence for establishments versus departments, and the positive but scale and measure-specific contributions of both the employment of migrants and flexible working, especially the utilisation of zero hours contracts.

Keywords: labour productivity, physical productivity, financial productivity, numerical flexibility, functional flexibility, migrant employment, cero-contract employment

Procedia PDF Downloads 366
39142 Optimization Parameters Using Response Surface Method on Biomechanical Analysis for Malaysian Soccer Players

Authors: M. F. M. Ali, A. R. Ismail, B. M. Deros

Abstract:

Soccer is very popular and ranked as the top sports in the world as well as in Malaysia. Although soccer sport in Malaysia is currently professionalized, but it’s plunging achievements within recent years continue and are not to be proud of. After review, the Malaysian soccer players are still weak in terms of kicking techniques. The instep kick is a technique, which is often used in soccer for the purpose of short passes and making a scoring. This study presents the 3D biomechanics analysis on a soccer player during performing instep kick. This study was conducted to determine the optimization value for approach angle, distance of supporting leg from the ball and ball internal pressure respect to the knee angular velocity of the ball on the kicking leg. Six subjects from different categories using dominant right leg and free from any injury were selected to take part in this study. Subjects were asked to perform one step instep kick according to the setting for the variables with different parameter. Data analysis was performed using 3 Dimensional “Qualisys Track Manager” system and will focused on the bottom of the body from the waist to the ankle. For this purpose, the marker will be attached to the bottom of the body before the kicking is perform by the subjects. Statistical analysis was conducted by using Minitab software using Response Surface Method through Box-Behnken design. The results of this study found the optimization values for all three parameters, namely the approach angle, 53.6º, distance of supporting leg from the ball, 8.84sm and ball internal pressure, 0.9bar with knee angular velocity, 779.27 degrees/sec have been produced.

Keywords: biomechanics, instep kick, soccer, optimization

Procedia PDF Downloads 236
39141 Determining Antecedents of Employee Turnover: A Study on Blue Collar vs White Collar Workers on Marco Level

Authors: Evy Rombaut, Marie-Anne Guerry

Abstract:

Predicting voluntary turnover of employees is an important topic of study, both in academia and industry. Researchers try to uncover determinants for a broader understanding and possible prevention of turnover. In the current study, we use a data set based approach to reveal determinants for turnover, differing for blue and white collar workers. Our data set based approach made it possible to study actual turnover for more than 500000 employees in 15692 Belgian corporations. We use logistic regression to calculate individual turnover probabilities and test the goodness of our model with the AUC (area under the ROC-curve) method. The results of the study confirm the relationship of known determinants to employee turnover such as age, seniority, pay and work distance. In addition, the study unravels unknown and verifies known differences between blue and white collar workers. It shows opposite relationships to turnover for gender, marital status, the number of children, nationality, and pay.

Keywords: employee turnover, blue collar, white collar, dataset analysis

Procedia PDF Downloads 297
39140 Vulnerability of Groundwater to Pollution in Akwa Ibom State, Southern Nigeria, using the DRASTIC Model and Geographic Information System (GIS)

Authors: Aniedi A. Udo, Magnus U. Igboekwe, Rasaaq Bello, Francis D. Eyenaka, Michael C. Ohakwere-Eze

Abstract:

Groundwater vulnerability to pollution was assessed in Akwa Ibom State, Southern Nigeria, with the aim of locating areas with high potentials for resource contamination, especially due to anthropogenic influence. The electrical resistivity method was utilized in the collection of the initial field data. Additional data input, which included depth to static water level, drilled well log data, aquifer recharge data, percentage slope, as well as soil information, were sourced from secondary sources. The initial field data were interpreted both manually and with computer modeling to provide information on the geoelectric properties of the subsurface. Interpreted results together with the secondary data were used to develop the DRASTIC thematic maps. A vulnerability assessment was performed using the DRASTIC model in a GIS environment and areas with high vulnerability which needed immediate attention was clearly mapped out and presented using an aquifer vulnerability map. The model was subjected to validation and the rate of validity was 73% within the area of study.

Keywords: groundwater, vulnerability, DRASTIC model, pollution

Procedia PDF Downloads 211
39139 Deep Learning for Qualitative and Quantitative Grain Quality Analysis Using Hyperspectral Imaging

Authors: Ole-Christian Galbo Engstrøm, Erik Schou Dreier, Birthe Møller Jespersen, Kim Steenstrup Pedersen

Abstract:

Grain quality analysis is a multi-parameterized problem that includes a variety of qualitative and quantitative parameters such as grain type classification, damage type classification, and nutrient regression. Currently, these parameters require human inspection, a multitude of instruments employing a variety of sensor technologies, and predictive model types or destructive and slow chemical analysis. This paper investigates the feasibility of applying near-infrared hyperspectral imaging (NIR-HSI) to grain quality analysis. For this study two datasets of NIR hyperspectral images in the wavelength range of 900 nm - 1700 nm have been used. Both datasets contain images of sparsely and densely packed grain kernels. The first dataset contains ~87,000 image crops of bulk wheat samples from 63 harvests where protein value has been determined by the FOSS Infratec NOVA which is the golden industry standard for protein content estimation in bulk samples of cereal grain. The second dataset consists of ~28,000 image crops of bulk grain kernels from seven different wheat varieties and a single rye variety. In the first dataset, protein regression analysis is the problem to solve while variety classification analysis is the problem to solve in the second dataset. Deep convolutional neural networks (CNNs) have the potential to utilize spatio-spectral correlations within a hyperspectral image to simultaneously estimate the qualitative and quantitative parameters. CNNs can autonomously derive meaningful representations of the input data reducing the need for advanced preprocessing techniques required for classical chemometric model types such as artificial neural networks (ANNs) and partial least-squares regression (PLS-R). A comparison between different CNN architectures utilizing 2D and 3D convolution is conducted. These results are compared to the performance of ANNs and PLS-R. Additionally, a variety of preprocessing techniques from image analysis and chemometrics are tested. These include centering, scaling, standard normal variate (SNV), Savitzky-Golay (SG) filtering, and detrending. The results indicate that the combination of NIR-HSI and CNNs has the potential to be the foundation for an automatic system unifying qualitative and quantitative grain quality analysis within a single sensor technology and predictive model type.

Keywords: deep learning, grain analysis, hyperspectral imaging, preprocessing techniques

Procedia PDF Downloads 104
39138 Design of a Small and Medium Enterprise Growth Prediction Model Based on Web Mining

Authors: Yiea Funk Te, Daniel Mueller, Irena Pletikosa Cvijikj

Abstract:

Small and medium enterprises (SMEs) play an important role in the economy of many countries. When the overall world economy is considered, SMEs represent 95% of all businesses in the world, accounting for 66% of the total employment. Existing studies show that the current business environment is characterized as highly turbulent and strongly influenced by modern information and communication technologies, thus forcing SMEs to experience more severe challenges in maintaining their existence and expanding their business. To support SMEs at improving their competitiveness, researchers recently turned their focus on applying data mining techniques to build risk and growth prediction models. However, data used to assess risk and growth indicators is primarily obtained via questionnaires, which is very laborious and time-consuming, or is provided by financial institutes, thus highly sensitive to privacy issues. Recently, web mining (WM) has emerged as a new approach towards obtaining valuable insights in the business world. WM enables automatic and large scale collection and analysis of potentially valuable data from various online platforms, including companies’ websites. While WM methods have been frequently studied to anticipate growth of sales volume for e-commerce platforms, their application for assessment of SME risk and growth indicators is still scarce. Considering that a vast proportion of SMEs own a website, WM bears a great potential in revealing valuable information hidden in SME websites, which can further be used to understand SME risk and growth indicators, as well as to enhance current SME risk and growth prediction models. This study aims at developing an automated system to collect business-relevant data from the Web and predict future growth trends of SMEs by means of WM and data mining techniques. The envisioned system should serve as an 'early recognition system' for future growth opportunities. In an initial step, we examine how structured and semi-structured Web data in governmental or SME websites can be used to explain the success of SMEs. WM methods are applied to extract Web data in a form of additional input features for the growth prediction model. The data on SMEs provided by a large Swiss insurance company is used as ground truth data (i.e. growth-labeled data) to train the growth prediction model. Different machine learning classification algorithms such as the Support Vector Machine, Random Forest and Artificial Neural Network are applied and compared, with the goal to optimize the prediction performance. The results are compared to those from previous studies, in order to assess the contribution of growth indicators retrieved from the Web for increasing the predictive power of the model.

Keywords: data mining, SME growth, success factors, web mining

Procedia PDF Downloads 271
39137 Statistical Discrimination of Blue Ballpoint Pen Inks by Diamond Attenuated Total Reflectance (ATR) FTIR

Authors: Mohamed Izzharif Abdul Halim, Niamh Nic Daeid

Abstract:

Determining the source of pen inks used on a variety of documents is impartial for forensic document examiners. The examination of inks is often performed to differentiate between inks in order to evaluate the authenticity of a document. A ballpoint pen ink consists of synthetic dyes in (acidic and/or basic), pigments (organic and/or inorganic) and a range of additives. Inks of similar color may consist of different composition and are frequently the subjects of forensic examinations. This study emphasizes on blue ballpoint pen inks available in the market because it is reported that approximately 80% of questioned documents analysis involving ballpoint pen ink. Analytical techniques such as thin layer chromatography, high-performance liquid chromatography, UV-vis spectroscopy, luminescence spectroscopy and infrared spectroscopy have been used in the analysis of ink samples. In this study, application of Diamond Attenuated Total Reflectance (ATR) FTIR is straightforward but preferable in forensic science as it offers no sample preparation and minimal analysis time. The data obtained from these techniques were further analyzed using multivariate chemometric methods which enable extraction of more information based on the similarities and differences among samples in a dataset. It was indicated that some pens from the same manufactures can be similar in composition, however, discrete types can be significantly different.

Keywords: ATR FTIR, ballpoint, multivariate chemometric, PCA

Procedia PDF Downloads 462
39136 Impact of Vehicle Travel Characteristics on Level of Service: A Comparative Analysis of Rural and Urban Freeways

Authors: Anwaar Ahmed, Muhammad Bilal Khurshid, Samuel Labi

Abstract:

The effect of trucks on the level of service is determined by considering passenger car equivalents (PCE) of trucks. The current version of Highway Capacity Manual (HCM) uses a single PCE value for all tucks combined. However, the composition of truck traffic varies from location to location; therefore a single PCE-value for all trucks may not correctly represent the impact of truck traffic at specific locations. Consequently, present study developed separate PCE values for single-unit and combination trucks to replace the single value provided in the HCM on different freeways. Site specific PCE values, were developed using concept of spatial lagging headways (the distance from the rear bumper of a leading vehicle to the rear bumper of the following vehicle) measured from field traffic data. The study used data from four locations on a single urban freeway and three different rural freeways in Indiana. Three-stage-least-squares (3SLS) regression techniques were used to generate models that predicted lagging headways for passenger cars, single unit trucks (SUT), and combination trucks (CT). The estimated PCE values for single-unit and combination truck for basic urban freeways (level terrain) were: 1.35 and 1.60, respectively. For rural freeways the estimated PCE values for single-unit and combination truck were: 1.30 and 1.45, respectively. As expected, traffic variables such as vehicle flow rates and speed have significant impacts on vehicle headways. Study results revealed that the use of separate PCE values for different truck classes can have significant influence on the LOS estimation.

Keywords: level of service, capacity analysis, lagging headway, trucks

Procedia PDF Downloads 360
39135 An Ontology for Investment in Chinese Steel Company

Authors: Liming Chen, Baoxin Xu, Zhaoyun Ding, Bin Liu, Xianqiang Zhu

Abstract:

In the era of big data, public investors are faced with more complicated information related to investment decisions than ever before. To survive in the fierce competition, it has become increasingly urgent for investors to combine multi-source knowledge and evaluate the companies’ true value efficiently. For this, a rule-based ontology reasoning method is proposed to support steel companies’ value assessment. Considering the delay in financial disclosure and based on cost-benefit analysis, this paper introduces the supply chain enterprises financial analysis and constructs the ontology model used to value the value of steel company. In addition, domain knowledge is formally expressed with the help of Web Ontology Language (OWL) language and SWRL (Semantic Web Rule Language) rules. Finally, a case study on a steel company in China proved the effectiveness of the method we proposed.

Keywords: financial ontology, steel company, supply chain, ontology reasoning

Procedia PDF Downloads 140
39134 Exploring the Landscape of Information Visualization through a Mark Lombardi Lens

Authors: Alon Friedman, Antonio Sanchez Chinchon

Abstract:

This bibliometric study takes an artistic and storytelling approach to explore the term ”information visualization.” Analyzing over 1008 titles collected from databases that specialize in data visualization research, we examine the titles of these publications to report on the characteristics and development trends in the field. Employing a qualitative methodology, we delve into the titles of these publications, extracting leading terms and exploring the cooccurrence of these terms to gain deeper insights. By systematically analyzing the leading terms and their relationships within the titles, we shed light on the prevailing themes that shape the landscape of ”information visualization” by employing the artist Mark Lombardi’s techniques to visualize our findings. By doing so, this study provides valuable insights into bibliometrics visualization while also opening new avenues for leveraging art and storytelling to enhance data representation.

Keywords: bibliometrics analysis, Mark Lombardi design, information visualization, qualitative methodology

Procedia PDF Downloads 94
39133 A Review Paper on Data Security in Precision Agriculture Using Internet of Things

Authors: Tonderai Muchenje, Xolani Mkhwanazi

Abstract:

Precision agriculture uses a number of technologies, devices, protocols, and computing paradigms to optimize agricultural processes. Big data, artificial intelligence, cloud computing, and edge computing are all used to handle the huge amounts of data generated by precision agriculture. However, precision agriculture is still emerging and has a low level of security features. Furthermore, future solutions will demand data availability and accuracy as key points to help farmers, and security is important to build robust and efficient systems. Since precision agriculture comprises a wide variety and quantity of resources, security addresses issues such as compatibility, constrained resources, and massive data. Moreover, conventional protection schemes used in the traditional internet may not be useful for agricultural systems, creating extra demands and opportunities. Therefore, this paper aims at reviewing state of the art of precision agriculture security, particularly in open field agriculture, discussing its architecture, describing security issues, and presenting the major challenges and future directions.

Keywords: precision agriculture, security, IoT, EIDE

Procedia PDF Downloads 93
39132 Self-Supervised Attributed Graph Clustering with Dual Contrastive Loss Constraints

Authors: Lijuan Zhou, Mengqi Wu, Changyong Niu

Abstract:

Attributed graph clustering can utilize the graph topology and node attributes to uncover hidden community structures and patterns in complex networks, aiding in the understanding and analysis of complex systems. Utilizing contrastive learning for attributed graph clustering can effectively exploit meaningful implicit relationships between data. However, existing attributed graph clustering methods based on contrastive learning suffer from the following drawbacks: 1) Complex data augmentation increases computational cost, and inappropriate data augmentation may lead to semantic drift. 2) The selection of positive and negative samples neglects the intrinsic cluster structure learned from graph topology and node attributes. Therefore, this paper proposes a method called self-supervised Attributed Graph Clustering with Dual Contrastive Loss constraints (AGC-DCL). Firstly, Siamese Multilayer Perceptron (MLP) encoders are employed to generate two views separately to avoid complex data augmentation. Secondly, the neighborhood contrastive loss is introduced to constrain node representation using local topological structure while effectively embedding attribute information through attribute reconstruction. Additionally, clustering-oriented contrastive loss is applied to fully utilize clustering information in global semantics for discriminative node representations, regarding the cluster centers from two views as negative samples to fully leverage effective clustering information from different views. Comparative clustering results with existing attributed graph clustering algorithms on six datasets demonstrate the superiority of the proposed method.

Keywords: attributed graph clustering, contrastive learning, clustering-oriented, self-supervised learning

Procedia PDF Downloads 63
39131 Structural Equation Modelling Based Approach to Integrate Customers and Suppliers with Internal Practices for Lean Manufacturing Implementation in the Indian Context

Authors: Protik Basu, Indranil Ghosh, Pranab K. Dan

Abstract:

Lean management is an integrated socio-technical system to bring about a competitive state in an organization. The purpose of this paper is to explore and integrate the role of customers and suppliers with the internal practices of the Indian manufacturing industries towards successful implementation of lean manufacturing (LM). An extensive literature survey is carried out. An attempt is made to build an exhaustive list of all the input manifests related to customers, suppliers and internal practices necessary for LM implementation, coupled with a similar exhaustive list of the benefits accrued from its successful implementation. A structural model is thus conceptualized, which is empirically validated based on the data from the Indian manufacturing sector. With the current impetus on developing the industrial sector, the Government of India recently introduced the Lean Manufacturing Competitiveness Scheme that aims to increase competitiveness with the help of lean concepts. There is a huge scope to enrich the Indian industries with the lean benefits, the implementation status being quite low. Hardly any survey-based empirical study in India has been found to integrate customers and suppliers with the internal processes towards successful LM implementation. This empirical research is thus carried out in the Indian manufacturing industries. The basic steps of the research methodology followed in this research are the identification of input and output manifest variables and latent constructs, model proposition and hypotheses development, development of survey instrument, sampling and data collection and model validation (exploratory factor analysis, confirmatory factor analysis, and structural equation modeling). The analysis reveals six key input constructs and three output constructs, indicating that these constructs should act in unison to maximize the benefits of implementing lean. The structural model presented in this paper may be treated as a guide to integrating customers and suppliers with internal practices to successfully implement lean. Integrating customers and suppliers with internal practices into a unified, coherent manufacturing system will lead to an optimum utilization of resources. This work is one of the very first researches to have a survey-based empirical analysis of the role of customers, suppliers and internal practices of the Indian manufacturing sector towards an effective lean implementation.

Keywords: customer management, internal manufacturing practices, lean benefits, lean implementation, lean manufacturing, structural model, supplier management

Procedia PDF Downloads 181
39130 Performance Evaluation of an Ontology-Based Arabic Sentiment Analysis

Authors: Salima Behdenna, Fatiha Barigou, Ghalem Belalem

Abstract:

Due to the quick increase in the volume of Arabic opinions posted on various social media, Arabic sentiment analysis has become one of the most important areas of research. Compared to English, there is very little works on Arabic sentiment analysis, in particular aspect-based sentiment analysis (ABSA). In ABSA, aspect extraction is the most important task. In this paper, we propose a semantic aspect-based sentiment analysis approach for standard Arabic reviews to extract explicit aspect terms and identify the polarity of the extracted aspects. The proposed approach was evaluated using HAAD datasets. Experiments showed that the proposed approach achieved a good level of performance compared with baseline results. The F-measure was improved by 19% for the aspect term extraction tasks and 55% aspect term polarity task.

Keywords: sentiment analysis, opinion mining, Arabic, aspect level, opinion, polarity

Procedia PDF Downloads 166
39129 Commercial Automobile Insurance: A Practical Approach of the Generalized Additive Model

Authors: Nicolas Plamondon, Stuart Atkinson, Shuzi Zhou

Abstract:

The insurance industry is usually not the first topic one has in mind when thinking about applications of data science. However, the use of data science in the finance and insurance industry is growing quickly for several reasons, including an abundance of reliable customer data, ferocious competition requiring more accurate pricing, etc. Among the top use cases of data science, we find pricing optimization, customer segmentation, customer risk assessment, fraud detection, marketing, and triage analytics. The objective of this paper is to present an application of the generalized additive model (GAM) on a commercial automobile insurance product: an individually rated commercial automobile. These are vehicles used for commercial purposes, but for which there is not enough volume to apply pricing to several vehicles at the same time. The GAM model was selected as an improvement over GLM for its ease of use and its wide range of applications. The model was trained using the largest split of the data to determine model parameters. The remaining part of the data was used as testing data to verify the quality of the modeling activity. We used the Gini coefficient to evaluate the performance of the model. For long-term monitoring, commonly used metrics such as RMSE and MAE will be used. Another topic of interest in the insurance industry is to process of producing the model. We will discuss at a high level the interactions between the different teams with an insurance company that needs to work together to produce a model and then monitor the performance of the model over time. Moreover, we will discuss the regulations in place in the insurance industry. Finally, we will discuss the maintenance of the model and the fact that new data does not come constantly and that some metrics can take a long time to become meaningful.

Keywords: insurance, data science, modeling, monitoring, regulation, processes

Procedia PDF Downloads 79
39128 Comparative Analysis of Photovoltaic Systems

Authors: Irtaza M. Syed, Kaameran Raahemifar

Abstract:

This paper presents comparative analysis of photovoltaic systems (PVS) and proposes practical techniques to improve operational efficiency of the PVS. The best engineering and construction practices for PVS are identified and field oriented recommendation are made. Comparative analysis of central and string inverter based, as well as 600 and 1000 VDC PVS are performed. In addition, direct current (DC) and alternating current (AC) photovoltaic (PV) module based systems are compared. Comparison shows that 1000 V DC String Inverters based PVS is the best choice.

Keywords: photovoltaic module, photovoltaic systems, operational efficiency improvement, comparative analysis

Procedia PDF Downloads 488
39127 Algorithm Development of Individual Lumped Parameter Modelling for Blood Circulatory System: An Optimization Study

Authors: Bao Li, Aike Qiao, Gaoyang Li, Youjun Liu

Abstract:

Background: Lumped parameter model (LPM) is a common numerical model for hemodynamic calculation. LPM uses circuit elements to simulate the human blood circulatory system. Physiological indicators and characteristics can be acquired through the model. However, due to the different physiological indicators of each individual, parameters in LPM should be personalized in order for convincing calculated results, which can reflect the individual physiological information. This study aimed to develop an automatic and effective optimization method to personalize the parameters in LPM of the blood circulatory system, which is of great significance to the numerical simulation of individual hemodynamics. Methods: A closed-loop LPM of the human blood circulatory system that is applicable for most persons were established based on the anatomical structures and physiological parameters. The patient-specific physiological data of 5 volunteers were non-invasively collected as personalized objectives of individual LPM. In this study, the blood pressure and flow rate of heart, brain, and limbs were the main concerns. The collected systolic blood pressure, diastolic blood pressure, cardiac output, and heart rate were set as objective data, and the waveforms of carotid artery flow and ankle pressure were set as objective waveforms. Aiming at the collected data and waveforms, sensitivity analysis of each parameter in LPM was conducted to determine the sensitive parameters that have an obvious influence on the objectives. Simulated annealing was adopted to iteratively optimize the sensitive parameters, and the objective function during optimization was the root mean square error between the collected waveforms and data and simulated waveforms and data. Each parameter in LPM was optimized 500 times. Results: In this study, the sensitive parameters in LPM were optimized according to the collected data of 5 individuals. Results show a slight error between collected and simulated data. The average relative root mean square error of all optimization objectives of 5 samples were 2.21%, 3.59%, 4.75%, 4.24%, and 3.56%, respectively. Conclusions: Slight error demonstrated good effects of optimization. The individual modeling algorithm developed in this study can effectively achieve the individualization of LPM for the blood circulatory system. LPM with individual parameters can output the individual physiological indicators after optimization, which are applicable for the numerical simulation of patient-specific hemodynamics.

Keywords: blood circulatory system, individual physiological indicators, lumped parameter model, optimization algorithm

Procedia PDF Downloads 141
39126 Modeling Pan Evaporation Using Intelligent Methods of ANN, LSSVM and Tree Model M5 (Case Study: Shahroud and Mayamey Stations)

Authors: Hamidreza Ghazvinian, Khosro Ghazvinian, Touba Khodaiean

Abstract:

The importance of evaporation estimation in water resources and agricultural studies is undeniable. Pan evaporation are used as an indicator to determine the evaporation of lakes and reservoirs around the world due to the ease of interpreting its data. In this research, intelligent models were investigated in estimating pan evaporation on a daily basis. Shahroud and Mayamey were considered as the studied cities. These two cities are located in Semnan province in Iran. The mentioned cities have dry weather conditions that are susceptible to high evaporation potential. Meteorological data of 11 years of synoptic stations of Shahrood and Mayamey cities were used. The intelligent models used in this study are Artificial Neural Network (ANN), Least Squares Support Vector Machine (LSSVM), and M5 tree models. Meteorological parameters of minimum and maximum air temperature (Tmax, Tmin), wind speed (WS), sunshine hours (SH), air pressure (PA), relative humidity (RH) as selected input data and evaporation data from pan (EP) to The output data was considered. 70% of data is used at the education level, and 30 % of the data is used at the test level. Models used with explanation coefficient evaluation (R2) Root of Mean Squares Error (RMSE) and Mean Absolute Error (MAE). The results for the two Shahroud and Mayamey stations showed that the above three models' operations are rather appropriate.

Keywords: pan evaporation, intelligent methods, shahroud, mayamey

Procedia PDF Downloads 80
39125 An Exploration of German Tourists’ Market Demand Towards Ethiopian Tourist Destinations

Authors: Dagnew Dessie Mengie

Abstract:

The purpose of this study was to investigate German tourists' demand for Ethiopian tourism destinations. The author has made every effort to identify the differences in the preferences of German visitors’ demand in Ethiopia comparing with Egypt, Kenya, Tanzania, and South African tourism sectors if they are invited to visit at the same time. However, the demand for international tourism for Ethiopia currently lags behind these African countries. Therefore, to offer demand-driven tourism products, the Ethiopian government and tour and travel operators need to understand the important factors that affect international tourists’ decision to visit Ethiopian tourist destinations. The aim of this study was to analyze German Tourists’ Demand for Ethiopian destinations. The researcher aimed to identify the demand for German tourists’ preference for Ethiopian tourist destinations compared to the above-mentioned African countries. For collecting and analysing data for this study, both quantitative and qualitative methods of research are being used in this study. The most significant data are collected by using the primary data collection method i.e. survey and interviews which are the most and large number of potential responses and feedback from nine German active tourists,12 Ethiopian tourism officials, four African embassies, and four well functioning private tour companies and secondary data collected from books, journals, previous research and electronic websites. Based on the data analysis of the information gathered from interviews and questionnaires, the study disclosed that the majority of German tourists do have not that high demand for Ethiopian Tourist destinations due to the following reasons: (1) Many Germans are fascinated by adventures and safari and simply want to lie on the beach and relax. These interests have leaded them to look for other African countries which have these accesses. (2) Uncomfortable infrastructure and transport problems are attributed to the decreasing number of German tourists in the country. (3) Inadequate marketing operation of the Ethiopian Tourism Authority and its delegates in advertising and clarifying the above irregularities which are raised by the tourists.

Keywords: environmental benefits of tourism, social benefits of tourism, economic benefits of tourism, political factors on tourism

Procedia PDF Downloads 46
39124 The Analysis and Simulation of TRACE in the Ultimate Response Guideline for Chinshan BWR/4 Nuclear Power Plant

Authors: J. R. Wang, H. T. Lin, H. C. Chen, C. Shih, S. W. Chen, S. C. Chiang, C. C. Liu

Abstract:

In this research, TRACE model of Chinshan BWR/4 Nuclear Power Plant (NPP) has been developed for the simulation and analysis of Ultimate Response Guideline (URG). The main actions of URG are the depressurization and low pressure water injection of reactor and containment venting. This research focuses to verify the URG efficiency under Fukushima-like conditions. Trace analysis results show that the URG can keep the PCT below the criteria 1088.7 K under Fukushima-like conditions. It indicated that Chinshan NPP was safe.

Keywords: BWR, trace, safety analysis, URG

Procedia PDF Downloads 623
39123 Vibration Analysis of Functionally Graded Engesser-Timoshenko Beams Subjected to Axial Load Located on a Continuous Elastic Foundation

Authors: M. Karami Khorramabadi, A. R. Nezamabadi

Abstract:

This paper studies free vibration of functionally graded beams Subjected to Axial Load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Engesser-Timoshenko beam theory. The Young's modulus of beam is assumed to be graded continuously across the beam thickness. Applying the Hamilton's principle, the governing equation is established. Resulting equation is solved using the Euler's Equation. The effects of the constituent volume fractions and foundation coefficient on the vibration frequency are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: functionally graded beam, free vibration, elastic foundation, Engesser-Timoshenko beam theory

Procedia PDF Downloads 426
39122 Voice of Customer: Mining Customers' Reviews on On-Line Car Community

Authors: Kim Dongwon, Yu Songjin

Abstract:

This study identifies the business value of VOC (Voice of Customer) on the business. Precisely, we intend to demonstrate how much negative and positive sentiment of VOC has an influence on car sales market share in the unites states. We extract 7 emotions such as sadness, shame, anger, fear, frustration, delight and satisfaction from the VOC data, 23,204 pieces of opinions, that had been posted on car-related on-line community from 2007 to 2009(a part of data collection from 2007 to 2015), and intend to clarify the correlation between negative and positive sentimental keywords and contribution to market share. In order to develop a lexicon for each category of negative and positive sentiment, we took advantage of Corpus program, Antconc 3.4.1.w and on-line sentimental data, SentiWordNet and identified the part of speech(POS) information of words in the customers' opinion by using a part-of-speech tagging function provided by TextAnalysisOnline. For the purpose of this present study, a total of 45,741 pieces of customers' opinions of 28 car manufacturing companies had been collected including titles and status information. We conducted an experiment to examine whether the inclusion, frequency and intensity of terms with negative and positive emotions in each category affect the adoption of customer opinions for vehicle organizations' market share. In the experiment, we statistically verified that there is correlation between customer ideas containing negative and positive emotions and variation of marker share. Particularly, "Anger," a domain of negative domains, is significantly influential to car sales market share. The domain "Delight" and "Satisfaction" increased in proportion to growth of market share.

Keywords: data mining, opinion mining, sentiment analysis, VOC

Procedia PDF Downloads 218
39121 Calm, Confusing and Chaotic: Investigating Humanness through Sentiment Analysis of Abstract Artworks

Authors: Enya Autumn Trenholm-Jensen, Hjalte Hviid Mikkelsen

Abstract:

This study was done in the pursuit of nuancing the discussion surrounding what it means to be human in a time of unparalleled technological development. Subjectivity was deemed to be an accessible example of humanity to study, and art was a fitting medium through which to probe subjectivity. Upon careful theoretical consideration, abstract art was found to fit the parameters of the study with the added bonus of being, as of yet, uninterpretable from an AI perspective. It was hypothesised that dissimilar appraisals of the art stimuli would be found through sentiment and terminology. Opinion data was collected through survey responses and analysed using Valence Aware Dictionary for sEntiment Reasoning (VADER) sentiment analysis. The results reflected the enigmatic nature of subjectivity through erratic ratings of the art stimuli. However, significant themes were found in the terminology used in the responses. The implications of the findings are discussed in relation to the uniqueness, or lack thereof, of human subjectivity, and directions for future research are provided.

Keywords: abstract art, artificial intelligence, cognition, sentiment, subjectivity

Procedia PDF Downloads 119