Search results for: mobile telecommunication technologies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5006

Search results for: mobile telecommunication technologies

1826 Mathematical Modelling of a Low Tip Speed Ratio Wind Turbine for System Design Evaluation

Authors: Amir Jalalian-Khakshour, T. N. Croft

Abstract:

Vertical Axis Wind Turbine (VAWT) systems are becoming increasingly popular as they have a number of advantages over traditional wind turbines. The advantages are reliability, ease of transportation and manufacturing. These attributes could make these technologies useful in developing economies. The performance characteristics of a VAWT are different from a horizontal axis wind turbine, which can be attributed to the low tip speed ratio operation. To unlock the potential of these VAWT systems, the operational behaviour in a number of system topologies and environmental conditions needs to be understood. In this study, a non-linear dynamic simulation method was developed in Matlab and validated against in field data of a large scale, 8-meter rotor diameter prototype. This simulation method has been utilised to determine the performance characteristics of a number of control methods and system topologies. The motivation for this research was to develop a simulation method which accurately captures the operating behaviour and is computationally inexpensive. The model was used to evaluate the performance through parametric studies and optimisation techniques. The study gave useful insights into the applications and energy generation potential of this technology.

Keywords: power generation, renewable energy, rotordynamics, wind energy

Procedia PDF Downloads 297
1825 Multiscale Computational Approach to Enhance the Understanding, Design and Development of CO₂ Catalytic Conversion Technologies

Authors: Agnieszka S. Dzielendziak, Lindsay-Marie Armstrong, Matthew E. Potter, Robert Raja, Pier J. A. Sazio

Abstract:

Reducing carbon dioxide, CO₂, is one of the greatest global challenges. Conversion of CO₂ for utilisation across synthetic fuel, pharmaceutical, and agrochemical industries offers a promising option, yet requires significant research to understanding the complex multiscale processes involved. To experimentally understand and optimize such processes at that catalytic sites and exploring the impact of the process at reactor scale, is too expensive. Computational methods offer significant insight and flexibility but require a more detailed multi-scale approach which is a significant challenge in itself. This work introduces a computational approach which incorporates detailed catalytic models, taken from experimental investigations, into a larger-scale computational flow dynamics framework. The reactor-scale species transport approach is modified near the catalytic walls to determine the influence of catalytic clustering regions. This coupling approach enables more accurate modelling of velocity, pressures, temperatures, species concentrations and near-wall surface characteristics which will ultimately enable the impact of overall reactor design on chemical conversion performance.

Keywords: catalysis, CCU, CO₂, multi-scale model

Procedia PDF Downloads 245
1824 Foreign Direct Investment, Economic Growth and CO2 Emissions: Evidence from WAIFEM Member Countries

Authors: Nasiru Inuwa, Haruna Usman Modibbo, Yahya Zakari Abdullahi

Abstract:

The purpose of this paper is to investigate the effects of foreign direct investment (FDI), economic growth on carbon emissions in context of WAIFEM member countries. The Im-Pesaran-Shin panel unit root test, Kao residual based test panel cointegration technique and panel Granger causality tests over the period 1980-2012 within a multivariate framework were applied. The results of cointegration test revealed a long run equilibrium relationship among CO2 emissions, economic growth and foreign direct investment. The results of Granger causality tests revealed a unidirectional causality running from economic growth to CO2 emissions for the panel of WAIFEM countries at the 5% level. Also, Granger causality runs from economic growth to foreign direct investment without feedback. However, no causality relationship between foreign direct investment and CO2 emissions for the panel of WAIFEM countries was observed. The study therefore, suggest that policy makers from WAIFEM member countries should design policies aim at attracting more foreign direct investments inflow as well the adoption of cleaner production technologies in order to reduce CO2 emissions.

Keywords: economic growth, CO2 emissions, causality, WAIFEM

Procedia PDF Downloads 564
1823 Hydroinformatics of Smart Cities: Real-Time Water Quality Prediction Model Using a Hybrid Approach

Authors: Elisa Coraggio, Dawei Han, Weiru Liu, Theo Tryfonas

Abstract:

Water is one of the most important resources for human society. The world is currently undergoing a wave of urban growth, and pollution problems are of a great impact. Monitoring water quality is a key task for the future of the environment and human species. In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for environmental monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the artificial intelligence algorithm. This study derives the methodology and demonstrates its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for the environment monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a new methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the Artificial Intelligence algorithm. This study derives the methodology and demonstrate its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.

Keywords: artificial intelligence, hydroinformatics, numerical modelling, smart cities, water quality

Procedia PDF Downloads 174
1822 Standard Resource Parameter Based Trust Model in Cloud Computing

Authors: Shyamlal Kumawat

Abstract:

Cloud computing is shifting the approach IT capital are utilized. Cloud computing dynamically delivers convenient, on-demand access to shared pools of software resources, platform and hardware as a service through internet. The cloud computing model—made promising by sophisticated automation, provisioning and virtualization technologies. Users want the ability to access these services including infrastructure resources, how and when they choose. To accommodate this shift in the consumption model technology has to deal with the security, compatibility and trust issues associated with delivering that convenience to application business owners, developers and users. Absent of these issues, trust has attracted extensive attention in Cloud computing as a solution to enhance the security. This paper proposes a trusted computing technology through Standard Resource parameter Based Trust Model in Cloud Computing to select the appropriate cloud service providers. The direct trust of cloud entities is computed on basis of the interaction evidences in past and sustained on its present performances. Various SLA parameters between consumer and provider are considered in trust computation and compliance process. The simulations are performed using CloudSim framework and experimental results show that the proposed model is effective and extensible.

Keywords: cloud, Iaas, Saas, Paas

Procedia PDF Downloads 326
1821 Buy-and-Hold versus Alternative Strategies: A Comparison of Market-Timing Techniques

Authors: Jonathan J. Burson

Abstract:

With the rise of virtually costless, mobile-based trading platforms, stock market trading activity has increased significantly over the past decade, particularly for the millennial generation. This increased stock market attention, combined with the recent market turmoil due to the economic upset caused by COVID-19, make the topics of market-timing and forecasting particularly relevant. While the overall stock market saw an unprecedented, historically-long bull market from March 2009 to February 2020, the end of that bull market reignited a search by investors for a way to reduce risk and increase return. Similar searches for outperformance occurred in the early, and late 2000’s as the Dotcom bubble burst and the Great Recession led to years of negative returns for mean-variance, index investors. Extensive research has been conducted on fundamental analysis, technical analysis, macroeconomic indicators, microeconomic indicators, and other techniques—all using different methodologies and investment periods—in pursuit of higher returns with lower risk. The enormous variety of timeframes, data, and methodologies used by the diverse forecasting methods makes it difficult to compare the outcome of each method directly to other methods. This paper establishes a process to evaluate the market-timing methods in an apples-to-apples manner based on simplicity, performance, and feasibility. Preliminary findings show that certain technical analysis models provide a higher return with lower risk when compared to the buy-and-hold method and to other market-timing strategies. Furthermore, technical analysis models tend to be easier for individual investors both in terms of acquiring the data and in analyzing it, making technical analysis-based market-timing methods the preferred choice for retail investors.

Keywords: buy-and-hold, forecast, market-timing, probit, technical analysis

Procedia PDF Downloads 90
1820 Artificial Neural Network and Statistical Method

Authors: Tomas Berhanu Bekele

Abstract:

Traffic congestion is one of the main problems related to transportation in developed as well as developing countries. Traffic control systems are based on the idea of avoiding traffic instabilities and homogenizing traffic flow in such a way that the risk of accidents is minimized and traffic flow is maximized. Lately, Intelligent Transport Systems (ITS) has become an important area of research to solve such road traffic-related issues for making smart decisions. It links people, roads and vehicles together using communication technologies to increase safety and mobility. Moreover, accurate prediction of road traffic is important to manage traffic congestion. The aim of this study is to develop an ANN model for the prediction of traffic flow and to compare the ANN model with the linear regression model of traffic flow predictions. Data extraction was carried out in intervals of 15 minutes from the video player. Video of mixed traffic flow was taken and then counted during office work in order to determine the traffic volume. Vehicles were classified into six categories, namely Car, Motorcycle, Minibus, mid-bus, Bus, and Truck vehicles. The average time taken by each vehicle type to travel the trap length was measured by time displayed on a video screen.

Keywords: intelligent transport system (ITS), traffic flow prediction, artificial neural network (ANN), linear regression

Procedia PDF Downloads 55
1819 Decentralized Wastewater Treatment in Coastal Touristic Areas Using Standardized Modular Biological Filtration (SMBF)

Authors: Andreas Rüdiger

Abstract:

The selection of appropriate wastewater treatment technology for decentralized coastal tourist areas is an important engineering challenge. The local situation in coastal tourist cities and villages is characterized by important daily and seasonal fluctuations in hydraulic flow and pollution, high annual temperature variations, scarcity of building area and high housing density. At the same time, coastal zones have to meet stringent effluent limits all over the year and need simple and easy technologies to operate. This article presents the innovative technology of standardized modular aerated up-flow biofiltration SMBF as an adapted solution for decentralized wastewater treatment in sensitive touristic coastal areas. As modular technology with several biofiltration units, the system is able to treat low and high loads with low energy consumption and low demands for operators. The article focuses on the climatic and tourist situation in Croatia. Full-scale plants in Eastern Europe and Croatia have presented as well as dimensioning parameters and outlet concentrations. Energy consumption as a function of load is demonstrated.

Keywords: wastewater treatment, biofiltration, touristic areas, energy saving

Procedia PDF Downloads 82
1818 Crisis Communication at Destinations: A Study for Tourism Managers

Authors: Volkan Altintas, Burcu Oksuz

Abstract:

Tourism industry essentially requires effective crisis management and crisis communication skills, as it is extremely vulnerable to crises. In terms of destinations, tourism crises cause dramatic decreases in the number of inbound tourists, impairment in the destination’s image, and decline in the level of preferability of the destination not only in the short but also in the long term. Therefore, any destination should be well prepared for crisis situation that may arise for various reasons. Currently, the advancement in communication technologies enables and facilitates information and experience to spread rapidly, and negative information and experiences tend to be shared to a further extent. Destinations are broadly exposed to the impacts of such communication stream. Turkey is almost continuously exposed to crises and their adverse impacts as a tourism destination, and thus requires effective crisis communication activities to be maintained. Hence, the approaches of tourism managers toward crisis communication and their proposals for addressing issues in question are important. This study intends to set forth the considerations of the managers serving in the tourism industry about crisis communication at destinations. The theoretical part of the study describes and explains crisis management and crisis communication at destinations; following which are provided the outcomes of the thorough in-depth interviews and discussions conducted for the establishment of the considerations of tourism managers. Managers indicated the role and importance of crisis communications in destinations.

Keywords: crisis communication, crisis management, destination, tourism managers

Procedia PDF Downloads 307
1817 Optimization of Laser Doping Selective Emitter for Silicon Solar Cells

Authors: Meziani Samir, Moussi Abderrahmane, Chaouchi Sofiane, Guendouzi Awatif, Djema Oussama

Abstract:

Laser doping has a large potential for integration into silicon solar cell technologies. The ability to process local, heavily diffused regions in a self-aligned manner can greatly simplify processing sequences for the fabrication of selective emitter. The choice of laser parameters for a laser doping process with 532nm is investigated. Solid state lasers with different power and speed were used for laser doping. In this work, the aim is the formation of selective emitter solar cells with a reduced number of technological steps. In order to have a highly doped localized emitter region, we used a 532 nm laser doping. Note that this region will receive the metallization of the Ag grid by screen printing. For this, we use SOLIDWORKS software to design a single type of pattern for square silicon cells. Sheet resistances, phosphorus doping concentration and silicon bulk lifetimes of irradiated samples are presented. Additionally, secondary ion mass spectroscopy (SIMS) profiles of the laser processed samples were acquired. Scanning electron microscope and optical microscope images of laser processed surfaces at different parameters are shown and compared.

Keywords: laser doping, selective emitter, silicon, solar cells

Procedia PDF Downloads 95
1816 Implementation of Building Information Modelling to Monitor, Assess, and Control the Indoor Environmental Quality of Higher Education Buildings

Authors: Mukhtar Maigari

Abstract:

The landscape of Higher Education (HE) institutions, especially following the CVID-19 pandemic, necessitates advanced approaches to manage Indoor Environmental Quality (IEQ) which is crucial for the comfort, health, and productivity of students and staff. This study investigates the application of Building Information Modelling (BIM) as a multifaceted tool for monitoring, assessing, and controlling IEQ in HE buildings aiming to bridge the gap between traditional management practices and the innovative capabilities of BIM. Central to the study is a comprehensive literature review, which lays the foundation by examining current knowledge and technological advancements in both IEQ and BIM. This review sets the stage for a deeper investigation into the practical application of BIM in IEQ management. The methodology consists of Post-Occupancy Evaluation (POE) which encompasses physical monitoring, questionnaire surveys, and interviews under the umbrella of case studies. The physical data collection focuses on vital IEQ parameters such as temperature, humidity, CO2 levels etc, conducted by using different equipment including dataloggers to ensure accurate data. Complementing this, questionnaire surveys gather perceptions and satisfaction levels from students, providing valuable insights into the subjective aspects of IEQ. The interview component, targeting facilities management teams, offers an in-depth perspective on IEQ management challenges and strategies. The research delves deeper into the development of a conceptual BIM-based framework, informed by the insight findings from case studies and empirical data. This framework is designed to demonstrate the critical functions necessary for effective IEQ monitoring, assessment, control and automation with real time data handling capabilities. This BIM-based framework leads to the developing and testing a BIM-based prototype tool. This prototype leverages on software such as Autodesk Revit with its visual programming tool i.e., Dynamo and an Arduino-based sensor network thereby allowing for real-time flow of IEQ data for monitoring, control and even automation. By harnessing the capabilities of BIM technology, the study presents a forward-thinking approach that aligns with current sustainability and wellness goals, particularly vital in the post-COVID-19 era. The integration of BIM in IEQ management promises not only to enhance the health, comfort, and energy efficiency of educational environments but also to transform them into more conducive spaces for teaching and learning. Furthermore, this research could influence the future of HE buildings by prompting universities and government bodies to revaluate and improve teaching and learning environments. It demonstrates how the synergy between IEQ and BIM can empower stakeholders to monitor IEQ conditions more effectively and make informed decisions in real-time. Moreover, the developed framework has broader applications as well; it can serve as a tool for other sustainability assessments, like energy analysis in HE buildings, leveraging measured data synchronized with the BIM model. In conclusion, this study bridges the gap between theoretical research and real-world application by practicalizing how advanced technologies like BIM can be effectively integrated to enhance environmental quality in educational institutions. It portrays the potential of integrating advanced technologies like BIM in the pursuit of improved environmental conditions in educational institutions.

Keywords: BIM, POE, IEQ, HE-buildings

Procedia PDF Downloads 44
1815 An Efficient Robot Navigation Model in a Multi-Target Domain amidst Static and Dynamic Obstacles

Authors: Michael Ayomoh, Adriaan Roux, Oyindamola Omotuyi

Abstract:

This paper presents an efficient robot navigation model in a multi-target domain amidst static and dynamic workspace obstacles. The problem is that of developing an optimal algorithm to minimize the total travel time of a robot as it visits all target points within its task domain amidst unknown workspace obstacles and finally return to its initial position. In solving this problem, a classical algorithm was first developed to compute the optimal number of paths to be travelled by the robot amidst the network of paths. The principle of shortest distance between robot and targets was used to compute the target point visitation order amidst workspace obstacles. Algorithm premised on the standard polar coordinate system was developed to determine the length of obstacles encountered by the robot hence giving room for a geometrical estimation of the total surface area occupied by the obstacle especially when classified as a relevant obstacle i.e. obstacle that lies in between a robot and its potential visitation point. A stochastic model was developed and used to estimate the likelihood of a dynamic obstacle bumping into the robot’s navigation path and finally, the navigation/obstacle avoidance algorithm was hinged on the hybrid virtual force field (HVFF) method. Significant modelling constraints herein include the choice of navigation path to selected target points, the possible presence of static obstacles along a desired navigation path and the likelihood of encountering a dynamic obstacle along the robot’s path and the chances of it remaining at this position as a static obstacle hence resulting in a case of re-routing after routing. The proposed algorithm demonstrated a high potential for optimal solution in terms of efficiency and effectiveness.

Keywords: multi-target, mobile robot, optimal path, static obstacles, dynamic obstacles

Procedia PDF Downloads 275
1814 Anajaa-Visual Substitution System: A Navigation Assistive Device for the Visually Impaired

Authors: Juan Pablo Botero Torres, Alba Avila, Luis Felipe Giraldo

Abstract:

Independent navigation and mobility through unknown spaces pose a challenge for the autonomy of visually impaired people (VIP), who have relied on the use of traditional assistive tools like the white cane and trained dogs. However, emerging visually assistive technologies (VAT) have proposed several human-machine interfaces (HMIs) that could improve VIP’s ability for self-guidance. Hereby, we introduce the design and implementation of a visually assistive device, Anajaa – Visual Substitution System (AVSS). This system integrates ultrasonic sensors with custom electronics, and computer vision models (convolutional neural networks), in order to achieve a robust system that acquires information of the surrounding space and transmits it to the user in an intuitive and efficient manner. AVSS consists of two modules: the sensing and the actuation module, which are fitted to a chest mount and belt that communicate via Bluetooth. The sensing module was designed for the acquisition and processing of proximity signals provided by an array of ultrasonic sensors. The distribution of these within the chest mount allows an accurate representation of the surrounding space, discretized in three different levels of proximity, ranging from 0 to 6 meters. Additionally, this module is fitted with an RGB-D camera used to detect potentially threatening obstacles, like staircases, using a convolutional neural network specifically trained for this purpose. Posteriorly, the depth data is used to estimate the distance between the stairs and the user. The information gathered from this module is then sent to the actuation module that creates an HMI, by the means of a 3x2 array of vibration motors that make up the tactile display and allow the system to deliver haptic feedback. The actuation module uses vibrational messages (tactones); changing both in amplitude and frequency to deliver different awareness levels according to the proximity of the obstacle. This enables the system to deliver an intuitive interface. Both modules were tested under lab conditions, and the HMI was additionally tested with a focal group of VIP. The lab testing was conducted in order to establish the processing speed of the computer vision algorithms. This experimentation determined that the model can process 0.59 frames per second (FPS); this is considered as an adequate processing speed taking into account that the walking speed of VIP is 1.439 m/s. In order to test the HMI, we conducted a focal group composed of two females and two males between the ages of 35-65 years. The subject selection was aided by the Colombian Cooperative of Work and Services for the Sightless (COOTRASIN). We analyzed the learning process of the haptic messages throughout five experimentation sessions using two metrics: message discrimination and localization success. These correspond to the ability of the subjects to recognize different tactones and locate them within the tactile display. Both were calculated as the mean across all subjects. Results show that the focal group achieved message discrimination of 70% and a localization success of 80%, demonstrating how the proposed HMI leads to the appropriation and understanding of the feedback messages, enabling the user’s awareness of its surrounding space.

Keywords: computer vision on embedded systems, electronic trave aids, human-machine interface, haptic feedback, visual assistive technologies, vision substitution systems

Procedia PDF Downloads 73
1813 Renewable Energy Micro-Grid Control Using Microcontroller in LabVIEW

Authors: Meena Agrawal, Chaitanya P. Agrawal

Abstract:

The power systems are transforming and becoming smarter with innovations in technologies to enable embark simultaneously upon the sustainable energy needs, rising environmental concerns, economic benefits and quality requirements. The advantages provided by inter-connection of renewable energy resources are becoming more viable and dependable with the smart controlling technologies. The limitation of most renewable resources have their diversity and intermittency causing problems in power quality, grid stability, reliability, security etc. is being cured by these efforts. A necessitate of optimal energy management by intelligent Micro-Grids at the distribution end of the power system has been accredited to accommodate sustainable renewable Distributed Energy Resources on large scale across the power grid. All over the world Smart Grids are emerging now as foremost concern infrastructure upgrade programs. The hardware setup includes NI cRIO 9022, Compact Reconfigurable Input Output microcontroller board connected to the PC on a LAN router with three hardware modules. The Real-Time Embedded Controller is reconfigurable controller device consisting of an embedded real-time processor controller for communication and processing, a reconfigurable chassis housing the user-programmable FPGA, Eight hot-swappable I/O modules, and graphical LabVIEW system design software. It has been employed for signal analysis, controls and acquisition and logging of the renewable sources with the LabVIEW Real-Time applications. The employed cRIO chassis controls the timing for the module and handles communication with the PC over the USB, Ethernet, or 802.11 Wi-Fi buses. It combines modular I/O, real-time processing, and NI LabVIEW programmable. In the presented setup, the Analog Input Module NI 9205 five channels have been used for input analog voltage signals from renewable energy sources and NI 9227 four channels have been used for input analog current signals of the renewable sources. For switching actions based on the programming logic developed in software, a module having Electromechanical Relays (single-pole single throw) with 4-Channels, electrically isolated and LED indicating the state of that channel have been used for isolating the renewable Sources on fault occurrence, which is decided by the logic in the program. The module for Ethernet based Data Acquisition Interface ENET 9163 Ethernet Carrier, which is connected on the LAN Router for data acquisition from a remote source over Ethernet also has the module NI 9229 installed. The LabVIEW platform has been employed for efficient data acquisition, monitoring and control. Control logic utilized in program for operation of the hardware switching Related to Fault Relays has been portrayed as a flowchart. A communication system has been successfully developed amongst the sources and loads connected on different computers using Hypertext transfer protocol, HTTP or Ethernet Local Stacked area Network TCP/IP protocol. There are two main I/O interfacing clients controlling the operation of the switching control of the renewable energy sources over internet or intranet. The paper presents experimental results of the briefed setup for intelligent control of the micro-grid for renewable energy sources, besides the control of Micro-Grid with data acquisition and control hardware based on a microcontroller with visual program developed in LabVIEW.

Keywords: data acquisition and control, LabVIEW, microcontroller cRIO, Smart Micro-Grid

Procedia PDF Downloads 323
1812 Electrostatic Cleaning System Integrated with Thunderon Brush for Lunar Dust Mitigation

Authors: Voss Harrigan, Korey Carter, Mohammad Reza Shaeri

Abstract:

Detrimental effects of lunar dust on space hardware, spacesuits, and astronauts’ health have been already identified during Apollo missions. Developing effective dust mitigation technologies is critically important for successful space exploration and related missions in NASA applications. In this study, an electrostatic cleaning system (ECS) integrated with a negatively ionized Thunderon brush was developed to mitigate small-sized lunar dust particles with diameters ranging from 0.04 µm to 35 µm, and the mean and median size of 7 µm and 5 µm, respectively. It was found that the frequency pulses of the negative ion generator caused particles to stick to the Thunderon bristles and repel between the pulses. The brush was used manually to ensure that particles were removed from areas where the ECS failed to mitigate the lunar simulant. The acquired data demonstrated that the developed system removed over 91-96% of the lunar dust particles. The present study was performed as a proof-of-concept to enhance the cleaning performance of ECSs by integrating a brushing process. Suggestions were made to further improve the performance of the developed technology through future research.

Keywords: lunar dust mitigation, electrostatic cleaning system, Brushing, Thunderon brush, cleaning rate

Procedia PDF Downloads 236
1811 Exploratory Data Analysis of Passenger Movement on Delhi Urban Bus Route

Authors: Sourabh Jain, Sukhvir Singh Jain, Gaurav V. Jain

Abstract:

Intelligent Transportation System is an integrated application of communication, control and monitoring and display process technologies for developing a user–friendly transportation system for urban areas in developing countries. In fact, the development of a country and the progress of its transportation system are complementary to each other. Urban traffic has been growing vigorously due to population growth as well as escalation of vehicle ownership causing congestion, delays, pollution, accidents, high-energy consumption and low productivity of resources. The development and management of urban transport in developing countries like India however, is at tryout stage with very few accumulations. Under the umbrella of ITS, urban corridor management strategy have proven to be one of the most successful system in accomplishing these objectives. The present study interprets and figures out the performance of the 27.4 km long Urban Bus route having six intersections, five flyovers and 29 bus stops that covers significant area of the city by causality analysis. Performance interpretations incorporate Passenger Boarding and Alighting, Dwell time, Distance between Bus Stops and Total trip time taken by bus on selected urban route.

Keywords: congestion, dwell time, passengers boarding alighting, travel time

Procedia PDF Downloads 329
1810 Design of Reconfigurable and Non-reciprocal Metasurface with Independent Controls of Transmission Gain, Attenuation and Phase

Authors: Shi Yu Wang, Qian Wei Zhang, He Li, Hao Han He, Yun Bo Li

Abstract:

The spatial controls of electromagnetic (EM) waves have always been a research hot spot in recent years. And the rapid development of metasurface-based technologies has provided more freedoms for manipulating the EM waves. Here we propose the design of reconfigurable and non-reciprocal metasurface with independent controls of transmission gain, attenuation and phase. The proposed meta-atom mainly consists of the cascaded textures including the receiving antenna, the middle layer in which the power amplifiers (PAs), programmable attenuator and phase shifter locate, and the transmitting antenna. The programmable attenuator and phase shifter can realize the dynamic controls of transmission amplitude and phase independently, and the PA devices in the meta-atom can actualize the performance of non-reciprocal transmission. The proposed meta-atom is analyzed applying field-circuit co-simulation and a sample of the meta-atom is fabricated and measured under using two standard waveguides. The measured results verify the ability of the independent manipulation for transmission amplitude and phase of the proposed the meta-atom and the design method has been verified very well correspondingly.

Keywords: active circuits, independent controls of multiple electromagnetic features, non-reciprocal electromagnetic transmission, reconfigurable and programmable

Procedia PDF Downloads 72
1809 Satisfaction of Distance Education University Students with the Use of Audio Media as a Medium of Instruction: The Case of Mountains of the Moon University in Uganda

Authors: Mark Kaahwa, Chang Zhu, Moses Muhumuza

Abstract:

This study investigates the satisfaction of distance education university students (DEUS) with the use of audio media as a medium of instruction. Studying students’ satisfaction is vital because it shows whether learners are comfortable with a certain instructional strategy or not. Although previous studies have investigated the use of audio media, the satisfaction of students with an instructional strategy that combines radio teaching and podcasts as an independent teaching strategy has not been fully investigated. In this study, all lectures were delivered through the radio and students had no direct contact with their instructors. No modules or any other material in form of text were given to the students. They instead, revised the taught content by listening to podcasts saved on their mobile electronic gadgets. Prior to data collection, DEUS received orientation through workshops on how to use audio media in distance education. To achieve objectives of the study, a survey, naturalistic observations and face-to-face interviews were used to collect data from a sample of 211 undergraduate and graduate students. Findings indicate that there was no statistically significant difference in the levels of satisfaction between male and female students. The results from post hoc analysis show that there is a statistically significant difference in the levels of satisfaction regarding the use of audio media between diploma and graduate students. Diploma students are more satisfied compared to their graduate counterparts. T-test results reveal that there was no statistically significant difference in the general satisfaction with audio media between rural and urban-based students. And ANOVA results indicate that there is no statistically significant difference in the levels of satisfaction with the use of audio media across age groups. Furthermore, results from observations and interviews reveal that DEUS found learning using audio media a pleasurable medium of instruction. This is an indication that audio media can be considered as an instructional strategy on its own merit.

Keywords: audio media, distance education, distance education university students, medium of instruction, satisfaction

Procedia PDF Downloads 111
1808 Research Study on the Environmental Conditions in the Foreign

Authors: Vahid Bairami Rad, Shapoor Norazar, Moslem Talebi Asl

Abstract:

The fast growing accessibility and capability of emerging technologies have fashioned enormous possibilities of designing, developing and implementing innovative teaching methods in the classroom. Using teaching methods and technology together have a fantastic results, because the global technological scenario has paved the way to new pedagogies in teaching-learning process. At the other side methods by focusing on students and the ways of learning in them, that can demonstrate logical ways of improving student achievement in English as a foreign language in Iran. The sample of study was 90 students of 10th grade of high school located in Ardebil. A pretest-posttest equivalent group designed to compare the achievement of groups. Students divided to 3 group, Control base, computer base, method and technology base. Pretest and post test contain 30 items each from English textbook were developed and administrated, then obtained data were analyzed. The results showed that there was an important difference. The 3rd group performance was better than other groups. On the basis of this result it was obviously counseled that teaching-learning capabilities.

Keywords: method, technology based environment, computer based environment, english as a foreign language, student achievement

Procedia PDF Downloads 467
1807 Design and Implementation of Machine Learning Model for Short-Term Energy Forecasting in Smart Home Management System

Authors: R. Ramesh, K. K. Shivaraman

Abstract:

The main aim of this paper is to handle the energy requirement in an efficient manner by merging the advanced digital communication and control technologies for smart grid applications. In order to reduce user home load during peak load hours, utility applies several incentives such as real-time pricing, time of use, demand response for residential customer through smart meter. However, this method provides inconvenience in the sense that user needs to respond manually to prices that vary in real time. To overcome these inconvenience, this paper proposes a convolutional neural network (CNN) with k-means clustering machine learning model which have ability to forecast energy requirement in short term, i.e., hour of the day or day of the week. By integrating our proposed technique with home energy management based on Bluetooth low energy provides predicted value to user for scheduling appliance in advanced. This paper describes detail about CNN configuration and k-means clustering algorithm for short-term energy forecasting.

Keywords: convolutional neural network, fuzzy logic, k-means clustering approach, smart home energy management

Procedia PDF Downloads 294
1806 Progress and Challenges of Smart Cities in India: An Exploratory Study

Authors: Sushil K. Sharma, Jeff Zhang, Saeed Tabar

Abstract:

Worldwide, several governments are utilizing the Internet of Things (IoT) and other information and communication technologies (ICTs) to create smart city infrastructures to improve both the quality of government services and citizen welfare. Over 700 cities from around the world have already started implementing their smart city projects. Smart City utilizes the network of connected things, or the Internet of Things (IoT), that interconnects devices and various components across city infrastructure, making them work together seamlessly to enhance the quality, performance, and interactivity of urban services, optimize resources, and reduce costs. Without developing smart cities, the accelerating growth of cities, and their disproportionate consumption of physical and social resources are unsustainable. In 2016, the Indian Government released a list of 100 cities with the intention of kick-starting the process of developing them into 'smart cities’ as part of the Smart Cities Mission. This study reports the progress and challenges of Smart City projects in India. The data were collected through the city/state government websites, media reports, and focus group discussions/interviews. The preliminary results indicate that smart city projects are not only behind in their implementation and scope but also lacks the sincerity for its implementation.

Keywords: smart city, smart government, Internet of Things, digital government

Procedia PDF Downloads 168
1805 Consumer Perception of 3D Body Scanning While Online Shopping for Clothing

Authors: A. Grilec, S. Petrak, M. Mahnic Naglic

Abstract:

Technological development and the globalization in production and sales of clothing in the last decade have significantly influenced the changes in consumer relationship with the industrial-fashioned apparel and in the way of clothing purchasing. The Internet sale of clothing is in a constant and significant increase in the global market, but the possibilities offered by modern computing technologies in the customization segment are not yet fully involved, especially according to the individual customer requirements and body sizes. Considering the growing trend of online shopping, the main goal of this paper is to investigate the differences in customer perceptions towards online apparel shopping and particularly to discover the main differences in perceptions between customers regarding three different body sizes. In order to complete the research goal, the quantitative study on the sample of 85 Croatian consumers was conducted in 2017 in Zagreb, Croatia. Respondents were asked to indicate their level of agreement according to a five-point Likert scale ranging from strongly disagree (1) to strongly agree (5). To analyze attitudes of respondents, simple and descriptive statistics were used. The main findings highlight the differences in respondent perception of 3D body scanning, using 3D body scanning in Internet shopping, online apparel shopping habits regarding their body sizes.

Keywords: consumer behavior, Internet, 3D body scanning, body types

Procedia PDF Downloads 157
1804 Cooperative Robot Application in a Never Explored or an Abandoned Sub-Surface Mine

Authors: Michael K. O. Ayomoh, Oyindamola A. Omotuyi

Abstract:

Autonomous mobile robots deployed to explore or operate in a never explored or an abandoned sub-surface mine requires extreme effectiveness in coordination and communication. In a bid to transmit information from the depth of the mine to the external surface in real-time and amidst diverse physical, chemical and virtual impediments, the concept of unified cooperative robots is seen to be a proficient approach. This paper presents an effective [human → robot → task] coordination framework for effective exploration of an abandoned underground mine. The problem addressed in this research is basically the development of a globalized optimization model premised on time series differentiation and geometrical configurations for effective positioning of the two classes of robots in the cooperation namely the outermost stationary master (OSM) robots and the innermost dynamic task (IDT) robots for effective bi-directional signal transmission. In addition, the synchronization of a vision system and wireless communication system for both categories of robots, fiber optics system for the OSM robots in cases of highly sloppy or vertical mine channels and an autonomous battery recharging capability for the IDT robots further enhanced the proposed concept. The OSM robots are the master robots which are positioned at strategic locations starting from the mine open surface down to its base using a fiber-optic cable or a wireless communication medium all subject to the identified mine geometrical configuration. The OSM robots are usually stationary and function by coordinating the transmission of signals from the IDT robots at the base of the mine to the surface and in a reverse order based on human decisions at the surface control station. The proposed scheme also presents an optimized number of robots required to form the cooperation in a bid to reduce overall operational cost and system complexity.

Keywords: sub-surface mine, wireless communication, outermost stationary master robots, inner-most dynamic robots, fiber optic

Procedia PDF Downloads 209
1803 Paper-Like and Battery Free Sensor Patches for Wound Monitoring

Authors: Xiaodi Su, Xin Ting Zheng, Laura Sutarlie, Nur Asinah binte Mohamed Salleh, Yong Yu

Abstract:

Wound healing is a dynamic process with multiple phases. Rapid profiling and quantitative characterization of inflammation and infection remain challenging. We have developed paper-like battery-free multiplexed sensors for holistic wound assessment via quantitative detection of multiple inflammation and infection markers. In one of the designs, the sensor patch consists of a wax-printed paper panel with five colorimetric sensor channels arranged in a pattern resembling a five-petaled flower (denoted as a ‘Petal’ sensor). The five sensors are for temperature, pH, trimethylamine, uric acid, and moisture. The sensor patch is sandwiched between a top transparent silicone layer and a bottom adhesive wound contact layer. In the second design, a palm-like-shaped paper strip is fabricated by a paper-cutter printer (denoted as ‘Palm’ sensor). This sensor strip carries five sensor regions connected by a stem sampling entrance that enables rapid colorimetric detection of multiple bacteria metabolites (aldehyde, lactate, moisture, trimethylamine, tryptophan) from wound exudate. For both the “\’ Petal’ and ‘Palm’ sensors, color images can be captured by a mobile phone. According to the color changes, one can quantify the concentration of the biomarkers and then determine wound healing status and identify/quantify bacterial species in infected wounds. The ‘Petal’ and ‘Palm’ sensors are validated with in-situ animal and ex-situ skin wound models, respectively. These sensors have the potential for integration with wound dressing to allow early warning of adverse events without frequent removal of the plasters. Such in-situ and early detection of non-healing condition can trigger immediate clinical intervention to facilitate wound care management.

Keywords: wound infection, colorimetric sensor, paper fluidic sensor, wound care

Procedia PDF Downloads 74
1802 Assessment of the Production System and Management Practices in Selected Layer Chicken Farms in Batangas, Philippines

Authors: Monette S. De Castro, Veneranda A. Magpantay, Christine B. Adiova, Mark D. Arboleda

Abstract:

One-hundred-layer chicken farmers were randomly selected and interviewed using structured questionnaires to assess the production system and management practices in layer chicken farms. The respondents belonged to the commercial scale operation. Results showed that the predominant rearing and housing systems were intensive/complete confinement and open-sided, while slatted was the common type of flooring used during the brood-grow period. Dekalb and Lohmann were the common chicken layer strains reared by farmers. The majority of commercial chicken layer farms preferred ready-to-lay (RTL) pullets as their replacement stocks. Selling was the easiest way for farmers to dispose of and utilize poultry manure, while veterinary waste and mortality were disposed of in pits. Biosecurity practices employed by the farmers conformed with the ASEAN Biosecurity Management Manual for Commercial Poultry Farming. Flies and odor were the major problems in most layer farms that are associated with their farm wastes. Therefore, the application of new technologies and husbandry practices through training and actual demonstrations could be implemented to further improve the layer chicken raising in the province.

Keywords: layer chicken farms, marketing, production system, waste management

Procedia PDF Downloads 62
1801 Implementation of a Photo-Curable 3D Additive Manufacturing Technology with Grey Capability by Using Piezo Ink-jets

Authors: Ming-Jong Tsai, Y. L. Cheng, Y. L. Kuo, S. Y. Hsiao, J. W. Chen, P. H. Liu, D. H. Chen

Abstract:

The 3D printing is a combination of digital technology, material science, intelligent manufacturing and control of opto-mechatronics systems. It is called the third industrial revolution from the view of the Economist Journal. A color 3D printing machine may provide the necessary support for high value-added industrial and commercial design, architectural design, personal boutique, and 3D artist’s creation. The main goal of this paper is to develop photo-curable color 3D manufacturing technology and system implementation. The key technologies include (1) Photo-curable color 3D additive manufacturing processes development and materials research (2) Piezo type ink-jet head control and Opto-mechatronics integration technique of the photo-curable color 3D laminated manufacturing system. The proposed system is integrated with single Piezo type ink-jet head with two individual channels for two primary UV light curable color resins which can provide for future colorful 3D printing solutions. The main research results are 16 grey levels and grey resolution of 75 dpi.

Keywords: 3D printing, additive manufacturing, color, photo-curable, Piezo type ink-jet, UV Resin

Procedia PDF Downloads 553
1800 A Witty Relief Ailment Based on the Integration of IoT and Cloud

Authors: Sai Shruthi Sridhar, A. Madhumidha, Kreethika Guru, Priyanka Sekar, Ananthi Malayappan

Abstract:

Numerous changes in technology and its recent development are structuring long withstanding effect to our world, one among them is the emergence of “Internet of Things” (IoT). Similar to Technology world, one industry stands out in everyday life–healthcare. Attention to “quality of health care” is an increasingly important issue in a global economy and for every individual. As per WHO (World Health Organization) it is estimated to be less than 50% adhere to the medication provided and only about 20% get their medicine on time. Medication adherence is one of the top problems in healthcare which is fixable by use of technology. In recent past, there were minor provisions for elderly and specially-skilled to get motivated and to adhere medicines prescribed. This paper proposes a novel solution that uses IOT based RFID Medication Reminder Solution to provide personal health care services. This employs real time tracking which offer quick counter measures. The proposed solution builds on the recent digital advances in sensor technologies, smart phones and cloud services. This novel solution is easily adoptable and can benefit millions of people with a direct impact on the nation’s health care expenditure with innovative scenarios and pervasive connectivity.

Keywords: cloud services, IoT, RFID, sensors

Procedia PDF Downloads 335
1799 Understanding the Thermal Transformation of Random Access Memory Cards: A Pathway to Their Efficient Recycling

Authors: Khushalini N. Ulman, Samane Maroufi, Veena H. Sahajwalla

Abstract:

Globally, electronic waste (e-waste) continues to grow at an alarming rate. Several technologies have been developed to recover valuable materials from e-waste, however, their efficiency can be increased with a better knowledge of the e-waste components. Random access memory cards (RAMs) are considered as high value scrap for the e-waste recyclers. Despite their high precious metal content, RAMs are still recycled in a conventional manner resulting in huge loss of resources. Our research work highlights the precious metal rich components of a RAM. Inductively coupled plasma (ICP) analysis of RAMs of six different generations have been carried out and the trends in their metal content have been investigated. Over the past decade, the copper content of RAMs has halved and their tin content has increased by 70 %. The stricter environmental laws have facilitated ~96 % drop in the lead content of RAMs. To comprehend the fundamentals of thermal transformation of RAMs, our research provides their detailed kinetic study. This can assist the e-waste recyclers in optimising their metal recovery processes. Thus, understanding the chemical and thermal behaviour of RAMs can open new avenues for efficient e-waste recycling.

Keywords: electronic waste, kinetic study, recycling, thermal transformation

Procedia PDF Downloads 140
1798 Role of Organic Wastewater Constituents in Iron Redox Cycling for Ferric Sludge Reuse in the Fenton-Based Treatment

Authors: J. Bolobajev, M. Trapido, A. Goi

Abstract:

The practical application of the Fenton-based treatment method for organic compounds-contaminated water purification is limited mainly because of the large amount of ferric sludge formed during the treatment, where ferrous iron (Fe(II)) is used as the activator of the hydrogen peroxide oxidation processes. Reuse of ferric sludge collected from clarifiers to substitute Fe(II) salts allows reducing the total cost of Fenton-type treatment technologies and minimizing the accumulation of hazardous ferric waste. Dissolution of ferric iron (Fe(III)) from the sludge to liquid phase at acidic pH and autocatalytic transformation of Fe(III) to Fe(II) by phenolic compounds (tannic acid, lignin, phenol, catechol, pyrogallol and hydroquinone) added or present as water/wastewater constituents were found to be essentially involved in the Fenton-based oxidation mechanism. Observed enhanced formation of highly reactive species, hydroxyl radicals, resulted in a substantial organic contaminant degradation increase. Sludge reuse at acidic pH and in the presence of ferric iron reductants is a novel strategy in the Fenton-based treatment application for organic compounds-contaminated water purification.

Keywords: ferric sludge recycling, ferric iron reductant, water treatment, organic pollutant

Procedia PDF Downloads 285
1797 Massively Parallel Sequencing Improved Resolution for Paternity Testing

Authors: Xueying Zhao, Ke Ma, Hui Li, Yu Cao, Fan Yang, Qingwen Xu, Wenbin Liu

Abstract:

Massively parallel sequencing (MPS) technologies allow high-throughput sequencing analyses with a relatively affordable price and have gradually been applied to forensic casework. MPS technology identifies short tandem repeat (STR) loci based on sequence so that repeat motif variation within STRs can be detected, which may help one to infer the origin of the mutation in some cases. Here, we report on one case with one three-step mismatch (D18S51) in family trios based on both capillary electrophoresis (CE) and MPS typing. The alleles of the alleged father (AF) are [AGAA]₁₇AGAG[AGAA]₃ and [AGAA]₁₅. The mother’s alleles are [AGAA]₁₉ and [AGAA]₉AGGA[AGAA]₃. The questioned child’s (QC) alleles are [AGAA]₁₉ and [AGAA]₁₂. Given that the sequence variants in repeat regions of AF and mother are not observed in QC’s alleles, the QC’s allele [AGAA]₁₂ was likely inherited from the AF’s allele [AGAA]₁₅ by loss of three repeat [AGAA]. Besides, two new alleles of D18S51 in this study, [AGAA]₁₇AGAG[AGAA]₃ and [AGAA]₉AGGA[AGAA]₃, have not been reported before. All the results in this study were verified using Sanger-type sequencing. In summary, the MPS typing method can offer valuable information for forensic genetics research and play a promising role in paternity testing.

Keywords: family trios analysis, forensic casework, ion torrent personal genome machine (PGM), massively parallel sequencing (MPS)

Procedia PDF Downloads 295