Search results for: systems changemaking
6153 Physiological and Psychological Influence on Office Workers during Demand Response
Authors: Megumi Nishida, Naoya Motegi, Takurou Kikuchi, Tomoko Tokumura
Abstract:
In recent years, power system has been changed and flexible power pricing system such as demand response has been sought in Japan. The demand response system is simple in the household sector and the owner, decision-maker, can gain the benefits of power saving. On the other hand, the execution of the demand response in the office building is more complex than household because various people such as owners, building administrators and occupants are involved in making decisions. While the owners benefit from the demand saving, the occupants are forced to be exposed to demand-saved environment certain benefits. One of the reasons is that building systems are usually centralized control and each occupant cannot choose either participate demand response event or not, and contribution of each occupant to demand response is unclear to provide incentives. However, the recent development of IT and building systems enables the personalized control of office environment where each occupant can control the lighting level or temperature around him or herself. Therefore, it can be possible to have a system which each occupant can make a decision of demand response participation in office building. This study investigates the personal behavior upon demand response requests, under the condition where each occupant can adjust their brightness individually in their workspace. Once workers participate in the demand response, their task lights are automatically turned off. The participation rates in the demand response events are compared between four groups which are divided by different motivation, the presence or absence of incentives and the way of participation. The result shows that there are the significant differences of participation rates in demand response event between four groups. The way of participation has a large effect on the participation rate. ‘Opt-out’ group, where the occupants are automatically enrolled in a demand response event if they don't express non-participation, will have the highest participation rate in the four groups. The incentive has also an effect on the participation rate. This study also reports that the impact of low illumination office environment on the occupants, such as stress or fatigue. The electrocardiogram and the questionnaire are used to investigate the autonomic nervous activity and subjective symptoms about the fatigue of the occupants. There is no big difference between dim workspace during demand response event and bright workspace in autonomic nervous activity and fatigue.Keywords: demand response, illumination, questionnaire, electrocardiogram
Procedia PDF Downloads 3516152 Determination of Potential Agricultural Lands Using Landsat 8 OLI Images and GIS: Case Study of Gokceada (Imroz) Turkey
Authors: Rahmi Kafadar, Levent Genc
Abstract:
In present study, it was aimed to determine potential agricultural lands (PALs) in Gokceada (Imroz) Island of Canakkale province, Turkey. Seven-band Landsat 8 OLI images acquired on July 12 and August 13, 2013, and their 14-band combination image were used to identify current Land Use Land Cover (LULC) status. Principal Component Analysis (PCA) was applied to three Landsat datasets in order to reduce the correlation between the bands. A total of six Original and PCA images were classified using supervised classification method to obtain the LULC maps including 6 main classes (“Forest”, “Agriculture”, “Water Surface”, “Residential Area-Bare Soil”, “Reforestation” and “Other”). Accuracy assessment was performed by checking the accuracy of 120 randomized points for each LULC maps. The best overall accuracy and Kappa statistic values (90.83%, 0.8791% respectively) were found for PCA images which were generated from 14-bands combined images called 3-B/JA. Digital Elevation Model (DEM) with 15 m spatial resolution (ASTER) was used to consider topographical characteristics. Soil properties were obtained by digitizing 1:25000 scaled soil maps of rural services directorate general. Potential Agricultural Lands (PALs) were determined using Geographic information Systems (GIS). Procedure was applied considering that “Other” class of LULC map may be used for agricultural purposes in the future properties. Overlaying analysis was conducted using Slope (S), Land Use Capability Class (LUCC), Other Soil Properties (OSP) and Land Use Capability Sub-Class (SUBC) properties. A total of 901.62 ha areas within “Other” class (15798.2 ha) of LULC map were determined as PALs. These lands were ranked as “Very Suitable”, “Suitable”, “Moderate Suitable” and “Low Suitable”. It was determined that the 8.03 ha were classified as “Very Suitable” while 18.59 ha as suitable and 11.44 ha as “Moderate Suitable” for PALs. In addition, 756.56 ha were found to be “Low Suitable”. The results obtained from this preliminary study can serve as basis for further studies.Keywords: digital elevation model (DEM), geographic information systems (GIS), gokceada (Imroz), lANDSAT 8 OLI-TIRS, land use land cover (LULC)
Procedia PDF Downloads 3536151 Spatial Patterns of Urban Expansion in Kuwait City between 1989 and 2001
Authors: Saad Algharib, Jay Lee
Abstract:
Urbanization is a complex phenomenon that occurs during the city’s development from one form to another. In other words, it is the process when the activities in the land use/land cover change from rural to urban. Since the oil exploration, Kuwait City has been growing rapidly due to its urbanization and population growth by both natural growth and inward immigration. The main objective of this study is to detect changes in urban land use/land cover and to examine the changing spatial patterns of urban growth in and around Kuwait City between 1989 and 2001. In addition, this study also evaluates the spatial patterns of the changes detected and how they can be related to the spatial configuration of the city. Recently, the use of remote sensing and geographic information systems became very useful and important tools in urban studies because of the integration of them can allow and provide the analysts and planners to detect, monitor and analyze the urban growth in a region effectively. Moreover, both planners and users can predict the trends of the growth in urban areas in the future with remotely sensed and GIS data because they can be effectively updated with required precision levels. In order to identify the new urban areas between 1989 and 2001, the study uses satellite images of the study area and remote sensing technology for classifying these images. Unsupervised classification method was applied to classify images to land use and land cover data layers. After finishing the unsupervised classification method, GIS overlay function was applied to the classified images for detecting the locations and patterns of the new urban areas that developed during the study period. GIS was also utilized to evaluate the distribution of the spatial patterns. For example, Moran’s index was applied for all data inputs to examine the urban growth distribution. Furthermore, this study assesses if the spatial patterns and process of these changes take place in a random fashion or with certain identifiable trends. During the study period, the result of this study indicates that the urban growth has occurred and expanded 10% from 32.4% in 1989 to 42.4% in 2001. Also, the results revealed that the largest increase of the urban area occurred between the major highways after the forth ring road from the center of Kuwait City. Moreover, the spatial distribution of urban growth occurred in cluster manners.Keywords: geographic information systems, remote sensing, urbanization, urban growth
Procedia PDF Downloads 1716150 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence
Authors: Mohammed Al Sulaimani, Hamad Al Manhi
Abstract:
With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems
Procedia PDF Downloads 346149 Wireless Gyroscopes for Highly Dynamic Objects
Authors: Dmitry Lukyanov, Sergey Shevchenko, Alexander Kukaev
Abstract:
Modern MEMS gyroscopes have strengthened their position in motion control systems and have led to the creation of tactical grade sensors (better than 15 deg/h). This was achieved by virtue of the success in micro- and nanotechnology development, cooperation among international experts and the experience gained in the mass production of MEMS gyros. This production is knowledge-intensive, often unique and, therefore, difficult to develop, especially due to the use of 3D-technology. The latter is usually associated with manufacturing of inertial masses and their elastic suspension, which determines the vibration and shock resistance of gyros. Today, consumers developing highly dynamic objects or objects working under extreme conditions require the gyro shock resistance of up to 65 000 g and the measurement range of more than 10 000 deg/s. Such characteristics can be achieved by solid-state gyroscopes (SSG) without inertial masses or elastic suspensions, which, for example, can be constructed with molecular kinetics of bulk or surface acoustic waves (SAW). Excellent effectiveness of this sensors production and a high level of structural integration provides basis for increased accuracy, size reduction and significant drop in total production costs. Existing principles of SAW-based sensors are based on the theory of SAW propagation in rotating coordinate systems. A short introduction to the theory of a gyroscopic (Coriolis) effect in SAW is provided in the report. Nowadays more and more applications require passive and wireless sensors. SAW-based gyros provide an opportunity to create one. Several design concepts incorporating reflective delay lines were proposed in recent years, but faced some criticism. Still, the concept is promising and is being of interest in St. Petersburg Electrotechnical University. Several experimental models were developed and tested to find the minimal configuration of a passive and wireless SAW-based gyro. Structural schemes, potential characteristics and known limitations are stated in the report. Special attention is dedicated to a novel method of a FEM modeling with piezoelectric and gyroscopic effects simultaneously taken into account.Keywords: FEM simulation, gyroscope, OOFELIE, surface acoustic wave, wireless sensing
Procedia PDF Downloads 3656148 Study Concerning the Energy-to-Mass Ratio in Pneumatic Muscles
Authors: Tudor Deaconescu, Andrea Deaconescu
Abstract:
The utilization of pneumatic muscles in the actuation of industrial systems is still in its early stages, hence studies on the constructive solutions which include an assessment of their functional performance with a focus on one of the most important characteristics-energy efficiency are required. A quality indicator that adequately reflects the energy efficiency of an actuator is the energy-to-mass ratio. This ratio is computed in the paper for various types and sizes of pneumatic muscles manufactured by Festo, and is subsequently compared to the similar ratios determined for two categories of pneumatic cylinders.Keywords: pneumatic cylinders, pneumatic muscles, energy-to-mass ratio, muscle stroke
Procedia PDF Downloads 3466147 Project Stakeholders' Perceptions of Sustainability: A Case Example From the Turkish Construction Industry
Authors: F. Heyecan Giritli, Gizem Akgül
Abstract:
Because of the raising population of world; the need for houses, buildings and infrastructures are increasing rapidly. Energy and water consumption, waste production continues to increase. If this situation of resources continues, there will be a significant loss for next generations. Therefore, there are a lot of researches and solutions developed in the world. Also sustainability criteria are collected together by some countries to serve construction industry with certification systems. Sustainable building production process’s scope requires different path from traditional building production process. Moreover, the key objective of sustainable buildings is that the process includes whole life cycle duration. The process approaches from the decision of the project to the end of it; so the project team is needed from the beginning of the integrated project delivery model. Further more, by defining project team at the beginning of the project provides communication among the team members and defined problem solving and decision making methods. In this research includes the certification systems among the world to comprehend the head lines and assessment criteria. Therefore, it is understand that usually all green building criteria have the same contents. The aim of this research is to assess the sustainable project stakeholder’ perceptions in Turkish construction industry from the point of occupation, job title and years of experience. Therefore, a survey is made to assess the perceptions of each attendant. In Turkey, sustainability criteria are not clearly defined; on the other hand some regulations like waste management, energy efficiency are made by legal agencies. LEED certification system is the most popular system in Turkey that has attended and certificated. From the LEED official data, it’s understood that 308 project registered in Turkey. Therefore, LEED sustainability criteria are used in the survey. Head lines of LEED certification criteria; sustainable sites, water efficiency, energy and atmosphere, material and resources, indoor environmental quality, innovation and regional priority are indicated to assess the perceptions of survey participants. Moreover, only surveying of criteria are not enough; so the equipment, methods, risks and benefits also considered.Keywords: LEED, sustainability, perceptions, stakeholders, construction, Turkey, risk, benefit
Procedia PDF Downloads 3016146 IT System in the Food Supply Chain Safety, Application in SMEs Sector
Authors: Mohsen Shirani, Micaela Demichela
Abstract:
Food supply chain is one of the most complex supply chain networks due to its perishable nature and customer oriented products, and food safety is the major concern for this industry. IT system could help to minimize the production and consumption of unsafe food by controlling and monitoring the entire system. However, there have been many issues in adoption of IT system in this industry specifically within SMEs sector. With this regard, this study presents a novel approach to use IT and tractability systems in the food supply chain, using application of RFID and central database.Keywords: food supply chain, IT system, safety, SME
Procedia PDF Downloads 4776145 A Low-Cost Long-Range 60 GHz Backhaul Wireless Communication System
Authors: Atabak Rashidian
Abstract:
In duplex backhaul wireless communication systems, two separate transmit and receive high-gain antennas are required if an antenna switch is not implemented. Although the switch loss, which is considerable and in the order of 1.5 dB at 60 GHz, is avoided, the large separate antenna systems make the design bulky and not cost-effective. To avoid two large reflectors for such a system, transmit and receive antenna feeds with a common phase center are required. The phase center should coincide with the focal point of the reflector to maximize the efficiency and gain. In this work, we present an ultra-compact design in which stacked patch antennas are used as the feeds for a 12-inch reflector. The transmit antenna is a 1 × 2 array and the receive antenna is a single element located in the middle of the transmit antenna elements. Antenna elements are designed as stacked patches to provide the required impedance bandwidth for four standard channels of WiGigTM applications. The design includes three metallic layers and three dielectric layers, in which the top dielectric layer is a 100 µm-thick protective layer. The top two metallic layers are specified to the main and parasitic patches. The bottom layer is basically ground plane with two circular openings (0.7 mm in diameter) having a center through via which connects the antennas to a single input/output Si-Ge Bi-CMOS transceiver chip. The reflection coefficient of the stacked patch antenna is fully investigated. The -10 dB impedance bandwidth is about 11%. Although the gap between transmit and receive antenna is very small (g = 0.525 mm), the mutual coupling is less than -12 dB over the desired frequency band. The three dimensional radiation patterns of the transmit and receive reflector antennas at 60 GHz is investigated over the impedance bandwidth. About 39 dBi realized gain is achieved. Considering over 15 dBm of output power of the silicon chip in the transmit side, the EIRP should be over 54 dBm, which is good enough for over one kilometer multi Gbps data communications. The performance of the reflector antenna over the bandwidth shows the peak gain is 39 dBi and 40 dBi for the reflector antenna with 2-element and single element feed, respectively. This type of the system design is cost-effective and efficient.Keywords: Antenna, integrated circuit, millimeter-wave, phase center
Procedia PDF Downloads 1226144 Technique for Online Condition Monitoring of Surge Arresters
Authors: Anil S. Khopkar, Kartik S. Pandya
Abstract:
Overvoltage in power systems is a phenomenon that cannot be avoided. However, it can be controlled to a certain extent. Power system equipment is to be protected against overvoltage to avoid system failure. Metal Oxide Surge Arresters (MOSA) are connected to the system for the protection of the power system against overvoltages. The MOSA will behave as an insulator under normal working conditions, where it offers a conductive path under voltage conditions. MOSA consists of zinc oxide elements (ZnO Blocks), which have non-linear V-I characteristics. ZnO blocks are connected in series and fitted in ceramic or polymer housing. This degrades due to the aging effect under continuous operation. Degradation of zinc oxide elements increases the leakage current flowing from the surge arresters. This Increased leakage current results in the increased temperature of the surge arrester, which further decreases the resistance of zinc oxide elements. As a result, leakage current increases, which again increases the temperature of a MOSA. This creates thermal runaway conditions for MOSA. Once it reaches the thermal runaway condition, it cannot return to normal working conditions. This condition is a primary cause of premature failure of surge arresters, as MOSA constitutes a core protective device for electrical power systems against transients. It contributes significantly to the reliable operation of the power system network. Hence, the condition monitoring of surge arresters should be done at periodic intervals. Online and Offline condition monitoring techniques are available for surge arresters. Offline condition monitoring techniques are not very popular as they require removing surge arresters from the system, which requires system shutdown. Hence, online condition monitoring techniques are very popular. This paper presents the evaluation technique for the surge arrester condition based on the leakage current analysis. Maximum amplitude of total leakage current (IT), Maximum amplitude of fundamental resistive leakage current (IR) and maximum amplitude of third harmonic resistive leakage current (I3rd) have been analyzed as indicators for surge arrester condition monitoring.Keywords: metal oxide surge arrester (MOSA), over voltage, total leakage current, resistive leakage current
Procedia PDF Downloads 676143 Berry Phase and Quantum Skyrmions: A Loop Tour in Physics
Authors: Sinuhé Perea Puente
Abstract:
In several physics systems the whole can be obtained as an exact copy of each of its parts, which facilitates the study of a complex system by looking carefully at its elements, separately. Reducionism offers simplified models which makes the problems easier, but “there’s plenty of room...at the mesoscopic scale”. Here we present a tour for two of its representants: Berry phase and skyrmions, studying some of its basic definitions and properties, and two cases in which both arise together, to finish constraining the scale for our mesoscopic system in the quest of quantum skyrmions, discovering which properties are conserved and which others may be destroyed.Keywords: condensed mattter, quantum physics, skyrmions, topological defects
Procedia PDF Downloads 1456142 Analysis of Elastic-Plastic Deformation of Reinforced Concrete Shear-Wall Structures under Earthquake Excitations
Authors: Oleg Kabantsev, Karomatullo Umarov
Abstract:
The engineering analysis of earthquake consequences demonstrates a significantly different level of damage to load-bearing systems of different types. Buildings with reinforced concrete columns and separate shear-walls receive the highest level of damage. Traditional methods for predicting damage under earthquake excitations do not provide an answer to the question about the reasons for the increased vulnerability of reinforced concrete frames with shear-walls bearing systems. Thus, the study of the problem of formation and accumulation of damages in the structures reinforced concrete frame with shear-walls requires the use of new methods of assessment of the stress-strain state, as well as new approaches to the calculation of the distribution of forces and stresses in the load-bearing system based on account of various mechanisms of elastic-plastic deformation of reinforced concrete columns and walls. The results of research into the processes of non-linear deformation of structures with a transition to destruction (collapse) will allow to substantiate the characteristics of limit states of various structures forming an earthquake-resistant load-bearing system. The research of elastic-plastic deformation processes of reinforced concrete structures of frames with shear-walls is carried out on the basis of experimentally established parameters of limit deformations of concrete and reinforcement under dynamic excitations. Limit values of deformations are defined for conditions under which local damages of the maximum permissible level are formed in constructions. The research is performed by numerical methods using ETABS software. The research results indicate that under earthquake excitations, plastic deformations of various levels are formed in various groups of elements of the frame with the shear-wall load-bearing system. During the main period of seismic effects in the shear-wall elements of the load-bearing system, there are insignificant volumes of plastic deformations, which are significantly lower than the permissible level. At the same time, plastic deformations are formed in the columns and do not exceed the permissible value. At the final stage of seismic excitations in shear-walls, the level of plastic deformations reaches values corresponding to the plasticity coefficient of concrete , which is less than the maximum permissible value. Such volume of plastic deformations leads to an increase in general deformations of the bearing system. With the specified parameters of the deformation of the shear-walls in concrete columns, plastic deformations exceeding the limiting values develop, which leads to the collapse of such columns. Based on the results presented in this study, it can be concluded that the application seismic-force-reduction factor, common for the all load-bearing system, does not correspond to the real conditions of formation and accumulation of damages in elements of the load-bearing system. Using a single coefficient of seismic-force-reduction factor leads to errors in predicting the seismic resistance of reinforced concrete load-bearing systems. In order to provide the required level of seismic resistance buildings with reinforced concrete columns and separate shear-walls, it is necessary to use values of the coefficient of seismic-force-reduction factor differentiated by types of structural groups.1Keywords: reinforced concrete structures, earthquake excitation, plasticity coefficients, seismic-force-reduction factor, nonlinear dynamic analysis
Procedia PDF Downloads 2076141 Pervious Concrete for Road Intersection Drainage
Authors: Ivana Barišić, Ivanka Netinger Grubeša, Ines Barjaktarić
Abstract:
Road performance and traffic safety are highly influenced by improper water drainage system performance, particularly within intersection areas. So, the aim of the presented paper is the evaluation of pervious concrete made with two types and two aggregate fractions for potential utilization in intersection drainage areas. Although the studied pervious concrete mixtures achieved proper drainage but lower strength characteristics, this pervious concrete has a good potential for enhancing pavement drainage systems if it is embedded on limited intersection areas.Keywords: drainage, intersection, pervious concrete, road
Procedia PDF Downloads 3926140 DC/DC Boost Converter Applied to Photovoltaic Pumping System Application
Authors: S. Abdourraziq, M. A. Abdourraziq
Abstract:
One of the most famous and important applications of solar energy systems is water pumping. It is often used for irrigation or to supply water in countryside or private firm. However, the cost and the efficiency are still a concern, especially with a continued variation of solar radiation and temperature throughout the day. Then, the improvement of the efficiency of the system components is one of the different solutions to reducing the cost. In this paper, we will present a detailed definition of each element of a PV pumping system, and we will present the different MPPT algorithm used in the literature. Our system consists of a PV panel, a boost converter, a motor-pump set, and a storage tank.Keywords: PV cell, converter, MPPT, MPP, PV pumping system
Procedia PDF Downloads 1586139 Study of Quantum Lasers of Random Trimer Barrier AlxGa1-xAs Superlattices
Authors: Bentata Samir, Bendahma Fatima
Abstract:
We have numerically studied the random trimer barrier AlxGa1-xAs superlattices (RTBSL). Such systems consist of two different structures randomly distributed along the growth direction, with the additional constraint that the barriers of one kind appear in triply. An explicit formula is given for evaluating the transmission coefficient of superlattices (SL's) in intentional correlated disorder. We have specially investigated the effect of aluminum concentration on the laser wavelength. We discuss the impact of the aluminum concentration associated with the structure profile on the laser wavelengths.Keywords: superlattices, transfer matrix method, transmission coefficient, quantum laser
Procedia PDF Downloads 4916138 Predicting Wearable Technology Readiness in a South African Government Department: Exploring the Influence of Wearable Technology Acceptance and Positive Attitude
Authors: Henda J Thomas, Cornelia PJ Harmse, Cecile Schultz
Abstract:
Wearables are one of the technologies that will flourish within the fourth industrial revolution and digital transformation arenas, allowing employers to integrate collected data into organisational information systems. The study aimed to investigate whether wearable technology readiness can predict employees’ acceptance to wear wearables in the workplace. The factors of technology readiness predisposition that predict acceptance and positive attitudes towards wearable use in the workplace were examined. A quantitative research approach was used. The population consisted of 8 081 South African Department of Employment and Labour employees (DEL). Census sampling was used, and questionnaires to collect data were sent electronically to all 8 081 employees, 351 questionnaires were received back. The measuring instrument called the Technology Readiness and Acceptance Model (TRAM) was used in this study. Four hypotheses were formulated to investigate the relationship between readiness and acceptance of wearables in the workplace. The results found consistent predictions of technology acceptance (TA) by eagerness, optimism, and discomfort in the technology readiness (TR) scales. The TR scales of optimism and eagerness were consistent positive predictors of the TA scales, while discomfort proved to be a negative predictor for two of the three TA scales. Insecurity was found not to be a predictor of TA. It was recommended that the digital transformation policy of the DEL should be revised. Wearables in the workplace should be embraced from the viewpoint of convenience, automation, and seamless integration with the DEL information systems. The empirical contribution of this study can be seen in the fact that positive attitude emerged as a factor that extends the TRAM. In this study, positive attitude is identified as a new dimension to the TRAM not found in the original TA model and subsequent studies of the TRAM. Furthermore, this study found that Perceived Usefulness (PU) and Behavioural Intention to Use and (BIU) could not be separated but formed one factor. The methodological contribution of this study can lead to the development of a Wearable Readiness and Acceptance Model (WRAM). To the best of our knowledge, no author has yet introduced the WRAM into the body of knowledge.Keywords: technology acceptance model, technology readiness index, technology readiness and acceptance model, wearable devices, wearable technology, fourth industrial revolution
Procedia PDF Downloads 896137 Improve Divers Tracking and Classification in Sonar Images Using Robust Diver Wake Detection Algorithm
Authors: Mohammad Tarek Al Muallim, Ozhan Duzenli, Ceyhun Ilguy
Abstract:
Harbor protection systems are so important. The need for automatic protection systems has increased over the last years. Diver detection active sonar has great significance. It used to detect underwater threats such as divers and autonomous underwater vehicle. To automatically detect such threats the sonar image is processed by algorithms. These algorithms used to detect, track and classify of underwater objects. In this work, divers tracking and classification algorithm is improved be proposing a robust wake detection method. To detect objects the sonar images is normalized then segmented based on fixed threshold. Next, the centroids of the segments are found and clustered based on distance metric. Then to track the objects linear Kalman filter is applied. To reduce effect of noise and creation of false tracks, the Kalman tracker is fine tuned. The tuning is done based on our active sonar specifications. After the tracks are initialed and updated they are subjected to a filtering stage to eliminate the noisy and unstable tracks. Also to eliminate object with a speed out of the diver speed range such as buoys and fast boats. Afterwards the result tracks are subjected to a classification stage to deiced the type of the object been tracked. Here the classification stage is to deice wither if the tracked object is an open circuit diver or a close circuit diver. At the classification stage, a small area around the object is extracted and a novel wake detection method is applied. The morphological features of the object with his wake is extracted. We used support vector machine to find the best classifier. The sonar training images and the test images are collected by ARMELSAN Defense Technologies Company using the portable diver detection sonar ARAS-2023. After applying the algorithm to the test sonar data, we get fine and stable tracks of the divers. The total classification accuracy achieved with the diver type is 97%.Keywords: harbor protection, diver detection, active sonar, wake detection, diver classification
Procedia PDF Downloads 2386136 Anodic Stability of Li₆PS₅Cl/PEO Composite Polymer Electrolytes for All-Solid-State Lithium Batteries: A First-Principles Molecular Dynamics Study
Authors: Hao-Wen Chang, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang
Abstract:
All-solid-state lithium batteries (ASSLBs) are increasingly recognized as a safer and more reliable alternative to conventional lithium-ion batteries due to their non-flammable nature and enhanced safety performance. ASSLBs utilize a range of solid-state electrolytes, including solid polymer electrolytes (SPEs), inorganic solid electrolytes (ISEs), and composite polymer electrolytes (CPEs). SPEs are particularly valued for their flexibility, ease of processing, and excellent interfacial compatibility with electrodes, though their ionic conductivity remains a significant limitation. ISEs, on the other hand, provide high ionic conductivity, broad electrochemical windows, and strong mechanical properties but often face poor interfacial contact with electrodes, impeding performance. CPEs, which merge the strengths of SPEs and ISEs, represent a compelling solution for next-generation ASSLBs by addressing both electrochemical and mechanical challenges. Despite their potential, the mechanisms governing lithium-ion transport within these systems remain insufficiently understood. In this study, we designed CPEs based on argyrodite-type Li₆PS₅Cl (LPSC) combined with two distinct polymer matrices: poly(ethylene oxide) (PEO) with 24.5 wt% lithium bis(trifluoromethane)sulfonimide (LiTFSI) and polycaprolactone (PCL) with 25.7 wt% LiTFSI. Through density functional theory (DFT) calculations, we investigated the interfacial chemistry of these materials, revealing critical insights into their stability and interactions. Additionally, ab initio molecular dynamics (AIMD) simulations of lithium electrodes interfaced with LPSC layers containing polymers and LiTFSI demonstrated that the polymer matrix significantly mitigates LPSC decomposition, compared to systems with only a lithium electrode and LPSC layers. These findings underscore the pivotal role of CPEs in improving the performance and longevity of ASSLBs, offering a promising path forward for next-generation energy storage technologies.Keywords: all-solid-state lithium-ion batteries, composite solid electrolytes, DFT calculations, Li-ion transport
Procedia PDF Downloads 206135 Fault Location Detection in Active Distribution System
Authors: R. Rezaeipour, A. R. Mehrabi
Abstract:
Recent increase of the DGs and microgrids in distribution systems, disturbs the tradition structure of the system. Coordination between protection devices in such a system becomes the concern of the network operators. This paper presents a new method for fault location detection in the active distribution networks, independent of the fault type or its resistance. The method uses synchronized voltage and current measurements at the interconnection of DG units and is able to adapt to changes in the topology of the system. The method has been tested on a 38-bus distribution system, with very encouraging results.Keywords: fault location detection, active distribution system, micro grids, network operators
Procedia PDF Downloads 7896134 Signal Processing Techniques for Adaptive Beamforming with Robustness
Authors: Ju-Hong Lee, Ching-Wei Liao
Abstract:
Adaptive beamforming using antenna array of sensors is useful in the process of adaptively detecting and preserving the presence of the desired signal while suppressing the interference and the background noise. For conventional adaptive array beamforming, we require a prior information of either the impinging direction or the waveform of the desired signal to adapt the weights. The adaptive weights of an antenna array beamformer under a steered-beam constraint are calculated by minimizing the output power of the beamformer subject to the constraint that forces the beamformer to make a constant response in the steering direction. Hence, the performance of the beamformer is very sensitive to the accuracy of the steering operation. In the literature, it is well known that the performance of an adaptive beamformer will be deteriorated by any steering angle error encountered in many practical applications, e.g., the wireless communication systems with massive antennas deployed at the base station and user equipment. Hence, developing effective signal processing techniques to deal with the problem due to steering angle error for array beamforming systems has become an important research work. In this paper, we present an effective signal processing technique for constructing an adaptive beamformer against the steering angle error. The proposed array beamformer adaptively estimates the actual direction of the desired signal by using the presumed steering vector and the received array data snapshots. Based on the presumed steering vector and a preset angle range for steering mismatch tolerance, we first create a matrix related to the direction vector of signal sources. Two projection matrices are generated from the matrix. The projection matrix associated with the desired signal information and the received array data are utilized to iteratively estimate the actual direction vector of the desired signal. The estimated direction vector of the desired signal is then used for appropriately finding the quiescent weight vector. The other projection matrix is set to be the signal blocking matrix required for performing adaptive beamforming. Accordingly, the proposed beamformer consists of adaptive quiescent weights and partially adaptive weights. Several computer simulation examples are provided for evaluating and comparing the proposed technique with the existing robust techniques.Keywords: adaptive beamforming, robustness, signal blocking, steering angle error
Procedia PDF Downloads 1246133 Parameter Estimation via Metamodeling
Authors: Sergio Haram Sarmiento, Arcady Ponosov
Abstract:
Based on appropriate multivariate statistical methodology, we suggest a generic framework for efficient parameter estimation for ordinary differential equations and the corresponding nonlinear models. In this framework classical linear regression strategies is refined into a nonlinear regression by a locally linear modelling technique (known as metamodelling). The approach identifies those latent variables of the given model that accumulate most information about it among all approximations of the same dimension. The method is applied to several benchmark problems, in particular, to the so-called ”power-law systems”, being non-linear differential equations typically used in Biochemical System Theory.Keywords: principal component analysis, generalized law of mass action, parameter estimation, metamodels
Procedia PDF Downloads 5176132 Navigating the Future: Evaluating the Market Potential and Drivers for High-Definition Mapping in the Autonomous Vehicle Era
Authors: Loha Hashimy, Isabella Castillo
Abstract:
In today's rapidly evolving technological landscape, the importance of precise navigation and mapping systems cannot be understated. As various sectors undergo transformative changes, the market potential for Advanced Mapping and Management Systems (AMMS) emerges as a critical focus area. The Galileo/GNSS-Based Autonomous Mobile Mapping System (GAMMS) project, specifically targeted toward high-definition mapping (HDM), endeavours to provide insights into this market within the broader context of the geomatics and navigation fields. With the growing integration of Autonomous Vehicles (AVs) into our transportation systems, the relevance and demand for sophisticated mapping solutions like HDM have become increasingly pertinent. The research employed a meticulous, lean, stepwise, and interconnected methodology to ensure a comprehensive assessment. Beginning with the identification of pivotal project results, the study progressed into a systematic market screening. This was complemented by an exhaustive desk research phase that delved into existing literature, data, and trends. To ensure the holistic validity of the findings, extensive consultations were conducted. Academia and industry experts provided invaluable insights through interviews, questionnaires, and surveys. This multi-faceted approach facilitated a layered analysis, juxtaposing secondary data with primary inputs, ensuring that the conclusions were both accurate and actionable. Our investigation unearthed a plethora of drivers steering the HD maps landscape. These ranged from technological leaps, nuanced market demands, and influential economic factors to overarching socio-political shifts. The meteoric rise of Autonomous Vehicles (AVs) and the shift towards app-based transportation solutions, such as Uber, stood out as significant market pull factors. A nuanced PESTEL analysis further enriched our understanding, shedding light on political, economic, social, technological, environmental, and legal facets influencing the HD maps market trajectory. Simultaneously, potential roadblocks were identified. Notable among these were barriers related to high initial costs, concerns around data quality, and the challenges posed by a fragmented and evolving regulatory landscape. The GAMMS project serves as a beacon, illuminating the vast opportunities that lie ahead for the HD mapping sector. It underscores the indispensable role of HDM in enhancing navigation, ensuring safety, and providing pinpoint, accurate location services. As our world becomes more interconnected and reliant on technology, HD maps emerge as a linchpin, bridging gaps and enabling seamless experiences. The research findings accentuate the imperative for stakeholders across industries to recognize and harness the potential of HD mapping, especially as we stand on the cusp of a transportation revolution heralded by Autonomous Vehicles and advanced geomatic solutions.Keywords: high-definition mapping (HDM), autonomous vehicles, PESTEL analysis, market drivers
Procedia PDF Downloads 846131 Robots for City Life: Design Guidelines and Strategy Recommendations for Introducing Robots in Cities
Authors: Akshay Rege, Lara Gomaa, Maneesh Kumar Verma, Sem Carree
Abstract:
The aim of this paper is to articulate design strategies and recommendations for introducing robots into the city life of people based on experiments conducted with robots and semi-autonomous systems in three cities in the Netherlands. This research was carried out by the Spot robotics team of Impact Lab housed within YES!Delft, a start-up accelerator located in Delft, The Netherlands. The premise of this research is to inform the development of the ‘region of the future’ by the Municipality of Rotterdam-Den Haag (MRDH). The paper starts by reporting the desktop research carried out to find and develop multiple use cases for robots to support humans in various activities. Further, the paper reports the user research carried out by crowdsourcing responses collected in public spaces of Rotterdam-Den Haag region and on the internet. Furthermore, based on the knowledge gathered in the initial research, practical experiments were carried out using robots and semi-autonomous systems in order to test and validate our initial research. These experiments were conducted in three cities in the Netherlands which were Rotterdam, The Hague, and Delft. Custom sensor box, Drone, and Boston Dynamics' Spot robot were used to conduct these experiments. Out of thirty use cases, five were tested with experiments which were skyscraper emergency evacuation, human transportation and security, bike lane delivery, mobility tracking, and robot drama. The learnings from these experiments provided us with insights into human-robot interaction and symbiosis in cities which can be used to introduce robots in cities to support human activities, ultimately enabling the transitioning from a human only city life towards a blended one where robots can play a role. Based on these understandings, we formulated design guidelines and strategy recommendations for incorporating robots in the Rotterdam-Den Haag’s region of the future. Lastly, we discuss how our insights in the Rotterdam-Den Haag region can inspire and inform the incorporation of robots in different cities of the world.Keywords: city life, design guidelines, human-robot Interaction, robot use cases, robotic experiments, strategy recommendations, user research
Procedia PDF Downloads 976130 Synchronization of Chaotic T-System via Optimal Control as an Adaptive Controller
Authors: Hossein Kheiri, Bashir Naderi, Mohamad Reza Niknam
Abstract:
In this paper we study the optimal synchronization of chaotic T-system with complete uncertain parameter. Optimal control laws and parameter estimation rules are obtained by using Hamilton-Jacobi-Bellman (HJB) technique and Lyapunov stability theorem. The derived control laws are optimal adaptive control and make the states of drive and response systems asymptotically synchronized. Numerical simulation shows the effectiveness and feasibility of the proposed method.Keywords: Lyapunov stability, synchronization, chaos, optimal control, adaptive control
Procedia PDF Downloads 4876129 Effects of Mindfulness Practice on Clinician Burnout: A Scoping Review
Authors: Hani Malik
Abstract:
Background: Clinician burnout is a growing phenomenon in current health systems worldwide. Increasing emotional exhaustion, depersonalisation, and reduced personal accomplishment threaten the effective delivery of healthcare. This can potentially be mitigated by mindfulness practice, which has shown promising results in reducing burnout, restoring compassion, and preventing moral injury in clinicians. Objectives: To conduct a scoping review and identify high-quality studies on mindfulness practice in clinician burnout, synthesize themes that emerge from these studies, and discuss the implications of the results to healthcare leadership and innovation. Methodology: A focused scoping review was carried out to investigate the effects of mindfulness practice on clinician burnout. High-ranking journals were targeted to analyse high-quality studies and synthesize common themes in the literature. Studies conducted on current, practicing physicians were included. Mindfulness practice of varying forms was the main intervention studied. Grey literature and studies conducted only on allied health personnel were excluded from this review. Analysis:31 studies were included in this scoping review. Mindfulness practice was found to decrease emotional exhaustion and depersonalisation while improving mood, responses to stress, and vigour. Self-awareness, compassion, and empathy were also increased in study participants. From this review, four themes emerged which include: innovations in mindfulness practice, mindfulness and positive psychology, the impact of mindfulness on work and patient care, and barriers and facilitators to clinician mindfulness practice. Conclusion: Mindfulness had widely been reported to benefit mental health and well-being, but the studies reviewed seemed to adopt a mono focus and omitted key considerations to healthcare leadership, systems-level culture, and practices. Mindfulness practice is a quintessential component of positive psychology and is inherently linked to effective leadership. A mindful and compassionate clinician leader will play a crucial role in addressing gaps in current practice, prioritise staff mental health, and provide a supportive platform for innovation.Keywords: mindfulness practice, clinician burnout, healthcare leadership, COVID-19
Procedia PDF Downloads 1526128 Multi-Indicator Evaluation of Agricultural Drought Trends in Ethiopia: Implications for Dry Land Agriculture and Food Security
Authors: Dawd Ahmed, Venkatesh Uddameri
Abstract:
Agriculture in Ethiopia is the main economic sector influenced by agricultural drought. A simultaneous assessment of drought trends using multiple drought indicators is useful for drought planning and management. Intra-season and seasonal drought trends in Ethiopia were studied using a suite of drought indicators. Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), Palmer Drought Severity Index (PDSI), and Z-index for long-rainy, dry, and short-rainy seasons are used to identify drought-causing mechanisms. The Statistical software package R version 3.5.2 was used for data extraction and data analyses. Trend analysis indicated shifts in late-season long-rainy season precipitation into dry in the southwest and south-central portions of Ethiopia. Droughts during the dry season (October–January) were largely temperature controlled. Short-term temperature-controlled hydrologic processes exacerbated rainfall deficits during the short rainy season (February–May) and highlight the importance of temperature- and hydrology-induced soil dryness on the production of short-season crops such as tef. Droughts during the long-rainy season (June–September) were largely driven by precipitation declines arising from the narrowing of the intertropical convergence zone (ITCZ). Increased dryness during long-rainy season had severe consequences on the production of corn and sorghum. PDSI was an aggressive indicator of seasonal droughts suggesting the low natural resilience to combat the effects of slow-acting, moisture-depleting hydrologic processes. The lack of irrigation systems in the nation limits the ability to combat droughts and improve agricultural resilience. There is an urgent need to monitor soil moisture (a key agro-hydrologic variable) to better quantify the impacts of meteorological droughts on agricultural systems in Ethiopia.Keywords: autocorrelation, climate change, droughts, Ethiopia, food security, palmer z-index, PDSI, SPEI, SPI, trend analysis
Procedia PDF Downloads 1416127 Integrating Renewable Energy Forecasting Systems with HEMS and Developing It with a Bottom-Up Approach
Authors: Punit Gandhi, J. C. Brezet, Tim Gorter, Uchechi Obinna
Abstract:
This paper introduces how weather forecasting could help in more efficient energy management for smart homes with the use of Home Energy Management Systems (HEMS). The paper also focuses on educating consumers and helping them make more informed decisions while using the HEMS. A combined approach of technical and user perspective has been selected to develop a novel HEMS-product-service combination in a more comprehensive manner. The current HEMS switches on/off the energy intensive appliances based on the fluctuating electricity tariffs, but with weather forecasting, it is possible to shift the time of use of energy intensive appliances to maximum electricity production from the renewable energy system installed in the house. Also, it is possible to estimate the heating/cooling load of the house for the day ahead demand. Hence, relevant insight is gained in the expected energy production and consumption load for the next day, facilitating better (more efficient, peak shaved, cheaper, etc.) energy management practices for smart homes. In literature, on the user perspective, it has been observed that consumers lose interest in using HEMS after three to four months. Therefore, to further help in better energy management practices, the new system had to be designed in a way that consumers would sustain their interaction with the system on a structural basis. It is hypothesized that, if consumers feel more comfortable with using such system, it would lead to a prolonged usage, including more energy savings and hence financial savings. To test the hypothesis, a survey for the HEMS is conducted, to which 59 valid responses were recorded. Analysis of the survey helped in designing a system which imparts better information about the energy production and consumption to the consumers. It is also found from the survey that, consumers like a variety of options and they do not like a constant reminder of what they should do. Hence, the final system is designed to encourage consumers to make an informed decision about their energy usage with a wide variety of behavioral options available. It is envisaged that the new system will be tested in several pioneering smart energy grid projects in both the Netherlands and India, with a continued ‘design thinking’ approach, combining the technical and user perspective, as the basis for further improvements.Keywords: weather forecasting, smart grid, renewable energy forecasting, user defined HEMS
Procedia PDF Downloads 2326126 A Hedonic Valuation Approach to Valuing Combined Sewer Overflow Reductions
Authors: Matt S. Van Deren, Michael Papenfus
Abstract:
Seattle is one of the hundreds of cities in the United States that relies on a combined sewer system to collect and convey municipal wastewater. By design, these systems convey all wastewater, including industrial and commercial wastewater, human sewage, and stormwater runoff, through a single network of pipes. Serious problems arise for combined sewer systems during heavy precipitation events when treatment plants and storage facilities are unable to accommodate the influx of wastewater needing treatment, causing the sewer system to overflow into local waterways through sewer outfalls. CSOs (Combined Sewer Overflows) pose a serious threat to human and environmental health. Principal pollutants found in CSO discharge include microbial pathogens, comprising of bacteria, viruses, parasites, oxygen-depleting substances, suspended solids, chemicals or chemical mixtures, and excess nutrients, primarily nitrogen and phosphorus. While concentrations of these pollutants can vary between overflow events, CSOs have the potential to spread disease and waterborne illnesses, contaminate drinking water supplies, disrupt aquatic life, and effect a waterbody’s designated use. This paper estimates the economic impact of CSOs on residential property values. Using residential property sales data from Seattle, Washington, this paper employs a hedonic valuation model that controls for housing and neighborhood characteristics, as well as spatial and temporal effects, to predict a consumer’s willingness to pay for improved water quality near their homes. Initial results indicate that a 100,000-gallon decrease in the average annual overflow discharged from a sewer outfall within 300 meters of a home is associated with a 0.053% increase in the property’s sale price. For the average home in the sample, the price increase is estimated to be $18,860.23. These findings reveal some of the important economic benefits of improving water quality by reducing the frequency and severity of combined sewer overflows.Keywords: benefits, hedonic, Seattle, sewer
Procedia PDF Downloads 1776125 Evaluation of Environmental Management System Implementation of Construction Projects in Turkey
Authors: Aydemir Akyürek, Osman Nuri Ağdağ
Abstract:
Construction industry is in a rapid development for many years around the world and especially in Turkey. In the last three years sector has 10% growth and provides significant support on Turkey’s national economy. Many construction projects are on-going at urban and rural areas of Turkey which have substantial environmental impacts. Environmental impacts during construction phase are quite diversified and widespread. Environmental impacts of construction industry cannot be inspected properly in all cases and negative impacts may occur frequently in many projects in Turkey. In this study, implementation of ISO 14001 Environmental Management System (EMS) in construction plants is evaluated. In the beginning stage quality management systems generally reviewed and ISO 14001 EMS is selected for implementation. Standard requirements are examined first and implementation of every standard requirement is elaborated for the selected construction plant in the following stage. Key issues and common problems, gained benefits by execution of this type of international EMS standard are examined. As can be seen in sample projects, construction projects are being completed very fast and contractors are working in a highly competitive environment with low profit ratios in our country and mostly qualified work force cannot be accessible. Addition to this there are deficits on waste handling and environmental infrastructure. Besides construction companies which have substantial investments on EMSs can be faced with difficulties on competitiveness in domestic market, however professional Turkish contractors which implementing managements systems in larger scale at international projects are gaining successful results. Also the concept of ‘construction project management’ which is being implemented in successful projects worldwide cannot be implemented except larger projects in Turkey. In case of nonexistence of main management system (quality) implementation of EMSs cannot be managed. Despite all constraints, EMSs that will be implemented in this industry with commitment of top managements and demand of customers will be an enabling, facilitating tool to determine environmental aspects and impacts of construction sites, will provide higher compliance levels for environmental legislation, to establish best available methods for operational control on waste management, chemicals management etc. and to plan monitoring and measurement, to prioritize environmental aspects for investment schedules and waste management.Keywords: environmental management system, construction projects, ISO 14001, quality
Procedia PDF Downloads 3626124 Finite Element Modeling of Global Ti-6Al-4V Mechanical Behavior in Relationship with Microstructural Parameters
Authors: Fatna Benmessaoud, Mohammed Cheikh, Vencent Velay, Vanessa Vedal, Farhad Rezai-Aria, Christine Boher
Abstract:
The global mechanical behavior of materials is strongly linked to their microstructure, especially their crystallographic texture and their grains morphology. These material aspects determine the mechanical fields character (heterogeneous or homogeneous), thus, they give to the global behavior a degree of anisotropy according the initial microstructure. For these reasons, the prediction of global behavior of materials in relationship with the microstructure must be performed with a multi-scale approach. Therefore, multi-scale modeling in the context of crystal plasticity is widely used. In this present contribution, a phenomenological elasto-viscoplastic model developed in the crystal plasticity context and finite element method are used to investigate the effects of crystallographic texture and grains sizes on global behavior of a polycrystalline equiaxed Ti-6Al-4V alloy. The constitutive equations of this model are written on local scale for each slip system within each grain while the strain and stress mechanical fields are investigated at the global scale via finite element scale transition. The beta phase of Ti-6Al-4V alloy modeled is negligible; its percent is less than 10%. Three families of slip systems of alpha phase are considered: basal and prismatic families with a burgers vector and pyramidal family with aKeywords: microstructural parameters, multi-scale modeling, crystal plasticity, Ti-6Al-4V alloy
Procedia PDF Downloads 126