Search results for: cloud network
2133 Automatic Method for Classification of Informative and Noninformative Images in Colonoscopy Video
Authors: Nidhal K. Azawi, John M. Gauch
Abstract:
Colorectal cancer is one of the leading causes of cancer death in the US and the world, which is why millions of colonoscopy examinations are performed annually. Unfortunately, noise, specular highlights, and motion artifacts corrupt many images in a typical colonoscopy exam. The goal of our research is to produce automated techniques to detect and correct or remove these noninformative images from colonoscopy videos, so physicians can focus their attention on informative images. In this research, we first automatically extract features from images. Then we use machine learning and deep neural network to classify colonoscopy images as either informative or noninformative. Our results show that we achieve image classification accuracy between 92-98%. We also show how the removal of noninformative images together with image alignment can aid in the creation of image panoramas and other visualizations of colonoscopy images.Keywords: colonoscopy classification, feature extraction, image alignment, machine learning
Procedia PDF Downloads 2532132 Transient Signal Generator For Fault Indicator Testing
Authors: Mohamed Shaban, Ali Alfallah
Abstract:
This paper describes an application for testing of a fault indicator but it could be used for other network protection testing. The application is created in the LabVIEW environment and consists of three parts. The first part of the application is determined for transient phenomenon generation and imitates voltage and current transient signal at ground fault originate. The second part allows to set sequences of trend for each current and voltage output signal, up to six trends for each phase. The last part of the application generates harmonic signal with continuously controllable amplitude of current or voltage output signal and phase shift of each signal can be changed there. Further any sub-harmonics and upper harmonics can be added to selected current output signalKeywords: signal generator-fault indicator, harmonic signal generator, voltage output
Procedia PDF Downloads 4982131 Predicting Blockchain Technology Installation Cost in Supply Chain System through Supervised Learning
Authors: Hossein Havaeji, Tony Wong, Thien-My Dao
Abstract:
1. Research Problems and Research Objectives: Blockchain Technology-enabled Supply Chain System (BT-enabled SCS) is the system using BT to drive SCS transparency, security, durability, and process integrity as SCS data is not always visible, available, or trusted. The costs of operating BT in the SCS are a common problem in several organizations. The costs must be estimated as they can impact existing cost control strategies. To account for system and deployment costs, it is necessary to overcome the following hurdle. The problem is that the costs of developing and running a BT in SCS are not yet clear in most cases. Many industries aiming to use BT have special attention to the importance of BT installation cost which has a direct impact on the total costs of SCS. Predicting BT installation cost in SCS may help managers decide whether BT is to be an economic advantage. The purpose of the research is to identify some main BT installation cost components in SCS needed for deeper cost analysis. We then identify and categorize the main groups of cost components in more detail to utilize them in the prediction process. The second objective is to determine the suitable Supervised Learning technique in order to predict the costs of developing and running BT in SCS in a particular case study. The last aim is to investigate how the running BT cost can be involved in the total cost of SCS. 2. Work Performed: Applied successfully in various fields, Supervised Learning is a method to set the data frame, treat the data, and train/practice the method sort. It is a learning model directed to make predictions of an outcome measurement based on a set of unforeseen input data. The following steps must be conducted to search for the objectives of our subject. The first step is to make a literature review to identify the different cost components of BT installation in SCS. Based on the literature review, we should choose some Supervised Learning methods which are suitable for BT installation cost prediction in SCS. According to the literature review, some Supervised Learning algorithms which provide us with a powerful tool to classify BT installation components and predict BT installation cost are the Support Vector Regression (SVR) algorithm, Back Propagation (BP) neural network, and Artificial Neural Network (ANN). Choosing a case study to feed data into the models comes into the third step. Finally, we will propose the best predictive performance to find the minimum BT installation costs in SCS. 3. Expected Results and Conclusion: This study tends to propose a cost prediction of BT installation in SCS with the help of Supervised Learning algorithms. At first attempt, we will select a case study in the field of BT-enabled SCS, and then use some Supervised Learning algorithms to predict BT installation cost in SCS. We continue to find the best predictive performance for developing and running BT in SCS. Finally, the paper will be presented at the conference.Keywords: blockchain technology, blockchain technology-enabled supply chain system, installation cost, supervised learning
Procedia PDF Downloads 1232130 Application of Artificial Neural Networks to Adaptive Speed Control under ARDUINO
Authors: Javier Fernandez De Canete, Alvaro Fernandez-Quintero
Abstract:
Nowadays, adaptive control schemes are being used when model based control schemes are applied in presence of uncertainty and model mismatches. Artificial neural networks have been employed both in modelling and control of non-linear dynamic systems with unknown dynamics. In fact, these are powerful tools to solve this control problem when only input-output operational data are available. A neural network controller under SIMULINK together with the ARDUINO hardware platform has been used to perform real-time speed control of a computer case fan. Comparison of performance with a PID controller has also been presented in order to show the efficacy of neural control under different command signals tracking and also when disturbance signals are present in the speed control loops.Keywords: neural networks, ARDUINO platform, SIMULINK, adaptive speed control
Procedia PDF Downloads 3672129 Highway Casualty Rate in Nigeria: Implication for Human Capital Development
Authors: Ali Maji
Abstract:
Highway development is an important factor for economic growth and development in both developed and developing countries. In Nigeria about two-third of transportation of goods and persons are done through highway network. It was this that made highway investment to enjoy position of relative high priority on the list of government expenditure programmes in Nigeria today. The paper noted that despite expansion of public investment in highway construction and maintenance of them, road traffic accident is increasing rate. This has acted as a drain of human capital which is a key to economic growth and development in Nigeria. In order to avoid this, the paper recommend introduction of Highway Safety Education (HSE) in Nigerian’s education system and investment in train transportation among other as a sure measure for curtailing highway accident.Keywords: accident rate, high way development, human capital, national development
Procedia PDF Downloads 2882128 Degradation of the Cu-DOM Complex by Bacteria: A Way to Increase Phytoextraction of Copper in a Vineyard Soil
Authors: Justine Garraud, Hervé Capiaux, Cécile Le Guern, Pierre Gaudin, Clémentine Lapie, Samuel Chaffron, Erwan Delage, Thierry Lebeau
Abstract:
The repeated use of Bordeaux mixture (copper sulphate) and other chemical forms of copper (Cu) has led to its accumulation in wine-growing soils for more than a century, to the point of modifying the ecosystem of these soils. Phytoextraction of copper could progressively reduce the Cu load in these soils, and even to recycle copper (e.g. as a micronutrient in animal nutrition) by cultivating the extracting plants in the inter-row of the vineyards. Soil cleaning up usually requires several years because the chemical speciation of Cu in solution is mainly based on forms complexed with dissolved organic matter (DOM) that are not phytoavailable, unlike the "free" forms (Cu2+). Indeed, more than 98% of Cu in the solution is bound to DOM. The selection and inoculation of invineyardsoils in vineyard soils ofbacteria(bioaugmentation) able to degrade Cu-DOM complexes could increase the phytoavailable pool of Cu2+ in the soil solution (in addition to bacteria which first mobilize Cu in solution from the soil bearing phases) in order to increase phytoextraction performance. In this study, sevenCu-accumulating plants potentially usable in inter-row were tested for their Cu phytoextraction capacity in hydroponics (ray-grass, brown mustard, buckwheat, hemp, sunflower, oats, and chicory). Also, a bacterial consortium was tested: Pseudomonas sp. previously studied for its ability to mobilize Cu through the pyoverdine siderophore (complexing agent) and potentially to degrade Cu-DOM complexes, and a second bacterium (to be selected) able to promote the survival of Pseudomonas sp. following its inoculation in soil. Interaction network method was used based on the notions of co-occurrence and, therefore, of bacterial abundance found in the same soils. Bacteria from the EcoVitiSol project (Alsace, France) were targeted. The final step consisted of incoupling the bacterial consortium with the chosen plant in soil pots. The degradation of Cu-DOMcomplexes is measured on the basis of the absorption index at 254nm, which gives insight on the aromaticity of the DOM. The“free” Cu in solution (from the mobilization of Cu and/or the degradation of Cu-MOD complexes) is assessed by measuring pCu. Eventually, Cu accumulation in plants is measured by ICP-AES. The selection of the plant is currently being finalized. The interaction network method targeted the best positive interactions ofFlavobacterium sp. with Pseudomonassp. These bacteria are both PGPR (plant growth promoting rhizobacteria) with the ability to improve the plant growth and to mobilize Cu from the soil bearing phases (siderophores). Also, these bacteria are known to degrade phenolic groups, which are highly present in DOM. They could therefore contribute to the degradation of DOM-Cu. The results of the upcoming bacteria-plant coupling tests in pots will be also presented.Keywords: complexes Cu-DOM, bioaugmentation, phytoavailability, phytoextraction
Procedia PDF Downloads 842127 Parallelization of Random Accessible Progressive Streaming of Compressed 3D Models over Web
Authors: Aayushi Somani, Siba P. Samal
Abstract:
Three-dimensional (3D) meshes are data structures, which store geometric information of an object or scene, generally in the form of vertices and edges. Current technology in laser scanning and other geometric data acquisition technologies acquire high resolution sampling which leads to high resolution meshes. While high resolution meshes give better quality rendering and hence is used often, the processing, as well as storage of 3D meshes, is currently resource-intensive. At the same time, web applications for data processing have become ubiquitous owing to their accessibility. For 3D meshes, the advancement of 3D web technologies, such as WebGL, WebVR, has enabled high fidelity rendering of huge meshes. However, there exists a gap in ability to stream huge meshes to a native client and browser application due to high network latency. Also, there is an inherent delay of loading WebGL pages due to large and complex models. The focus of our work is to identify the challenges faced when such meshes are streamed into and processed on hand-held devices, owing to its limited resources. One of the solutions that are conventionally used in the graphics community to alleviate resource limitations is mesh compression. Our approach deals with a two-step approach for random accessible progressive compression and its parallel implementation. The first step includes partition of the original mesh to multiple sub-meshes, and then we invoke data parallelism on these sub-meshes for its compression. Subsequent threaded decompression logic is implemented inside the Web Browser Engine with modification of WebGL implementation in Chromium open source engine. This concept can be used to completely revolutionize the way e-commerce and Virtual Reality technology works for consumer electronic devices. These objects can be compressed in the server and can be transmitted over the network. The progressive decompression can be performed on the client device and rendered. Multiple views currently used in e-commerce sites for viewing the same product from different angles can be replaced by a single progressive model for better UX and smoother user experience. Can also be used in WebVR for commonly and most widely used activities like virtual reality shopping, watching movies and playing games. Our experiments and comparison with existing techniques show encouraging results in terms of latency (compressed size is ~10-15% of the original mesh), processing time (20-22% increase over serial implementation) and quality of user experience in web browser.Keywords: 3D compression, 3D mesh, 3D web, chromium, client-server architecture, e-commerce, level of details, parallelization, progressive compression, WebGL, WebVR
Procedia PDF Downloads 1702126 Channels Splitting Strategy for Optical Local Area Networks of Passive Star Topology
Authors: Peristera Baziana
Abstract:
In this paper, we present a network configuration for a WDM LANs of passive star topology that assume that the set of data WDM channels is split into two separate sets of channels, with different access rights over them. Especially, a synchronous transmission WDMA access algorithm is adopted in order to increase the probability of successful transmission over the data channels and consequently to reduce the probability of data packets transmission cancellation in order to avoid the data channels collisions. Thus, a control pre-transmission access scheme is followed over a separate control channel. An analytical Markovian model is studied and the average throughput is mathematically derived. The performance is studied for several numbers of data channels and various values of control phase duration.Keywords: access algorithm, channels division, collisions avoidance, wavelength division multiplexing
Procedia PDF Downloads 2972125 Integration of UPQC Based on Fuzzy Controller for Power Quality Enhancement in Distributed Network
Authors: M. Habab, C. Benachaiba, B. Mazari, H. Madi, C. Benoudjafer
Abstract:
The use of Distributed Generation (DG) has been increasing in recent years to fill the gap between energy supply and demand. This paper presents the grid connected wind energy system with UPQC based on fuzzy controller to compensate for voltage and current disturbances. The proposed system can improve power quality at the point of installation on power distribution systems. Simulation results show the capability of the DG-UPQC intelligent system to compensate sags voltage and current harmonics at the Point of Common Coupling (PCC).Keywords: shunt active filter, series active filter, UPQC, power quality, sags voltage, distributed generation, wind turbine
Procedia PDF Downloads 4082124 Analysis of Ancient and Present Lightning Protection Systems of Large Heritage Stupas in Sri Lanka
Authors: J.R.S.S. Kumara, M.A.R.M. Fernando, S.Venkatesh, D.K. Jayaratne
Abstract:
Protection of heritage monuments against lightning has become extremely important as far as their historical values are concerned. When such structures are large and tall, the risk of lightning initiated from both cloud and ground can be high. This paper presents a lightning risk analysis of three giant stupas in Anuradhapura era (fourth century BC onwards) in Sri Lanka. The three stupas are Jethawaaramaya (269-296 AD), Abayagiriya (88-76 BC) and Ruwanweliseya (161-137 BC), the third, fifth and seventh largest ancient structures in the world. These stupas are solid brick structures consisting of a base, a near hemispherical dome and a conical spire on the top. The ancient stupas constructed with a dielectric crystal on the top and connected to the ground through a conducting material, was considered as the hypothesis for their original lightning protection technique. However, at present, all three stupas are protected with Franklin rod type air termination systems located on top of the spire. First, a risk analysis was carried out according to IEC 62305 by considering the isokeraunic level of the area and the height of the stupas. Then the standard protective angle method and rolling sphere method were used to locate the possible touching points on the surface of the stupas. The study was extended to estimate the critical current which could strike on the unprotected areas of the stupas. The equations proposed by (Uman 2001) and (Cooray2007) were used to find the striking distances. A modified version of rolling sphere method was also applied to see the effects of upward leaders. All these studies were carried out for two scenarios: with original (i.e. ancient) lightning protection system and with present (i.e. new) air termination system. The field distribution on the surface of the stupa in the presence of a downward leader was obtained using finite element based commercial software COMSOL Multiphysics for further investigations of lightning risks. The obtained results were analyzed and compared each other to evaluate the performance of ancient and new lightning protection methods and identify suitable methods to design lightning protection systems for stupas. According to IEC standards, all three stupas with new and ancient lightning protection system has Level IV protection as per protection angle method. However according to rolling sphere method applied with Uman’s equation protection level is III. The same method applied with Cooray’s equation always shows a high risk with respect to Uman’s equation. It was found that there is a risk of lightning strikes on the dome and square chamber of the stupa, and the corresponding critical current values were different with respect to the equations used in the rolling sphere method and modified rolling sphere method.Keywords: Stupa, heritage, lightning protection, rolling sphere method, protection level
Procedia PDF Downloads 2562123 Backstepping Controller for a Variable Wind Speed Energy Conversion System Based on a DFIG
Authors: Sara Mensou, Ahmed Essadki, Issam Minka, Tamou Nasser, Badr Bououlid Idrissi
Abstract:
In this paper we present a contribution for the modeling and control of wind energy conversion system based on a Doubly Fed Induction Generator (DFIG). Since the wind speed is random the system has to produce an optimal electrical power to the Network and ensures important strength and stability. In this work, the Backstepping controller is used to control the generator via two converter witch placed a DC bus capacitor and connected to the grid by a Filter R-L, in order to optimize capture wind energy. All is simulated and presented under MATLAB/Simulink Software to show performance and robustness of the proposed controller.Keywords: wind turbine, doubly fed induction generator, MPPT control, backstepping controller, power converter
Procedia PDF Downloads 1912122 Designing State Feedback Multi-Target Controllers by the Use of Particle Swarm Optimization Algorithm
Authors: Seyedmahdi Mousavihashemi
Abstract:
One of the most important subjects of interest in researches is 'improving' which result in various algorithms. In so many geometrical problems we are faced with target functions which should be optimized. In group practices, all the functions’ cooperation lead to convergence. In the study, the optimization algorithm of dense particles is used. Usage of the algorithm improves the given performance norms. The results reveal that usage of swarm algorithm for reinforced particles in designing state feedback improves the given performance norm and in optimized designing of multi-target state feedback controlling, the network will maintain its bearing structure. The results also show that PSO is usable for optimization of state feedback controllers.Keywords: multi-objective, enhanced, feedback, optimization, algorithm, particle, design
Procedia PDF Downloads 5022121 Measuring Emotion Dynamics on Facebook: Associations between Variability in Expressed Emotion and Psychological Functioning
Authors: Elizabeth M. Seabrook, Nikki S. Rickard
Abstract:
Examining time-dependent measures of emotion such as variability, instability, and inertia, provide critical and complementary insights into mental health status. Observing changes in the pattern of emotional expression over time could act as a tool to identify meaningful shifts between psychological well- and ill-being. From a practical standpoint, however, examining emotion dynamics day-to-day is likely to be burdensome and invasive. Utilizing social media data as a facet of lived experience can provide real-world, temporally specific access to emotional expression. Emotional language on social media may provide accurate and sensitive insights into individual and community mental health and well-being, particularly with focus placed on the within-person dynamics of online emotion expression. The objective of the current study was to examine the dynamics of emotional expression on the social network platform Facebook for active users and their relationship with psychological well- and ill-being. It was expected that greater positive and negative emotion variability, instability, and inertia would be associated with poorer psychological well-being and greater depression symptoms. Data were collected using a smartphone app, MoodPrism, which delivered demographic questionnaires, psychological inventories assessing depression symptoms and psychological well-being, and collected the Status Updates of consenting participants. MoodPrism also delivered an experience sampling methodology where participants completed items assessing positive affect, negative affect, and arousal, daily for a 30-day period. The number of positive and negative words in posts was extracted and automatically collated by MoodPrism. The relative proportion of positive and negative words from the total words written in posts was then calculated. Preliminary analyses have been conducted with the data of 9 participants. While these analyses are underpowered due to sample size, they have revealed trends that greater variability in the emotion valence expressed in posts is positively associated with greater depression symptoms (r(9) = .56, p = .12), as is greater instability in emotion valence (r(9) = .58, p = .099). Full data analysis utilizing time-series techniques to explore the Facebook data set will be presented at the conference. Identifying the features of emotion dynamics (variability, instability, inertia) that are relevant to mental health in social media emotional expression is a fundamental step in creating automated screening tools for mental health that are temporally sensitive, unobtrusive, and accurate. The current findings show how monitoring basic social network characteristics over time can provide greater depth in predicting risk and changes in depression and positive well-being.Keywords: emotion, experience sampling methods, mental health, social media
Procedia PDF Downloads 2512120 A Secure Proxy Signature Scheme with Fault Tolerance Based on RSA System
Authors: H. El-Kamchouchi, Heba Gaber, Fatma Ahmed, Dalia H. El-Kamchouchi
Abstract:
Due to the rapid growth in modern communication systems, fault tolerance and data security are two important issues in a secure transaction. During the transmission of data between the sender and receiver, errors may occur frequently. Therefore, the sender must re-transmit the data to the receiver in order to correct these errors, which makes the system very feeble. To improve the scalability of the scheme, we present a secure proxy signature scheme with fault tolerance over an efficient and secure authenticated key agreement protocol based on RSA system. Authenticated key agreement protocols have an important role in building a secure communications network between the two parties.Keywords: proxy signature, fault tolerance, rsa, key agreement protocol
Procedia PDF Downloads 2882119 Optimization Method of Dispersed Generation in Electrical Distribution Systems
Authors: Mahmoud Samkan
Abstract:
Dispersed Generation (DG) is a promising solution to many power system problems such as voltage regulation and power loss. This paper proposes a heuristic two-step method to optimize the location and size of DG for reducing active power losses and, therefore, improve the voltage profile in radial distribution networks. In addition to a DG placed at the system load gravity center, this method consists in assigning a DG to each lateral of the network. After having determined the central DG placement, the location and size of each lateral DG are predetermined in the first step. The results are then refined in the second step. This method is tested for 33-bus system for 100% DG penetration. The results obtained are compared with those of other methods found in the literature.Keywords: optimal location, optimal size, dispersed generation (DG), radial distribution networks, reducing losses
Procedia PDF Downloads 4452118 Stock Price Prediction Using Time Series Algorithms
Authors: Sumit Sen, Sohan Khedekar, Umang Shinde, Shivam Bhargava
Abstract:
This study has been undertaken to investigate whether the deep learning models are able to predict the future stock prices by training the model with the historical stock price data. Since this work required time series analysis, various models are present today to perform time series analysis such as Recurrent Neural Network LSTM, ARIMA and Facebook Prophet. Applying these models the movement of stock price of stocks are predicted and also tried to provide the future prediction of the stock price of a stock. Final product will be a stock price prediction web application that is developed for providing the user the ease of analysis of the stocks and will also provide the predicted stock price for the next seven days.Keywords: Autoregressive Integrated Moving Average, Deep Learning, Long Short Term Memory, Time-series
Procedia PDF Downloads 1442117 The Politics of Fantasy Meet Precarity of Place
Authors: Claudia Popescu, Adriana Mihaela Soaita
Abstract:
Within the EU accession process, Romania, as well as other CEE countries, have embarked on the post-1990 urbanization wave aiming to reduce the gaps between ‘older’ and ‘new’ EU member states. While post-socialist urban transitions have been extensively scrutinized, little is known about the developing trajectories of these new towns across the CEE region. To start addressing this knowledge gap, we wish to bring to the fore one of the most humble expressions of urbanism, that of the small, new towns of Romania. Despite rural-to-urban reclassification, urbanization levels have remained persistently low over the last three decades. In this context, it is timely and legitimate to ask about the prospects of new towns for a ‘successful’ socioeconomic performance within the urban network and avoidance of precarity and marginalization and adequate measure of place performance within the urban/settlement network and understanding the drivers that trigger towns’ socioeconomic performances. To answer these, we create a socioeconomic index of the place in order to compare the profile of the 60 new towns with large cities, old small towns and rural. We conceive ‘successful’ and ‘precarious’ performance in terms of a locality’s index value being above or below all small towns’ index average. Second, we performed logistic regression to interrogate the relevance of some key structural factors to the new towns’ socioeconomic performance (i.e. population size, urban history, regional location, connectivity and political determination of their local governments). Related to the first research question, our findings highlight the precarity of place as a long-standing condition of living and working in the new towns of Romania, particularly evident through our cross-comparative analysis across key category along the rural-urban continuum. We have substantiated the socioeconomic condition of precarity in rural places, with the new towns still maintaining features of ‘rurality’ rather than ‘urbanity’ - except a few successful satellites of economically striving large cities, particularly the country capital of Bucharest, which benefited from spillover effects. Related to our second research question, we found that the new towns of Romania have significantly higher odds of being characterized by precarity as a socioeconomic condition than all other small towns and urban places, but less so compared to the even more marginalized rural areas. Many new towns contain resource-dependent rural communities with a poor response to the context of change. Therefore, issues pertaining to local capacity building to adapt to the new urban environment should be addressed by the spatial planning policy. Our approach allowed us to bring to the fore the idea of precarity as a condition of whole localities. Thinking of precarity of place is important as it brings the whole institutional and political apparatus of spatial planning, urban and regional, into conversation with other causative or substantive axes of precarity developed in the literature. We recommend future research on the new towns in Romania and elsewhere.Keywords: politics of fantasy, precarity of place, urbanization, Romania
Procedia PDF Downloads 192116 MULTI-FLGANs: Multi-Distributed Adversarial Networks for Non-Independent and Identically Distributed Distribution
Authors: Akash Amalan, Rui Wang, Yanqi Qiao, Emmanouil Panaousis, Kaitai Liang
Abstract:
Federated learning is an emerging concept in the domain of distributed machine learning. This concept has enabled General Adversarial Networks (GANs) to benefit from the rich distributed training data while preserving privacy. However, in a non-IID setting, current federated GAN architectures are unstable, struggling to learn the distinct features, and vulnerable to mode collapse. In this paper, we propose an architecture MULTI-FLGAN to solve the problem of low-quality images, mode collapse, and instability for non-IID datasets. Our results show that MULTI-FLGAN is four times as stable and performant (i.e., high inception score) on average over 20 clients compared to baseline FLGAN.Keywords: federated learning, generative adversarial network, inference attack, non-IID data distribution
Procedia PDF Downloads 1612115 Copper Complexe Derivative of Chalcone: Synthesis, Characterization, Electrochemical Properties and XRD/Hirschfeld Surface
Authors: Salima Tabti, Amel Djedouani., Djouhra Aggoun, Ismail Warad
Abstract:
The reaction of copper (II) with 4-hydroxy-3-[(2E)-3-(1H-indol-3-yl)prop-2-enoyl]-6-methyl-2H-pyran-2-one (HL) lead to a new complexe: Cu(L)₂(DMF)₂. The crystal structure of the Cu(L)₂(DMF)₂ complex have been determined by X-ray diffraction methods. The Cu(II) lying on an inversion centre is coordinated to six oxygen atoms forming an octahedral elongated. Additionally, the electrochemical behavior of the metal complexe was investigated by cyclic voltammetry at a glassy carbon electrode (GC) in CH₃CN solution, showing the quasi-reversible redox process ascribed to the reduction of the MII/MI couple. The X-ray single crystal structure data of the complex was matched excellently with the optimized monomer structure of the desired compound; Hirschfeld surface analysis supported the packed crystal lattice 3D network intermolecular forces.Keywords: chalcones, cyclic voltametry, X-ray, Hirschfeld surface
Procedia PDF Downloads 652114 Bioclimatic Devices in the Historical Rural Building: A Carried out Analysis on Some Rural Architectures in Puglia
Authors: Valentina Adduci
Abstract:
The developing research aims to define in general the criteria of environmental sustainability of rural buildings in Puglia and particularly in the manor farm. The main part of the study analyzes the relationship / dependence between the rural building and the landscape which, after many stratifications, results clearly identified and sometimes also characterized in a positive way. The location of the manor farm, in fact, is often conditioned by the infrastructural network and by the structure of the agricultural landscape. The manor farm, without the constraints due to the urban pattern’s density, was developed in accordance with a logical settlement that gives priority to the environmental aspects. These vernacular architectures are the most valuable example of how our ancestors have planned their dwellings according to nature. The 237 farms, analysis’ object, have been reported in cartography through the GIS system; a symbol has been assigned to each of them to identify the architectural typology and a different color for the historical period of construction. A datasheet template has been drawn up, and it has made possible a deeper understanding of each manor farm. This method provides a faster comparison of the most recurring characters in all the considered buildings, except for those farms which benefited from special geographical conditions, such as proximity to the road network or waterways. Below there are some of the most frequently constants derived from the statistical study of the examined buildings: southeast orientation of the main facade; placement of the sheep pen on the ground tilted and exposed to the south side; larger windowed surface on the south elevation; smaller windowed surface on the north elevation; presence of shielding vegetation near the more exposed elevations to the solar radiation; food storage’s rooms located on the ground floor or in the basement; animal shelter located in north side of the farm; presence of tanks and wells, sometimes combined with a very accurate channeling storm water system; thick layers of masonry walls, inside of which were often obtained hollow spaces to house stairwells or depots for the food storage; exclusive use of local building materials. The research aims to trace the ancient use of bioclimatic constructive techniques in the Apulian rural architecture and to define those that derive from an empirical knowledge and those that respond to an already encoded design. These constructive expedients are especially useful to obtain an effective passive cooling, to promote the natural ventilation and to built ingenious systems for the recovery and the preservation of rainwater and are still found in some of the manor farms analyzed, most of them are, today, in a serious state of neglect.Keywords: bioclimatic devices, farmstead, rural landscape, sustainability
Procedia PDF Downloads 3862113 Examining the Importance of the Structure Based on Grid Computing Service and Virtual Organizations
Authors: Sajjad Baghernezhad, Saeideh Baghernezhad
Abstract:
Vast changes and developments achieved in information technology field in recent decades have made the review of different issues such as organizational structures unavoidable. Applying informative technologies such as internet and also vast use of computer and related networks have led to new organizational formations with a nature completely different from the traditional, great and bureaucratic ones; some common specifications of such organizations are transfer of the affairs out of the organization, benefiting from informative and communicative networks and centered-science workers. Such communicative necessities have led to network sciences development including grid computing. First, the grid computing was only to relate some sites for short – time and use their sources simultaneously, but now it has gone beyond such idea. In this article, the grid computing technology was examined, and at the same time, virtual organization concept was discussed.Keywords: grid computing, virtual organizations, software engineering, organization
Procedia PDF Downloads 3352112 Critical Conditions for the Initiation of Dynamic Recrystallization Prediction: Analytical and Finite Element Modeling
Authors: Pierre Tize Mha, Mohammad Jahazi, Amèvi Togne, Olivier Pantalé
Abstract:
Large-size forged blocks made of medium carbon high-strength steels are extensively used in the automotive industry as dies for the production of bumpers and dashboards through the plastic injection process. The manufacturing process of the large blocks starts with ingot casting, followed by open die forging and a quench and temper heat treatment process to achieve the desired mechanical properties and numerical simulation is widely used nowadays to predict these properties before the experiment. But the temperature gradient inside the specimen remains challenging in the sense that the temperature before loading inside the material is not the same, but during the simulation, constant temperature is used to simulate the experiment because it is assumed that temperature is homogenized after some holding time. Therefore to be close to the experiment, real distribution of the temperature through the specimen is needed before the mechanical loading. Thus, We present here a robust algorithm that allows the calculation of the temperature gradient within the specimen, thus representing a real temperature distribution within the specimen before deformation. Indeed, most numerical simulations consider a uniform temperature gradient which is not really the case because the surface and core temperatures of the specimen are not identical. Another feature that influences the mechanical properties of the specimen is recrystallization which strongly depends on the deformation conditions and the type of deformation like Upsetting, Cogging...etc. Indeed, Upsetting and Cogging are the stages where the greatest deformations are observed, and a lot of microstructural phenomena can be observed, like recrystallization, which requires in-depth characterization. Complete dynamic recrystallization plays an important role in the final grain size during the process and therefore helps to increase the mechanical properties of the final product. Thus, the identification of the conditions for the initiation of dynamic recrystallization is still relevant. Also, the temperature distribution within the sample and strain rate influence the recrystallization initiation. So the development of a technique allowing to predict the initiation of this recrystallization remains challenging. In this perspective, we propose here, in addition to the algorithm allowing to get the temperature distribution before the loading stage, an analytical model leading to determine the initiation of this recrystallization. These two techniques are implemented into the Abaqus finite element software via the UAMP and VUHARD subroutines for comparison with a simulation where an isothermal temperature is imposed. The Artificial Neural Network (ANN) model to describe the plastic behavior of the material is also implemented via the VUHARD subroutine. From the simulation, the temperature distribution inside the material and recrystallization initiation is properly predicted and compared to the literature models.Keywords: dynamic recrystallization, finite element modeling, artificial neural network, numerical implementation
Procedia PDF Downloads 812111 Two Points Crossover Genetic Algorithm for Loop Layout Design Problem
Authors: Xu LiYun, Briand Florent, Fan GuoLiang
Abstract:
The loop-layout design problem (LLDP) aims at optimizing the sequence of positioning of the machines around the cyclic production line. Traffic congestion is the usual criteria to minimize in this type of problem, i.e. the number of additional cycles spent by each part in the network until the completion of its required routing sequence of machines. This paper aims at applying several improvements mechanisms such as a positioned-based crossover operator for the Genetic Algorithm (GA) called a Two Points Crossover (TPC) and an offspring selection process. The performance of the improved GA is measured using well-known examples from literature and compared to other evolutionary algorithms. Good results show that GA can still be competitive for this type of problem against more recent evolutionary algorithms.Keywords: crossover, genetic algorithm, layout design problem, loop-layout, manufacturing optimization
Procedia PDF Downloads 2822110 Comparative Analysis between Wired and Wireless Technologies in Communications: A Review
Authors: Jafaru Ibrahim, Tonga Agadi Danladi, Haruna Sani
Abstract:
Many telecommunications industry are looking for new ways to maximize their investment in communication networks while ensuring reliable and secure information transmission. There is a variety of communications medium solutions, the two must popularly in used are wireless technology and wired options, such as copper and fiber-optic cable. Wired network has proven its potential in the olden days but nowadays wireless communication has emerged as a robust and most intellect and preferred communication technique. Each of these types of communication medium has their advantages and disadvantages according to its technological characteristics. Wired and wireless networking has different hardware requirements, ranges, mobility, reliability and benefits. The aim of the paper is to compare both the Wired and Wireless medium on the basis of various parameters such as usability, cost, efficiency, flexibility, coverage, reliability, mobility, speed, security etc.Keywords: cost, mobility, reliability, speed, security, wired, wireless
Procedia PDF Downloads 4722109 A Location Routing Model for the Logistic System in the Mining Collection Centers of the Northern Region of Boyacá-Colombia
Authors: Erika Ruíz, Luis Amaya, Diego Carreño
Abstract:
The main objective of this study is to design a mathematical model for the logistics of mining collection centers in the northern region of the department of Boyacá (Colombia), determining the structure that facilitates the flow of products along the supply chain. In order to achieve this, it is necessary to define a suitable design of the distribution network, taking into account the products, customer’s characteristics and the availability of information. Likewise, some other aspects must be defined, such as number and capacity of collection centers to establish, routes that must be taken to deliver products to the customers, among others. This research will use one of the operation research problems, which is used in the design of distribution networks known as Location Routing Problem (LRP).Keywords: location routing problem, logistic, mining collection, model
Procedia PDF Downloads 2192108 Compressive Strength Evaluation of Underwater Concrete Structures Integrating the Combination of Rebound Hardness and Ultrasonic Pulse Velocity Methods with Artificial Neural Networks
Authors: Seunghee Park, Junkyeong Kim, Eun-Seok Shin, Sang-Hun Han
Abstract:
In this study, two kinds of nondestructive evaluation (NDE) techniques (rebound hardness and ultrasonic pulse velocity methods) are investigated for the effective maintenance of underwater concrete structures. A new methodology to estimate the underwater concrete strengths more effectively, named “artificial neural network (ANN) – based concrete strength estimation with the combination of rebound hardness and ultrasonic pulse velocity methods” is proposed and verified throughout a series of experimental works.Keywords: underwater concrete, rebound hardness, Schmidt hammer, ultrasonic pulse velocity, ultrasonic sensor, artificial neural networks, ANN
Procedia PDF Downloads 5332107 Optimisation of Energy Harvesting for a Composite Aircraft Wing Structure Bonded with Discrete Macro Fibre Composite Sensors
Authors: Ali H. Daraji, Ye Jianqiao
Abstract:
The micro electrical devices of the wireless sensor network are continuously developed and become very small and compact with low electric power requirements using limited period life conventional batteries. The low power requirement for these devices, cost of conventional batteries and its replacement have encouraged researcher to find alternative power supply represented by energy harvesting system to provide an electric power supply with infinite period life. In the last few years, the investigation of energy harvesting for structure health monitoring has increased to powering wireless sensor network by converting waste mechanical vibration into electricity using piezoelectric sensors. Optimisation of energy harvesting is an important research topic to ensure a flowing of efficient electric power from structural vibration. The harvesting power is mainly based on the properties of piezoelectric material, dimensions of piezoelectric sensor, its position on a structure and value of an external electric load connected between sensor electrodes. Larger surface area of sensor is not granted larger power harvesting when the sensor area is covered positive and negative mechanical strain at the same time. Thus lead to reduction or cancellation of piezoelectric output power. Optimisation of energy harvesting is achieved by locating these sensors precisely and efficiently on the structure. Limited published work has investigated the energy harvesting for aircraft wing. However, most of the published studies have simplified the aircraft wing structure by a cantilever flat plate or beam. In these studies, the optimisation of energy harvesting was investigated by determination optimal value of an external electric load connected between sensor electrode terminals or by an external electric circuit or by randomly splitting piezoelectric sensor to two segments. However, the aircraft wing structures are complex than beam or flat plate and mostly constructed from flat and curved skins stiffened by stringers and ribs with more complex mechanical strain induced on the wing surfaces. This aircraft wing structure bonded with discrete macro fibre composite sensors was modelled using multiphysics finite element to optimise the energy harvesting by determination of the optimal number of sensors, location and the output resistance load. The optimal number and location of macro fibre sensors were determined based on the maximization of the open and close loop sensor output voltage using frequency response analysis. It was found different optimal distribution, locations and number of sensors bounded on the top and the bottom surfaces of the aircraft wing.Keywords: energy harvesting, optimisation, sensor, wing
Procedia PDF Downloads 3032106 Classification of Foliar Nitrogen in Common Bean (Phaseolus Vulgaris L.) Using Deep Learning Models and Images
Authors: Marcos Silva Tavares, Jamile Raquel Regazzo, Edson José de Souza Sardinha, Murilo Mesquita Baesso
Abstract:
Common beans are a widely cultivated and consumed legume globally, serving as a staple food for humans, especially in developing countries, due to their nutritional characteristics. Nitrogen (N) is the most limiting nutrient for productivity, and foliar analysis is crucial to ensure balanced nitrogen fertilization. Excessive N applications can cause, either isolated or cumulatively, soil and water contamination, plant toxicity, and increase their susceptibility to diseases and pests. However, the quantification of N using conventional methods is time-consuming and costly, demanding new technologies to optimize the adequate supply of N to plants. Thus, it becomes necessary to establish constant monitoring of the foliar content of this macronutrient in plants, mainly at the V4 stage, aiming at precision management of nitrogen fertilization. In this work, the objective was to evaluate the performance of a deep learning model, Resnet-50, in the classification of foliar nitrogen in common beans using RGB images. The BRS Estilo cultivar was sown in a greenhouse in a completely randomized design with four nitrogen doses (T1 = 0 kg N ha-1, T2 = 25 kg N ha-1, T3 = 75 kg N ha-1, and T4 = 100 kg N ha-1) and 12 replications. Pots with 5L capacity were used with a substrate composed of 43% soil (Neossolo Quartzarênico), 28.5% crushed sugarcane bagasse, and 28.5% cured bovine manure. The water supply of the plants was done with 5mm of water per day. The application of urea (45% N) and the acquisition of images occurred 14 and 32 days after sowing, respectively. A code developed in Matlab© R2022b was used to cut the original images into smaller blocks, originating an image bank composed of 4 folders representing the four classes and labeled as T1, T2, T3, and T4, each containing 500 images of 224x224 pixels obtained from plants cultivated under different N doses. The Matlab© R2022b software was used for the implementation and performance analysis of the model. The evaluation of the efficiency was done by a set of metrics, including accuracy (AC), F1-score (F1), specificity (SP), area under the curve (AUC), and precision (P). The ResNet-50 showed high performance in the classification of foliar N levels in common beans, with AC values of 85.6%. The F1 for classes T1, T2, T3, and T4 was 76, 72, 74, and 77%, respectively. This study revealed that the use of RGB images combined with deep learning can be a promising alternative to slow laboratory analyses, capable of optimizing the estimation of foliar N. This can allow rapid intervention by the producer to achieve higher productivity and less fertilizer waste. Future approaches are encouraged to develop mobile devices capable of handling images using deep learning for the classification of the nutritional status of plants in situ.Keywords: convolutional neural network, residual network 50, nutritional status, artificial intelligence
Procedia PDF Downloads 232105 Terrain Classification for Ground Robots Based on Acoustic Features
Authors: Bernd Kiefer, Abraham Gebru Tesfay, Dietrich Klakow
Abstract:
The motivation of our work is to detect different terrain types traversed by a robot based on acoustic data from the robot-terrain interaction. Different acoustic features and classifiers were investigated, such as Mel-frequency cepstral coefficient and Gamma-tone frequency cepstral coefficient for the feature extraction, and Gaussian mixture model and Feed forward neural network for the classification. We analyze the system’s performance by comparing our proposed techniques with some other features surveyed from distinct related works. We achieve precision and recall values between 87% and 100% per class, and an average accuracy at 95.2%. We also study the effect of varying audio chunk size in the application phase of the models and find only a mild impact on performance.Keywords: acoustic features, autonomous robots, feature extraction, terrain classification
Procedia PDF Downloads 3712104 A Mathematical Optimization Model for Locating and Fortifying Capacitated Warehouses under Risk of Failure
Authors: Tareq Oshan
Abstract:
Facility location and size decisions are important to any company because they affect profitability and success. However, warehouses are exposed to various risks of failure that affect their activity. This paper presents a mixed-integer non-linear mathematical model that can be used to determine optimal warehouse locations and sizes, which warehouses to fortify, and which branches should be assigned to specific warehouses when there is a risk of warehouse failure. Every branch is assigned to a fortified primary warehouse or a nonfortified primary warehouse and a fortified backup warehouse. The standard method and an introduced method, based on the average probabilities, for linearizing this mathematical model were used. A Canadian case study was used to demonstrate the developed mathematical model, followed by some sensitivity analysis.Keywords: supply chain network design, fortified warehouse, mixed-integer mathematical model, warehouse failure risk
Procedia PDF Downloads 244