Search results for: zeolite material
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6650

Search results for: zeolite material

3500 Effect of Nickel Coating on Corrosion of Alloys in Molten Salts

Authors: Divya Raghunandanan, Bhavesh D. Gajbhiye, C. S. Sona, Channamallikarjun S. Mathpati

Abstract:

Molten fluoride salts are considered as potential coolants for next generation nuclear plants where the heat can be utilized for production of hydrogen and electricity. Among molten fluoride salts, FLiNaK (LiF-NaF-KF: 46.5-11.5-42 mol %) is a potential candidate for the coolant due to its superior thermophysical properties such as high temperature stability, boiling point, volumetric heat capacity and thermal conductivity. Major technical challenge in implementation is the selection of structural material which can withstand corrosive nature of FLiNaK. Corrosion study of alloys SS 316L, Hastelloy B, Ni-201 was performed in molten FLiNaK at 650°C. Nickel was found to be more resistant to corrosive attack in molten fluoride medium. Corrosion experiments were performed to study the effect of nickel coating on corrosion of alloys SS 316L and Hastelloy B. Weight loss of the alloys due to corrosion was measured and corrosion rate was estimated. The surface morphology of the alloys was analyzed by Scanning Electron Microscopy.

Keywords: corrosion, FLiNaK, hastelloy, weight loss

Procedia PDF Downloads 424
3499 Termite Brick Temperature and Relative Humidity by Continuous Monitoring Technique

Authors: Khalid Abdullah Alshuhail, Syrif Junidi, Ideisan Abu-Abdoum, Abdulsalam Aldawoud

Abstract:

For the intention of reducing energy consumption, a proposed construction brick was made of imitation termite mound soil referred here as termite brick (TB). To calculate the thermal performance, a real case model was constructed by using this biomimetic brick for testing purposes. This paper aims at investigating the thermal performance of this brick during different climatic months. Its thermal behaviour was thoroughly studied over the course of four months by using continuous method (CMm). The main parameters were focused on temperature and relative humidity. It was found that the TB does not perform similarly in all four months and/or in all orientations. Each four-month model study was deeply analyzed. By using the CMm method, the model was also examined. The measuring period shows generally that internal temperature and internal humidity are higher in the roof within 2 degrees and lowest at north wall orientation. The relative humidity was also investigated systematically. The paper reveals more interesting findings.

Keywords: building material, continious monitoring, orientation, wall, temprature

Procedia PDF Downloads 105
3498 Nanostructural Analysis of the Polylactic Acid (PLA) Fibers Functionalized by RF Plasma Treatment

Authors: J. H. O. Nascimento, F. R. Oliveira, K. K. O. S. Silva, J. Neves, V. Teixeira, J. Carneiro

Abstract:

These the aliphatic polyesters such as Polylactic Acid (PLA) in the form of fibers, nanofibers or plastic films, generally possess chemically inert surfaces, free porosity, and surface free energy (ΔG) lesser than 32 mN/m. It is therefore considered a low surface energy material, consequently has a low work of adhesion. For this reason, the products manufactured using these polymers are often subjected to surface treatments in order to change its physic-chemical surface, improving their wettability and the Work of Adhesion (WA). Plasma Radio Frequency low pressure (RF) treatment was performed in order to improve the Work of Adhesion (WA) on PLA fibers. Different parameters, such as, power, ratio of working gas (Argon/Oxygen) and treatment time were used to optimize the plasma conditions to modify the PLA surface properties. With plasma treatment, a significant increase in the work of adhesion on PLA fiber surface was observed. The analysis performed by XPS showed an increase in polar functional groups and the SEM and AFM image revealed a considerable increase in roughness.

Keywords: RF plasma, surface modification, PLA fabric, atomic force macroscopic, Nanotechnology

Procedia PDF Downloads 513
3497 Transformer Design Optimization Using Artificial Intelligence Techniques

Authors: Zakir Husain

Abstract:

Main objective of a power transformer design optimization problem requires minimizing the total overall cost and/or mass of the winding and core material by satisfying all possible constraints obligatory by the standards and transformer user requirement. The constraints include appropriate limits on winding fill factor, temperature rise, efficiency, no-load current and voltage regulation. The design optimizations tasks are a constrained minimum cost and/or mass solution by optimally setting the parameters, geometry and require magnetic properties of the transformer. In this paper, present the above design problems have been formulated by using genetic algorithm (GA) and simulated annealing (SA) on the MATLAB platform. The importance of the presented approach is stems for two main features. First, proposed technique provides reliable and efficient solution for the problem of design optimization with several variables. Second, it guaranteed to obtained solution is global optimum. This paper includes a demonstration of the application of the genetic programming GP technique to transformer design.

Keywords: optimization, power transformer, genetic algorithm (GA), simulated annealing technique (SA)

Procedia PDF Downloads 560
3496 Bearing Capacity Improvement in a Silty Clay Soil with Crushed Polyethylene Terephthalate

Authors: Renzo Palomino, Alessandra Trujillo, Lidia Pacheco

Abstract:

The document presents a study based on the incremental bearing capacity of silty clay soil with the incorporation of crushed PET fibers. For a better understanding of the behavior of soil, it is necessary to know its origin. The analyzed samples came from the subgrade layer of a highway that connects the cities of Muniches and Yurimaguas in Loreto, Peru. The material in this area usually has properties such as low support index, medium to high plasticity, and other characteristics that make it considered a ‘problematic’ soil due to factors such as climate, humidity, and geographical location. In addition, PET fibers are obtained from the decomposition of plastic bottles that are polluting agents with a high production rate in our country; in that sense, their use in a construction process represents a considerable reduction in environmental impact. Moreover, to perform a precise analysis of the behavior of this soil mixed with PET, tests such as the hydrometer test, Proctor and CBR with 15%, 10%, 5%, 4%, 3%, and 1% of PET with respect to the mass of the sample of natural soil were carried out. The results show that when a low percentage of PET is used, the support index increases.

Keywords: environmental impact, geotechnics, PET, silty clay soil

Procedia PDF Downloads 219
3495 Hydrogel Based on Cellulose Acetate Used as Scaffold for Cell Growth

Authors: A. Maria G. Melero, A. M. Senna, J. A. Domingues, M. A. Hausen, E. Aparecida R. Duek, V. R. Botaro

Abstract:

A hydrogel from cellulose acetate cross linked with ethylenediaminetetraacetic dianhydride (HAC-EDTA) was synthesized by our research group, and submitted to characterization and biological tests. Cytocompatibility analysis was performed by confocal microscopy using human adipocyte derived stem cells (ASCs). The FTIR analysis showed characteristic bands of cellulose acetate and hydroxyl groups and the tensile tests evidence that HAC-EDTA present a Young’s modulus of 643.7 MPa. The confocal analysis revealed that there was cell growth at the surface of HAC-EDTA. After one day of culture the cells presented spherical morphology, which may be caused by stress of the sequestration of Ca2+ and Mg2+ ions at the cell medium by HAC-EDTA, as demonstrated by ICP-MS. However, after seven days and 14 days of culture, the cells present fibroblastoid morphology, phenotype expected by this cellular type. The results give efforts to indicate this new material as a potential biomaterial for tissue engineering, in the future in vivo approach.

Keywords: cellulose acetate, hydrogel, biomaterial, cellular growth

Procedia PDF Downloads 178
3494 Molecular Migration in Polyvinyl Acetate Matrix: Impact of Compatibility, Number of Migrants and Stress on Surface and Internal Microstructure

Authors: O. Squillace, R. L. Thompson

Abstract:

Migration of small molecules to, and across the surface of polymer matrices is a little-studied problem with important industrial applications. Tackifiers in adhesives, flavors in foods and binding agents in paints all present situations where the function of a product depends on the ability of small molecules to migrate through a polymer matrix to achieve the desired properties such as softness, dispersion of fillers, and to deliver an effect that is felt (or tasted) on a surface. It’s been shown that the chemical and molecular structure, surface free energies, phase behavior, close environment and compatibility of the system, influence the migrants’ motion. When differences in behavior, such as occurrence of segregation to the surface or not, are observed it is then of crucial importance to identify and get a better understanding of the driving forces involved in the process of molecular migration. In this aim, experience is meant to be allied with theory in order to deliver a validated theoretical and computational toolkit to describe and predict these phenomena. The systems that have been chosen for this study aim to address the effect of polarity mismatch between the migrants and the polymer matrix and that of a second migrant over the first one. As a non-polar resin polymer, polyvinyl acetate is used as the material to which more or less polar migrants (sorbitol, carvone, octanoic acid (OA), triacetin) are to be added. Through contact angle measurement a surface excess is seen for sorbitol (polar) mixed with PVAc as the surface energy is lowered compare to the one of pure PVAc. This effect is increased upon the addition of carvon or triacetin (non-polars). Surface micro-structures are also evidenced by atomic force microscopy (AFM). Ion beam analysis (Nuclear Reaction Analysis), supplemented by neutron reflectometry can accurately characterize the self-organization of surfactants, oligomers, aromatic molecules in polymer films in order to relate the macroscopic behavior to the length scales that are amenable to simulation. The nuclear reaction analysis (NRA) data for deuterated OA 20% shows the evidence of a surface excess which is enhanced after annealing. The addition of 10% triacetin, as a second migrant, results in the formation of an underlying layer enriched in triacetin below the surface excess of OA. The results show that molecules in polarity mismatch with the matrix tend to segregate to the surface, and this is favored by the addition of a second migrant of the same polarity than the matrix. As studies have been restricted to materials that are model supported films under static conditions in a first step, it is also wished to address the more challenging conditions of materials under controlled stress or strain. To achieve this, a simple rig and PDMS cell have been designed to stretch the material to a defined strain and to probe these mechanical effects by ion beam analysis and atomic force microscopy. This will make a significant step towards exploring the influence of extensional strain on surface segregation, flavor release in cross-linked rubbers.

Keywords: polymers, surface segregation, thin films, molecular migration

Procedia PDF Downloads 117
3493 Behaviour of Lightweight Expanded Clay Aggregate Concrete Exposed to High Temperatures

Authors: Lenka Bodnárová, Rudolf Hela, Michala Hubertová, Iveta Nováková

Abstract:

This paper is concerning the issues of behaviour of lightweight expanded clay aggregates concrete exposed to high temperature. Lightweight aggregates from expanded clay are produced by firing of row material up to temperature 1050°C. Lightweight aggregates have suitable properties in terms of volume stability, when exposed to temperatures up to 1050°C, which could indicate their suitability for construction applications with higher risk of fire. The test samples were exposed to heat by using the standard temperature-time curve ISO 834. Negative changes in resulting mechanical properties, such as compressive strength, tensile strength, and flexural strength were evaluated. Also visual evaluation of the specimen was performed. On specimen exposed to excessive heat, an explosive spalling could be observed, due to evaporation of considerable amount of unbounded water from the inner structure of the concrete.

Keywords: expanded clay aggregate, explosive spalling, high temperature, lightweight concrete, temperature-time curve ISO 834

Procedia PDF Downloads 427
3492 Effect of Poly Naphthalene Sulfonate Superplasticizer on Constructibility of Roller-Compacted Concrete Pavement

Authors: Chamroeun Chhorn, Seong Jae Hong, Yoon-Ho Cho, Hyun Jong Lee, Seung Woo Lee

Abstract:

The use of Roller-Compacted Concrete Pavement (RCCP) in public and private applications has been increasing steadily in the past few decades due to its cost saving. This eco-concrete pavement shares construction characteristics from asphalt pavement and material characteristics from the conventional concrete pavement. Due to its low binder and water content, the consistency of Roller-Compacted Concrete (RCC) is typically very stiff. Thus, it is crucial to control the consistency of this concrete. Without appropriate consistency, required density may not be achieved in actual construction for RCCP. The purpose of this study is to investigate the effect on Poly Naphtalene Sulfonate (PNS) superplasticizer on the consistency of RCC as well as its compactibility in actual construction. From this study, it was found that PNS superplasticizer can effectively reduce the stiffness of an RCC mixture and maintain it for a sufficient amount of time without compromising its strength properties. Moreover, it was observed from field test specimens that the use of this admixture can also improve the compaction efficiency throughout the whole depth of pavement.

Keywords: roller-compacted concrete, consistency, compactibility, poly naphthalene sulfonate superplasticizer

Procedia PDF Downloads 227
3491 To Optimise the Mechanical Properties of Structural Concrete by Partial Replacement of Natural Aggregates by Glass Aggregates

Authors: Gavin Gengan, Hsein Kew

Abstract:

Glass from varying recycling processes is considered a material that can be used as aggregate. Waste glass is available from different sources and has been used in the construction industry over the last decades. This current study aims to use recycled glass as a partial replacement for conventional aggregate materials. The experimental programme was designed to optimise the mechanical properties of structural concrete made with recycled glass aggregates (GA). NA (natural aggregates) was partially substituted by GA in a mix design of concrete of 30N/mm2 in proportions of 10%, 20%, and 25% 30%, 40%, and 50%. It was found that with an increasing proportion of GA, there is a decline in compressive strength. The optimum percentage replacement of NA by GA is 25%. The heat of hydration was also investigated with thermocouples placed in the concrete. This revealed an early acceleration of hydration heat in glass concrete, resulting from the thermal properties of glass. The gain in the heat of hydration and the better bonding of glass aggregates together with the pozzolanic activity of the finest glass particles caused the concrete to develop early age and long-term strength higher than that of control concrete

Keywords: concrete, compressive strength, glass aggregates, heat of hydration, pozzolanic

Procedia PDF Downloads 188
3490 Prediction Modeling of Compression Properties of a Knitted Sportswear Fabric Using Response Surface Method

Authors: Jawairia Umar, Tanveer Hussain, Zulfiqar Ali, Muhammad Maqsood

Abstract:

Different knitted structures and knitted parameters play a vital role in the stretch and recovery management of compression sportswear in addition to the materials use to generate this stretch and recovery behavior of the fabric. The present work was planned to predict the different performance indicators of a compression sportswear fabric with some ground parameters i.e. base yarn stitch length (polyester as base yarn and spandex as plating yarn involve to make a compression fabric) and linear density of the spandex which is a key material of any sportswear fabric. The prediction models were generated by response surface method for performance indicators such as stretch & recovery percentage, compression generated by the garment on body, total elongation on application of high power force and load generated on certain percentage extension in fabric. Certain physical properties of the fabric were also modeled using these two parameters.

Keywords: Compression, sportswear, stretch and recovery, statistical model, kikuhime

Procedia PDF Downloads 360
3489 On Strengthening Program of Sixty Years Old Dome Using Carbon Fiber

Authors: Humayun R. H. Kabir

Abstract:

A reinforced concrete dome-built 60 years ago- of circular shape of diameter of 30 m was in distressed conditions due to adverse weathering effects, such as high temperature, wind, and poor maintenance. It was decided to restore the dome to its full strength for future use. A full material strength and durability check including petrography test were conducted. It was observed that the concrete strength was in acceptable range, while bars were corroded more than 40% to their original configurations. Widespread cracks were almost in every meter square. A strengthening program with filling the cracks by injection method, and carbon fiber layup and wrap was considered. Ultra Sound Pulse Velocity (UPV) test was conducted to observe crack depth. Ground Penetration Radar (GPR) test was conducted to observe internal bar conditions and internal cracks. Finally, a load test was conducted to certify the carbon fiber effectiveness, injection method procedure and overall behavior of dome.

Keywords: dome, strengthening program, carbon fiber, load test

Procedia PDF Downloads 234
3488 Leadership, Corruption, and Governance in Nigeria since 1960: The Way Forward

Authors: Reginald Chikere Keke

Abstract:

This paper examined leadership failure consequent on endemic corruption as being the bane of good governance in Nigeria since independence in 1960 and the way forward. Nigeria is lavishly gifted by nature of abundance in human and material resources to be harnessed a strategic, resolute, ingenious, and inventive leadership. For leadership to drive sustainable growth in society, it must be rooted in the cultural values of the people. This, however, is contrary in Nigeria owing to unscrupulous leadership miscarriage, corruption, and bad governance. Using the eclectic approach, the paper scrutinizes the issues of leadership, corruption, and governance to clearly show how bad leadership and governance have destroyed the national fabric and the way out of Nigeria's development quack mire. Furthermore, this paper examined the perplexing nature of corruption in Nigeria that has made it the only lucrative endeavor for politicians and their cronies, leading Nigeria to be regarded as the world's poverty capital. This paper advocate that Nigerians and the international community must endeavor to enshrine effective leadership and good governance through strong institutions, laws, and individuals who have zero tolerance for corruption and mediocrity in the polity. Only then will the fatherland of everyone’s dreams will be realized, and the labors of our hero’s past will not be in vain.

Keywords: corruption, leadership, governance, Nigeria

Procedia PDF Downloads 108
3487 Education and Development: An Overview of Islam

Authors: Rasheed Sanusi Adeleke

Abstract:

Several attempts have been made by scholars, both medieval and contemporary on the impact of Islam on scientific discovery. Lesser attention, however, is always accorded to the historical antecedents of the earlier Muslim scholars, who made frantic efforts towards the discoveries. Islam as a divine religion places high premium on the acquisition of knowledge especially that of sciences. It considers knowledge as a comprehensive whole, which covers both spiritual and material aspects of human life. Islam torches every aspect of human life for the growth, development and advancement of society. Acquisition of knowledge of humanity, social sciences as well as the pure and applied sciences is comprehensively expressed in Islamic education. Not only this, the history portrays the leading indelible roles played by the early Muslims on these various fields of knowledge. That is why Islam has declared acquisition of knowledge compulsory for all Muslims. This paper therefore analyses the contributions of Islam to civilization with particular reference to sciences. It also affirms that Islam is beyond the religion of prayers and rituals. The work is historic, analytic and explorative in nature. Recommendations are also also put forward as suggestions for the present generation cum posterity in general and Muslims in particular.

Keywords: education, development, Islam, development and Islam

Procedia PDF Downloads 418
3486 A Design Method for Wind Turbine Blade to Have Uniform Strength and Optimum Power Generation Performance

Authors: Pengfei Liu, Yiyi Xu

Abstract:

There have been substantial incidents of wind turbine blade fractures and failures due to the lack of systematic blade strength design method incorporated with the aerodynamic forces and power generation efficiency. This research was to develop a methodology and procedure for the wind turbine rotor blade strength taking into account the strength, integration, and aerodynamic performance in terms of power generation efficiency. The wind turbine blade designed using this method and procedure will have a uniform strength across the span to save unnecessary thickness in many blade radial locations and yet to maintain the optimum power generation performance. A turbine rotor code, taking into account both aerodynamic and structural properties, was developed. An existing wind turbine blade was used as an example. For a condition of extreme wind speed of 100 km per hour, the design reduced about 19% of material usage while maintaining the optimum power regeneration efficiency.

Keywords: renewable energy, wind turbine, turbine blade strength, aerodynamics-strength coupled optimization

Procedia PDF Downloads 161
3485 Rheolaser: Light Scattering Characterization of Viscoelastic Properties of Hair Cosmetics That Are Related to Performance and Stability of the Respective Colloidal Soft Materials

Authors: Heitor Oliveira, Gabriele De-Waal, Juergen Schmenger, Lynsey Godfrey, Tibor Kovacs

Abstract:

Rheolaser MASTER™ makes use of multiple scattering of light, caused by scattering objects in a continuous medium (such as droplets and particles in colloids), to characterize the viscoelasticity of soft materials. It offers an alternative to conventional rheometers to characterize viscoelasticity of products such as hair cosmetics. Up to six simultaneous measurements at controlled temperature can be carried out simultaneously (10-15 min), and the method requires only minor sample preparation work. Conversely to conventional rheometer based methods, no mechanical stress is applied to the material during the measurements. Therefore, the properties of the exact same sample can be monitored over time, like in aging and stability studies. We determined the elastic index (EI) of water/emulsion mixtures (1 ≤ fat alcohols (FA) ≤ 5 wt%) and emulsion/gel-network mixtures (8 ≤ FA ≤ 17 wt%) and compared with the elastic/sorage mudulus (G’) for the respective samples using a TA conventional rheometer with flat plates geometry. As expected, it was found that log(EI) vs log(G’) presents a linear behavior. Moreover, log(EI) increased in a linear fashion with solids level in the entire range of compositions (1 ≤ FA ≤ 17 wt%), while rheometer measurements were limited to samples down to 4 wt% solids level. Alternatively, a concentric cilinder geometry would be required for more diluted samples (FA > 4 wt%) and rheometer results from different sample holder geometries are not comparable. The plot of the rheolaser output parameters solid-liquid balance (SLB) vs EI were suitable to monitor product aging processes. These data could quantitatively describe some observations such as formation of lumps over aging time. Moreover, this method allowed to identify that the different specifications of a key raw material (RM < 0.4 wt%) in the respective gel-network (GN) product has minor impact on product viscoelastic properties and it is not consumer perceivable after a short aging time. Broadening of a RM spec range typically has a positive impact on cost savings. Last but not least, the photon path length (λ*)—proportional to droplet size and inversely proportional to volume fraction of scattering objects, accordingly to the Mie theory—and the EI were suitable to characterize product destabilization processes (e.g., coalescence and creaming) and to predict product stability about eight times faster than our standard methods. Using these parameters we could successfully identify formulation and process parameters that resulted in unstable products. In conclusion, Rheolaser allows quick and reliable characterization of viscoelastic properties of hair cosmetics that are related to their performance and stability. It operates in a broad range of product compositions and has applications spanning from the formulation of our hair cosmetics to fast release criteria in our production sites. Last but not least, this powerful tool has positive impact on R&D development time—faster delivery of new products to the market—and consequently on cost savings.

Keywords: colloids, hair cosmetics, light scattering, performance and stability, soft materials, viscoelastic properties

Procedia PDF Downloads 154
3484 Structural Performances of Rubberized Concrete Wall Panel Utilizing Fiber Cement Board as Skin Layer

Authors: Jason Ting Jing Cheng, Lee Foo Wei, Yew Ming Kun, Mo Kim Hung, Yip Chun Chieh

Abstract:

This research delves into the structural characteristics of distinct construction material, rubberized lightweight foam concrete (RLFC) wall panels, which have been developed as a sustainable alternative for the construction industry. These panels are engineered with a RLFC core, possessing a density of 1150 kg/m3, which is specifically formulated to bear structural loads. The core is enveloped with high-strength fiber cement boards, selected for their superior load-bearing capabilities, and enhanced flexural strength when compared to conventional concrete. A thin bed adhesive, known as TPS, is employed to create a robust bond between the RLFC core and the fiber cement cladding. This study underscores the potential of RLFC wall panels as a viable and eco-friendly option for modern building construction, offering a combination of structural efficiency and environmental benefits.

Keywords: structural performance, rubberized concrete wall panel, fiber cement board, insulation performance

Procedia PDF Downloads 41
3483 Concrete Performance Evaluation of Coarse Aggregate Replacement by Civil Construction Waste

Authors: Juliane P. De Oliveira, Carlos H. Dos Santos, Marcia Shoji, Maria E. C. Ferreira, Natalia U. Yamaguchi

Abstract:

The construction sector is considered a major generator of environmental impacts due to the high consumption of natural resources and waste generation. Thus, this article aims to evaluate the performance of a concrete produced by the partial and total replacement of natural coarse aggregate by recycled coarse aggregate, derived from the concrete residue of buildings and demolitions. The study was made by comparing the compressive strength and absorption of three different concrete traces, keeping the water/cement factor of 0.60 and changing only the proportions of recycled coarse aggregate between 0%, 50% and 100%. Traces 50% and 100% obtained good results by comparing the actual specific mass, because the material used is lighter to the natural coarse aggregate. It was concluded that the concrete produced with recycled aggregates, even with inferior results, can be used where it is not needed a structural function, giving an adequate destination to the construction and demolition waste and consequently reducing the extraction and consumption of natural resources.

Keywords: green concrete, recycled aggregate, recycling, sustainable development

Procedia PDF Downloads 131
3482 Evaluation of Longitudinal and Hoop Stresses and a Critical Study of Factor of Safety (FoS) in Design of a Glass-Fiber Pressure Vessel

Authors: Zainul Huda, Mohammed Hani Ajani

Abstract:

The design, manufacture, and operation of thin-walled pressure vessels must be based on maximum safe operating pressure and an adequate factor of safety (FoS). This research paper first reports experimental evaluation of longitudinal and hoops stresses based on working pressure as well as maximum pressure; and then includes a critical study of factor of safety (FoS) in the design of a glass fiber pressure vessel. Experimental work involved the use of measuring instruments and the readings from pressure gauges. Design calculations involved the computations of design stress and FoS; the latter was based on breaking strength of 55 MPa for the glass fiber (pressure-vessel material). The experimentally determined FoS value has been critically compared with the general FoS allowed in the design of glass fiber pressure vessels.

Keywords: thin-walled pressure vessel, hoop stress, longitudinal stress, factor of safety (FoS), fiberglass

Procedia PDF Downloads 468
3481 Evaluation of Longitudinal and Hoops Stresses and a Critical Study of Factor of Safety (Fos) in the Design of a Glass-Fiber Pressure Vessel

Authors: Zainul Huda, Mohammad Hani Ajani

Abstract:

The design, manufacture, and operation of thin-walled pressure vessels must be based on maximum safe operating pressure and an adequate factor of safety (FoS). This research paper first reports experimental evaluation of longitudinal and hoops stresses based on working pressure as well as maximum pressure; and then includes a critical study of factor of safety (FoS) in the design of a glass fiber pressure vessel. Experimental work involved the use of measuring instruments and the readings from pressure gauges. Design calculations involved the computations of design stress and FoS; the latter was based on breaking strength of 55 MPa for the glass fiber (pressure-vessel material). The experimentally determined FoS value has been critically compared with the general FoS allowed in the design of glass fiber pressure vessels.

Keywords: thin-walled pressure vessel, hoop stress, longitudinal stress, factor of safety (FoS), fiberglass

Procedia PDF Downloads 475
3480 Rare Earth Element (REE) Geochemistry of Tepeköy Sandstones (Central Anatolia, Turkey)

Authors: Mehmet Yavuz Hüseyinca, Şuayip Küpeli

Abstract:

Sandstones from Upper Eocene - Oligocene Tepeköy formation (Member of Mezgit Group) that exposed on the eastern edge of Tuz Gölü (Salt Lake) were analyzed for their rare earth element (REE) contents. Average concentrations of ΣREE, ΣLREE (Total light rare earth elements) and ΣHREE (Total heavy rare earth elements) were determined as 31.37, 26.47 and 4.55 ppm respectively. These values are lower than UCC (Upper continental crust) which indicates grain size and/or CaO dilution effect. The chondrite-normalized REE pattern is characterized by the average ratios of (La/Yb)cn = 6.20, (La/Sm)cn = 4.06, (Gd/Lu)cn = 1.10, Eu/Eu* = 0.99 and Ce/Ce* = 0.94. Lower values of ΣLREE/ΣHREE (Average 5.97) and (La/Yb)cn suggest lower fractionation of overall REE. Moreover (La/Sm)cn and (Gd/Lu)cn ratios define less inclined LREE and almost flat HREE pattern when compared with UCC. Almost no Ce anomaly (Ce/Ce*) emphasizes that REE were originated from terrigenous material. Also depleted LREE and no Eu anomaly (Eu/Eu*) suggest an undifferentiated mafic provenance for the sandstones.

Keywords: central Anatolia, provenance, rare earth elements, REE, Tepeköy sandstone

Procedia PDF Downloads 444
3479 Investigation of Flow Effects of Soundwaves Incident on an Airfoil

Authors: Thirsa Sherry, Utkarsh Shrivastav, Kannan B. T., Iynthezhuton K.

Abstract:

The field of aerodynamics and aeroacoustics remains one of the most poignant and well-researched fields of today. The current paper aims to investigate the predominant problem concerning the effects of noise of varying frequencies and waveforms on airflow surrounding an airfoil. Using a single speaker beneath the airfoil at different positions, we wish to simulate the effects of sound directly impinging on an airfoil and study its direct effects on airflow. We wish to study the same using smoke visualization methods with incense as our smoke-generating material in a variable-speed subsonic wind tunnel. Using frequencies and wavelengths similar to those of common engine noise, we wish to simulate real-world conditions of engine noise interfering with airflow and document the arising trends. These results will allow us to look into the real-world effects of noise on airflow and how to minimize them and expand on the possible relation between waveforms and noise. The parameters used in the study include frequency, Reynolds number, waveforms, angle of attack, and the effects on airflow when varying these parameters.

Keywords: engine noise, aeroacoustics, acoustic excitation, low speed

Procedia PDF Downloads 77
3478 Eco-Friendly Preservative Treated Bamboo Culm: Compressive Strength Analysis

Authors: Perminder JitKaur, Santosh Satya, K. K. Pant, S. N. Naik

Abstract:

Bamboo is extensively used in construction industry. Low durability of bamboo due to fungus infestation and termites attack under storage puts certain constrains for it usage as modern structural material. Looking at many chemical formulations for bamboo treatment leading to severe harmful environment effects, research on eco-friendly preservatives for bamboo treatment has been initiated world-over. In the present studies, eco-friendly preservative for bamboo treatment has been developed. To validate its application for structural purposes, investigation of effect of treatment on compressive strength has been investigated. Neem oil(25%) integrated with copper naphthenate (0.3%) on dilution with kerosene oil impregnated into bamboo culm at 2 bar pressure, has shown weight loss of only 3.15% in soil block analysis method. The results of compressive strength analysis using The results from compressive strength analysis using HEICO Automatic Compression Testing Machine, reveal that preservative treatment has not altered the structural properties of bamboo culms. Compressive strength of control (11.72 N/mm2) and above treated samples (11.71 N/mm2) was found to be comparable.

Keywords: D. strictus, bamboo, neem oil, presure treatment, compressive strength

Procedia PDF Downloads 388
3477 Garden Culture in Islamic Civilization: A Glance at the Birth, Development and Current Situation

Authors: Parisa Göker

Abstract:

With the birth of Islam, the definitions of paradise in Quran have spread across three continents since 7th century, showing itself in the palace gardens as a reflection of Islamic Culture. The design characteristics of Islamic gardens come forth with the influence of religious beliefs, as well as taking its form as per the cultural, climatic and soil characteristics of its geography, and showing its difference. It is possible to see these differences from the garden examples that survived to present time from the civilizations in the lands of Islamic proliferation. The main material of this research is the Islamic gardens in Iran and Spain. Field study was carried out in Alhambra Palace in Spain, Granada and Shah Goli garden in Iran, Tabriz. In this study, the birth of Islamic gardens, spatial perception of paradise, design principles, spatial structure, along with the structural/plantation materials used are examined. Also the characteristics and differentiation of the gardens examined in different cultures and geographies have been revealed. In the conclusion section, Iran and Spain Islamic garden samples were evaluated and their properties were determined.

Keywords: Islamic civilization, Islamic architecture, cultural landscape, Islamic garden

Procedia PDF Downloads 109
3476 Float Glass Manufacture Facility Design: Feasibility Study in Kuwait

Authors: Farah Al-Mutairi, Hadeer Al-Jeeraan, Lima Ali, Raya Al-Dabbous, Sarah Baroun

Abstract:

Lately, within the middle east, development has taken place in the construction area which increased the demand of a crucial component, where without it; stunning views from skyscrapers cannot been experienced, and natural light would not be able to be viewed from an indoor building. Glass has changed the path of living and building. Float glass is a type of glass that is flat and it is the type used in the construction and automobile sector. Facility design on the other hand is a study that improves the efficiency utilization of people, equipment, material and space. Kuwait's governmental future developing plan bears in mind the need of increase in industries to increase the growth domestic product(GDP) of the country. This project studies the feasibility of two designs of a float glass manufacture in Kuwait. The first Alternative, consists of one production line of capacity 500 tons of glass per day. The second alternative, consists of three production lines, each of capacity 500 tons of glass daily.

Keywords: float glass manufacture, Kuwait, feasibility float glass, facility design, float glass production

Procedia PDF Downloads 372
3475 Study of Sustainability Practices Ingrained in Indian Culture

Authors: Shraddha Mahore Manjrekar

Abstract:

Culture has been an integral part of the civilizations in the world. Architectural works, in the material form of buildings, are often perceived as cultural symbols and as works of art. Historical civilizations are often identified with their surviving architectural achievements. Author has observed and thought about the relation of Indian traditional cultural beliefs and their relation to the sustainable environment. There are some unwritten norms regarding the use of resources and the environment in Indian continent, that have been commonly accepted by the people for building houses and settlements since the Vedic period . The research has been done on the chanting and prayers done in a number of houses and temples in Madhya Pradesh and Maharashtra. After doing some research, it was also found that resource assessment had also been done for the entire country, and an idea of conservation of these resources was imbibed in the common people by means of some traditions, customs and beliefs. The sensitization and gratefulness about natural resources have been observed in the major beliefs and customs. This paper describes few of such beliefs and customs that are directly linked with the built environment and landscape.

Keywords: Indian culture, sacred groves, sustainability in built environment, sustainability practices

Procedia PDF Downloads 276
3474 Design of Semi-Automatic Vent and Flash Remover

Authors: Inba Blesso P., Senthil Kumar P.

Abstract:

The main consideration of any tire manufacturing process is wear resistance. One of the factors that cause tire wear is improper removal of vent and flash from the tire surface. The contact point between tyre surface and vent is highly supposed to wear. When the vehicle running at higher speed with heavy load, the tire vent and flash is wearing initially and it makes few of the tire surface material to wear along with it. Hence, provision must be given to efficient removal vent and flash thereby tire wear. Human efforts in trimming of tire vent results in time consuming and inaccurate output. Hence, this lead to the reduction in production rate and profit. Thus, the development of automated system can helps to attain minimum time consumption and provide a possible way to get the profitable production. Semi-automated system that employs Pneumatic actuators and sequencing circuits are focused in this study. By implementing this, one can achieve the accurate results with reduction in time and profitable output.

Keywords: tire manufacturing, pneumatic system, vent and flash removal, engineering and technology

Procedia PDF Downloads 357
3473 A Spectroscopic Study by Photoluminescence of Erbium in Gallium Nitride

Authors: A. Melouah, M. Diaf

Abstract:

The III-N nitride semiconductors appear to be excellent host materials, in particular, GaN epilayers doped with Erbium ions have shown a highly reduced thermal quenching of the Er luminescence intensity from cryogenic to elevated temperatures. The remarkable stability may be due to the large energy band gap of the material. Two methods are used for doping the Gallium nitride films with Erbium ions; ion implantation in the wafers obtained by (CVDOM) and in-situ incorporation during epitaxial growth of the layers by (MBE). Photoluminescence (PL) spectroscopy has been the main optical technique used to characterize the emission of Er-doped III-N semiconductor materials. This technique involves optical excitation of Er3+ ions and measurement of the spectrum of the light emission as a function of energy (wavelength). Excitation at above band gap energy leads to the creation of Electron-Hole pairs. Some of this pairs may transfer their energy to the Er3+ ions, exciting the 4f-electrons and resulting in optical emission. This corresponds to an indirect excitation of the Er3+ ions by electron-hole pairs. The direct excitation by the optical pumping of the radiation can be obtained.

Keywords: photoluminescence, Erbium, GaN, semiconductor materials

Procedia PDF Downloads 395
3472 Fibers Presence Effects on Air Flow of Attenuator of Spun-Bond Production System

Authors: Nasser Ghassembaglou, Abdullah Bolek, Oktay Yilmaz, Ertan Oznergiz, Hikmet Kocabas, Safak Yilmaz

Abstract:

High quality air filters production using nanofibers, as a functional material, has frequently been investigated. As it is more environmentally friendly, melting method has been selected to produce nanofibers. Spun-bond production systems consist of extruder, spin-pump, nozzle package and attenuators. Spin-pump makes molten polymer steady, which flows through extruder. Fibers are formed by regular melts passing through nuzzle holes under high pressure. Attenuator prolongs fibers to micron size to be collected on a conveyor. Different designs of attenuator systems have been studied in this research; new analysis have been done on existed designs considering fibers effect on air flow; it was comprehended that, at fibers presence, there is an air flow which agglomerates fibers as a negative effect. So some new representations have been designed and CFD analysis have been done on them. Afterwards, one of these representations selected as the most optimum and effective design which is brought in this paper.

Keywords: attenuator, CFD, nanofiber, spun-bond

Procedia PDF Downloads 428
3471 Chemical Durability of Textured Glass-coat Suitable for Building Application

Authors: Adejo Andrew Ojonugwa, Jomboh Jeff Kator, Garkida Adele Dzikwi

Abstract:

This study investigates the behaviour of textured glass coat to chemical reactions upon application. Samples of textured glass coat developed from mixed post consumer glass were subjected to pH test (ASTM D5464), Chemical resistance test (ASTM D3260 and D1308), Adhesion test (ASTM D3359), and Abrasion test (ASTM D4060). Results shows a pH of 8.50, Chemical resistance of 5% flick rate when reacted with Sodium hydroxide (NaOH), a 3%, 5%, 10%, and 15% discolouration when reacted with Magnesium hydroxide (Mg(OH)2), Hydrogen fluoride (HF), Potassium hydroxide (KOH) and NaOH respectively, an adhesion of 4A and abrasion of 0.2g. The results confirm that the developed textured glass coat is in line with the standard pH range of 8-9, resistant to acid and base except for HF, NaOH, and Mg(OH)₂, good adhesion and abrasion properties, thereby making the coat resistant to chemical degradation and a good engineering material.

Keywords: chemical durability, glass-coat, building, recycling

Procedia PDF Downloads 91